Method and Apparatus for Combining a Heat Pump Cycle With A Power Cycle

The working fluid for the heat pump cycle will be different than that for the power cycle.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation of U.S. patent application Ser. No. 11/203,783, filed Aug. 15, 2005, which application is a non-provisional of U.S. Provisional Patent Application Ser. No. 60/604,663, filed Aug. 26, 2004, and a non-provisional of U.S. Provisional Patent Application Ser. No. 60/602,270, filed Aug. 16, 2004.

Each of these applications are incorporated herein by reference. Priority of each of these applications is hereby claimed.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable

REFERENCE TO A “MICROFICHE APPENDIX”

Not applicable

BACKGROUND

1. Field

The present invention relates to cycles. More particularly, the present invention relates to a method and apparatus for combining a power cycle with a refrigeration cycle or heat pump.

2. General Background

A general vapor power cycle can include a boiler, turbine, condenser and a pump. FIG. 1 shows a general power cycle. From “a” to “b” subcooled fluid can be heated to the saturated fluid temperature in the boiler. From “b” to “c” saturated fluid can be vaporized in the boiler, producing saturated gas. From “c” to “d” a superheater option can be used to increase the fluid temperature while maintaining pressure. From “d” to “e” vapor expands through a turbine and does work as it decreases in temperature, pressure, and quality. From “e” to “f” vapor is liquified in the condenser. From f to a liquid is brought up to the boiler pressure. The expansion process between states d and e is essentially adiabatic. Ideal turbine expansion also is isentropic.

The Carnot cycle is an ideal power cycle which is stated to set the maximum attainable work output from a power cycle or heat engine. Various property diagrams for a Carnot cycle are provided in FIGS. 2A through 2C. FIG. 2A shows a pressure-volume diagram. FIG. 2B shows a temperature-entropy diagram. FIG. 2C shows an enthalpy-entropy diagram. From “a” to “b” occurs isothermal expansion of a saturated fluid to a saturated gas. From “b” to “c” occurs isentropic expansion. From “c” to “d” occurs isothermal condensation. From “d” to “a” occurs isentropic compression. The thermal efficiency of the entire cycle is calculated by the following formula:

n th = T high - T low T high

Refrigeration cycles are essentially power cycles in reverse. FIG. 3 is a schematic diagram of a refrigeration cycle. It is necessary to do work on the refrigerant in order to have it discharge energy, QH, to a high temperature sink. After discharging energy to the high temperature heat sink the refrigerant is expanded through an expansion valve to drop its temperature allowing it to absorb energy, QL, from a low temperature heat source. A heat pump also operates on a refrigeration cycle. One difference between a refrigerator and a heat pump is the purpose of each. The refrigerator's main purpose is to cool a low temperature area and to reject the absorbed heat to a high temperature area. The heat pump's main purpose is to reject the absorbed heat to a high temperature area, having picked up that heat from a low temperature area. Heat pumps use energy more efficiently than resistance heaters. For each kilowatt of energy used by the compressor of a heat pump, one kilowatt of compression heat is produced plus heat picked up through a refrigeration effect. The refrigeration effect of the heat pump can vary from ten to as high as five hundred percent or higher of the energy input into the compressor. This refrigeration effect is dependent on the temperatures involved and fluid used.

Up to this point it was believed that the Carnot cycle was the most efficient power cycle that could be used. However, this belief did not consider a refrigeration/heat pump cycle being combined with a power cycle. No one has used a refrigeration cycle or heat pump as a heat source in a power cycle.

While certain novel features of this invention shown and described below are pointed out in the annexed claims, the invention is not intended to be limited to the details specified, since a person of ordinary skill in the relevant art will understand that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation may be made without departing in any way from the spirit of the present invention. No feature of the invention is critical or essential unless it is expressly stated as being “critical” or “essential.”

BRIEF SUMMARY

The apparatus of the present invention solves the problems confronted in the art in a simple and straightforward manner. What is provided is an original process for the removal and use of energy from the ambient environment, including air, water, or earth. This energy is removed in the form of mechanical motion such as work, which may be used either directly or to drive electrical generators, or supply other energy needs.

In one embodiment the process can consist of a combined refrigeration/power cycle. A first media (Media No. 1) can be vaporized at ambient temperatures, compressed, and condensed at a higher temperature, TH in a first heat exchanger. This portion of the method and apparatus can be a cycle similar to conventional heat pumps.

The refrigeration/heat pump cycle can be combined with a second cycle in which a second media (Media No. 2) is vaporized at the higher temperature, TH. Energy can then be extracted from Media No. 2 by flowing it through a mechanical drive turbine or other engine, then condensing Media No. 2 at ambient temperature in the condenser.

The heat pump cycle using Media No. 1 produces a quantity of available energy at TH equal to the energy of evaporation of Media No. 1 at ambient temperature plus the energy of compression of Media No. 1. Thus, the energy available at TH compared to the input of mechanical energy is:


E@TH=E Evap.+E Mech. Input

The ratio of E@TH to E Mechanical Input depends upon the thermodynamic properties of Media No. 1, the ambient temperature and condensation temperature, TH at which the cycle is operating.

The second portion of this process is the cycle of Media No. 2. Media No. 2 is evaporated in Heat Exchanger No. 1 at TH by the condensation of Media No. 1. Media No. 2 is then passed through a turbine or other engine where mechanical energy is removed, then condensed at ambient temperature in the condenser. The energy of Media No. 2 available for transformation into mechanical energy is the difference of the energy of:

1. Heating, evaporating and superheating of Media No. 2 in the Heat Exchanger No. 1, and:

2. The energy of condensation of Media No. 1 at ambient temperature in the condenser, or;


Available Energy=E(Heat Exchanger No. 1)−E(Condensation at condenser).

The theoretical output of the process is then determined by the product of:

E @ T H E Mech . Input

of Cycle No. 1 and the per unit available energy of Cycle No. 2. If the media for Cycle No. 1 and Cycle No. 2 and operating temperatures are properly selected such that the ratio of

E @ T H E Mech . Input

of Cycle No. 1 maximized and the available energy of Cycle No. 2 is maximized, then the theoretical mechanical output to mechanical input ratio exceeds unity. Thus, there is a net flow of energy from the ambient environment, which is converted into mechanical energy.

The drawings constitute a part of this specification and include exemplary embodiments to the invention, which may be embodied in various forms.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:

FIG. 1 is a schematic diagram of a power cycle.

FIGS. 2A through 2C are schematic diagrams of various diagrams of the properties in a Carnot cycle.

FIG. 3 is a schematic diagram of a refrigeration cycle.

FIG. 4 is a schematic diagram of a preferred embodiment of the invention.

FIG. 5 is a pressure—enthalpy diagram for R11.

FIG. 6 is a pressure—enthalpy diagram for R600.

DETAILED DESCRIPTION

Detailed descriptions of one or more preferred embodiments are provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in any appropriate system, structure or manner.

FIG. 4 is a schematic diagram of a preferred embodiment 10. In this embodiment a heat pump cycle 20 is used as the heat source for a power cycle 30. Heat pump cycle 20 can comprise expansion valve 60, evaporator 70, compressor 40, and a condenser. The condenser can be heat exchanger 50. Power cycle 30 can comprise engine 80, condenser 90, pump 100, and a heat source or boiler. The heat source or boiler can also be heat exchanger 50.

In heat pump cycle 20, a first media (Media No. 1) can be vaporized at ambient temperatures, compressed, and condensed at a higher temperature, TH in heat exchanger 50.

Heat pump cycle 20 is combined with a second cycle 30 in which a second media (Media No. 2) is vaporized at the higher temperature, TH. Energy can then be extracted from Media No. 2 by flowing it through a mechanical drive turbine or other engine 80, then condensing Media No. 2 at ambient temperature in condenser 90.

Heat pump cycle 20 using Media No. 1 produces a quantity of available energy at TH equal to the energy of evaporation of Media No. 1 at ambient temperature plus the energy of compression of Media No. 1. Thus, the energy available at TH compared to the input of mechanical energy is:


E@TH=E Evap.+E Mech. Input

The ratio of E@TH to E Mechanical Input depends upon the thermodynamic properties of Media No. 1, the ambient temperature and condensation temperature, TH at which the cycle is operating.

The second portion of this process is power cycle 30 using Media No. 2. Media No. 2 can be evaporated in heat exchanger 50 at TH by the condensation of Media No. 1 of cycle 20. Media No. 2 is then passed through turbine or other engine 80 where mechanical energy is removed, then condensed at ambient temperature in condenser 90. The energy of Media No. 2 available for transformation into mechanical energy is the difference of the energy of:

1. Heating, evaporating and superheating of Media No. 2 in heat exchanger 50, and:

2. The energy of condensation of Media No. 1 at ambient temperature in condenser 90, or;


Available Energy=E(heat exchanger 50)−E(Condensation at condenser 90).

The theoretical output of overall process 10 is then determined by the product of:

E @ T H E Mech . Input of Cycle No . 1 ( cycle 20 ) × the per unit available energy of Cycle No . 2. ( cycle 30 ) .

If the media for Cycle No. 1 and Cycle No. 2 and operating temperatures are properly selected such that the ratio of

E @ T H E Mech . Input

of Cycle NO. 1 (cycle 20) is maximized and the available energy of Cycle No. 2 (cycle 30) is maximized, then the theoretical mechanical output to mechanical input ratio exceeds unity for overall cycle 10. Thus, there is a net flow of energy from the ambient environment, which is converted into mechanical energy.

One example of a preferred embodiment 10 using specific fluids is shown in FIG. 4. This system uses refrigerant No. R11 as the media of Cycle No. 1 (cycle 20), evaporating at an ambient temperature of 70° F. and condensing in heat exchanger 50 at 190° F. Refrigerant R600 is used in Cycle No. 2 (cycle 30), evaporating in heat exchanger 50 and condensing at the ambient temperature of 70° F.

Cycle 20 shows refrigerant entering expansion valve 60 at 70° F., at a pressure of 90 pounds per square inch, and having a heat content of 22.4 BTUs per pound. After passing through expansion valve 60 the refrigerant is at a pressure of 13.39 pounds per square inch and maintain a heat content of 22.4 BTUs per pound. It should be noted that depending on the refrigerant used, an expansion turbine may be used in place of expansion valve 60 to enhance performance of the overall process. Next, the refrigerant enters evaporator 70. Fed into evaporator 70 can be water at 70° F. having a heat capacity of 78.3 BTUs per pound (or 166.2 BTUs per minute). The refrigerant leaves evaporator 70 at 70° F., at a pressure of 13.39 pounds per square inch, and having a heat content of 100.72 BTUs per pound. Next the refrigerant is compressed by compressor 40 which can require an input energy of 142 BTUs per pound (or 30.146 BTUs per minute). The refrigerant leaves compressor 40 at 200° F., at a pressure of 90 pounds per square inch, and having a heat content of 114.9 BTUs per pound. Finally, the refrigerant passing through heat exchanger 50 where it absorbs heat and leaves at 70° F., at a pressure of 90 pounds per square inch, and having a heat content of 22.4 BTUs per pound. The heat loss by the working fluid in heat exchanger 50 can be 92.5 BTUs per pound (or 196.37 BTUs per minute).

Cycle 30 shows a working fluid entering engine 80 (which can be a turbine) at 190° F., at a pressure of 173.25 pounds per square inch, and having a heat content of 256.374 BTUs per pound. Leaving engine 80 the working fluid can be at 70° F., at a pressure of 31.279 pounds per square inch, and having a heat content of 217.017 BTUs per pound. The mechanical output of engine 80 can be 39.357 BTUs per pound or 39.357 BTUs per minute. Next, the working fluid can enter condenser 90 and leave at 70° F., at a pressure of 31.279 pounds per square inch, and having a heat content of 59.867 BTUs per pound. To achieve such a change in properties of the working fluid water at 70° F. can be fed through condenser 90 and exiting at 157.15 BTUs per pound (or 157.15 BTUs per minute). Next, the working fluid is pumped by pump 100 and leaves at 70° F., at a pressure of 194.09 pounds per square inch, and having a heat content of 60.22 BTUs per pound. The mechanical input to pump 100 can be 0.3618 BTUs per pound or 0.3618 BTUs per minute. Next, the working fluid enters heat exchanger 50 and exits at 190° F., at a pressure of 173.25 pounds per square inch, and having a heat content of 256.374 BTUs per pound. The heat gain for the working fluid entering heat exchanger 50 can be 196.154 BTUs per pound (or 196.154 BTUs per minute).

The working fluid for cycle 20 can be R11. The working fluid for cycle 30 can be R600. The ratios of flow rates for R11 to R600 can be 2.123 to 1. For example, the flow rate of R11 can be 2.123 pounds per minute and the flow rate of R600 can be 1 pound per minute. FIG. 5 is a pressure—enthalpy diagram for R11. FIG. 6 is a pressure—enthalpy diagram for R600. In both FIGS. 5 and 6 pressure is on the y-axis and enthalpy is on the x-axis. Tables 1A and 1B list various thermophysical properties for R11. Tables 2A and 2B list various thermophysical properties for R600.

TABLE 1A Refrigerant 11 (Trichlorofluoromethane) Properties of Saturated Liquid and Saturated Vapor Density, Volume, Enthalpy, Entropy, Specific Heat cp, Temp,* Pressure, lb/ft3 ft3/lb Btu/lb Btu/lb · ° F. Btu/lb · ° F. ° F. psia Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor −166.85a 0.001 110.41 24230. −24.922 73.328 −0.07085 0.26467 0.1005 −160.00 0.002 109.93 14650. −23.116 74.019 −0.06474 0.25940 0.1840 0.1019 −150.00 6.003 109.23 7355.6 −21.267 75.045 −0.05867 0.25235 0.1860 0.1038 −140.00 0.006 108.52 3882.0 −19.398 76.088 −0.05273 0.24597 0.1878 0.1058 −130.00 0.012 107.81 2143.2 −17.511 77.149 −0.04692 0.24022 0.1894 0.1077 −120.00 0.022 107.09 1232.5 −15.610 78.226 −0.04123 0.23502 0.1909 0.1095 −110.00 0.037 106.37 735.62 −13.694 79.318 −0.03568 0.23032 0.1922 0.1114 −100.00 0.062 105.65 454.14 −11.767 80.425 −0.03024 0.22608 0.1933 0.1133 −90.00 0.100 104.92 289.15 −9.829 81.546 −0.02493 0.22225 0.1943 0.1151 −80.00 0.156 104.19 189.37 −7.880 82.681 −0.01973 0.21880 0.1953 0.1170 −70.00 0.239 103.46 127.27 −5.923 83.827 −0.01464 0.21568 0.1962 0.1188 −60.00 0.355 102.73 87.583 −3.957 84.986 −0.00966 0.21288 0.1970 0.1206 −50.00 0.517 101.99 61.601 −1.983 86.155 −0.00478 0.21036 0.1978 0.1225 −40.00 0.738 101.25 44.203 0.000 87.335 0.00000 0.20810 0.1986 0.1243 −30.00 1.032 100.50 32.310 1.991 88.524 0.00469 0.20608 0.1994 0.1262 −20.00 1.419 99.75 24.022 3.989 89.721 0.00928 0.20427 0.2002 0.1280 −10.00 1.918 99.00 18.143 5.997 90.927 0.01380 0.20267 0.2011 0.1298 0.00 2.554 98.24 13.903 8.013 92.139 0.01823 0.20124 0.2020 0.1316 5.00 2.931 97.86 12.233 9.024 92.747 0.02041 0.20059 0.2024 0.1325 10.00 3.352 97.48 10.798 10.038 93.357 0.02258 0.19998 0.2029 0.1334 15.00 3.822 97.09 9.5606 11.054 93.967 0.02473 0.19941 0.2033 0.1343 20.00 4.343 96.71 8.4906 12.072 94.579 0.02686 0.19887 0.2038 0.1352 25.00 4.920 96.32 7.5621 13.093 95.192 0.02898 0.19837 0.2043 0.1361 30.00 5.557 95.93 6.7536 14.117 95.806 0.03108 0.19790 0.2048 0.1370 35.00 6.259 95.54 6.0477 15.143 96.420 0.03316 0.19747 0.2053 0.1379 40.00 7.031 95.14 5.4294 16.172 97.035 0.03523 0.19706 0.2059 0.1388 45.00 7.876 94.75 4.8863 17.203 97.650 0.03728 0.19668 0.2064 0.1397 50.00 8.800 94.35 4.4080 18.238 98.265 0.03931 0.19633 0.2070 0.1406 55.00 9.809 93.95 3.9856 19.275 98.880 0.04134 0.19601 0.2075 0.1415 60.00 10.907 93.55 3.6116 20.315 99.495 0.04334 0.19571 0.2081 0.1424 65.00 12.099 93.14 3.2795 21.358 100.109 0.04534 0.19543 0.2087 0.1433 70.00 13.392 92.73 2.9841 22.405 100.723 0.04732 0.19518 0.2093 0.1442 74.67b 14.696 92.35 2.7369 23.386 101.297 0.04916 0.19496 0.2099 0.1451 75.00 14.790 92.33 2.7206 23.455 101.337 0.04928 0.19495 0.2100 0.1452 80.00 16.301 91.91 2.4851 24.507 101.949 0.05124 0.19473 0.2106 0.1461 85.00 17.929 91.50 2.2741 25.564 102.560 0.05318 0.19454 0.2113 0.1470 90.00 19.681 91.08 2.0846 26.624 103.170 0.05511 0.19437 0.2119 0.1479 95.00 21.563 90.66 1.9142 27.687 103.778 0.05703 0.19421 0.2126 0.1489 Velocity of Viscosity, Thermal Cond, Surface Temp,* cp/cv Sound, ft/s lbm/ft · h Btu/h · ft · ° F. Tension, Temp,* ° F. Vapor Liquid Vapor Liquid Vapor Liquid Vapor dyne/cm ° F. −166.85a 1.1680 352. −166.85 −160.00 1.1655 356. −160.00 −150.00 1.1620 3953. 361. 35.26 −150.00 −140.00 1.1588 3895. 366. 34.44 −140.00 −130.00 1.1558 3829. 371. 33.63 −130.00 −120.00 1.1531 3758. 376. 32.82 −120.00 −110.00 1.1506 3684. 381. 32.01 −110.00 −100.00 1.1482 3609. 386. 31.21 −100.00 −90.00 1.1461 3533. 391. 30.41 −90.00 −80.00 1.1442 3457. 396. 29.62 −80.00 −70.00 1.1425 3382. 400. 28.83 −70.00 −60.00 1.1410 3308. 405. 28.04 −60.00 −50.00 1.1396 3235. 409. 27.26 −50.00 −40.00 1.1384 3163. 414. 26.49 −40.00 −30.00 1.1374 3093. 418. 25.72 −30.00 −20.00 1.1366 3024. 422. 1.889 0.0222 0.0595 24.95 −20.00 −10.00 1.1360 2955. 426. 1.782 0.0227 0.0587 24.19 −10.00 0.00 1.1356 2888. 430. 1.678 0.0231 0.0579 23.43 0.00 5.00 1.1354 2855. 432. 1.627 0.0233 0.0575 23.05 5.00 10.00 1.1354 2822. 433. 1.578 0.0236 0.0571 22.68 10.00 15.00 1.1353 2789. 435. 1.529 0.0238 0.0567 22.30 15.00 20.00 1.1354 2757. 437. 1.482 0.0240 0.0563 21.93 20.00 25.00 1.1355 2725. 438. 1.436 0.0243 0.0559 21.56 25.00 30.00 1.1356 2693. 440. 1.390 0.0245 0.0555 21.19 30.00 35.00 1.1358 2661. 442. 1.347 0.0247 0.0551 0.00470 20.82 35.00 40.00 1.1361 2629. 443. 1.304 0.0250 0.0548 0.00475 20.45 40.00 45.00 1.1364 2598. 444. 1.262 0.0252 0.0544 0.00480 20.08 45.00 50.00 1.1368 2567. 446. 1.222 0.0254 0.0540 0.00485 19.72 50.00 55.00 1.1373 2536. 447. 1.183 0.0256 0.0536 0.00490 19.35 55.00 60.00 1.1378 2505. 448. 1.145 0.0259 0.0532 0.00495 18.99 60.00 65.00 1.1385 2474. 450. 1.109 0.0261 0.0528 0.00501 18.63 65.00 70.00 1.1392 2444. 451. 1.073 0.0264 0.0524 0.00506 18.27 70.00 74.67b 1.1399 2415. 452. 1.041 0.0266 0.0521 0.00511 17.94 74.67 75.00 1.1400 2413. 452. 1.039 0.0266 0.0521 0.00512 17.91 75.00 80.00 1.1409 2383. 453. 1.006 0:0268 0.0517 0.00517 17.56 80.00 85.00 1.1419 2353. 454. 0.974 0.0271 0.0513 0.00523 17.20 85.00 90.00 1.1429 2323. 455. 0.943 0.0273 0.0509 0.00528 16.85 90.00 95.00 1.1441 2293. 456. 0.913 0.0276 0.0505 0.00534 16.49 95.00 *temperatures are on the ITS 90 scale a = triple point b = normal boiling point c = critical point indicates data missing or illegible when filed

TABLE 1B Refrigerant 11 (Trichlorofluoromethane) Properties of Saturated Liquid and Saturated Vapor Density, Volume, Enthalpy, Specific Heat cp, Temp,* Pressure, lb/ft3 ft3/lb Btu/lb Entropy, Btu/lb · ° F. Btu/lb · ° F. ° F. psia Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor 100.00 23.581 90.23 1.7605 28.754 104.384 0.05894 0.19407 0.2134 0.1498 105.00 25.743 89.81 1.6217 29.825 104.989 0.06083 0.19394 0.2141 0.1508 110.00 28.053 89.38 1.4960 30.900 105.591 0.06272 0.19383 0.2149 0.1518 115.00 30.520 88.94 1.3821 31.978 106.191 0.06459 0.19374 0.2156 0.1528 120.00 33.150 88.51 1.2787 33.060 106.788 0.06646 0.19365 0.2164 0.1538 125.00 35.950 88.07 1.1846 34.147 107.382 0.06832 0.19358 0.2172 0.1548 130.00 38.926 87.62 1.0988 35.238 107.974 0.07017 0.19352 0.2181 0.1558 135.00 42.087 87.17 1.0205 36.333 108.562 0.07200 0.19346 0.2189 0.1569 140.00 45.439 86.72 0.9489 37.433 109.146 0.07383 0.19342 0.2198 0.1580 145.00 48.989 86.26 0.8833 38.537 109.727 0.07565 0.19339 0.2207 0.1591 150.00 52.745 85.80 0.8232 39.646 110.304 0.07747 0.19336 0.2217 0.1602 160.00 60.905 84.86 0.7172 41.878 111.445 0.08107 0.19333 0.2236 0.1626 170.00 69.979 83.91 0.6273 44.130 112.566 0.08464 0.19333 0.2257 0.1650 180.00 80.030 82.93 0.5506 46.403 113.666 0.08819 0.19334 0.2279 0.1677 190.00 91.120 81.93 0.4849 48.699 114.743 0.09171 0.19337 0.2303 0.1705 200.00 103.31 80.90 0.4283 51.019 115.793 0.09521 0.19341 0.2328 0.1735 210.00 116.68 79.85 0.3793 53.364 116.815 0.09870 0.19344 0.2356 0.1768 220.00 131.28 78.77 0.3367 55.736 117.805 0.10216 0.19348 0.2385 0.1804 230.00 147.18 77.65 0.2996 58.136 118.760 0.10561 0.19351 0.2418 0.1844 240.00 164.46 76.50 0.2670 60.567 119.677 0.10905 0.19353 0.2453 0.1888 250.00 183.19 75.30 0.2384 63.032 120.551 0.11248 0.19353 0.2493 0.1937 260.00 203.43 74.06 0.2131 65.533 121.378 0.11591 0.19351 0.2537 0.1993 270.00 225.26 71.78 0.1906 68.074 122.152 0.11934 0.19346 0.2587 0.2057 280.00 248.77 71.43 0.1706 70.659 122.867 0.12278 0.19336 0.2645 0.2131 290.00 274.03 70.01 0.1528 73.294 123.513 0.12623 0.19322 0.2713 0.2219 300.00 301.12 68.51 0.1367 75.985 124.082 0.12970 0.19301 0.2794 0.2326 310.00 330.14 66.92 0.1222 78.742 124.559 0.13320 0.19273 0.2894 0.2457 320.00 361.18 65.21 0.1090 81.578 124.926 0.13675 0.19235 0.3020 0.2625 330.00 394.36 63.35 0.0970 84.510 125.159 0.14037 0.19184 0.3188 0.2848 340.00 429.78 61.29 0.0859 87.565 125.220 0.14408 0.19117 0.3423 0.3159 350.00 467.60 58.97 0.0755 90.787 125.054 0.14794 0.19026 0.3778 0.3628 360.00 507.98 56.24 0.0657 94.248 124.561 0.15203 0.18901 0.4376 0.4418 370.00 551.15 52.86 0.0561 98.092 123.541 0.15651 0.18718 0.5570 0.6042 380.00 597.49 48.25 0.0458 102.678 121.417 0.16180 0.18412 388.33c 639.27 34.59 0.0289 112.749 112.749 0.17350 0.17350 Velocity of Viscosity, Thermal Cond, Surface Temp,* cp/cv Sound, ft/s lbm/ft · h Btu/h · ft · ° F. Tension, Temp,* ° F. Vapor Liquid Vapor Liquid Vapor Liquid Vapor dyne/cm ° F. 100.00 1.1454 2263. 456. 0.884 0.0278 0.0502 0.00540 16.14 100.00 105.00 1.1468 2234. 457. 0.856 0.0281 0.0498 0.00546 15.79 105.00 110.00 1.1483 2204. 458. 0.829 0.0283 0.0494 0.00552 15.45 110.00 115.00 1.1500 2174. 458. 0.804 0.0286 0.0490 0.00559 115.00 120.00 1.1517 2145. 459. 0.778 0.0288 0.0486 0.00565 120.00 125.00 1.1536 2115. 459. 0.754 0.0291 0.0483 0.00572 125.00 130.00 1.1557 2086. 459. 0.731 0.0293 0.0479 0.00578 130.00 135.00 1.1579 2057. 459. 0.708 0.0296 0.0475 0.00585 135.00 140.00 1.1602 2027. 459. 0.687 0.0299 0.0471 0.00592 140.00 145.00 1.1628 1998. 460. 0.666 0.0302 0.0468 0.00599 145.00 150.00 1.1655 1969. 459. 0.646 0.0304 0.0464 0.00606 150.00 160.00 1.1715 1910. 459. 0.607 0.0310 0.0456 0.00621 160.00 170.00 1.1783 1851. 458. 0.572 0.0316 0.0449 0.00637 170.00 180.00 1.1861 1793. 457. 0.539 0.0322 0.0442 0.00654 180.00 190.00 1.1950 1734. 456. 0.508 0.0328 0.0434 0.00671 190.00 200.00 1.2052 1675. 454. 0.479 0.0334 0.0427 0.00689 200.00 210.00 1.2169 1615. 451. 0.453 0.0341 0.0419 0.00707 210.00 220.00 1.2302 1555. 448. 0.428 0.0347 0.0412 0.00727 220.00 230.00 1.2456 1495. 445. 0.404 0.0354 0.0404 0.00748 230.00 240.00 1.2634 1434. 441. 0.383 0.0362 0.0397 0.00769 240.00 250.00 1.2842 1372. 437. 0.363 0.0369 0.0390 0.00792 250.00 260.00 1.3086 1309. 432. 0.344 0.0377 0.0382 0.00815 260.00 270.00 1.3375 1245. 426. 0.326 0.0385 0.0375 0.00840 270.00 280.00 1.3721 1180. 420. 0.310 0.0393 0.0367 0.00866 280.00 290.00 1.4142 1114. 413. 0.294 0.0401 0.0360 0.00893 290.00 300.00 1.4663 1046. 406. 0.280 0.0410 0.0352 0.00921 300.00 310.00 1.5322 976. 397. 310.00 320.00 1.6179 904. 388. 320.00 330.00 1.7336 830. 378. 330.00 340.00 1.8976 752. 366. 340.00 350.00 2.1476 671. 354. 350.00 360.00 2.5730 586. 340. 360.00 370.00 3.4525 499. 325. 370.00 380.00 380.00 388.33c 0. 0. 0.00 388.33 indicates data missing or illegible when filed

TABLE 2A Refrigerant 600 (n-Butane) Properties of Saturated Liquid and Saturated Vapor Density, Volume, Enthalpy, Entropy, Specific Heat cp, Temp,* Pressure, lb/ft3 ft3/lb Btu/lb Btu/lb · ° F. Btu/lb · ° F. ° F. psia Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor −150.00 0.021 43.72 2680.0 −54.034 145.702 −0.14904 0.49595 0.4804 0.2930 −140.00 0.038 43.39 1536.9 −49.229 148.643 −0.13377 0.48522 0.4807 0.2971 −130.00 0.066 43.06 917.01 −44.419 151.622 −0.11895 0.47570 0.4815 0.3012 −120.00 0.110 42.74 567.05 −39.597 154.636 −0.10455 0.46728 0.4829 0.3055 −110.00 0.178 42.41 362.20 −34.759 157.687 −0.09051 0.45985 0.4848 0.3099 −100.00 0.278 42.08 238.26 −29.899 160.772 −0.07681 0.45332 0.4873 0.3145 −90.00 0.423 41.75 160.98 −25.011 163.890 −0.06340 0.44759 0.4903 0.3192 −80.00 0.626 41.41 111.45 −20.090 167.042 −0.05027 0.44261 0.4938 0.3241 −70.00 0.907 41.08 78.895 −15.133 170.225 −0.03739 0.43829 0.4976 0.3292 −60.00 1.285 40.74 56.999 −10.134 173.438 −0.02473 0.43458 0.5019 0.3344 −50.00 1.786 40.40 41.955 −5.091 176.679 −0.01227 0.43143 0.5065 0.3399 −40.00 2.438 40.06 31.414 0.000 179.946 0.00000 0.42878 0.5114 0.3456 −30.00 3.273 39.71 23.893 5.142 183.238 0.01210 0.42659 0.5165 0.3515 −20.00 4.327 39.36 18.436 10.337 186.552 0.02404 0.42483 0.5219 0.3576 −10.00 5.638 39.01 14.416 15.587 189.887 0.03583 0.42345 0.5275 0.3640 0.00 7.251 38.66 11.410 20.896 193.240 0.04749 0.42242 0.5334 0.3706 5.00 8.184 38.48 10.194 23.573 194.922 0.05328 0.42203 0.5364 0.3740 10.00 9.211 38.30 9.1329 26.266 196.608 0.05903 0.42171 0.5394 0.3774 15.00 10.337 38.12 8.2031 28.974 198.298 0.06475 0.42147 0.5426 0.3810 20.00 11.569 37.93 7.3863 31.698 199.991 0.07045 0.42130 0.5457 0.3845 25.00 12.914 37.75 6.6666 34.438 201.686 0.07612 0.42119 0.5489 0.3882 30.00 14.378 37.56 6.0309 37.194 203.384 0.08176 0.42115 0.5522 0.3919 31.03b 14.696 37.52 5.9090 37.765 203.735 0.08292 0.42115 0.5528 0.3927 35.00 15.969 37.38 5.4677 39.967 205.084 0.08738 0.42117 0.5555 0.3957 40.00 17.693 37.19 4.9676 42.757 206.786 0.09297 0.42125 0.5588 0.3995 45.00 19.559 37.00 4.5224 45.564 208.490 0.09854 0.42138 0.5622 0.4035 50.00 21.574 36.81 4.1251 48.389 210.194 0.10409 0.42156 0.5657 0.4074 55.00 23.746 36.62 3.7697 51.231 211.899 0.10962 0.42180 0.5692 0.4115 60.00 26.081 36.42 3.4512 54.091 213.605 0.11513 0.42208 0.5728 0.4157 65.00 28.590 36.23 3.1649 56.970 215.311 0.12062 0.42241 0.5764 0.4199 70.00 31.279 36.03 2.9072 59.867 217.017 0.12609 0.42278 0.5801 0.4242 75.00 34.157 35.83 2.6747 62.783 218.721 0.13154 0.42319 0.5839 0.4286 80.00 37.232 35.63 2.4646 65.719 220.425 0.13697 0.42364 0.5877 0.4331 85.00 40.513 35.42 2.2742 68.673 222.127 0.14239 0.42413 0.5916 0.4377 90.00 44.009 35.22 2.1015 71.648 223.827 0.14780 0.42465 0.5956 0.4424 95.00 47.728 35.01 1.9445 74.643 225.524 0.15318 0.42520 0.5997 0.4472 Velocity of Viscosity, Thermal Cond, Surface Temp,* cp/cv Sound, ft/s lbm/ft · h Btu/h · ft · ° F. Tension Temp,* ° F. Vapor Liquid Vapor Liquid Vapor Liquid Vapor dyne/cm ° F. −150.00 1.1323 4976. 548. 1.945 0.0109 0.0991 0.00362 28.19 −150.00 −140.00 1.1304 4906. 556. 1.737 0.0112 0.0967 0.00381 27.41 −140.00 −130.00 1.1286 4833. 564. 1.564 0.0115 0.0943 0.00399 26.64 −130.00 −120.00 1.1268 4757. 572. 1.416 0.0118 0.0921 0.00419 25.87 −120.00 −110.00 1.1251 4678. 579. 1.290 0.0121 0.090! 0.00439 25.11 −110.00 −100.00 1.1236 4597. 587. 1.182 0.0124 0.0881 0.00459 24.35 −100.00 −90.00 1.1221 4514. 594. 1.087 0.0127 0.0862 0.00480 23.59 −90.00 −80.00 1.1208 4428. 601. 1.003 0.0130 0.0843 0.00502 22.84 −80.00 −70.00 1.1196 4341. 608. 0.930 0.0133 0.0826 0.00524 22.10 −70.00 −60.00 1.1185 4252. 614. 0.865 0.0136 0.0809 0.00547 21.36 −60.00 −50.00 1.1177 4161. 620. 0.806 0.0139 0.0793 0.0057! 20.63 −50.00 −40.00 1.1170 4070. 626. 0.754 0.0143 0.0777 0.00595 19.90 −40.00 −30.00 1.1166 3977. 631. 0.706 0.0146 0.0762 0.00621 19.18 −30.00 −20.00 1.1163 3883. 637. 0.663 0.0149 0.0747 0.00647 18.46 −20.00 −10.00 1.1163 3788. 641. 0.623 0.0153 0.0733 0.00674 17.75 −10.00 0.00 1.1166 3693. 646. 0.587 0.0156 0.0719 0.00701 17.04 0.00 5.00 1.1168 3645. 648. 0.570 0.0158 0.0712 0.00716 16.69 5.00 10.00 1.1171 3597. 650. 0.554 0.0159 0.0705 0.00730 16.34 10.00 15.00 1.1175 3549. 651. 0.539 0.0161 0.0698 0.00745 16.00 15.00 20.00 1.1180 3500. 653. 0.524 0.0163 0.0691 0.00760 15.65 20.00 25.00 1.1185 3452. 655. 0.509 0.0165 0.0685 0.00775 15.31 25.00 30.00 1.1191 3403. 656. 0.495 0.0166 0.0678 0.00790 14.96 30.00 31.03b 1.1193 3393. 656. 0.492 0.0167 0.0677 0.00793 14.89 31.03 35.00 1.1198 3354. 657. 0.482 0.0168 0.0672 0.00806 14.62 35.00 40.00 1.1206 3305. 659. 0.469 0.0170 0.0665 0.00822 14.28 40.00 45.00 1.1215 3256. 660. 0.456 0.0172 0.0659 0.00838 13.94 45.00 50.00 1.1225 3207. 661. 0.444 0.0174 0.0652 0.00854 13.61 50.00 55.00 1.1236 3158. 661. 0.432 0.0176 0.0646 0.00871 13.27 55.00 60.00 1.1248 3108. 662. 0.421 0.0178 0.0639 0.00888 12.94 60.00 65.00 1.1261 3059. 662. 0.410 0.0179 0.0633 0.00905 12.61 65.00 70.00 1.1276 3009. 663. 0.400 0.0181 0.0627 0.00923 12.28 70.00 75.00 1.1291 2960. 663. 0.389 0.0183 0.0621 0.00941 11.95 75.00 80.00 1.1308 2910. 663. 0.379 0.0185 0.0614 0.00959 11.63 80.00 85.00 1.1326 2860. 663. 0.370 0.0187 0.0608 0.00977 11.30 85.00 90.00 1.1346 2810. 663. 0.360 0.0189 0.0602 0.00996 10.98 90.00 95.00 1.1367 2760. 662. 0.351 0.019 0.0596 0.01015 10.66 95.00 *temperatures are on the IPTS 68 scale b = normal boiling point c = critical point indicates data missing or illegible when filed

TABLE 2B Refrigerant 600 (n-Butane) Properties of Saturated Liquid and Saturated Vapor Density, Volume, Enthalpy, Entropy, Specific Heat cp, Temp,* Pressure, lb/ft3 ft3/lb Btu/lb Btu/lb · ° F. Btu/lb · ° F. ° F. psia Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor 100.00 51.679 34.80 1.8015 77.658 227.219 0.15856 0.42579 0.6038 0.4521 105.00 55.871 34.59 1.6711 80.694 228.909 0.16392 0.42640 0.6080 0.4571 110.00 60.314 34.37 1.5519 83.752 230.596 0.16927 0.42704 0.6123 0.4622 115.00 65.015 34.15 1.4428 86.831 232.278 0.17461 0.42770 0.6168 0.4675 120.00 69.986 33.93 1.3429 89.933 233.954 0.17993 0.42839 0.6213 0.4729 125.00 75.234 33.71 1.2511 93.057 235.625 0.18525 0.42909 0.6259 0.4784 130.00 80.770 33.48 1.1667 96.204 237.288 0.19056 0.42982 0.6307 0.4841 135.00 86.603 33.25 1.0889 99.375 238.945 0.19586 0.43056 0.6356 0.4900 140.00 92.743 33.02 1.0173 102.570 240.592 0.20115 0.43131 0.6406 0.4961 145.00 99.199 32.78 0.9511 105.790 242.231 0.20644 0.43208 0.6458 0.5023 150.00 105.98 32.54 0.8899 109.035 243.859 0.21172 0.43286 0.6512 0.5088 155.00 113.10 32.30 0.8332 112.306 245.476 0.21700 0.43365 0.6567 0.5156 160.00 120.57 32.05 0.7807 115.604 247.081 0.22227 0.43444 0.6625 0.5226 165.00 128.39 31.80 0.7319 118.930 248.672 0.22754 0.43524 0.6685 0.5298 170.00 136.59 31.54 0.6865 122.284 250.249 0.23281 0.43604 0.6747 0.5374 175.00 145.16 31.28 0.6443 125.668 251.809 0.23809 0.43684 0.6812 0.5454 180.00 154.12 31.01 0.6049 129.082 253.351 0.24336 0.43763 0.6880 0.5537 185.00 163.48 30.73 0.5682 132.527 254.873 0.24864 0.43842 0.6951 0.5626 190.00 173.25 30.46 0.5339 136.006 256.374 0.25392 0.43920 0.7026 0.5719 195.00 183.45 30.17 0.5018 139.518 257.851 0.25921 0.43996 0.7106 0.5817 200.00 194.09 29.88 0.4717 143.066 259.302 0.26451 0.44071 0.7190 0.5923 210.00 216.71 29.27 0.4170 150.277 262.113 0.27515 0.44215 0.7377 0.6157 220.00 241.23 28.62 0.3687 157.654 264.783 0.28585 0.44347 0.7594 0.6433 230.00 267.76 27.94 0.3256 165.218 267.276 0.29664 0.44462 0.7853 0.6766 240.00 296.42 27.20 0.2871 173.001 269.548 0.30757 0.44556 0.8173 0.7182 250.00 327.34 26.40 0.2523 181.042 271.533 0.31868 0.44619 0.8587 0.7726 260.00 360.69 25.51 0.2207 189.406 273.135 0.33005 0.44639 0.9155 0.8484 270.00 396.64 24.50 0.1915 198.197 274.203 0.34181 0.44597 1.0008 0.9633 280.00 435.43 23.32 0.1640 207.608 274.458 0.35421 0.44459 1.1490 1.1632 290.00 477.36 21.80 0.1370 218.088 273.282 0.36782 0.44144 1.4852 1.6136 300.00 522.95 19.41 0.1068 231.321 268.472 0.38481 0.43371 305.62c 550.56 14.22 0.0703 251.554 251.554 0.41093 0.41093 Velocity of Viscosity, Thermal Cond, Surface Temp,* cp/cv Sound, ft/s lbm/ft · h Btu/h · ft · ° F. Tension, Temp,* ° F. Vapor Liquid Vapor Liquid Vapor Liquid Vapor dyne/cm ° F. 100.00 1.1390 2710. 662. 0.342 0.0194 0.0590 0.01035 10.34 100.00 105.00 1.1415 2660. 661. 0.333 0.0196 0.0584 0.01055 10.03 105.00 110.00 1.1442 2610. 660. 0.325 0.0198 0.0578 0.01075 9.71 110.00 115.00 1.1470 2559. 659. 0.316 0.0200 0.0572 0.01096 9.40 115.00 120.00 1.1501 2509. 657. 0.308 0.0202 0.0566 0.01117 9.09 120.00 125.00 1.1534 2459. 656. 0.301 0.0204 0.0560 0.01138 8.78 125.00 130.00 1.1570 2408. 654. 0.293 0.0207 0.0554 0.01160 8.48 130.00 135.00 1.1609 2357. 652. 0.285 0.0209 0.0548 0.01182 8.18 135.00 140.00 1.1650 2307. 650. 0.278 0.0211 0.0542 0.01205 7.88 140.00 145.00 1.1695 2256. 647. 0.271 0.0214 0.0536 0.01228 7.58 145.00 150.00 1.1744 2205. 645. 0.264 0.0216 0.0530 0.01251 7.28 150.00 155.00 1.1796 2154. 642. 0.257 0.0219 0.0524 0.01275 6.99 155.00 160.00 1.1853 2103. 639. 0.250 0.0221 0.0519 0.01300 6.70 160.00 165.00 1.1915 2052. 635. 0.243 0.0224 0.0513 0.01325 6.41 165.00 170.00 1.1982 2001. 632. 0.237 0.0227 0.0507 0.01350 6.12 170.00 175.00 1.2055 1949. 628. 0.230 0.0229 0.0501 0.01376 5.84 175.00 180.00 1.2135 1898. 624. 0.224 0.0232 0.0496 0.01403 5.56 180.00 185.00 1.2222 1846. 619. 0.218 0.0235 0.0490 0.01430 5.28 185.00 190.00 1.2318 1794. 615. 0.212 0.0238 0.0484 0.01458 5.01 190.00 195.00 1.2424 1742. 610. 0.206 0.0241 0.0479 0.01486 4.74 195.00 200.00 1.2540 1690. 604. 0.200 0.0244 0.0473 0.01516 4.47 200.00 210.00 1.2814 1585. 593. 0.188 0.0251 0.0462 0.01577 3.94 210.00 220.00 1.3158 1480. 579. 0.177 0.0258 0.0451 0.01641 3.43 220.00 230.00 1.3599 1372. 565. 0.165 0.0266 0.0440 0.01710 2.93 230.00 240.00 1.4183 1263. 548. 0.154 0.0274 0.0430 0.01784 2.45 240.00 250.00 1.4988 1152. 529. 0.143 0.0284 0.0419 0.01866 1.99 250.00 260.00 1.6157 1038. 509. 0.132 0.0295 0.0408 0.01962 1.55 260.00 270.00 1.8000 918. 485. 0.121 0.0308 0.0396 0.02082 1.14 270.00 280.00 2.1306 792. 459. 0.109 0.0325 0.0387 0.02256 0.75 280.00 290.00 2.8921 655. 428. 0.096 0.0348 0.0384 0.02571 0.40 290.00 300.00 0.079 0.0392 0.11 300.00 305.62c 0. 0. 0.00 305.62 indicates data missing or illegible when filed

The performance index of Cycle No. 1 (cycle 20):

Q @ T H Q Mech . Input

is 6.514. The per unit available energy of Cycle No. 2 (cycle 30) is 0.2006. The product of these performances, the net mechanical energy output per unit of mechanical energy per input is 6.514×0.2006=1.307. Thus, the system will sustain its own operation plus produce mechanical energy for other uses by extracting energy from the ambient environment.

The following is a list of reference numerals:

LIST FOR REFERENCE NUMERALS (Part No.) (Description) 10 preferred embodiment of the present invention 20 refrigeration/heat pump cycle 30 power cycle 40 compressor 50 heat exchanger 60 expansion valve 70 evaporator 80 engine 90 condenser 100 pump 110 pressure 120 enthalpy 130 pressure 140 enthalpy

All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise. All materials used or intended to be used in a human being are biocompatible, unless indicated otherwise.

It will be understood that each of the elements described above, or two or more together may also find a useful application in other types of methods differing from the type described above. Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention set forth in the appended claims. The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.

Claims

1. A method of power generation comprising: wherein the heat pump extracts energy from an ambient environment and the combined power cycle and heat pump sustains its own operation plus produces an excess of mechanical energy.

(a) a power cycle; and
(b) a heat pump cycle, the heat pump cycle supplying heat to the power cycle

2. The method of claim 1, wherein the power cycle includes a first media and the heat pump cycle includes a second media, the first media being different from the second media.

3. The method of claim 2, wherein the first media has a first flow rate and the second media has a second flow rate, the first flow rate being different from the second flow rate.

4. The method of claim 1, wherein the heat pump cycle includes an expansion valve.

5. The method of claim 1, wherein the heat pump cycle includes an expansion turbine.

6. The method of claim 3, wherein the first media is R600 and the second media is R11.

7. The method of claim 6, wherein the flow rate of the second media is about two times the flow rate of the second media.

8. The method of claim 1, wherein the heat pump cycle includes a heat exchanger for rejecting heat and the power cycle uses this heat exchanger as a source of heat.

9-13. (canceled)

Patent History
Publication number: 20110308250
Type: Application
Filed: May 18, 2011
Publication Date: Dec 22, 2011
Inventor: George Mahl, III (Harahan, LA)
Application Number: 13/110,255
Classifications
Current U.S. Class: Process Of Power Production Or System Operation (60/645)
International Classification: F01K 13/00 (20060101);