APPARATUS AND METHODS FOR DELIVERING A STENT INTO AN OSTIUM
Apparatus and methods are provided for delivering a stent into an ostium. The apparatus includes a catheter including a proximal end, a distal end, and proximal and distal balloons disposed adjacent one another on the distal end. The balloons are expandable independently of one another, and a stent is provided surrounding the balloons. During use, the distal end of the catheter is introduced into a main lumen, and the proximal balloon is inflated to flare a proximal portion of the stent. The distal end is then advanced into the ostium until the flared proximal portion contacts a wall of the main lumen surrounding the ostium. The distal balloon is inflated to expand a distal portion of the stent, e.g., to dilate a lesion within the branch and/or ostium. Thereafter, the balloons are collapsed, and the apparatus is withdrawn, leaving the stent within the ostium.
Latest INCEPT LLC Patents:
This application is a continuation of application Ser. No. 11/136,266, filed May 23, 2005, issuing as U.S. Pat. No. 7,862,601, the entire disclosure of which is expressly incorporated by reference herein.
FIELD OF THE INVENTIONThe present invention relates generally to apparatus and methods for delivering an endoluminal prosthesis, e.g., a stent, into a body lumen and, more particularly, to apparatus and methods for delivering a stein into an ostium of a blood vessel or other body lumen.
BACKGROUNDTubular endoprosthesis or “stents” have been suggested for dilating or otherwise treating stenoses, occlusions, and/or other lesions within a patient's vasculature or other body lumens. For example, a self-expanding stent may be maintained on a catheter in a contracted condition, e.g., by an overlying sheath or other constraint, and delivered into a target location, e.g., a stenosis within a blood vessel or other body lumen. When the stent is positioned at the target location, the constraint may be removed, whereupon the stent may automatically expand to dilate or otherwise line the vessel at the target location. Alternatively, a balloon-expandable stent may be carried on a catheter, e.g., crimped or otherwise secured over a balloon, in a contracted condition. When the stent is positioned at the target location, the balloon may be inflated to expand the stent and dilate the vessel.
Sometimes, a stenosis or other lesion may occur at an ostium or bifurcation, i.e., where a branch vessel extends from a main vessel. For example, such a lesion may form within a coronary artery immediately adjacent the aortic root. U.S. Pat. No. 5,749,890 to Shaknovich discloses a stent delivery assembly for placing a stent in an ostial lesion. U.S. Pat. No. 5,632,762 to Myler discloses a tapered balloon on a catheter for positioning a stent within an ostium, U.S. Pat. No. 5,607,444 to Lam discloses an expandable ostial stent including a tubular body and a deformable flaring portion. Published application US 2002/0077691 to Nachtigall discloses a delivery system that includes a sheath for holding a stent in a compressed state during delivery and a retainer that holds a deployable stop in an undeployed position while the delivery system is advanced to a desired location.
Accordingly, apparatus and methods for delivering a stent within an ostium would be useful.
SUMMARY OF THE INVENTIONThe present invention is directed to apparatus and methods for delivering stents or other endoluminal prostheses, and, more particularly, to apparatus and methods for delivering a stent into an ostium or bifurcation of a blood vessel or other body lumen, e.g., for dilating or otherwise lining and/or treating an occlusion or other lesion at the ostium.
In accordance with one embodiment, apparatus is provided for delivering a prosthesis into an ostium of a body lumen. The apparatus may include an elongate tubular member including a proximal end, and a distal end sized for introduction into a body lumen. A first expandable member may be provided on the distal end of the elongate member, and a second expandable member may be provided on the distal end of the elongate member adjacent the first expandable member, the second expandable member being expandable independently of the first expandable member. The apparatus may include a prosthesis including a first portion surrounding or otherwise adjacent the first expandable member and a second portion surrounding or otherwise adjacent the second expandable member. The second expandable member may be expandable for expanding the second portion to an enlarged condition white the first expandable member and the first portion remain in a contracted condition. The first expandable member may be expanded for expanding the first portion to an enlarged condition that is smaller than the second portion in its enlarged condition.
Optionally, the apparatus may include a constraint, e.g., overlying sheath for covering at least the first portion, for maintaining the first portion in the contracted condition while the second expandable member is expanded. The constrain may be movable for covering and uncovering the first portion. Optionally, the constraint may also be movable for covering and uncovering the second portion, e.g., independently of the first position.
In one embodiment, the second expandable member may include a transverse surface when expanded that is disposed adjacent the first expandable member, e.g., for deforming the second portion of the prosthesis transversely as the second expandable member is expanded.
In accordance with another embodiment, an apparatus is provided for delivering a prosthesis into an ostium of a body lumen that includes an elongate member including a proximal end, a distal end sized for introduction into a body lumen, a first expandable member on the distal end of the elongate member including a length for receiving a first portion of a tubular prosthesis thereon, and a second expandable member on the distal end of the elongate member adjacent the first expandable member for receiving a second portion of the tubular prosthesis thereon. A portion of the second expandable member may be attached to the first expandable member, while the second expandable member may be expandable independently of the first expandable member for expanding the second portion to an enlarged condition while the first portion remains in a contracted condition.
In addition, the apparatus may include a stent or other prosthesis including a first portion surrounding the first expandable member and a second portion surrounding the second expandable member. In one embodiment, in an enlarged condition, the second expandable member may define a transverse surface adjacent the first expandable member for expanding the second portion of the prosthesis to a flared condition to facilitate placement of the prosthesis within an ostium.
In accordance with another embodiment, a method is provided for implanting a prosthesis within an ostium or bifurcation extending from a main lumen into a branch lumen, e.g., using an elongate member including first and second expandable members on a distal end of the elongate member. Initially, the distal end of the elongate member may be advanced into the main lumen with first and second portions of the prosthesis adjacent the first and second expandable members, respectively. The second expandable member may be expanded to cause the second portion of the prosthesis to expand transversely, and the distal end may be advanced into the ostium until the expanded second portion contacts a wall of the main lumen surrounding the ostium and the first portion of the prosthesis is disposed within the branch lumen. The first expandable member may be expanded to expand the first portion of the prosthesis to contact a wall of the branch lumen.
Thereafter, the first and second expandable members may be collapsed, and the elongate member may be withdrawn from the branch and main lumens, leaving the prosthesis with the first portion expanded within the branch lumen and the second portion contacting the wall of the main lumen surrounding the ostium.
In one embodiment, the first portion may be constrained while the second expandable member is expanded, and the constraint may be removed before expanding the first expandable member. In addition, the second portion may be at least partially deformed as the distal end of the elongate member is advanced into the ostium such that the second portion conforms at least partially to a shape of the of the main lumen surrounding the ostium.
In another embodiment, the prosthesis may be provided on the elongate member with the first and/or second portions relaxed in a contracted condition for delivery. As the first and/or second expandable members are expanded, the first and/or second portions may be plastically deformed outwardly, e.g., to dilate or otherwise line the lesion. In still another embodiment, the first and/or second portions of the prosthesis may be biased to expand from a contracted condition for delivery on the elongate member towards an enlarged condition. For example, a constraint may be provided that maintains the first and/or second portions of the prosthesis in the contracted condition. When the constraint is removed, the first and/or second portions may automatically expand towards the enlarged condition. Thereafter, the first and/or second expandable members may be expanded to expand the first and/or second portions further, e.g., to plastically deform or otherwise engage the prosthesis with the ostium, e.g., to dilate an occlusion or other lesion at or adjacent the ostium.
Other aspects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.
The drawings illustrate exemplary embodiments of the invention, in which:
Turning to the drawings,
The catheter 12 may be formed from one or more tubular bodies, e.g., having variable flexibility along its length. For example, the distal end 16 may be substantially flexible to facilitate insertion through tortuous anatomy, e.g., terminating in a rounded or other substantially atraumatic tip 17. The distal end 16 may be sized and/or shaped for introduction into a body lumen, e.g., having a diameter between about one and seven millimeters (1-7 mm), or less than 1.5 mm. The proximal end 14 may be substantially flexible or semi-rigid, e.g., having sufficient column strength to facilitate advancing the distal end 16 through a patient's vasculature by pushing on the proximal end 14. The catheter 12 may be formed from plastic, metal, or composite materials, e.g., a plastic material having a wire, braid, or coil core, which may preventing kinking or buckling of the catheter 12 during advancement.
As shown in
As best seen in
In addition, the catheter 12 may include inflation lumens 18b, 18c that extend from respective side ports 32b, 32c in the handle 30 through the catheter 12 to openings 34b, 34c on the distal end 16. Each opening 34b, 34c communicates within an interior 23a, 23b of a respective balloon 22a, 22b. The side ports 32b, 32c on the handle 30 may include connectors, e.g., a luer lock connector (not shown), one or more seals (also not shown), and the like. A source of inflation media and/or vacuum, e.g., a syringe filled with saline (not shown), may be connected to the side ports 32h, 32c, e.g., via tubing (also not shown), for expanding and/or collapsing the balloons 22. As shown in
Alternatively, other configurations of lumens may be provided for delivering fluid to and/or aspirating fluid from one or both balloons 22. For example, a single lumen may be provided (not shown) that communicates with the interiors 23 of both balloons 22. This embodiment may allow the balloons 22 to be expanded and/or collapsed substantially simultaneously using a single syringe or other source of fluid/vacuum. In another alternative, the catheter 12 may include separate inflation lumens 18b, 18c, but the handle 30 may include a single side port (not shown) to which a syringe or other source of fluid/vacuum may be connected. In this alternative, the handle 30 may include a switch, stopcock, valve, or other device for selectively connecting one or both inflation lumens 18b, 18c to the side port. For example, a three-way valve may be directed to first or second positions to allow the side port to be connected to either of the inflation lumens 18b, 18c, e.g., for inflating/collapsing an individual balloon 22a, 22b. In a third position, the side port may be connected to both lumens 18b, 18c for inflating/collapsing both balloons 22 simultaneously. This configuration may be particularly useful for quickly collapsing both balloons 22 after implanting the stent 40 before removing the apparatus 10. In addition, the configuration may facilitate expanding the entire stent 40, e.g., after expanding and anchoring the first portion 42 and/or after flaring the second portion 44.
Turning to
As shown in
Returning to
In the enlarged condition, the distal balloon 22a may include an intermediate portion 28a having a substantially uniform cross-section, as best seen in
The proximal balloon 22b may include a proximal end 24b attached to the distal end 16 of the catheter 12 proximal to opening 34b and a distal end 26b attached to the distal balloon 22a, e.g., on or adjacent the intermediate portion 28a. The distal end 26b may be bonded with an adhesive, sonic welded, or otherwise attached to the distal balloon 22a to provide a substantially fluid-tight seam or bond. Thus, the balloons 22 may be expandable independent of one another, yet be inseparable from one another, e.g., to prevent any gaps or spaces from developing between the balloons 22. In one embodiment, the proximal balloon 22b may have a length that is substantially shorter than the distal balloon 22a, e.g., between about five to fifty millimeters (5-15 mm). In addition or alternatively, at least a transverse distal surface 28b of the proximal balloon 22b may have a length that is less than the length of the intermediate portion 28a of the distal balloon 22a.
In an alternative embodiment as shown in
Turning to
Alternatively, as shown in
Returning to
Alternatively, as shown in
Returning to
Alternatively, one or both of the balloons 22 may be formed from substantially elastic material, e.g., silicone, polyurethane, or polyethylene, such that the balloons 22 may be expanded to a variety of sizes depending upon the volume and/or pressure of fluid within the interiors 23. For example, in the embodiment shown in
As shown, the proximal balloon 22b″ may be expandable from a contracted condition (shown in
Turning to
Because of its greater compliance and/or elasticity, the distal balloon 22a″ may be expanded until a desired size is attained, e.g., sufficient to dilate a branch body lumen communicating with the ostium or other target location, as explained further below. Fluoroscopy or other external imaging may be used as the distal balloon 22a″ is expanded, e.g., to monitor expansion of the first portion 42 of the stent 40, which may indicate the degree of dilation occurring within the target location. In addition, the distal balloon 22a″ may conform at least partially to the surrounding anatomy, e.g., distributing pressure more evenly along the intermediate portion 28a″ such that the first portion 42 of the stent conforms to the substantially uniform shape of the intermediate portion 28a″ of the distal balloon 22a.″ Alternatively, the distal balloon 22a″ may be expandable to a predetermined size. This alternative may involve selecting an apparatus 10″ having a distal balloon 22a″ with an expanded size corresponding to the desired dilated size of the target location.
With additional reference to
Alternatively, at least a portion of the stent 40 may be self-expanding. For example, one or both of the first and second portions 42, 44 may be biased to expand at least partially outwardly yet may be constrained over the balloons 22 in a contracted condition to facilitate delivery. In this alternative, the stent 40 may be formed from Nitinol or other shape memory or superelastic materials.
Optionally, the resistance of the stent 40 to expansion may be varied along its length. This performance of the stent 40 may be based upon mechanical properties of the material, e.g., which may involve heat treating one or more portions of the stein 40 differently than other portions. In addition or alternatively, the structure of the stein 40 may be varied, e.g., by providing struts, fibers, or other components in different portions having different widths, thicknesses, geometry, and the like. In one embodiment, the material of the first portion 42 may require greater force to expand than the second portion 44. Thus, the second portion 44 may be more easily plastically deformed, which may allow the proximal balloon 22b″ to be expanded using lower pressure than the distal balloon 22a.″
The stent 40 may be a generally tubular structure, e.g., including openings in a tubular wall that facilitate expansion of the stent 40 and/or allow tissue ingrowth. For example, the stent may be an elongate tube that has slots or other openings formed in the tube wall, e.g., by laser cutting, mechanical cutting, chemical etching, machining, and the like. Alternatively, the stent 40 may be a braided or other structure, e.g., formed from one or wires or other filaments braided or otherwise wound in a desired manner. Additional possible stent structures may include helical coil wires or sheets. If desired, one or more portions of the stent 40 may include a membrane, film, or coating (not shown), e.g., to create a nonporous, partially porous, or porous surface between cells of the stent 40.
For example, the second portion 44 of the stent 40 may include a substantially elastic membrane, e.g., PTFE, ePTFE, silicone, polyurethane, or polyethylene, that may be embedded into, coated onto, sandwiched around, or otherwise carried by the stent 40. The membrane may be substantially elastic such that the membrane may expand when the second portion 44 is flared or otherwise expanded. Alternatively, the membrane may be folded or otherwise compressed such that the membrane may unfold or otherwise to accommodate expansion as the stent 40 is expanded. The membrane may be provided on an outer and/or inner surface of the second portion 44. A membrane on the inner surface may facilitate recrossing the stent 40 at a later time after implantation. For example, after the stent 40 is implanted within a patient, it may be desirable to advance a guidewire or other instrument through the ostium into the branch vessel, e.g., to perform another procedure. This may occur during the same surgical procedure, or some time after the patient has recovered, e.g., when the branch vessel, lesion, or main vessel need subsequent treatment. The membrane may prevent the tip of a guidewire or other instrument from catching or tangling in the struts, cells, wires, or other structures of the stent 40. Instead, the membrane may provide a substantially smooth, possibly lubricious surface that may guide a guidewire through the stent 40 into the branch vessel.
In addition or alternatively, a membrane on the stent 40 may carry therapeutic or other compounds or materials. For example, a membrane on an outer surface of the stent 40 may be pressed into contact with the plaque, damaged tissue, or other material of the lesion, allowing the compound to act to enhance healing or otherwise treat the lesion.
Optionally, the stent 40 may include one or more radiopaque or other markers (not shown), e.g., to facilitate monitoring the stent 40 during advancement, positioning, and/or expansion. For example, a band of radiopaque material, e.g., gold, platinum, iridium, tungsten, or their alloys, may be provided on each end of the stent 40 and/or adjacent the location where the first and second portions 42, 44 meet. In addition or alternatively, the apparatus 10 may include one or more radiopaque markers (not shown), e.g., at one or more predetermined locations on the distal end 16 of the catheter 12 and/or on one or both balloons 22. For example, a band of radiopaque material (not shown) may be provided on or under the ends of the intermediate portion 28a of the distal balloon 22a or the transverse surface 28b of the proximal balloon 22b, e.g., to facilitate positioning the apparatus 10.
In addition or alternatively, the stent 40 may carry one or more therapeutic or other compounds (not shown) that may enhance or otherwise facilitate treatment of target location within a patient's body. For example, the stent 40 may carry compounds that prevent restenosis at the target location.
Turning to
An occlusion or other lesion 96 may exist at and/or adjacent to the ostium 90, e.g., extending at least partially into the branch 94. The lesion 96 may include atherosclerotic plaque or other material that partially or completely occludes blood or other fluid flow between the main body lumen 92 and the branch 94.
Initially, as shown in
After the guidewire 98 is directed into the branch 94 beyond the lesion 96, it may be desirable to at least partially dilate the lesion 96. For example, a balloon catheter (not shown) may be advanced over the guidewire 98 into and through the lesion 96, whereupon a balloon or other element on the catheter may be expanded to at least partially dilate the lesion 96. If desired, other procedures may also be performed at the lesion 96, e.g., to soften, remove, or otherwise treat plaque or other material forming the lesion 96, before the stent 40 is implanted. After completing any such procedures, instruments advanced over the guidewire 98 may be removed.
Optionally, a guide catheter (not shown) may be advanced over the guidewire 98 into the main body lumen 92, e.g., until a distal end of the guide catheter is disposed adjacent or proximal to the ostium 90. The guide catheter may be used to advance one or more instruments (such as those just described) over the guidewire 98 and into the main body lumen 92 and/or branch body lumen 94. In addition, the guide catheter may facilitate advancement of the apparatus 10 into the main body lumen 92 and/or into the branch 94, in addition to or instead of the guidewire 98.
Turning in
Turning to
Turning to
Optionally, additional distal force may be applied to the apparatus 10, e.g., to force the second portion 44 of the stent 40 against the ostium 90. This pushing may cause the second portion 44 to plastically deform further, e.g., to at least partially conform to the shape and/or contour of the ostium 90. This additional force may be applied before, during, or after inflation of the distal balloon 22a.
In addition or alternatively, if the proximal balloon 22b is elastically expandable, the proximal balloon 22b may be expanded initially (e.g., during the stage described with reference to
Turning to
Although the methods described include advancing the apparatus 10 into the branch 94 from the main body lumen 92, it will be appreciated that, in some procedures, the apparatus 10 may be advanced from the branch 94 into the main body lumen 92. In such procedures, the configuration of the balloons 22 may be reversed, i.e., the location of the proximal and distal balloons 22b, 22a may be reversed. In addition, in some embodiments, the apparatus 10 may include more than two balloons (not shown), which may be expanded independently of one another, e.g., to dilate, flare, or otherwise shape a stent during deployment in a desired manner. For example, a proximal balloon may be expanded first, and then individual balloons may be expanded sequentially, e.g., further distally along the distal end of the catheter, to expand the stent into a desired configuration within the ostium and/or branch.
The apparatus and method described herein may allow a lesion to be dilated even if the plaque or other material extends from the branch at least partially into the ostium and/or into the main body lumen. For example, the flared shape of the second portion 44 of the stent 40 shown in
Turning to
Unlike the previous embodiments, the apparatus 110 includes sheath 150 that at least partially covers the stent 40. For example, with the balloons 122 collapsed and the stent 40 in a contracted configuration, the sheath 150 may cover both a first or distal portion 42 and a second or proximal portion 44 of the stent 40, as shown in
As shown, the sheath 150 includes a proximal end 152 that covers the stent 40 and a distal end 154 that is disposed distal to the stent 40. The distal end 154 may have a tapered, rounded, or other shape, e.g., to provide a substantially atraumatic tip for the apparatus 110. A wire, cable, or other actuating element 160 may be coupled to the distal 154 and may extend proximally through or along the catheter 112 to the proximal end 114. For example, the catheter 112 may include an additional lumen and/or a groove or track (not shown) that accommodates the actuating element 160. The catheter 112 may include a handle 130 on the proximal end 114 including a slider or other control or actuator 162 coupled to the actuating element 160. As the actuator 162 is directed distally, the actuating element 160 may push the sheath 150 distally, e.g., to expose all or a portion of the stent 40.
In an exemplary embodiment, the actuator 162 may be directed from a proximal position (shown in
As shown in
Alternatively, the sheath 150 may only cover the first portion 42 of the stent 40 (not shown). Optionally, an additional sheath, catheter, or other tubular member (not shown) may be provided that extends over the catheter 112 from the proximal end 114 to the distal end 116 and over at least the second portion 44 of the stent 40. If desired, this tubular member may mate with the proximal end 152 of the sheath 150 to provide a smooth or other desired transition. In yet another alternative, one or more other constraints may be provided over the stent 40, e.g., one or more filaments or other bindings (not shown) that may be wrapped around at least a portion of the stent 40. Such constraint(s) may be removed from the handle 130, e.g., by directing an actuator proximally to pull the bindings apart or otherwise from around the stent 40.
Returning to
Once exposed, the proximal balloon 122b may be inflated to flare or otherwise expand the second portion 42 of the stent 40, as shown in
It will be appreciated that elements or components shown with any embodiment herein are exemplary for the specific embodiment and may be used on or in combination with other embodiments disclosed herein. In addition, although balloons are described for expanding a stent, it will be appreciated that other expandable members may be provided on the apparatus described herein, e.g., instead of one or both of the proximal and distal balloons. For example, a pair (or more) mechanically expandable members may be provided on the distal end of a catheter that may be actuated from the proximal end of the catheter. A skin or other material may be provided that covers an expandable frame to cause the expandable members to expand to desired configurations, e.g., similar to the proximal and distal balloons described herein.
While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the scope of the appended claims.
Claims
1. An apparatus for delivering a prosthesis into an ostium of a body lumen, comprising:
- an elongate member comprising a proximal end, a distal end sized for introduction into a body lumen, and first and second lumens extending between the proximal and distal ends, thereby defining a longitudinal axis;
- a first expandable member on the distal end of the elongate member, the first expandable member comprising an interior communicating with the first lumen;
- a second expandable member on the distal end of the elongate member, the second expandable member comprising an interior communicating with the second lumen; and
- a prosthesis comprising a first portion surrounding the first expandable member and a second portion surrounding the second expandable member;
- the second expandable member being expandable independently of the first expandable member for expanding the second portion to an enlarged condition while the first portion remains in a contracted condition, the first expandable member being expandable for expanding the first portion to an enlarged condition that is smaller than the second portion in its enlarged condition.
2. The apparatus of claim 1, further comprising a constraint for maintaining the first portion in the contracted condition while the second expandable member is expanded.
3. The apparatus of claim 2, wherein the constraint comprises a tubular member overlying the first portion, the tubular member being movable between a first position covering the first portion and a second position uncovering the first portion.
4. The apparatus of claim 3, wherein the tubular member is movable between a third position covering the second portion and the first position.
5. The apparatus of claim 1, wherein the second expandable member comprises a transverse surface when expanded that is disposed adjacent the first expandable member, the second portion being deformed transversely by the transverse surface as the second expandable member is expanded such that the second portion extends transversely relative to the longitudinal axis when the second portion expands to its enlarged condition.
6. The apparatus of claim 5, wherein the transverse surface has a generally concave shape when the second expandable member is expanded.
7. The apparatus of claim 6, wherein the first expandable member comprises a tapered portion that at least partially nests within the concave shape of the transverse surface as the first expandable member is expanded.
8. The apparatus of claim 6, wherein the second portion at least partially contacts the transverse surface of the second expandable member when the second expandable member is expanded such that an acute angle is defined between the first and second portions.
9. The apparatus of claim 1, wherein the first portion has a first length and the second portion has a second length, the second length being shorter than the first length.
10. The apparatus of claim 9, wherein the first expandable member has a length at least as long as the first length.
11. The apparatus of claim 1, wherein the second expandable member is disposed proximal to the first expandable member on the elongate member distal end.
12. The apparatus of claim 1, wherein the second expandable member is disposed immediately adjacent the first expandable member such that adjacent surfaces of the first and second expandable members contact one another as the first and second expandable members are expanded.
13. The apparatus of claim 1, wherein the second expandable member at least partially overlaps the first expandable member, thereby preventing gaps from forming between the first and second expandable members when the second expandable member is expanded to its enlarged condition.
14. The apparatus of claim 13, wherein a portion of the second expandable member is attached to a portion of the first expandable member.
15. The apparatus of claim 14, wherein a distal end of the second expandable member extends over and is attached to a distal end of the first expandable member.
16. The apparatus of claim 1, wherein the elongate member comprises a port on the proximal end and a valve for selectively connecting at least one of the first and second lumens to the port.
17. The apparatus of claim 16, wherein the valve is movable to a position wherein both of the first and second lumens are connected to the port such that the first and second expandable members may be expanded or collapsed substantially simultaneously.
18. An apparatus for delivering a prosthesis into an ostium of a body lumen, comprising:
- an elongate member comprising a proximal end, a distal end sized for introduction into a body lumen, and a longitudinal axis extending therebetween;
- a first expandable member on the distal end of the elongate member, the first expandable member being expandable from a proximal end of the elongate member, the first expandable member comprising a length for receiving a first portion of a tubular prosthesis thereon; and
- a second expandable member on the distal end of the elongate member adjacent the first expandable member, a portion of the second expandable member being attached to the first expandable member, the second expandable member being expandable from a proximal end of the elongate member independently of the first expandable member for expanding the second portion to an enlarged condition while the first portion remains in a contracted condition, such that, in an enlarged condition, the second expandable member defines a transverse surface adjacent the first expandable member for expanding a second portion of the prosthesis to a flared condition to facilitate placement of the prosthesis within an ostium.
19. The apparatus of claim 18, further comprising a prosthesis comprising a first portion surrounding the first expandable member and a second portion surrounding the second expandable member.
20. A method for implanting a prosthesis within an ostium extending from a main lumen into a branch lumen using an elongate member comprising first and second expandable members on a distal end of the elongate member, the prosthesis comprising first and second portions surrounding the first and second expandable members, respectively, the method comprising:
- directing the distal end of the elongate member into the main lumen;
- expanding the second expandable member to cause the second portion of the prosthesis to expand transversely;
- directing the distal end into the ostium until the expanded second portion contacts a wall of the main lumen surrounding the ostium and the first portion is disposed within the branch lumen;
- expanding the first expandable member to expand the first portion of the prosthesis to contact a wall of the branch lien;
- collapsing the first and second expandable members; and
- withdrawing the elongate member from the branch and main lumens, leaving the prosthesis with the first portion expanded within the branch lumen and the second portion contacting the wall of the main lumen surrounding the ostium.
Type: Application
Filed: Jan 3, 2011
Publication Date: Jan 5, 2012
Applicant: INCEPT LLC (Campbell, CA)
Inventors: Arashmidos Sanati (Tehran), Fred Khosravi (Los Altos Hills, CA), Jeff Krolik (Campbell, CA), Elliot Kim (Santa Clara, CA)
Application Number: 12/983,860
International Classification: A61F 2/84 (20060101);