MEDICAL DEVICES WITH AMORPHOUS METALS AND METHODS THEREFOR
Medical devices made at least in part of amorphous metals or alloys are provided. Certain embodiments include filters, stents, guidewires, snares, and coils comprised of amorphous metal. Methods of forming the medical devices, including methods of shape setting amorphous metals or alloys into components of medical devices are also provided. Methods of using amorphous metal medical devices are also provided.
Latest TYCO HEALTHCARE GROUP LP Patents:
This application is a divisional of U.S. patent application Ser. No. 11/771,890, filed on Jun. 29, 2007, which claims the benefit of, and priority to, U.S. Provisional Patent Application Ser. No. 60/818,162, filed on Jun. 30, 2006, the entire contents of each application being incorporated herein by reference in their entirety.
BACKGROUND1. Field
This invention relates to medical devices, and, more particularly to internally deployed medical devices which can be used in naturally occurring or surgically created lumens, passageways, cavities, defects, holes, tissues, or other regions of the body. Such internally deployed devices include stents, embolic protection devices, guide wires, snares, catheters, neurovascular coils, septal defect closure devices, atrial appendage closure devices, staples, clips, etc. This invention also pertains to methods of manufacturing such medical devices and methods of using such medical devices.
2. Description of the Related Technology
The human body has many systems that include lumens in performing their function. The primary example is the vascular system, which transmits blood throughout the body through blood vessels having lumens. The body's breathing system, digestive system, reproductive system, nervous system and even skeletal system also have major or minor components comprised of lumens.
Almost since the beginning of surgery, surgeons have used the body's lumenal systems in medically treating the body. In some instances, the purpose of the surgery is to protect or repair the lumenal system itself. For instance, stents are commonly used to reinforce or hold open a blood vessel. In other instances, the surgical procedure uses the lumenal system to navigate through the body. In all instances in which surgical procedures are lumenally performed, the size of the lumen to some extent establishes the relative size of the medical devices being implanted or used during the surgery.
Internally deployed medical devices have been devised in a wide range of materials. Traditional metals such as stainless steel, originally used for a wide range of internally deployed medical devices, have been replaced in certain instances with other alloys, such as nitinol, ELGILOY, cobalt chrome alloys, tantalum, magnesium alloys, and other metals. In other instances, metal materials have been supplanted with polymeric, bio-polymeric, ceramic or bio-ceramic materials. These less traditional materials provide a variety of advantages. In some instances, materials such as nitinol are used due to their superelastic characteristics, and for their ability to be shape-set to a predetermined shape. Internally deployed implants can be bioabsorbable in whole or in part, or can release drugs or other active agents over time. Generally speaking, designers of internally deployed medical devices design new devices by considering materials which have already been used and approved in existing internally deployed devices. While internally deployed medical devices have greatly improved over the years, in part due to their improving designs and materials of construction, there is an ongoing opportunity for further improvement by using new materials and designs appropriate to the new materials.
Separate from the medical device field, many new materials are introduced to manufacturers. One type of such new material is amorphous metal or metal glasses. Amorphous metals are metals which have been transformed from an amorphous, molten state to a solid state at a speed or under conditions which prevent a crystalline atomic structure from evolving during the solidification process. Through work done at the California Institute of Technology (“Caltech”), the theoretical and actual physical existence of amorphous metals has been known since the 1960's. Still, actual implementation has been limited by the cooling speed necessary, which was only obtainable in samples having a thickness on the order of 100 microns or less. More recently, work done at Caltech and through companies such as Amorphous Technologies International (Laguna Niguel, Calif.) and Liquidmetal Technologies (Lake Forest, Calif.) has expanded the applicability of amorphous metals. For instance, U.S. Pat. Nos. 5,288,344 and 5,368,659, incorporated by reference, first disclose beryllium alloys which form metallic glass upon cooling below the glass transition temperature at a rate appreciably less than 1,000,000° C./sec, U.S. Pat. Nos. 5,618,359, 5,735,975 and 5,803,996, incorporated by reference, disclose alloys of titanium, zirconium and/or hafnium which form metallic glass upon cooling below the glass transition temperature at a rate appreciably less than 1,000° C./sec. U.S. Pat. Nos. 4,653,500, 5,976,274 and 6,325,868, incorporated by reference, disclose iron-based amorphous metal materials. U.S. Pat. No. 5,711,363, incorporated by reference, discloses alloys which form metallic glass upon cooling below the glass transition temperature at a rate appreciably less than 500° C./sec.
As there is currently a need to improve upon the medical devices formed from more traditional materials, it has been discovered that the physical properties of amorphous metal may be beneficial when used in internally deployed medical devices.
SUMMARY OF THE INVENTIONDescribed herein are medical devices. In some of the embodiments, internally deployed medical devices are described. In one embodiment, a medical device includes an amorphous metal. In some embodiments, the medical device is a shape set medical device. In some embodiments, the medical device is a filter, such as a braided filter, a stent, such as a self expanding or a balloon expandable stent, a stent delivery system, a guidewire, a snare, a coil, a catheter, a septal defect closure device, a left atrial appendage closure device, a staple, a clip.
In some embodiments, the medical device may include one or more amorphous metal filaments. Such filaments may have a diameter between about 0.010 inches (0.25 mm) about 0.00050 inches (0.013 mm).
In some embodiments, the medical device further comprises a coating on at least a portion of the amorphous metal. In some embodiments, the coating comprises one or more of a radiopaque coating, a drug coating, an active agent release coating, a biocompatible coating, or a lubricious coating.
In some embodiments, the amorphous metal medical device described herein have certain advantages when compared to more crystalline medical devices. For example, the medical device can be sufficiently corrosion resistant to be internally biocompatible. In some embodiments, medical device is capable of imaging under MRI.
In certain embodiments, the medical device includes amorphous and crystalline portions. In some embodiments, the medical device is capable of sustaining between about 0.5 volume percent to about 75 volume percent conversion of the amorphous metal into crystalline metal under storage or sterilization temperatures of less than 60° C. for a period of 2, 3, 4, or 5 years. In certain of these embodiments, less than about 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, or 62 volume percent of the amorphous metal is converted to crystalline metal.
Methods of forming such amorphous metal medical devices are also described herein. In one embodiment, a method of forming a medical device or a component thereof includes shape setting a structure having an amorphous metal into the medical device or the component. In certain embodiments, the step of shape setting comprises heating a structure comprising an amorphous metal to an elevated temperature sufficient to shape-set the structure with the structure continuing to comprise an amorphous metal. In some embodiments, the step of shape setting includes providing the structure and expanding the structure into a first expanded structure on a mandrel. In certain embodiments, the step of shape setting may further include annealing at least a portion of the first expanded structure at a temperature about or above the glass transition temperature of the amorphous metal. In some embodiments, the step of annealing causes the first expanded structure to maintain the expanded shape. In some embodiments, the step of annealing is configured to convert at least a portion of the amorphous metal of the first expanded structure into crystalline metal. In some embodiments, the method may also include expanding at least some portion of the first expanded structure to form a second expanded structure. In these embodiments, method may also include annealing at least a portion of the second expanded structure at a temperature of about or above the glass transition temperature of the amorphous metal.
In certain embodiments, the step of shape setting includes expanding at least a portion of the structure and annealing the structure at about or above the glass transition temperature of the amorphous metal. In one embodiments, the glass transition temperature of the amorphous metal is greater than 140° F. (60° C.). In one embodiment, the glass transition temperature of the amorphous metal is greater than 160° F. (71° C.). In one embodiment, the glass transition temperature of the amorphous metal is greater than 180° F. (82° C.).
In certain embodiments, the step of shape setting includes converting at least a portion of the amorphous metal into a crystalline structure. In one embodiment, the method includes converting about 5 to about 75 volume percent of the amorphous metal to a crystalline metal. In another embodiments, the method includes converting about 10 to about 62 volume percent of the amorphous metal to a crystalline metal. In another embodiments, the method includes converting about 15 to about 40 volume percent of the amorphous metal to a crystalline metal.
In some embodiments of the medical devices and methods described herein, the structure is selected from the group consisting of a tube, a cylinder, one or more wires, one or more strands, and one or more ribbons.
In certain embodiments, a structure is shape set into a medical device or a component thereof. In some embodiments, the structure may be shape setting into a filter, such as braided filter or other filter element, a stent such as a self expanding or a balloon expandable stent, a stent delivery system or a portion thereof, a guidewire, a snare, a coil, a catheter, a septal defect closure device, a left atrial appendage closure device, a staple, or a clip.
Other embodiments include methods of using medical devices comprising amorphous metals. In some embodiments, a method of using a medical device includes inserting a shape set medical device comprising amorphous metal in a body lumen. In some embodiments, the method comprises delivering the shape set medical device into the body lumen in a collapsed configuration and expanding the shape set medical device in the body lumen. In any of these methods the shape set medical device is a filter, such as braided filter or other filter element, a stent such as a self expanding or a balloon expandable stent, a stent delivery system or a portion thereof, a guidewire, a snare, a coil, a catheter, a septal defect closure device, a left atrial appendage closure device, a staple, or a clip. In some embodiments, such methods may also include treating a treatment site with the shape set medical device. In some embodiments, the method also includes withdrawing the shape set medical device from the body lumen.
In some embodiment, a medical device includes a partially amorphous portion. In some embodiments, the portion includes a partially amorphous and partially crystalline metal. In any of these embodiments, the medical device is one or more of a filter, such as braided filter or other filter element, a stent such as a self expanding or a balloon expandable stent, a stent delivery system or a portion thereof, a guidewire, a snare, a coil, a catheter, a septal defect closure device, a left atrial appendage closure device, a staple, or a clip.
In one embodiment, a method of forming a partially amorphous and partially crystalline metal medical device includes providing a structure comprising an amorphous metal and converting the structure into a partially crystalline structure, wherein the partially crystalline structure is the medical device. In some embodiments, the method includes heating the structure in a manner sufficient to converting at least some of the amorphous metal to crystalline metal. In some embodiments, the method includes heating the structure to a temperature about or above the glass transition temperature of the amorphous metal.
Some embodiments include using the medical device a partially amorphous and partially crystalline metal medical device. In some embodiments, the method includes inserting the medical device into a body lumen. In some embodiments, the method includes delivering the medical device into the body lumen in a collapsed configuration and expanding the shape set medical device in the body lumen.
In some embodiments, a guidewire includes amorphous metal. In one embodiment, the guidewire is monofilament. In some embodiments, the monofilament includes amorphous metal. In another embodiment, the guidewire is multi-stranded, wherein one or more of a strand or filament of the multi-stranded guidewire comprises amorphous metal. Certain embodiments also include using such amorphous metal guidewires. In one embodiment, a method includes inserting the guidewire comprising amorphous metal in a body lumen.
In one embodiment, a stent delivery system comprising an amorphous metal structure is described. In some embodiments, the amorphous metal structure is a stylet or a reinforcing element. According to some embodiments, the stent delivery system is an over the wire system, a rapid exchange system, a fixed wire system. In some embodiments, the stent delivery system includes a self expanding or a balloon expandable stent, which may comprise amorphous metal. Certain embodiments also include methods of using the stent delivery system. In one embodiment, a method of using a stent delivery system comprising an amorphous metal include inserting a portion of the system in a patient, delivering a stent to a blood vessel, and expanding the stent to the walls of the blood vessel.
In one embodiment, a medical filter comprising amorphous metal is described. In some embodiments, the filter is an embolic protection filter. In some embodiments, a filter comprises a wire frame, at least a portion of the wire frame comprises an amorphous metal. In some embodiments, the filter comprises a filter element comprising amorphous metal filaments. In some embodiment, the filter element is braided. In some embodiments, the filter has a pore size ranging from about 10 to about 1000 microns. In some embodiments, the filter has a pore size ranging from about 20 to about 500 microns. In some embodiments, the filter has a pore size ranging from about 30 to about 250 microns. In some embodiments, the filter has a pore size ranging from about 40 to about 150 microns. In some embodiments, the filter has a pore size ranging from about 50 to about 100 microns. In some embodiments, methods of using such amorphous metal filters are described. In one embodiment, a method of using the filter includes delivering the filter to a blood vessel.
In one embodiment, a snare comprising amorphous metal is described. In some embodiments, a method of using such snare includes delivering the snare to a blood vessel.
In one embodiment, a coil comprising amorphous metal is described. In some embodiments, a method of using such coil includes delivering the coil to a blood vessel.
In one embodiment, a catheter comprising amorphous metal is described. In some embodiments, a method of using such catheter includes inserting a portion of the catheter in a patient.
In one embodiment, a closure medical device includes amorphous metal. In some embodiments, the closure medical device is a septal defect closure device or a left atrial appendage closure device. A method of using such septal defect closure device includes delivering the septal defect closure device to a septal defect. A method of using such left atrial appendage closure device includes delivering the left atrial appendage closure device to a left atrial appendage.
In one embodiment, a medical staple comprising amorphous metal is described In another embodiment, a medical clip comprising amorphous metal is described.
In one embodiment, a medical device includes an at least partially amorphous metal surface. Such at least partially amorphous metal surface may have improved corrosion resistance when compared to a more crystalline metal surface. In certain embodiments, the medical device with improved corrosion resistance is selected from the group consisting of a filter, a catheter, a snare, a coil, a closure device, a medical staple, and a medical clip.
In one embodiment, a medical device includes a structure comprising amorphous metal. In some embodiments, the structure has one or more of improved MRI safety or improved MRI compatibility when compared to a more crystalline metal surface, wherein the medical device is selected from the group consisting of a filter, a catheter, a snare, a coil, a closure device, a medical staple, and a medical clip. In certain embodiments, the structure is capable of being MRI imaged.
In one embodiment, a method of forming a stent includes providing a foil of amorphous metal, forming the foil into a tube having a seam, and etching the tube to form a medical stent comprising a plurality of longitudinal segments. In certain embodiments, the step of providing the foil includes cooling a molten metal or alloy in a manner configured to produce a substantially amorphous metal foil. In some embodiments, the step of etching includes chemically etching the tube at a temperature lower than the glass transition temperature of the amorphous metal. In some embodiments, the step of etching includes chemically etching the tube in a manner configured to prevent the substantial crystallization of the amorphous metal. In some embodiments, such stent formed from the herein described methods have a wall thickness between about 0.00050 inches (0.013 mm) to about 005 inches (0.13 mm). In some embodiments, the stent has a wall thickness between about 0.00080 inches (0.013 mm) to about 0015 inches (0.13 mm).
In another embodiment, a method of forming a stent includes depositing a foil comprising amorphous metal around a substrate and removing at least part of the substrate from the foil to form a stent. In some embodiments, the step of depositing comprises vapor depositing the foil. In some embodiments, the step of removing comprises etching at least part of the substrate. In some embodiments, the step of removing comprises dissolving at least part of the substrate. In some embodiments, the step of removing is configured to prevent the substantial crystallization of the amorphous metal. In some embodiments, the substrate is substantially cylindrical. In some embodiments, the substrate is a stent skeleton.
In some embodiments, a method of forming a stent includes providing a tube comprising amorphous metal, cutting one or more openings in the tube to form a stent by a heat generating process. In some embodiments, the heat generating process is configured to substantially minimize crystallization of the amorphous metal. In some embodiments, the step of cutting comprises one or more heat generation processes selected from laser machining or electrostatic discharge machining. In some embodiments, the method may further include removing metal adjacent to the one or more openings by a cutting process. For example, the cutting process may be selected from one or more of chemical etching or microblasting at a temperature lower than the glass transition temperature of the amorphous metal.
In some embodiment, a medical device includes an amorphous metal structure, wherein the medical device is coated with one or more selected from the group consisting of a radiopaque coating, a drug coating, an active agent release coating, a biocompatible coating, or a lubricious coating. In some of these embodiments, the medical device is one or more selected from the group consisting of wherein the medical device is selected from the group consisting of a filter, a catheter, a snare, a coil, a closure device, a medical staple, and a medical clip.
In one embodiment, a method of forming an amorphous metal filter includes braiding one or more wire strands comprising an amorphous metal into a braided structure. In some embodiments, the method further includes molding the braided structure into a filter body. In some embodiments, the step of molding includes applying axial tension to the braided structure against a mandrel. In some embodiments, the mandrel may include a proximal projection for forming one or more proximal openings in the filter body. In some embodiments, the one or more wire strands project about the periphery of the projection. In some embodiments, the method may further include fixing the lengths of the one or more wire strands, thereby causing the filter body to retain a shape. In certain embodiments, the step of molding includes heating the filter body to a temperature of about or above the glass transition temperature of the amorphous metal. In some embodiments, the step of heating is configured to substantially prevent conversion of the amorphous metal to a crystalline metal. In some embodiments, the step of heating is configured to cause at least partial conversion of the amorphous metal to a crystalline metal. In some embodiments, the step of heating is configured to cause complete conversion of the amorphous metal to a crystalline metal.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the present inventions will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.
According to certain embodiments described herein, amorphous metal technology is applied in internally deployed medical devices. As used herein, “amorphous metal” is a broad term used in its ordinary sense and includes both amorphous metals and amorphous metal alloys. Embodiments described herein may include medical devices comprising amorphous metals. Such embodiments may include one or more of amorphous metals, amorphous metal alloys or combinations thereof. Internally deployed medical devices may be partially or completely formed of amorphous metal or may include components partially or completely formed of amorphous metal. Moreover, amorphous metal or amorphous metal medical devices are not limited to solely amorphous structures. In certain embodiments, a medical device may include a portion having both a crystalline and an amorphous metal structure. Such embodiments are further described herein.
For any solid metal or metal alloy comprised of crystalline structure, the physical and mechanical properties that are influenced by the presence of crystalline structure are likely to be altered in the same metal or metal alloy when it is solidified into an amorphous structure. With their different physical or mechanical properties, amorphous metals offer a variety of unique and superior characteristics that make them suitable for certain applications in internally deployed medical devices.
For example, it is not unusual for a metal alloy to be brittle when in crystalline form and ductile when in amorphous form. The crystalline form of certain alloys may also have a lower elastic yield limit than their amorphous counterparts. Generally, this is because the crystalline metal yields via a process involving dislocations (microscopic or sub-microscopic defects in the crystal lattice), but in an amorphous structure dislocations have no crystal lattice in which to operate and/or propagate.
Corrosion characteristics of amorphous metal alloys are often different than corrosion characteristics of the same alloy in crystalline form. This is because when crystalline alloys solidify, different phases can separate and different phases can have different galvanic potentials (a driving force for corrosion), while in an amorphous metal little or no such segregation occurs. Also, in crystalline metals, intragranular corrosion can occur at weak grain (crystal) boundaries. In amorphous metals, there are no grains and therefore intragranular corrosion does not generally occur. In one embodiment, an amorphous metal can be selected for an internal medical device that provides sufficient corrosion resistance to be biocompatible and useable within a human body.
Magnetic properties of amorphous metal alloys are often different than magnetic properties of the same alloy in crystalline form. This is because magnetic domains are influenced by the presence of crystalline structure. A metal alloy in amorphous form, imaged under magnetic resonance imaging (MRI), may be more MRI Safe (less heating or movement in the magnetic field) or MRI Compatible (produce less artifact) than the same alloy in crystalline form due to the different magnetic properties of the amorphous alloy. Because of these and other physical or mechanical differences between crystalline and amorphous forms, alloys that are unsuitable for use in medical applications when in crystalline form may be suitable for use in such applications when in amorphous form. Thus, in one embodiment an internal medical device is provided that is capable of imaging under MRI.
Amorphous metals can be considered “metastable”, meaning that if an amorphous metal is heated above a certain temperature (the exact temperature being dependent on the metal or alloy, but generally above the glass transition temperature Tg of the amorphous metal or alloy as determined by differential scanning calorimetry) the atoms will rearrange themselves from an amorphous structure into a crystalline structure, and the enthalpy of crystallization will be released. When the amorphous metal converts into a crystalline structure, amorphous properties will be lost and crystalline properties will be gained. A metal or alloy can be partially converted from an amorphous to a crystalline structure by heating at an intermediate temperature. Generally, for a given temperature, the amount of conversion achieved will increase with the length of time the metal or alloy is held at that temperature, and the amount of conversion achieved in a given time will generally increase at higher temperatures.
Because of the metastable nature of amorphous metals, manufacture of internally deployed medical devices can require different processing techniques than those prior art techniques used with crystalline metals. In some embodiments, it is important to choose an amorphous metal that has no significant conversion to crystalline structure during the processing and storage conditions used for medical device manufacture, distribution, and use. For instance, the amorphous metal alloy should have no significant conversion to crystalline structure during joining, fabrication, finishing, sterilizing, shipping, storing, accelerated aging, using and other processes that internally deployed medical devices incur. It is contemplated that medical devices comprised of amorphous metals will be manufactured to sustain between 0.5 volume percent to 75 volume percent conversion of amorphous into crystalline structure under storage or sterilization temperatures of less than about 60° C. for periods of up to 2, 3, or 5 years. In various embodiments, less than 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, or 62 volume percent of amorphous structure is converted into crystalline structure under these conditions.
Generally speaking, in one embodiment, to assure stable properties of a medical device comprised of amorphous metals, the amorphous metals should have a glass transition temperature Tg higher than the processing, storage and use conditions listed above. In some embodiments, Tg of the amorphous metal is greater than 140° F. (60° C.). In some embodiments, Tg of the amorphous metal is greater than 160° F. (71° C.). In some embodiments, Tg of the amorphous metal is greater than 180° F. (82° C.).
In other embodiments, because of the metastable nature of amorphous metals, it is possible to anneal or otherwise treat the amorphous form so as to convert a portion of the metal or alloy into crystalline form. A partially converted metal or alloy will have properties that are intermediate between those of the amorphous structure and those of the crystalline structure. Therefore, some properties of partially converted metals or alloys can be tailored to meet the needs of the medical device. For example, an alloy can be processed into partially or fully amorphous wire, foil or ribbon, converted in part to crystalline structure by annealing above Tg for about 20% to about 80% of the time needed to 100% convert the alloy into crystalline form at that annealing temperature, and then the partly converted alloy is fabricated into a medical device such as a stent or a guidewire coil. It is contemplated that conversion of between 5 volume percent and 75 volume percent amorphous into crystalline structure is desirable. In various embodiments, 10, 15, 20, 25, 30, 40, 50, or 62 volume percent of amorphous structure is converted into crystalline structure.
In another embodiment, it is possible to anneal or otherwise treat the amorphous form so as to cause it to assume a preset shape. For example, an alloy can be processed into partly or fully amorphous wire, foil, ribbon or other forms, constrained by a mold, then annealed at a temperature near to or above Tg, causing the alloy to assume the shape of the mold. In some embodiments, the mold can have a cavity and can have mating parts to hold the alloy in a desired shape. In some embodiments, the mold can be a surface such as a plate, a mandrel, a tapered mandrel, or other surface and the alloy can be pressed against the surface or simply held in proximity to the surface using tension on the alloy (for example, stretched across the surface). In some embodiments, the mold can be plaster, resin, or other hardenable material interdigitated into the interstices of a mesh like part comprised of amorphous alloy.
Shape setting of amorphous alloys can be advantageous for applications in medical devices. A commonly used metal in medical devices which can be shape set is nitinol, in one variation a roughly equiatomic alloy of nickel and titanium. While nitinol alloys are widely used for medical devices, these alloys have certain limitations. They are hard to join to themselves and to other materials because application of heat can compromise the mechanical properties of nitinol. When welded (for example) to steels, brittle compounds can form which weaken the welds. It is well known that some individuals have nickel sensitivity. In some forms nitinol alloys can have high concentration of nickel on the surface. Also, corrosion of nitinol releases nickel into the body. Further, one is limited to the chemical, corrosive, magnetic, acoustic, mechanical, and other properties of nitinol alloys.
In contrast, amorphous alloys can be produced from a wide range of alloy compositions having more desirable mechanical, fabrication, joining, corrosive, biocompatibility, acoustic, magnetic, or other properties for the application at hand and can be shape set into forms useful as medical devices. These medical devices and methods of forming the medical devices, including methods that are not limited to shape setting, are further described herein.
I. Amorphous Metal Medical Devices A. StentsAmorphous metals can be used in internally deployed medical devices such as stents. In some embodiments, amorphous metal may be used in stent designs which have previously used crystalline metals such as stainless steel, cobalt chrome alloy or nitinol which formed the material of the stent, thereby replacing the crystalline material of the stent body with amorphous or partially amorphous metal. For example,
Referring to
The '415 stent was formed of stainless steel or nitinol, or other known materials such as MP35N, tantalum, platinum, gold, ELGILOY and PHYNOX, whereas the stent of
In one embodiment, the amorphous metal material of the stent enables the stent to be formed with a smaller stent body diameter than the '415 stent and thereby treat vessels or openings of smaller diameter. For example, the longitudinal segments 14 may be about 0.0032 inch (about 0.08 mm) in width and about 0.0028 inch (about 0.07 mm) in thickness, and the stent body may have an un-expanded diameter of 0.040 inches. Another embodiment provides a stent of the same un-expanded and expanded nominal diameters as the '415 stent, with an exemplary longitudinal segment size of about 0.0065 inch (about 0.16 mm) in width. However, rather than use material of about 0.0057 inch (about 0.14 mm) in thickness as is described with the '415 stent, certain embodiments of amorphous stents described herein enable a decrease in the material thickness in accordance with the increase in yield strength, to a material on the order of 0.0010 inch in thickness. This change of dimension in wall thickness of the stent, not in longitudinal segment width, allows the stent to present the same metal surface area to the vessel wall as the prior art '415 stent. With the large decrease in wall thickness but same external surface area, the stent has a superior lesion crossing profile. The decrease in wall thickness also provides increased flexibility for the stent for improved deliverability through tortuous anatomy, allowing the stent to be delivered to the deployment site with lower advancement forces. At the same time, the decrease in thickness of the material creates a much larger surface area for given cross-section of the longitudinal segments, allowing the material to release heat much more quickly during manufacture and thereby avoiding crystallization of metal grains.
In some embodiments, the amorphous metal composition of the stent provides a higher elastic yield limit than other known stent materials of the same crystalline compositions. In some embodiments, the amorphous metal composition of the stent also provides better corrosion resistance for the same crystalline alloy compositions. In some embodiments, the amorphous metal composition of the stent provides higher fatigue life for the same crystalline alloy compositions as are presently used. Both better corrosion resistance and higher fatigue life are very important factors for permanent implants such as stents which can be implanted for decades. According to one embodiment, an amorphous metal stent has one or more of the improved properties described above.
In some embodiments, a method of forming the amorphous metal stent includes forming a foil of amorphous metal by rapidly cooling molten metal or alloy between two planar, refrigerated heat sinks as shown in
A second preferred method of forming the stent includes vapor depositing a foil of amorphous metal about a cylindrical substrate, and then etching, dissolving or otherwise removing the cylindrical substrate from the cylindrical foil. In some embodiments, the cylindrical foil of amorphous metal is then chemically etched through the cylindrical sidewall into a profile. Again, the chemical etching process may occur at low temperatures to prevent the substantial inducement of grain formation.
In some embodiments, a third method of forming an amorphous metal stent includes forming a stent skeleton. The stent skeleton may be formed of various materials, including crystalline metal or alloys. In one embodiment, the stent skeleton is formed of stainless steel. Thereafter, amorphous metal may be vapor deposited about the stent skeleton. Advantageously, the longitudinal segments of the stent skeleton can be made extremely thin, because the majority of the compressive loads borne by the stent are supported by the amorphous metal outer layer rather than by the stent skeleton. Other materials, including brittle materials, can be used for the stent skeleton, particularly if such stent skeletal materials inhibit grain formation of the amorphous metal during vapor deposition.
A fourth method of forming an amorphous metal stent is through a molding/deposition technique similar to that disclosed in U.S. Pat. No. 6,203,732, which is incorporated by reference in its entirety. The metal alloy can be deposited onto the mold in an amorphous form using processes such as vapor deposition, by spraying liquid metal droplets onto the mold surface, or other methods. Again, care may be taken during forming to avoid crystal growth during solidification of the amorphous metal into the depressed pattern in the external surface of the mold and during the process of removing excess material from the mold.
A fifth method of forming an amorphous metal stent includes forming an amorphous metal tube and then using a heat generating process, such as the laser machining taught in U.S. Pat. No. 6,558,415 (using, for instance, a laser cutter as marketed by Lasag Industrial-Lasers USA of Buffalo Grove, Ill.) or the electrostatic discharge machining (EDM) taught in U.S. Pat. No. 6,107,004, both incorporated by reference, but modifying the process in a way that reduces temperature buildup in the amorphous metal material. For instance, in the laser machining process, the laser can be pulsed, allowing the material to self-quench during the “no power” portion of the series of pulses. Alternatively or in addition to pulsing of the laser, the stent can be chilled before and during the heat generating process, such as chilling the stent before and/or during the laser cutting procedure. Both methods are intended to minimize the extent of crystallization caused through heat generation processes. In some embodiments, the openings cut by laser machining or by EDM should be smaller than the desired final openings of the stent profiles shown in
In yet another embodiment, a brittle metal alloy can be processed into an amorphous structure. Such brittle alloy may be fabricated while ductile. According to some embodiments, the brittle alloy is shaped as desired. The step of shaping may include one or more of constraining, expanding, bending, flexing, or two or more of the aforementioned. According to some embodiments, the shaped metal alloy may then be annealed to convert the alloy at least partially into a crystalline structure, thereby substantially retaining the constrained shape. For example, after cutting openings through the wall of an amorphous metal tube, the tube can be expanded onto a mandrel and subsequently annealed at a temperature near to or above Tg, thereby causing the expanded stent to assume the expanded shape and optionally converting the structure to at least a partially crystalline structure. In another embodiment, the stent is expanded onto a mandrel and subsequently annealed at a temperature near to or above Tg of the metal or metal alloy to cause the expanded stent to partially convert to crystalline structure and assume the expanded shape. Thereafter, the expanded stent may be further expanded onto an even larger mandrel and further annealed at a temperature near to or above Tg, thereby causing the expanded stent to more fully convert to crystalline structure and to remember the shape of the larger mandrel. In some embodiments, a portion of the expanded stent is further expanded on a larger mandrel, thus allowing for selective expansion of the medical device.
With all of these embodiments, depending upon the properties desired for the final stent, the amorphous metal can be annealed or laser heated (possibly followed by quenching), aged or otherwise treated so as to convert a portion of the amorphous metal or metal alloy into a partially or fully crystalline form. According to some embodiments and as suggested above, a partially converted metal or alloy may have the properties that are intermediate between those of the amorphous structure and those of the crystalline structure.
Regardless of which method is used to create the stent, coatings may be placed over the amorphous metal material for various performance attributes. For instance, radiopaque coatings, or drug (such as an antibiotic, anticoagulant, antiproliferative, antirestenotic, or growth hormone) or other active agent release coatings, may be applied over the amorphous metal material of the stent. If the amorphous metal selected is non-biocompatible, a biocompatible coating may be applied over the non-biocompatible amorphous metal for use in the internally deployed medical device. Lubricity may be provided by a coating of a low friction polymer such as polyurethane, hydrogels, polyethylene, polytetrafluoroethylene (PTFE) and TEFLON, as taught in U.S. Pat. No. 6,107,004, incorporated by reference in its entirety.
While the amorphous metal stent embodiments have been described with reference to modifications to the '415 stent, the principles of these embodiments can be equally applied to other stent designs. Examples of such other stent designs are those sold by ev3 Incorporated (Plymouth, Minn.) under trade names PROTEGE, EVERFLEX and INTRASTENT, and stent designs disclosed in other patents such as U.S. Pat. No. 6,814,746, incorporated by reference in its entirety. In some embodiments, amorphous metal can also be used in place of other stent materials, such as cobalt chromium alloys, magnesium alloys and bioabsorbable metals.
B. Stent Delivery SystemsIn addition or alternatively to forming the stent body out of amorphous metal, amorphous metal can be used in a portion of a stent delivery system, such as a stylet or reinforcing element. Delivery systems suitable for self expanding stents comprised of amorphous metal can be over the wire systems, for example the system described in U.S. Pat. No. 6,814,746 (incorporated by reference herein), can be rapid exchange systems, for example the system described in U.S. Patent Application No. 60/680,400 (incorporated by reference herein), or can be fixed wire systems. Delivery systems suitable for balloon expandable stents comprised of amorphous metal can be over the wire systems, can be rapid exchange systems, or can be fixed wire systems, and typically comprise a deflated inflatable balloon with a stent compressed thereon.
As an example,
In some embodiments, a stent delivery system or a stent may additionally include a reinforcing element comprising amorphous metal. In some embodiments, a reinforcing element includes a braided material or, sometimes, a spirally wound material. As a nonlimiting example, braided amorphous metal reinforcement elements are particularly useful for providing axial strength to the exterior tube of a multi-lumen catheter because the multi-lumen catheter is particularly susceptible to kinking or ovalization of the circular cross-sections of the various lumens when the catheter is exposed to a high flexure or a high torsion, such as when the catheter is passed through the bends or turns of the vascular system.
In some embodiments, a stent delivery system includes a amorphous metal stylet or other holding element. Such amorphous holding element may to facilitate initial placement of stent within a body lumen. For example, a amorphous metal stylet may be used the anchor a stent beyond a constraining sheath where the anchor is allowed to expand into its preformed or radially expanded configuration.
C. Embolic Protection DevicesIn some embodiments, embolic protection devices are formed using amorphous metal elements. Embolic protection devices formed of amorphous metal elements can be distal protection devices or proximal protection devices and can be filtering devices or occlusive devices. The filtering, occlusive, or partially occlusive portion of the device may be comprised of woven filaments, knitted filaments, braided filaments, non-woven filaments processed into a cotton ball like structure, perforated sheet, or other filtering, occlusive, or partially occlusive portion forms. As a first embolic protection device example, amorphous metal filaments can be formed and then braided to form an embolic protection device.
Referring to
Referring again to
In another embodiment, a filter 50 is made from amorphous metal filaments having the same diameter filters known in the art. For example, the filter may have the same dimensions as the '188314 filter. In this example, the higher elastic yield limit of the amorphous metal filter has less tendency to yield and become deformed or damaged during delivery, use, and recovery in a patient than similar filters made of crystalline metal filaments. In this example, the filter will also have more wall apposition force and consequently a better ability to contact the wall of the lumen in which the filter is deployed, thereby providing a higher degree of assurance that emboli or particulate will not bypass the opening of the filter, particularly for filters deployed in tortuous or bend locations. It is contemplated that filament diameters of between 0.001 inches and 0.010″ are desirable. In various embodiments, filament diameters of 0.0015″, 0.002″, 0.003″, 0.004″, 0.005″, or 0.0065″ are desirable,
In one embodiment, an embolic protection filter comprised of amorphous metal filaments has a pore size (the diameter of a circle having the same area as a mesh opening bounded by a perimeter of filaments) ranging from about 10 to about 1,000 microns. In another embodiment, an embolic protection filter comprised of amorphous metal filaments has a pore size of about 20 to about 500 microns. In another embodiment, an embolic protection filter comprised of amorphous metal filaments has a pore size of about 30 to about 250 microns. In another embodiment, an embolic protection filter comprised of amorphous metal filaments has a pore size of about 40 to about 150 microns. In another embodiment, an embolic protection filter comprised of amorphous metal filaments has a pore size of about 50 to about 100 microns.
In one embodiment, to form the thin strands for use in making the vascular filter, a stream of molten metal of a desired metal or alloy composition is sprayed through a nozzle onto a heat sink moving with a velocity relative to the nozzle, as shown in the simplified view of
In one aspect, when the amorphous metal wire is rapidly cooled on a heat sink to retain the amorphous characteristics of the metal and minimize crystal formation in the metal, the metal wire is not circular in cross-section but rather obtains an aspect ratio and may be considered an amorphous metal wire ribbon. For instance, the amorphous metal wire ribbon shown in
In another aspect, after the amorphous metal wire ribbon is formed, it is further processed such as by wire drawing or swaging to convert the wire closer to a 1:1 aspect ratio such as closer to a square cross-section or, more preferably, to form a wire filament with a circular or near-circular cross-section. By changing the shape of the amorphous metal filament by further processing to a circular cross-section, the amorphous metal filament has no preferential bending direction, making the filter easier to construct and more reliable to self-expand. Thus in one embodiment, a method involves forming amorphous metal wire ribbon, further processing the ribbon to change the cross-sectional aspect ratio, and then using the further processed amorphous metal strand in an internally deployed medical device.
Once the amorphous metal wire or filament is formed, it can be bent and worked at cool temperatures to shape the wire as desired without causing crystallization within the wire. For instance, to form the shape of the filter of
In some embodiments, the amorphous metal wire can also be heat set at a temperature or time which is insufficient to induce significant crystallization, or at a time and temperature sufficient to cause partial or even complete crystallization. After rapid cooling of the molten metal or alloy to form the solid metal wire, the wire is formed under stress about a molding surface (typically a mandrel) into a desired “remembered” shape.
Alternatively or in conjunction to applying stress to the wire during a shape forming stage, a two-sided mold as shown in
As an alternative to conventional molds and mandrels, after the wire is formed under stress about a molding surface into a desired shape, the wire can be held in place with a heat resistant solidifying substance such as plaster of paris, concrete, ceramic, paint and/or glue as disclosed in WO 01/101118, incorporated by reference. The solidifying substance allows filter wires or filaments to be restrained during the shape setting heat treatment and is subsequently removed prior to use of the filter in a patient.
D. Other Amorphous Metal Medical DevicesThe wire filter structure of
Unlike the '752 filter, the filter of
As shown in
Certain embodiments may also involve amorphous metal wires or filaments used together with a self expanding umbrella or funnel-like filters, similar in design to the vena cava filters of U.S. Pat. No. 5,549,626, incorporated by reference in its entirety (“'626 filter”).
Certain embodiments also include distal protection devices including filters positioned with a guide wire but arranged with the basket being to one side of the guide wire, similar to the distal protection device of U.S. Pat. No. 6,740,061, incorporated by reference in its entirety (“'061 distal protection device), or the distal protection device of U.S. Patent Pub. 2004/0153119, incorporated by reference in its entirety (“153119 distal protection device”).
Certain embodiments also include vascular devices having suspension struts and hoops.
In another embodiment, a filter having struts is shown in
Certain embodiments also include vascular devices having articulation points in a hoop.
In one embodiment, the hoop 204 is formed of amorphous metal, with the overall cross-sectional thickness selected based upon the desired elasticity of opening force. In some embodiments, the articulation region may have a non-circular cross-section or a reduced thickness. For instance, the cross-sectional shape or dimensions of the articulation region may be modified to provide greater flexibility by drawing, cold working, swaging, grinding, chemical etching or electroless polishing, provided that the reshaping process does not involve sufficiently increased temperatures or conditions to cause significant crystallization.
In a second embodiment, the hoop 204 is initially formed of amorphous metal, with one or more regions which are subsequently heat treated or aged to induce crystallization. With part of the hoop wire 204 being a crystallized metal and part of the hoop wire 204 being amorphous metal, the hoop wire has different stiffness and rigidity characteristics at different positions. One or more articulation regions 205 are formed to be more flexible than the rest of the hoop due to the different amounts of crystallization and amorphous metal along the length of the wire of the hoop 204.
Certain embodiments include a wire frame 210 for a distal protection device.
Certain embodiments include vascular protection devices having discontinuous or continuous elongate support members.
Referring to
Certain embodiments also include an everted filter device 235.
Certain embodiments also include knitted filters.
For any of the shaped internally deployed medical devices of FIGS. 8 and 11-23, a mold mandrel can be used to form the desired shape of the amorphous metal structure. The mold or mandrel can be formed of a material that dissolves, vaporizes or can otherwise be removed as disclosed in WO 02/101118, incorporated by reference in its entirety. The small diameter wire mesh provided by the amorphous metal wire, according to certain embodiments, is particularly useful when the mold or mandrel is removed by a process which includes vibrating or otherwise breaking the mold or mandrel. In particular, the smaller diameter wire in some embodiments is useful in wedging into small cracks and crevasses of the mold or mandrel during breaking of the mold or mandrel, facilitating the breakage into small enough pieces that they can fit between the pores of the device.
Coatings may be placed over the amorphous metal wire of these various filter embodiments for various desired performance attributes. For instance, radiopaque coatings, or drug (such as an antibiotic, anticoagulant, or growth hormone) or other active agent release coatings, may be applied over the amorphous metal wire structures. Lubricity may be provided by a coating of a low friction polymer such as polyurethane, hydrogels, polyethylene, polytetrafluoroethene (PTFE) and TEFLON. Polymer films such as silicone, polyurethane, or other materials can be applied to the filter mesh to cause the mesh to become occlusive. Alternatively the mesh can be manufactured with very little open area between adjacent filaments so as to render the mesh functionally occlusive for a given application.
Another internally deployed medical device that may be formed at least in part of an amorphous metal is a snare. One example of a snare 270 is shown in
In addition to forming the wire coil of amorphous metal, the core 281 of the guide wire 280 can be formed at least in part of amorphous metal. An amorphous metal core 281 for the guide wire 280 is particularly advantageous for small diameter guide wires such as those used in neurovascular surgery. Crystalline metal cores are known to break, especially in the small diameter neurovascular guide wires. In some embodiments, a substantial amount of the strength of the distal tip 290 comes from the core 281 rather than the outer coil 282. As such, embodiments that provide an amorphous metal core 281 adds strength and flexibility to the guide wire 280, making the core 281 less likely to break in tension, compression or fatigue as the guide wire 280 is traversed through a tortuous path.
Certain embodiments include medical device coils. For example,
The internally deployed medical devices formed at least in part of amorphous metal can also take other forms. For instance, amorphous metal structures can be used as either the stylet or as reinforcing elements in balloon catheters, delivery catheters, recovery catheters, guide catheters, diagnostic catheters, aspiration catheters, and other catheters as are known in the art. Amorphous metal structures can be used in treatment devices for aneurysms and arteriovenous malformations (“AVMs”) as well as other neurovascular disorders of the brain and spinal cord. In particular, such neurological systems can use amorphous metal coils and coil delivery systems in ways similar to those discussed above for stents. In ways analogous to the stent embodiments disclosed above, amorphous metal structures can be used in closure devices for patent foramen ovale (“PFOs”) and left atrial appendages (“LAAs”) or in treating other defects such as patent ductus arteriosus, atrial septal defects (“ASDs”), and ventricular septal defects (“VSDs”).
The particular metal or alloy which is used in any of the amorphous metal structures depends upon the intended use and desired functions of the medical device. In certain embodiments, the amorphous metal is chosen for its biocompatibility in the intended application. In some embodiments, the amorphous metal is a bulk solidifying amorphous alloy. For instance, the amorphous metal can be stainless steel, alloys of nickel and titanium similar to nitinol, alloys of zirconium and/or titanium, ELGILOY, HASTELLOY, INCOLOY, alloys of cobalt and chromium, bioabsorbable metals such as magnesium alloys, radiopaque materials such as gold or platinum, etc. Certain amorphous metals may be an alloy including one or more metals selected from zirconium, titanium, nickel, copper, iron, beryllium, aluminum, silicon, niobium, copper, nickel. Other transition metals may also be included in some embodiments. One can alternatively select other alloys that cannot be easily processed in crystalline form. In some embodiments, the metal/alloy is solidified at a sufficiently fast rate and under conditions such that the formation of a crystalline or granular structure in the solid form of the metal/alloy is inhibited. Radiopaque crystalline materials may be also used in combination with the amorphous metal, or the amorphous metal may be coated with radiopaque markings, as desired for the intended imaging of the internally deployed medical device.
Certain embodiments involve methods of using amorphous metal devices. For example, a medical device comprised of amorphous metals may be used at a luminal site in the body of a patient. Using known medical techniques, a diseased or damaged portion of a patient's blood vessel may be identified. Using techniques well known in the art, a guide wire, such as the nonlimiting guide wire examples shown in
In some embodiments, an embolic protection device or an embolic protection delivery catheter is advanced to the region of interest over the guidewire, the guidewire is withdrawn, and the embolic protection device is deployed. In an alternate embodiment the embolic protection device is deployed before the guidewire is withdrawn. For instance, a distal filter or a proximal occlusive device may be deployed downstream or upstream respectively of the treatment site, positioned such that the body of the filter is in a healthy region of vessel suitable for use as a landing zone for the filter or device or such that the proximal occlusive device is upstream of the treatment site. The embolic protection device may comprise filters such as those shown in FIGS. 8 and 11-23, In some embodiments, the embolic protection delivery catheter (if used) is withdrawn from the vicinity of the filter. In some embodiments, the operator can use fluoroscopy or other methods to ascertain that the mouth of the filter is adequately deployed against the vessel wall with no gaps, downstream to the region of interest, and upstream to any important side branch vessels. In some embodiments, the operator can use fluoroscopy or other methods to ascertain that the occlusive device is adequately deployed against the vessel wall with no gaps, upstream to the region of interest.
If desired, pre-dilatation of the region of interest may be performed in advance of treatment using known angioplasty catheters. A stent, such as one of the stents shown in
Once the vessel has been treated, the embolic protection device is withdrawn from the vessel. For example, in the case of a distal filter, a catheter is advanced to the region of interest and over the filter to substantially close the opening(s) of the filter, and the filter together with any captured particles is removed from the patient's body.
If a stent becomes loose from a stent delivery system, or if a device such as a catheter or guidewire fractures, leaving a foreign article in the body, a snare such as that shown in
In a follow-up visit the patient's treatment site may be imaged using MRI. Use of amorphous metal implants can assure that this can be done safely and without excessive artifact on the MRI images.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As one example, while deployment of the present invention is described with reference to use in a lumen such as a blood vessel (vein or artery) having a defined flow direction, it is envisioned that the invention can be applied to other conduits in the body as well including bronchi, ducts, ureters, urethra, and other lumens, and to other treatment locations which are accessed through such lumens.
Claims
1. A method of forming a shape set medical device comprising the steps of:
- providing a structure including an amorphous metal; and
- shape setting the structure to at least partially convert the amorphous metal into crystalline metal to impart crystalline properties to the medical device such that the structure includes between about 0.5 volume percent to about 75 volume percent crystalline portions, wherein the crystalline portions form the medical device.
2. The method of claim 1, wherein the step of shape setting the structure includes applying heat to the structure.
3. The method of claim 2, wherein the step of shape setting the structure includes heating the structure to a temperature about or above a glass transition temperature of the amorphous metal.
4. The method of claim 1, wherein the step of shape setting the structure includes forming the crystalline portions into a stent.
5. The method of claim 4, wherein the step of shape setting the structure includes forming the crystalline portions into a self-expanding stent.
6. The method of claim 4, wherein the step of shape setting the structure includes forming the crystalline portions into a stent configured and dimensioned for expansion by a balloon.
7. The method of claim 1, wherein the step of shape setting the structure includes forming the crystalline portions into a filter.
8. The method of claim 7, wherein the step of shape setting the structure includes forming the crystalline portions into a braided filter.
9. The method of claim 1, wherein the step of shape setting the structure includes forming the structure to include one or more amorphous metal filaments having a diameter between about 0.010 inches (0.25 mm) and about 0.00050 inches (0.013 mm).
10. The method of claim 1 further including the step of applying a coating to at least a portion of the medical device.
11. The method of claim 10, wherein the step of applying a coating to at least a portion of the medical device includes applying one or more of a radiopaque coating, a drug coating, an active agent release coating, a biocompatible coating, or a lubricious coating.
12. The method of claim 1, wherein the step of shape setting the structure includes forming the structure in a manner facilitating imaging of the medical device under MRI.
13. The method of claim 1, wherein the step of shape setting the structure includes annealing the amorphous metal.
14. The method of claim 13, wherein the step of shape setting the structure includes annealing the amorphous metal in a manner substantially maintaining a shape of the structure.
15. A method of performing a surgical procedure comprising the steps of:
- inserting a shape set medical device into a body in a collapsed configuration, wherein the medical device includes an amorphous metal comprising between about 0.5 volume percent to about 75 volume percent crystalline portions; and
- expanding the medical device.
16. The method of claim 15, wherein the step of inserting a shape set medical device includes inserting a stent into the body.
17. The method of claim 16, wherein the step of inserting a shape set medical device includes inserting a self-expanding stent into the body.
18. The method of claim 16 further including the step of expanding the stent using a balloon.
19. The method of claim 15, wherein the step of inserting a shape set medical device includes inserting a filter into the body.
20. The method of claim 15 further including the step of visualizing the medical device using MRI.
Type: Application
Filed: Sep 28, 2011
Publication Date: Jan 26, 2012
Applicant: TYCO HEALTHCARE GROUP LP (Mansfield, MA)
Inventors: Richard S. Kusleika (Eden Prarie, MN), Rick Kravik (Champlin, MN)
Application Number: 13/247,310
International Classification: A61F 2/82 (20060101); C21D 1/26 (20060101); C21D 1/00 (20060101); A61F 2/84 (20060101); A61F 2/01 (20060101);