SYSTEM FOR CONTEXT TRANSFER FOR WIRELESS INTERNET DEVICES
A system and method for feature context transfer store all currently “active” feature contexts locally at an Access Router (AR), and store all “inactive” feature contexts centrally in a main database. The main database can be accessed by all the ARs within the same administrative domain. When a new microflow becomes active, its active feature contexts are brought from the main database and loaded into the local directory, thus replacing any inactive feature contexts that are not needed at the time.
Latest INTERDIGITAL TECHNOLOGY CORPORATION Patents:
- DL BACKHAUL CONTROL CHANNEL DESIGN FOR RELAYS
- Method and apparatus for maintaining uplink synchronization and reducing battery power consumption
- ERROR DETECTION AND CHECKING IN WIRELESS COMMUNICATION SYSTEMS
- Method for transmit and receive power control in mesh systems
- Error detection and checking in wireless communication systems
This application is a continuation of U.S. patent application Ser. No. 10/317,769 filed on Dec. 12, 2002, now U.S. Pat. No. 7,974,294 that issued on Jul. 5, 2011, which claims priority from U.S. Provisional Patent Application No. 60/340,417, filed Dec. 14, 2001, which is incorporated by reference as if fully set forth.
FIELD OF INVENTIONThe present invention relates to the field of communications. More specifically, the present invention relates to supporting microflows by the mobile Internet, and to a context transfer approach to supporting microflows.
BACKGROUNDThe Internet is increasingly being used to support mobile applications. There a growing need to support many different types of microflows, including both real-time and non real-time services.
In a mobile environment, microflows emanating from a Mobile Node (MN) are characterized by a set of parameters. The parameters define a context and the resulting feature contexts may be stored within an access router (AR).
Some features are specifically defined for a particular microflow, while others are defined for all the microflows belonging to the MN. These features may be for defining the QoS state, (such as RSVP, DiffServ, COPS), maintaining robust header compression, (such as van Jacobson and GRE), and security, (such as PKI and AAA). In order to assist in preserving the network bandwidth, it is desirable to store these parameters at some node entity within the access network, instead of at the MN itself. By doing that, the overhead of processing and transmission delay from the MN to the AR is greatly reduced. This saves the transmission bandwidth through the radio link and makes the design of the MN much simpler.
The context transfer protocol is tightly integrated into the handover protocols currently developed by the IETF, such as: Fast Handovers for Mobile IPv6, Low Latency Handoffs in Mobile IPv4, and Bi-directional Edge Tunnel Handover for IPv6. It must support seamless (i.e. uninterrupted), loss-less, resumption of services after the handover is completed. Therefore, an essential requirement of context transfer is that there must be good synchronization between the handover protocol and the context transfer method, and the context transfer must be reliable.
The protocol must maintain the integrity of data during the context transfer. There must be security association between the two ARs so that they can mutually authenticate themselves prior to the transfer of context. The context transfer protocol must also minimize the amount of processing at the sending and receiving ARs, and it must complete the context transfer with a minimum number of signaling messages.
It would also be desirable for the context transfer protocol to be scalable. Scalability means that the context transfer protocol should scale with the number of participating MNs, and that it should scale with the number of feature contexts and feature contexts being transferred.
SUMMARYThe present invention is a system and method which stores all currently “active” feature contexts locally at the ARs, and stores all “inactive” feature contexts centrally in a main database. The main database can be accessed by all the ARs within the same administrative domain. When a new microflow becomes active, its active feature contexts are brought from the main database and loaded into the local directory, thus replacing any inactive feature contexts that are not needed at the time.
Tables 1 and 2 provide an overview of the acronyms used in the figures relating to the entities and the signals, respectively.
The preferred embodiment will be described with reference to the drawing figures wherein like numerals represent like elements throughout.
As an overview of the present invention, feature contexts are maintained within each AR for every MN that is connected to that AR. The feature contexts define the microflows of an MN. These feature contexts may be “active” or “inactive” depending on whether or not the MN needs to make use of it at that time. If at anytime during a session an MN wishes to initiate a handover from its current AR (hereinafter “oldAR”) to a different AR (hereinafter “newAR”), it sends a Context Transfer Initiate (CTINIT) message to the oldAR. This message may be in the form of a layer 2 (L2) trigger or it may be a special layer 3 (L3) packet. Included in the trigger message is the identity of the newAR to which the feature contexts are being transferred. After the oldAR has determined the identity of the newAR, it sends a Context Transfer Request (CTR) message to the newAR. The newAR may choose to accept or reject this request. If the CTR is accepted, the newAR sends back a Context Transfer Accepted (CTA) message; otherwise, it sends back a Context Transfer Denied (CTD) message to the oldAR. If the feature context transfer request is accepted, the active feature contexts for the MN are transferred from the oldAR to the newAR. If, on the other hand, the feature context transfer request is denied, then the MN attempts to find another newAR as a new target for the context transfer.
Referring to the block diagram of
It should be noted that although the system 4 shown in
The MCD 24 is a database that contains the feature contexts for all MNs 28 being served in the domain. This includes the feature contexts for all active and inactive microflows. The MGE 26 is a control entity that provides an interface between different Memory Transfer Agents (MTA) belonging to different domains. The MGL 22 is a control entity that provides an interface between different local MTAs belonging to the same domain. The ARs 6, 8 are control units that provide an interface to the Internet Protocol (IP) network. The ARs 6, 8 are responsible for assigning an IP address, (or any other type of address), to the MNs 28.
Each AR 6, 8 includes a Local Context Directory (LCD) 10, a Memory Transfer Agent (MTA) 12 and a Context Transfer Agent (CTA) 14. The LCD 10 maintains the list of feature contexts for active microflows for all MNs 28 associated with that particular AR 6, 8. The CTA 14 is a control entity that is responsible for establishing the contacts with the new point of attachment (i.e. the newAR 8) in order to transfer the active feature context to the newAR 8. The MTA 12 is a control entity that is responsible for transferring the context of the LCD 10 to the LCD 10 newAR 8.
The system 4 of the present invention utilizes selective transfer of feature context data. The feature contexts are separated into two categories: 1) feature contexts belonging to “active” microflows; and 2) feature contexts belonging to “inactive” microflows. As those of skill in the art would realize, an active microflow is one which is currently in progress sending traffic; whereas an inactive microflow is one which is suspended or stopped altogether. All the active feature contexts have to be available inside the LCD 10 of the AR (oldAR 6 and new AR 8), while the inactive feature contexts are stored in the MCD 24. Whenever a new microflow becomes active, its feature contexts are brought from the MCD 24 via the MGL 22 and loaded into the LCD 10, thereby overwriting any inactive feature contexts that may be present there. In accordance with the present invention, it is not necessary to store all of the feature contexts locally at the ARs 6, 8, it is only necessary to store locally the feature contexts of the active microflows. This helps to significantly reduce the size of the LCD 10 since the feature contexts for the inactive microflows can be accessed from the MCD 24 when needed. This also reduces the time required for the feature context transfer and also reduces the bandwidth and processing overhead.
The process of handover from the oldAR 6 to the newAR 8 initiates the feature context transfer process. To start the transfer of feature contexts, the MN 28 sends a “trigger” signal to the CTA 14 in the oldAR 6 through the wireless interface. This trigger signal may be in the form of a L2 trigger message, or it may be a separate IP packet.
This message is called Context Transfer Initiate (CTINIT). The CTINIT comprises an ICMP Echo Request message. The format of the CTINIT message is shown in
The CTINIT message provides a list of “target” newAR 8 along with their associated information. The associated information can change as desired by the system operator, but preferably comprises the fields shown in
After the MN 28 has transmitted the CTINIT message, it waits to receive back a Content Transfer Acknowledgement (CTACK) message. The CTACK message comprises an ICMP Echo Reply message. If no CTACK message is received within a timeout period, the MN 28 retransmits the CTINIT message. This is done repeatedly until either a CTACK is received, or a maximum count of retries has been reached, whereby the feature context transfer to that newAR 8 is abandoned and another newAR 8 is targeted. The format of a CTACK message is shown in
No CODE value is currently used with the CTACK Echo Reply message. For the CTACK message, the MN's identity is echoed back to the MN 28, so that it can match it with the MN's identity previously sent with the CTINIT message.
After the CTINIT message is received, the CTA 14 in the oldAR 6 sends a Context Transfer Request (CTR) message to the CTA 14 of the newAR 8. Upon receiving the CTR message, the CTA 14 in the newAR 8 authenticates the oldAR 6.
Authentication ensures that the oldAR 6 is to be trusted and the information conveyed is correct. The authentication process is not central to the present invention and there are many such processes which are well known in the art that may be used. However one process for authentication is done by establishing a Security Association (SA) between the oldAR 6 and the newAR 8. Each SA is given a number, known as a Security Parameters Index (SPI), through which it is identified. In order for the oldAR 6 and the newAR 8 to mutually authenticate themselves, the oldAR 6 must know the SPI value of the newAR 8. Likewise, the newAR 8 must know the SPI of the oldAR 6. The oldAR 6 sends its SPI value with the payload to the newAR 8, using a normal IP routing header. The newAR 8 verifies the SA by noting the SPI, and sends back a CTA if the context transfer request is accepted. When sending the CTA message, the newAR 8 also forwards its SPI value to the oldAR 6. Thus, in a similar manner, the oldAR 6 verifies the SA by noting the SPI value of the newAR6.
The newAR 8 sends back a Context Transfer Accepted message (CTA) if the CTR is accepted, or a Context Transfer Denied message (CTD) if the CTR is denied. If the CTR is accepted, then the feature context transfer can proceed normally, otherwise the context transfer is not permitted to proceed to that particular newAR 8.
The message formats for the CTR, CTA are also ICMP messages. CTR is an ICMP Echo Request, while CTA and CTD comprise ICMP Echo Reply. The format of the ICMP message for the CTR, CTA and CTD messages is shown in
When the CTR is accepted, and the CTA message is sent back to the oldAR 6, the transfer of all active feature contexts for the particular MN 28 from the LCD 10 in the oldAR 6 to the LCD 10 in the newAR 8 is performed. This transfer may be accomplished using any of the data transfer and handshaking protocols that one known in the art to transfer data between two entities. Several messages are exchanged between the two ARs 6, 8 to insure connectivity and authenticity as well as the information being transferred.
Preferably the active feature contexts of the MN 28 that are resident in the LCD 10 of the oldAR 6 are transferred from the oldAR 6 to the LCD 10 of newAR 8 in an ESP encapsulated IP datagram. The innermost IP datagram contains a common IP header, and following that is a set of feature context objects. The basic structure of this datagram is shown in
The format of a CT object is shown in
It should be noted that all context transfer messages between the oldAR 6 and newAR 8 are encapsulated with IPsec ESP, to handle security of data. During the establishment of sessions between the ARs, the CTR, CTA or CTD messages are represented by ICMP packets and placed in the datagram portion of the IP packet. Any feature context to be transferred between the ARs 6,8 are likewise encapsulated in standardized objects and placed in the datagram portion of the IP packet. A TCP header, ESP header and ESP trailer segments are added as shown in
The reliability of context transfer signaling messages, (CTINIT, CTACK, CTR, CTA and CTD), is provided by the 16-bit checksum in the ICMP header. The checksum is recomputed by the newAR 8, and the resulting value is compare with the value in the checksum field of the message. Any mismatch is flagged as an error, and a NAK is returned indicating the SEQUENCE NUMBER of the erroneous message in the IDENTIFIER field. The original message is then retransmitted by the original sender.
Another source of error may be due to mismatch in the actual and computed checksum in the CT object header. If this occurs, a NAK is sent to the oldAR 6, indicating the SEQUENCE NUMBER of the erroneous CT object in the IDENTIFIER field. The NAK may be piggybacked onto another message, or sent as a separate message altogether. The resulting CT object is retransmitted as part of the same context transfer message, or as a new context transfer message.
When a new feature context is desired, a signal called Feature Context Request (FCR) is issued by the CTA 14. This message may be in the form of an ICMP datagram, including appropriate TYPE, CODE values and the identity of the MN 28. On receiving the FCR message, the MTA 14 may choose to accept (FCA) or deny (FCD) the request. These two messages may also be in the form of an ICMP datagram. The FCR may be accepted if there is sufficient space in the LCD 10 to store all the parameters associated with the feature context. If the FCR is accepted, the feature context parameters are brought from the MCD 24 into the LCD 10 in the newAR 8.
Referring to
Once the MN 28 determines that it has received a CTACK message as determined at step 110, the CTA 14 in the oldAR 6 sends a CTR message to the CTA 14 in the newAR 8 (step 120). The CTA 14 in the new AR 8 authenticates the oldAR 6 (step 122) and the CTA 14 in the newAR 8 sends back to the CTA 14 in the oldAR 8 a CTA message if accepted, and sends back a CTD message if denied (step 124).
If a CTA message has been received by the MN 28 (step 126), only the active feature context are transferred from the oldAR 6 to the newAR 8. If the CTA message has not been received by the MN 28 as determined at step 126, step 118 is entered whereby a different newAR 8 is targeted for context transfer.
Although the present invention is directed to a feature context transfer protocol for context transfers between an oldAR 6 and a newAR 8 within the same domain, it should be understood by those of skill in the art that in the event an MN 28 handoffs to a newAR in a different administrative domain, the process of transferring feature contexts between the LCDs 10 is also the same as hereinbefore described. However, in addition to the transfer of the active feature contexts between the LCDs, the inactive feature contexts are moved as well, from the current MCD 24 to a new MCD in the new domain. The MCD 24 transfer is accomplished via the MGE 26.
Claims
1. A communication domain having a central node coupled with at least a first access router (AR) and a second AR, each of said ARs being in wireless communication with at least one mobile node (MN) via at least one active microflow, the communication domain including a system for transferring an MN from said first AR to said second AR in the event of a handover, the system comprising:
- a central database at said central node for storing feature contexts for all microflows in the communication domain, said feature contexts comprising active feature contexts for active microflows and inactive feature contexts for inactive microflows;
- a local database at each AR, each local database for storing active feature contexts for each active microflow to a NM; and
- a memory transfer agent at each AR, for handling the transfer of only said active feature contexts are from said first AR to said second AR in the event of a handover.
2. The system of claim 1, wherein inactive feature contexts may also be stored in each said local database.
3. The system of claim 2 wherein said forwarded active feature contexts overwrite inactive feature contexts.
4. The system of claim 1, further comprising a context transfer agent (CTA) at each AR, for determining whether said forwarding of said active feature contexts may proceed.
5. A method for transferring context data from a first access router (AR) to a second AR upon handover within a domain containing a plurality of ARs, said first and second ARs being coupled to a central node, and said first AR being wirelessly coupled to a mobile node (MN), said wireless coupling including an active microflow, the method comprising:
- storing all feature contexts related to all microflows within the domain at the central node;
- storing active feature contexts related to said active microflow at said first AR; and
- initiating handover to said second AR, including forwarding said active feature contexts to said second AR.
6. A method for transferring context data from a first access router (AR) to a second AR upon handover within a domain containing a plurality of ARs, said first and second ARs being coupled to a central node, and each AR being wirelessly coupled to a mobile node (MN) via an active microflow, the method comprising:
- storing all feature contexts related to all microflows within the domain at the central node;
- storing active feature contexts related to an active microflow at said first AR; and
- forwarding only said active feature context from said first AR to said second AR.
Type: Application
Filed: Jul 1, 2011
Publication Date: Jan 19, 2012
Applicant: INTERDIGITAL TECHNOLOGY CORPORATION (Wilmington, DE)
Inventors: Sharif M. Shahrier (Lake Mary, FL), Donald M. Boles (Daylestown, PA)
Application Number: 13/174,871