Process Of Power Production Or System Operation Patents (Class 60/645)
  • Patent number: 10529906
    Abstract: System for quantum energy storage can include a quantum information engine including topological insulator having at least one edge. A coherence capacitor can include nuclei of atoms within the topological insulator, and each nucleus can have a spin direction. An energy source can be electrically connected to the topological insulator and configured to supply a current along the at least one edge of the topological insulator. The current can interact with at least one nucleus of the nuclei to flip a spin direction of the at least one nucleus. Methods for quantum energy storage, systems and methods for storing and using quantum energy, quantum information engines, and quantum heat engines are also disclosed.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: January 7, 2020
    Assignees: Lockheed Martin Corporation, Sabanci University
    Inventors: Edward Henry Allen, Inanc Adagideli
  • Patent number: 10519355
    Abstract: A working fluid for heat cycle, a composition for a heat cycle system containing the working fluid, and a heat cycle system employing the composition are provided. The working fluid contains trifluoroethylene, 2,3,3,3-tetrafluoropropene, and difluoromethane. A proportion of the total amount of trifluoroethylene, 2,3,3,3-tetrafluoropropene, and difluoromethane based on the entire amount of the working fluid is higher than 90 mass % and at most 100 mass %. Based on the total amount of trifluoroethylene, 2,3,3,3-tetrafluoropropene, and difluoromethane, the proportion of trifluoroethylene is at least 10 mass % and less than 70 mass %, the proportion of 2,3,3,3-tetrafluoropropene is at most 50 mass %, and the proportion of difluoromethane is higher than 30 mass % and at most 75 mass %. The working fluid can replace R410A and has a low global warming potential and high durability.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: December 31, 2019
    Assignee: AGC Inc.
    Inventor: Masato Fukushima
  • Patent number: 10407603
    Abstract: Provided are compositions, preferably azeotrope or azeotrope-like compositions including 1,1,1,4,4,4-hexafluoro-2-butene and chlorotrifluoropropene, particularly 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), and uses thereof of the compositions. The composition may be a heat transfer composition. The composition may be a blowing agent composition. The composition may be a solvent composition. The composition may be a sprayable composition.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: September 10, 2019
    Assignee: ARKEMA FRANCE
    Inventors: Wissam Rached, Laurent Abbas, Jean-Christophe Boutier
  • Patent number: 10234207
    Abstract: A cooling apparatus for cooling a fluid by surface water includes more than one tubes for containing and transporting the fluid in its interior, the exterior of the tube being in operation at least partially submerged in the surface water so as to cool the tube to thereby also cool the fluid. The cooling apparatus also includes at least one light source for producing light that hinders fouling on at least part of the submerged exterior, and at least one optic unit for enhancing the distribution of anti-fouling light on the submerged exterior.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: March 19, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bart Andre Salters, Roelant Boudewijn Hietbrink
  • Patent number: 10228199
    Abstract: A cooling apparatus for cooling a fluid by surface water includes at least on tube for containing and transporting the fluid in its interior, the exterior of the tube being in operation at least partially submerged in the surface water so as to cool the tube to thereby also cool the fluid. The cooling apparatus also includes at least one light source for producing light that hinders fouling on at least part of the submerged exterior.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: March 12, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bart Andre Salters, Roelant Boudewijn Hietbrink
  • Patent number: 10208737
    Abstract: Thermal energy recovery systems include a piston assembly including a primary cylinder adapted to receive vapor; a single-acting secondary cylinder/piston assembly extending from opposite ends of the primary cylinder; a primary piston disposed for displacement in the primary cylinder; first and second secondary pistons disposed for displacement in the secondary cylinder/piston; and a piston connecting member connecting the first and second secondary pistons to the primary piston. Alternatively, a secondary piston is of the type of a double-acting piston for a more compact reciprocating function to reduce piston friction losses. Metering valves regulate the vapor pressure being introduced into displacement volume chambers at a constant pressure. A working fluid pressure-tank/accumulator/transfer-conduit is in communication with the displacement volume chambers to help regulate pressure of the working fluid.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: February 19, 2019
    Inventor: Walter B. Freeman
  • Patent number: 10131827
    Abstract: To provide a working fluid which has cycle performance sufficient as an alternative to R410A while the influence over global warming is sufficiently suppressed, which does not significantly increase the load to an apparatus as compared with a case where R410A is used, and which can be stably used continuously without any special measures, a composition for a heat cycle system contains the working fluid, and a heat cycle system employs the composition. A working fluid for heat cycle, wherein the global warming potential is less than 300; the product of the relative coefficient of performance and the relative refrigerating capacity is at least 0.820 relative to R410A in a standard refrigerating cycle under conditions of an evaporation temperature of 0° C., a condensing temperature of 40° C., a supercoiling degree of 5° C. and a degree of superheat of 5° C.; the relative compressor discharge gas pressure is at most 1.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: November 20, 2018
    Assignee: AGC INC.
    Inventors: Masato Fukushima, Hiroaki Mitsuoka, Mai Tasaka, Satoshi Kawaguchi, Katsuya Ueno, Toshiyuki Tanaka, Hidekazu Okamoto, Tetsuo Otsuka, Yoshinobu Kadowaki, Tatsuhiro Nogami, Daisuke Shirakawa, Hirokazu Takagi, Takeaki Arai
  • Patent number: 10087730
    Abstract: Systems and methods generate steam mixed with desired non-condensable gas concentrations using a direct steam generator. Injecting the steam into a reservoir may facilitate recovering hydrocarbons from the reservoir. Cooling an output of the direct steam generator produces water condensate, which is then separated from the non-condensable gas, such as carbon dioxide. Reducing pressure of the condensate subsequently heated by cross-exchange with effluent of the direct steam generator regenerates the steam with the carbon dioxide removed for the injection.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: October 2, 2018
    Assignee: XDI Holdings, LLC
    Inventors: Edward Latimer, Chris Copeland, Michelle Fiedler, David Lamont
  • Patent number: 10024198
    Abstract: A heat engine system and a method for cooling a fluid stream in thermal communication with the heat engine system are provided. The heat engine system may include a working fluid circuit configured to flow a working fluid therethrough, and a cooling circuit in fluid communication with the working fluid circuit and configured to flow the working fluid therethrough. The cooling circuit may include an evaporator in fluid communication with the working fluid circuit and configured to be in fluid communication with the fluid stream. The evaporator may be further configured to receive a second portion of the working fluid from the working fluid circuit and to transfer thermal energy from the fluid stream to the second portion of the working fluid.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: July 17, 2018
    Assignee: Echogen Power Systems, LLC
    Inventors: Timothy Held, Jason D. Miller
  • Patent number: 9982571
    Abstract: The present invention relates to an arrangement (1) and method for the utilization of waste heat comprising at least a waste heat exchanger (3, 3?, 3?), at least two turbines (6, 6?, 6?}, at least two recuperators (7, 7?, 7?), and at least a cooler unit (8, 9, 8?, 9?, 8?, 9?) in at least one fluid circuit. A pump and compressor (10, 10?, 10?) in one device is comprised, switchable between a pump and compressor function by a change of the rotational frequency of a rotor of the device.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: May 29, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Vitaly Malinin, Viacheslav Schuchkin
  • Patent number: 9982178
    Abstract: Provided are compositions, preferably azeotrope or azeotrope-like compositions including 1,1,1,4,4,4-hexafluoro-2-butene and chlorotrifluoropropene, particularly 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), and uses thereof of the compositions. The composition may be a heat transfer composition. The composition may be a blowing agent composition. The composition may be a solvent composition. The composition may be a sprayable composition.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: May 29, 2018
    Assignee: ARKEMA FRANCE
    Inventors: Wissam Rached, Laurent Abbas, Jean-Christophe Boutier
  • Patent number: 9962664
    Abstract: A method for operating a steam power plant having a water-steam circuit, according to which method the process wastewater produced is collected from the water-steam circuit, in a separated manner according to the degree of contamination thereof, in a number of partial wastewater quantities is provided. At least a first partial wastewater quantity having a first degree of contamination and at least a second partial wastewater quantity having a second degree of contamination are formed in the process. The second degree of contamination is higher than the first degree of contamination. The first partial wastewater quantity and the second partial wastewater quantity are mixed together in such a manner that a combined process wastewater is produced, which is fed to a wastewater treatment plant.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: May 8, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ute Amslinger, Franziska Fleischmann, Wolfgang Glück, Marc Sattelberger, Werner Spies, Anke Söllner, Peter Widmann
  • Patent number: 9915177
    Abstract: System (2) for carrying out a gas based thermodynamic cycle in which a gas is compressed in at least one compressor (8) in one part of the cycle and is expanded in at least one expander (10) operating simultaneously in an upstream or downstream part of the cycle, wherein the change in absolute internal power with gas mass flow rate differs as between the compressor and the expander and wherein the system comprises a control system configured to make selective adjustments so as individually to control, either directly or indirectly, the respective gas mass flow rates through each of the compressor and expander. The system may be an energy storage system including a pumped heat energy storage system configured to provide independent graduated control of system pressure and output power by selective adjustment of the respective gas mass flow rates through each half-engine.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 13, 2018
    Assignee: ENERGY TECHNOLOGIES INSTITUTE LLP
    Inventors: Jonathan Sebastian Howes, James Macnaghten, Rowland Geoffrey Hunt
  • Patent number: 9797274
    Abstract: A high-efficiency power generation system includes: at least one first heat exchanger, inside which is full of a liquid actuating medium with a low boiling point; a hydraulic power generator; a gas-liquid recycling device; a liquefying device and a control device. The present disclosure accomplishes a recirculation for an entire power generating procedure through two steps including vaporization and a recycle of the actuating medium with a low boiling point by liquefaction. A technical difficulty in the conventional art that huge costs for realizing recycle of the actuating medium by a compressor, a booster pump, etc. can be overcome. In addition, since the present disclosure generate power through the liquid pressure rather than the gas pressure, the conversion efficiency can be improved and the requirement for performance of material for the system can be lowered, so that the economical efficiency and practicability for the entire system are highly improved.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: October 24, 2017
    Inventor: Songwei Guo
  • Patent number: 9726046
    Abstract: A rotor high-and-low pressure power apparatus, comprises a heat collector, an insulating pipe, a gasification reactor, an atomizer, a cylinder, a triangular rotor, an inner gear ring, a gear, an output shall, a one-way an intake valve, a liquid storage tank, a pressure valve, an insulating layer, an automatic exhaust valve, a housing, a heat sink and an exhaust control valve. The triangular rotor is arranged within the housing. The inner gear ring and the gear matching with the inner gear ring are arranged at the center of the triangular rotor. The gear is fixed on the output shaft. The triangular rotor divides the cylinder into three independent and equal sections. The gear ratio of the inner gear ring and the gear is 3:2. The rotor provided with a rotor engine works three times per rotation. The ratio of horsepower to volume is high.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: August 8, 2017
    Inventor: Yuanjun Guo
  • Patent number: 9540963
    Abstract: A generator comprising: a heat differential module with a first, high temperature source configured for providing a work medium at high temperature, a second, low temperature source configured for providing a work medium at low temperature, and a heat mechanism in fluid communication with the first and second sources, configured for maintaining a temperature difference therebetween by at least one of: providing heat to the work medium at said first source, and removing heat from the work medium at said second source; a pressure module comprising a pressure medium which is in selective fluid communication with the work medium from the first, high temperature source and the work medium from the second, low temperature source, for alternately peifonning a heat exchange process with the high/low temperature work medium, to have its temperature fluctuate between a minimal operative temperature and a maximal operative temperature corresponding to the high and low temperature of the respective work medium; a convers
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: January 10, 2017
    Assignee: GERSHON MACHINE LTD.
    Inventor: Gershon Harif
  • Patent number: 9534509
    Abstract: Device for improving the production of heat by cogeneration comprising a hot source producing steam which is expanded in a turbine the exhaust of which is connected to an air condenser (4) which removes heat, and comprising at least one second auxiliary condenser (5) in the form of a water condenser, the cooling liquid of this water condenser (5) being directed to a plant or equipment (B) in which its heat is extracted and used, then the liquid is returned to the water condenser; the water condenser (5) is incorporated into the air condenser (4).
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: January 3, 2017
    Assignee: SUEZ ENVIRONNEMENT
    Inventor: Frédéric Duong
  • Patent number: 9316435
    Abstract: For a plant comprising a gas/air separation unit supplying a boiler and a boiler-fed unit for compression and/or purification of CO2, the quantity of fumes sent to the compression and/or purification unit is modified according to the sale price of the electricity generated and/or the cost of venting the fumes.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: April 19, 2016
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Nicolas Allard, Alain Guillard
  • Patent number: 9194299
    Abstract: An anti-torsion assembly for positioning and securing a thermally conforming liner within a fan containment case is provided. The anti-torsion assembly minimizes the amount of machining that must be done prior to assembly. The anti-torsion assembly comprises a torque block with outwardly-opposing side surfaces and a pair of L-brackets. Each L-bracket has a bracket surface that faces one of the outwardly-opposing side surfaces of the torque block. A wear pad is affixed to each bracket surface. The L-brackets are positioned onto the thermally conforming liner using a spacer having a spacer width within a predetermined tolerance. A method of assembling a fan case assembly is also provided.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: November 24, 2015
    Assignee: United Technologies Corporation
    Inventor: Andrew G. Alarcon
  • Patent number: 9118226
    Abstract: Aspects of the invention disclosed herein generally provide heat engine systems and methods for generating electricity. In one configuration, a heat engine system contains a working fluid circuit having high and low pressure sides and containing a working fluid (e.g., sc-CO2). The system further contains a power turbine configured to convert thermal energy to mechanical energy, a motor-generator configured to convert the mechanical energy into electricity, and a pump configured to circulate the working fluid within the working fluid circuit. The system further contains a heat exchanger configured to transfer thermal energy from a heat source stream to the working fluid, a recuperator configured to transfer thermal energy from the low pressure side to the high pressure side of the working fluid circuit, and a condenser (e.g., air- or fluid-cooled) configured to remove thermal energy from the working fluid within the low pressure side of the working fluid circuit.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: August 25, 2015
    Assignee: Echogen Power Systems, LLC
    Inventors: Alexander Steven Kacludis, Stephen R. Hostler, Steve B. Zakem
  • Patent number: 9080765
    Abstract: The embodiments described herein include a system and a method. In a first embodiment, a system includes a controller configured to control power plant operations. The system further includes a heat recovery steam generator (HRSG) monitor communicatively coupled to the controller and configured to receive inputs corresponding to the power plant operations. The system additionally includes an HRSG life prediction model configured to predict an operating life for an HRSG component. The HRSG monitor uses the HRSG life prediction model and the inputs to communicate a control action to the controller.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: July 14, 2015
    Assignee: General Electric Company
    Inventors: Joel Donnell Holt, William Barrett Julian, Ashok Dattatraya Acharya
  • Patent number: 9045982
    Abstract: An engine with an active chamber, having at least one piston (2) mounted in a cylinder (1) in a sliding manner and driving a crankshaft (5) via a slider-crank device (3, 4) and operating according to a four-phase thermodynamic cycle includes: an isothermal expansion without work; a transfer—slight so-called quasi-isothermal expansion with work; a polytropic expansion with work; and an exhaust at ambient pressure, preferentially supplied by compressed air contained in a high-pressure storage tank (12), through a buffer capacity, called a working capacity (11), which is expanded at an average pressure, called a working pressure, in a working capacity, preferentially through a dynamic pressure-reducing device (13), wherein the active chamber is included in the engine cylinder, the cylinder volume being swept by the piston and divided into two separate parts, a first part forming the active chamber (CA) and a second part forming the expansion chamber (CD).
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: June 2, 2015
    Assignee: MOTOR DEVELOPMENT INTERNATIONAL S.A.
    Inventors: Guy Negre, Cyril Negre
  • Publication number: 20150143793
    Abstract: A system for use in a combined cycle power plant including gas and steam turbines includes a single kettle boiler and a valve system. The valve system is operated such that feedwater from a first source passes into the kettle boiler during certain operating conditions, whereas feedwater from a second source passes into the kettle boiler during other operating conditions, wherein the first and second sources have feedwater under different pressures. Rotor cooling air extracted from a compressor section of the gas turbine is cooled with the feedwater in the kettle boiler, wherein at least a portion of the feedwater is evaporated in the kettle boiler by heat transferred to the feedwater from the rotor cooling air to create steam, wherein the valve system is operated to selectively deliver the steam to a first or second steam receiving unit depending on the operating conditions.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Inventors: Gerald J. Feller, John H. Copen
  • Patent number: 9038388
    Abstract: A method of operating a piston expander, including introducing live steam into a cylinder space via an inlet valve; expanding the live steam during a power stroke in which a piston moves from an upper dead center position to a lower dead center position; opening an outlet opening as soon as the piston is in the region of the lower dead center position; after the piston reaches the lower dead center position, conveying the expanded steam out of the outlet opening and into a steam discharge; and subsequently closing the outlet opening before the piston in an exhaust stroke reaches the lower dead center position.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: May 26, 2015
    Assignee: MAN TRUCK & BUS OSTERREICH AG
    Inventor: Raimund Almbauer
  • Publication number: 20150135709
    Abstract: The present invention provides a method for operating a plurality of independent, closed cycle power plant modules each having a vaporizer comprising the steps of serially supplying a medium or low temperature source fluid to each corresponding vaporizer of one or more first plant modules, respectively, to a secondary preheater of a first module, and to a vaporizer of a terminal module, whereby to produce heat depleted source fluid; providing a primary preheater for each vaporizer; and supplying said heat depleted source fluid to all of said primary preheaters in parallel.
    Type: Application
    Filed: December 29, 2014
    Publication date: May 21, 2015
    Applicant: ORMAT TECHNOLOGIES, INC.
    Inventors: Dany BATSCHA, David MACHLEV, Noa KALISH, Rachel HUBERMAN
  • Publication number: 20150128595
    Abstract: Method for modifying a solar thermal power plant operating on conventional oil based technology into a hybrid solar thermal power plant, wherein the method comprises: providing an oil based solar thermal power plant comprising a solar collection system with at least one radiation absorber tube containing a heat transfer oil to be heated by means of the solar collection system, providing an molten salts solar thermal power plant, wherein the molten salts solar thermal power plant comprises a solar collection system to heat a molten salts mixture coupling of the respective plants such that the hybrid solar thermal power plant is configured to heat medium temperature steam that is generated by the oil based solar power plant by means of the molten salts mixture thereby producing high temperature steam and subsequently supplying it to a steam turbine to generate electricity.
    Type: Application
    Filed: May 10, 2013
    Publication date: May 14, 2015
    Inventors: Gaetano Iaquaniello, Daniela Capoferri, Fabrizio Fabrizi, Michael Epstein
  • Patent number: 9027348
    Abstract: A method for retrofitting a fossil-fueled power station is provided. The power station includes a multi-housing stream turbine with a carbon dioxide separation device. As per the method, a suction capability of the steam turbine is adapted for an operation of the carbon dioxide separation device to a process steam to be removed. The carbon dioxide separation device is connected via a process steam line to an intermediate superheating line. Further, an auxiliary condenser is connected to the carbon dioxide separation device. On failure or deliberate switching off of the carbon dioxide separation device surplus process steam is condensed in the auxiliary condenser.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: May 12, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ulrich Grumann, Ulrich Much, Andreas Pickard, Mike Rost
  • Publication number: 20150121870
    Abstract: Systems and processes provide for a thermal process to transform sludge (and a variety of other natural waste materials) into electricity. Dewatered sludge and other materials containing a high amount of latent energy are dried into a powdered biofuel using a drying gas produced in the system. The drying gas is recirculated and is heated by the biofuel produced in the system, waste heat (from turbines or internal combustion engines), gas (including natural gas or digester gas) and/or oil. The biofuel is combusted in a boiler system that utilizes a burner operable to burn biofuel and produce heat utilized in a series of heat exchangers that heat the recirculating drying air and steam that powers the turbines for electricity production.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Applicant: GATE 5 ENERGY PARTNERS, INC.
    Inventors: Steven DELSON, Lawrence E. DEES, JR.
  • Publication number: 20150121892
    Abstract: The invention pertains to a power plant including a gas turbine, a heat recovery boiler arrangement with at least a boiler inlet, and an outlet side with a first exit connected to a stack and a second exit connected to a flue gas recirculation, which connects the second exit to the compressor inlet of the gas turbine. The heat recovery boiler arrangement includes a first boiler flue gas path from the boiler inlet to the first boiler exit, and a separate second boiler flue gas path from the boiler inlet to the second boiler exit. Additionally, a supplementary firing and a subsequent catalytic NOx converter are arranged in the first boiler flue gas path. Besides the power plant a method to operate such a power plant is an object of the invention.
    Type: Application
    Filed: January 7, 2015
    Publication date: May 7, 2015
    Inventors: Eribert BENZ, Klaus DÖBBELING, Michael HOEVEL
  • Patent number: 9021807
    Abstract: In a waste heat utilization arrangement for an internal combustion engine of a motor vehicle including a waste heat utilization circuit in which a working medium is circulated, a pumping device for pressurizing the working medium, an evaporator for vaporizing the working medium by waste heat of the internal combustion engine, an expansion machine for expanding the working medium while extracting mechanical energy therefrom and a condenser for condensing the working medium in a resting state, the waste heat utilization circuit is in communication with a pressure store capable of maintaining a pressure for setting and ensuring a predetermined adjustable minimum pressure of the working medium in the waste heat utilization circuit.
    Type: Grant
    Filed: June 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Daimler AG
    Inventors: Jan Gaertner, Thomas Koch
  • Publication number: 20150107247
    Abstract: A method of operating an electricity production system having at least one oxy-combustion boiler unit and a turbine for electricity generation at least includes the steps of: determining a power demand for an air separation unit that supplies oxygen gas to the boiler unit and a gas processing unit that treats flows of fluid for CO2 capture; determining a total power demand for electricity production that includes the determined power demand for the air separation unit and the gas processing unit; and coordinating operation of the air separation unit, gas processing unit, the boiler unit, and the turbine such that power generated by the plant provides power that meets the determined total power demand and also controls steam pressure of the turbine to a pre-specified level.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Inventors: Xinsheng LOU, Shizhong YANG
  • Publication number: 20150107249
    Abstract: A system includes a gas compressor system and a thermal cycle. The gas compressor system includes a compressor housing defining an interior compressor chamber. A gas compressor is in the interior compressor chamber to compress gas received into interior compressor chamber. A heat exchange fluid passage is provided adjacent to a surface that contacts the gas being compressed by the gas compressor. The thermal cycle includes a working fluid heated using the heat exchange fluid passage of the compressor housing. The working fluid is expanded by the thermal cycle to generate electricity.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Applicant: Access Energy LLC
    Inventors: Herman Artinian, Parsa Mirmobin
  • Publication number: 20150107248
    Abstract: An electricity production system configured to operate in accordance with a method of operating an electricity production system that at least includes the steps of: determining an oxygen distribution between oxygen gas to be separated by an air separation unit (“ASU”) and oxygen gas stored in a storage tank of the ASU to be fed to the boiler unit, determining a carbon capture value for a gas processing unit, determining a power consumption value for the gas processing unit and the ASU, determining a total power demand value based on the power consumption value of the gas processing unit and the ASU, and on a determined electricity demand, and controlling the boiler unit, the turbine, the ASU, and the gas processing unit based on the determined total power demand along with correcting signals generated from a coordinated Model Predictive Control.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: ALSTOM Technology Ltd.
    Inventors: Xinsheng LOU, Shizhong Yang
  • Patent number: 9003795
    Abstract: The disclosed subject matter relates to methods and systems for operating a solar steam system in response to a detected or predicted reduced insolation condition (for example, sunset or a cloud condition). In some embodiments, for a period of time, enthalpy stored within a solid material of a conduit via which steam travels en route to a steam turbine is used to heat the steam to drive the turbine. In some embodiments, a net migration of heliostats away from the steam superheater is carried out in response to the detected or predicted reduced insolation condition.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 14, 2015
    Assignee: Brightsource Industries (Israel) Ltd.
    Inventors: Sami Katz, Israel Kroizer
  • Publication number: 20150096300
    Abstract: An integral combined cycle electric power generation system capable of generating electricity in any environment in which a fluid, such as air, moves relative to the system. Preferably this system is integrated with a hybrid airplane, though it is applicable in a number of other scenarios including, but not limited to, integration with: locomotives, ships, automobiles, trucks, and wind turbines. An exterior surface of the machine in which the system is thermally integrated is a condenser in a closed loop Rankine or Brayton cycle.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Inventor: Michael H. Gurin
  • Patent number: 8997489
    Abstract: The disclosure relates to a method to produce electricity in a cement clinker production utilizing a kiln and/or a precalciner as combustion chambers to generate electricity, the method including: a. supplying fuel to the precalciner and/or the kiln in a quantity corresponding to at least 110% of a heat value requirement for clinker production operation of the precalciner and/or the rotary kiln per unit weight of clinker, respectively; b. bypassing a portion of hot flue gases from at least one of (i) the kiln and/or (ii) the precalciner; c. leading hot flue gases to a heat recovery steam generator producing steam; d. producing electricity with a power island including a steam turbine equipped with an electrical generator.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: April 7, 2015
    Assignee: Cemex Research Group AG
    Inventors: Raul Fuentes Samaniego, Luis Ramon Martinez Farias, Antonio Higinio Noyola De Garagorri, Luis Trevino Villareal
  • Publication number: 20150089947
    Abstract: The present invention provides a method and apparatus of processing material having an organic content. The method comprises heating a batch of the material (“E”) in a batch processing apparatus (16) having a reduced oxygen atmosphere to gasify at least some of the organic content to produce syngas, The temperature of the syngas is then elevated and maintained at the elevated temperature in a thermal treatment: apparatus (18) for a residence time sufficient to thermally break down any long chain hydrocarbons or volatile organic compounds therein. The calorific value of the syngas produced is monitored by sensors (26) and, when the calorific value of the syngas is below a predefined threshold, the syngas having a low calorific value is diverted to a burner of a boiler (22) to produce steam to drive a steam turbine (36) to produce electricity (“H”).
    Type: Application
    Filed: April 30, 2013
    Publication date: April 2, 2015
    Applicant: Chinook End-Stage Recycling Limited
    Inventors: Rifat Al Chalabi, Ophneil Henry Perry, Ke Li
  • Publication number: 20150089948
    Abstract: Systems and methods for operating a hydraulically actuated device/system are described herein. For example, systems and methods for the compression and/or expansion of gas can include at least one pressure vessel defining an interior region for retaining at least one of a volume of liquid or a volume of gas and an actuator coupled to and in fluid communication with the pressure vessel. The actuator can have a first mode of operation in which a volume of liquid disposed within the pressure vessel is moved to compress and move gas out of the pressure vessel. The actuator can have a second mode of operation in which a volume of liquid disposed within the pressure vessel is moved by an expanding gas entering the pressure vessel. The system can further include a heat transfer device configured to transfer heat to or from the at least one of a volume of liquid or a volume of gas retained by the pressure vessel.
    Type: Application
    Filed: September 4, 2014
    Publication date: April 2, 2015
    Inventors: Eric D. Ingersoll, Justin A. Aborn
  • Publication number: 20150089944
    Abstract: A back-up boiler system for a solar thermal power plant (201) for transferring solar energy into electricity, said back-up boiler system comprising a combustion chamber (70) and a convection section (80) in fluid connection with said combustion chamber (70), wherein in the convection section (80) at least a first heat exchanger (92) is provided for heating a molten salts mixture of the solar thermal power plant and a second heat exchanger (90) for pre-heating boiler feed water of the solar thermal power plant, wherein the back-up boiler system (25) is configured to allow selection between only providing heat to the first heat exchanger (92), only providing heat to the second heat exchanger (90) and providing heat to both heat exchangers (90, 92), preferably dependent on availability of solar radiation and/or dependent on demand of power generation.
    Type: Application
    Filed: March 19, 2013
    Publication date: April 2, 2015
    Inventors: Gaetano Iaquaniello, Daniela Capoferri, Adriano Barsi, Fabrizio Fabrizi, Walter Gaggioli, Alberto Giaconia, Luca Rinaldi
  • Publication number: 20150082803
    Abstract: The invention relates to a method for operation of a combined-cycle power plant with cogeneration, in which method combustion air is inducted in at least one gas turbine, and in which method the exhaust gas emerging from the at least one turbine is passed through a heat recovery steam generator (HRSG) in order to generate steam. The electricity production can be decoupled from the steam production in order to restrict the electricity production while the heat provided by steam extraction remains at a constant level. A portion of the inducted combustion air can be passed through at least one turbine to the HRSG without being involved in the combustion of the fuel in the gas turbine. This portion of the combustion air can be used to operate at least one supplementary firing in the heat recovery steam generator.
    Type: Application
    Filed: December 3, 2014
    Publication date: March 26, 2015
    Applicant: ALSTOM Technology Ltd
    Inventors: Francois DROUX, Dario Ugo BRESCHI, Karl REYSER, Stefan ROFKA, Johannes WICK
  • Publication number: 20150082792
    Abstract: A turbine driven from renewable or waste energy sources has a working fluid in a two stage heating process using a first heating apparatus using a renewable or waste energy source and a second heating apparatus comprising a graphite body containing an embedded heat exchanger heated by concentrated solar energy where the graphite body releases stored heat to heat the working fluid to provide a continuous stream of the working fluid heated to a working temperature for input to the turbine. A relationship exists between an outer surface area of the embedded heat exchanger tube and a mass of graphite in the graphite body whereby there is from 0.60 m2 to 20 m2 of outer surface area of embedded heat exchanger tube per tonne of graphite in the graphite body.
    Type: Application
    Filed: March 7, 2013
    Publication date: March 26, 2015
    Inventors: Nicholas Jordan Bain, Paul Soo-Hock Khoo, David John Reynolds
  • Publication number: 20150075164
    Abstract: The present invention provides a method for operating a plurality of independent, closed cycle power plant modules each having a vaporizer comprising the steps of: serially supplying a medium or low temperature source fluid to each corresponding vaporizer of one or more first plant modules, respectively, to a secondary preheater of a first module, and to a vaporizer of a terminal module, whereby to produce heat depleted source fluid; providing a primary preheater for each vaporizer; and supplying said heat depleted source fluid to all of said primary preheaters in parallel.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Applicant: ORMAT TECHNOLOGIES, Inc.
    Inventors: Dany BATSCHA, Rachel Huberman
  • Patent number: 8974701
    Abstract: An integrated process for the partial oxidation of whole crude oil mixed with a low cost finely divided solid ash-producing material in a membrane wall gasification reactor produces a syngas and, optionally, a more hydrogen-rich product stream by subjecting the syngas to a water-gas shift reaction. Process steam and electricity are produced by recovering the sensible heat values from the hot syngas.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 10, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Jean Pierre Ballaguet
  • Publication number: 20150059333
    Abstract: Methods and apparatus (10) for providing mechanical energy. The apparatus (10) for providing mechanical energy comprises a motor (11) for providing mechanical energy. The motor (11) comprises a chamber (17, 117, 217, 317, 417) for receiving a fluid to be heated. An amplified stimulated emission radiation source (e.g. a laser and/or a maser) (36, 436) is provided for supplying radiation to the chamber (17, 117, 217, 317, 417).
    Type: Application
    Filed: April 30, 2013
    Publication date: March 5, 2015
    Inventor: Richard McMahon
  • Patent number: 8966901
    Abstract: Embodiments provide a heat engine system containing working fluid (e.g., sc-CO2) within high and low pressure sides of a working fluid circuit and a heat exchanger configured to transfer thermal energy from a heat source to the working fluid. The heat engine system further contains an expander for converting a pressure drop in the working fluid to mechanical energy, a shaft coupled to the expander and configured to drive a device (e.g., generator or pump) with the mechanical energy, a recuperator for transferring thermal energy between the high and low pressure sides, and a cooler for removing thermal energy from the working fluid in the low pressure side. The heat engine system also contains a pump for circulating the working fluid, a mass management system (MMS) fluidly connected to the working fluid circuit, and a supply tank fluidly connected to the MMS by a supply line.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: March 3, 2015
    Assignee: Dresser-Rand Company
    Inventors: Timothy J. Held, Jason D. Miller
  • Publication number: 20150052895
    Abstract: A heat exchanger is provided. The heat exchanger comprises an evaporator, a vapor-liquid separator, a liquid level sensor and a controller. The evaporator is used for heating a working fluid up to a vapor-liquid state, and has a working fluid inlet pipe and a working fluid outlet pipe. The vapor-liquid separator is connected to the working fluid outlet pipe for separating the working fluid into a vapor working fluid and a liquid working fluid. The liquid level sensor detects a level of the liquid working fluid inside the vapor-liquid separator and outputs a liquid level signal. The controller receives the liquid level signal and controls the vapor quality of the working fluid inside the evaporator.
    Type: Application
    Filed: November 27, 2013
    Publication date: February 26, 2015
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Sung-Wei Hsu, Chi-Ron Kuo
  • Patent number: 8955321
    Abstract: A method is provided for primary control of a steam turbine installation in network operation, which provides at least two pressure stages, these being a high-pressure and a low-pressure steam turbine stage, in which for storing reserve power a live steam valve along an operating-steam feed line to at least one pressure stage of the steam turbine is operated in a throttled manner, the live steam valve, in the case of a reducing network frequency and network frequency boosting which is necessary as a result of this, is transferred to an at least less throttled state. At least some of the partially expanded operating steam which issues from the high-pressure steam turbine stage is introduced directly without reheating, into the low-pressure steam turbine stage for further expansion.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: February 17, 2015
    Assignee: Alstom Technology Ltd.
    Inventors: Olaf Berke, Franz-Josef Höly, Karsten Müller, Reinhard Johannes Severin Cloppenburg
  • Patent number: 8950196
    Abstract: Contemplated power plants and LNG regasification facilities employ a combination of ambient air and non-ambient air as continuous heat sources to regasify LNG and to optimize power production. Most preferably, contemplated plants and methods are operable without the need for supplemental heat sources under varying temperature conditions.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 10, 2015
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8950392
    Abstract: A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 10, 2015
    Assignee: The Regents of the University of California
    Inventors: K. Peter C. Vollhardt, Rachel A. Segalman, Arunava Majumdar, Steven Meier
  • Publication number: 20150027121
    Abstract: A system is disclosed that incorporates a regenerative Rankine cycle integrated with a conventional combined cycle. An added duct firing array, typically located after the combustion turbine exhaust and before the conventionally designed Heat Recovery Steam Generator (HRSG), is used to boost enthalpy of said exhaust. An added heating element downstream of the firing array provides sufficient heating for sensible heating, evaporation and superheating of feedwater that has been previously heated by feedwater heaters as part of a regenerative Rankine cycle. In practice, the condensate stream from the condenser is bifurcated such that a dedicated feedwater flow is directed to feedwater heaters. After further heating in the added heating element, the superheated steam, at the same pressure and temperature as the main steam, is now mixed with the main steam prior to turbine entry. The condensate is directed to the HRSG to be heated in conventional fashion.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Inventors: Mark Joseph Skowronski, Ronald Farris Kincaid