METHOD FOR BINDING SITE IDENTIFICATION BY MOLECULAR DYNAMICS SIMULATION (SILCS: SITE IDENTIFICATION BY LIGAND COMPETITIVE SATURATION)
The invention describes an explicit solvent all-atom molecular dynamics methodology (SILCS: Site Identification by Ligand Competitive Saturation) that uses small aliphatic and aromatic molecules plus water molecules to map the affinity pattern of a large molecule for hydrophobic groups, aromatic groups, hydrogen bond donors, and hydrogen bond acceptors. By simultaneously incorporating ligands representative of all these functionalities, the method is an in silico free energy-based competition assay that generates three-dimensional probability maps of fragment binding (FragMaps) indicating favorable fragment:large molecule interactions. The FragMaps may be used to qualitatively inform the design of small-molecule ligands or as scoring grids for high-throughput in silico docking that incorporates both an atomic-level description of solvation and the large molecule's flexibility.
Latest UNIVERSITY OF mARYLAND, BALTIMORE Patents:
- Small molecule inhibitors of GPCR GPR68 and related receptors for treating cancer, glioblastoma, and other indications
- Thermo-responsive ultrasound coupling gel, and methods and uses thereof
- Blood oxygenator
- Systems and methods using multi-wavelength single-pulse Raman spectroscopy
- Hemostatic nanocapsules for stopping bleeding, visualizing injury, and delivering drugs
This invention was made with government support under Grant Numbers GM 51501, CA107331, CA120215 (ADM), and F32CA1197712 (OG) awarded by the National Institutes of Health. The government has certain rights in the invention.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention is directed to a method of computational chemistry for identifying binding sites by molecular dynamics simulations using ligand competitive saturation. In particular, the method overcomes the problem of small nonpolar molecule aggregation to allow competitive saturation in an aqueous solution at physiological conditions. More particularly, the method, when used in a two-tier approach, may determine which one of several multiple fragment molecules has a highest probability of improving binding to a surface region of a large molecule that is proximate to a bound ligand, in order to produce an optimized lead compound for drug discovery.
2. Description of the Related Art
Fragment-based drug discovery relies on a simple premise: identify small molecule fragments that bind to a target region of a large molecule and then evolve or link the small molecule fragments to create a larger high-affinity molecule. To a first approximation, the binding free-energies of fragments bound in non-overlapping poses are additive (Dill K A (1997) Additivity principles in biochemistry. J Biol Chem 272:701-704). Therefore, linking two such fragments with millimolar affinities, e.g., 4 kcal*mol−1, will yield a single fragment molecule with a micromolar affinity of, e.g., 8 kcal*mol−1, which is of sufficient affinity to serve as a “hit” for lead compound optimization in fragment-based drug discovery (Erlanson D A et al. (2004) Fragment-based drug discovery. J Med Chem 47:3463-3482). Since the 3-dimensional chemical space spanned by small fragments is orders of magnitude smaller than that spanned by molecules of sufficient size to be hits, it is feasible to screen a fragment library representative of the full extent of chemical space (Congreve M et al. (2008) Recent developments in fragment-based drug discovery. J Med Chem 51:3661-3680).
Nature imposes an upper limit on the contribution per ligand heavy atom to the binding free-energy (Kuntz I D et al. (1999) The maximal affinity of ligands. Proc Natl Acad Sci U S A 96:9997-10002), commonly referred to as ligand efficiency, (LE) (Hopkins A L et al. (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430-431). This limit means that even the best fragments, having an LE value of 0.4-0.5 kcal*mol−1 per heavy atom, still have weak affinities for their target regions, making their screening by traditional assays difficult. Consequently, fragment-based drug discovery relies on sensitive biophysical methods to detect fragment binding.
Among these biophysical methods are NMR spectroscopy and x-ray crystallography. These two methods additionally yield 3-dimensional structural information about fragment binding poses, which is useful for confirming that two fragments indeed bind to two adjacent sites and can be productively linked. However, despite the utility of NMR spectroscopy and x-ray crystallography to detect fragment binding, there are significant time, labor, and materials costs associated with these two biophysical fragment-based drug discovery approaches.
Computational approaches to fragment-based drug discovery can mitigate the costs of experimental fragment-based drug discovery based on such biophysical techniques as, NMR spectroscopy and x-ray crystallography. Currently, in computational approaches, the large molecule is assumed to be rigid and fragments populate the surface of the, for example, rigid protein molecule using an energy function that models the solvent environment as a continuum (Miranker A, et al. (1991) Functionality maps of binding-sites—a multiple copy simultaneous search method. Proteins: Struct, Funct, Genet 11:29-34; Carlson H A, et al. (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100-2114; Landon M R, et al. (2007) Identification of hot spots within druggable binding regions by computational solvent mapping of proteins. J Med Chem 50:1231-1240). As a result, these computational approaches are limited in their ability to accurately account for the exemplary protein molecule's conformational heterogeneity and solvation effects, contributions that are essential to compute free energies of binding of small molecules to the target region of the exemplary protein molecule (Guvench O, et al. (2009) Computational evaluation of protein-small molecule binding. Curr Opin Struct Biol 19:56-61).
In reality, protein molecules can accommodate ligands by undergoing conformational changes (Arkin M R, et al. (2004) Small-molecule inhibitors of protein-protein interactions: Progressing towards the dream. Nat Rev Drug Discovery 3:301-317), and water plays an important role in protein:ligand binding affinity (Lu Y P, et al, (2006) Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes. J Am Chem Soc 128:11830-11839; Young T, et al. (2007) Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding Proc Natl Acad Sci USA 104:808-813). Significant recent advances have been made with regard to both incorporating protein flexibility, for example by screening against multiple different rigid protein conformations (Bowman A L, et al. (2007) Small molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. J Am Chem Soc 129:12809-12814; Amaro R E, et al. (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J. Comput-Aided. Mol. Des. 22:693-705; Totrov M, et al. (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178-184), and more accurate modeling of solvation effects in energy functions (Abel R, Young T, Farid R, Berne B J, Friesner R A (2008) Role of the active-site solvent in the thermodynamics of Factor Xa ligand binding. J Am Chem Soc 130:2817-2831). Nonetheless, approximations used in computational approaches to date still limit the accuracy of fragment placement and fragment scoring, which relates to affinity of the fragment for the binding site, and, ultimately, the determination of the most suitable fragment for a selected binding-site region of the protein molecule.
All-atom explicit-solvent molecular dynamics (MD) simulations of proteins give an atomic-level-of-detail description of the motions of both a large biomolecule, for example, a protein, and water atoms at relevant temperature and pressure (Karplus M, et al. (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646-652). In this case, the MD computational simulation samples a Boltzmann distribution of thermally accessible protein conformations, and with the ability of the MD simulation to reach the nanosecond timescale, the sampled conformations include changes in sidechain dihedral angles as well as loop motions of the protein.
Furthermore, MD simulation-based methods are able to rigorously determine the absolute binding free energy of a ligand to a protein molecule (Woo H J, et al. (2005) Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci U S A 102:6825-6830; Deng Y Q, et al. (2006) Calculation of standard binding free energies: Aromatic molecules in the T4 lysozyme L99A mutant. J Chem Theory Comput 2:1255-1273; Wang J, et al. (2006) Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J 91:2798-2814; Jiao D, et al. (2008) Calculation of protein-ligand binding free energy by using a polarizable potential. Proc Natl Acad Sci U S A 105:6290-6295; Lee M S, et al. (2006) Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophys J 90:864-877; Lee M S, et al. (2008) Calculation of absolute ligand binding free energy to a ribosome-targeting protein as a function of solvent model. J Phys Chem B 112:13411-13417). However, such MD simulated free-energy calculations are computationally expensive, limiting MD simulations from being used directly for high-throughput in silico screening.
There remains a need for a method of computational chemistry that identifies the binding sites of small molecules and small molecule fragments to a large molecule while (1) mitigating the costs of NMR spectroscopy and x-ray crystallography of experimental fragment-based drug discovery and (2) including detailed representations of both a large molecule's conformational heterogeneity and solvation effects.
SUMMARY OF THE INVENTIONToward overcoming present costs and limitations of fragment-based computational drug design, the inventors describe a method that combines ideas from experimental fragment-based drug discovery, using NMR and crystallographic methods, with all-atom explicit-solvent MD simulations, using small aliphatic and aromatic molecules plus water molecules to map the affinity pattern for hydrophobic groups, aromatic groups, hydrogen bond donors, and hydrogen bond acceptors to a large molecule. The method, SILCS: Site Identification by Ligand Competitive Saturation, involves computationally “immersing” a large molecule, e.g., a protein, a glycoprotein, DNA, RNA, a carbohydrate, or a glycolipid, in an aqueous solution containing different types of small molecules having concentrations sufficient for competitive saturation, such that convergence of the simulation is anticipated. The large molecule+small molecules+water system is then subjected to multiple MD simulations allowing for competitive binding of the small molecules to the large molecule. Snapshots from the multiple MD simulation trajectories are combined to generate 3-dimensional (3D) probability maps, i.e., FragMaps, which reveal what molecular functionalities, e.g., aliphatic molecules, aromatic molecules, hydrogen bond donor molecules, and hydrogen bond acceptor molecules, bind most strongly to different parts of the large molecule's surface. Because the SILCS FragMaps are generated from MD simulations, they incorporate both the large molecule's flexibility with a Boltzmann distribution of conformations, as well as atomic-level solvation effects, resulting in 3D SILCS FragMaps that represent rigorous free energy distributions. Notably, the invention of the present method requires minimal time, labor, and materials compared to the conventional experimental approaches.
The SILCS FragMaps of the invention, when visualized as isosurfaces in conjunction with, for example, a large protein molecule (please see, for example,
The SILCS method of the invention may also be used in a two-tier approach that optimizes design of lead compounds in drug-discovery. A first tier of the approach may use the SILCS method to identify binding sites for molecular functionalities on a large molecule adjacent to which a fragment ligand is bound. A second tier of the approach may then use the identities of these functional binding sites to select specific small molecules, i.e., fragments, which may be assayed by a second SILCS simulation for lead compound optimization.
For example, if the first SILCS assay identified a region of the large molecule, adjacent to the lead compound, to which a hydrogen bond donor and an aromatic molecule were bound, then the second SILCS assay may simulate the small molecule binding of a molecule, which contains both hydrogen bond donor and aromatic functionalities, for example, imidazole, phenol, aniline, pyridine, and pyrrole. In an exemplary embodiment of the invention, each of these dual-functionality molecules would be added to the system of a corresponding MD simulation of the large molecule to which the lead compound is bound, and the resulting probability distributions for each of these dual-functionality molecules would then be used to identify that dual-functionality molecule that has the most favorable position adjacent to the lead compound to improve binding. This particular dual-functionality molecule, which is most likely to improve binding, may then be chemically linked to the lead compound to provide an improved lead compound for drug-discovery.
Additionally, an important part of the SILCS method of the invention is its computational feasibility. In an exemplary embodiment of the invention, each 5-ns SILCS simulation of an exemplary BCL-6 oncoprotein took less than three days on a single 2×4-core node of a commodity-computing cluster, and because each of the ten simulations was independent, they were all run simultaneously to yield converged FragMaps in under three days. The ability to achieve converged FragMaps probability maps in such a short time is a very important result, since MD simulations are often limited by the computational cost for simulations beyond the nanosecond regime, which in turn limits their utility in computer-aided drug discovery.
In view of the foregoing, an embodiment of the invention provides for a method of computational chemistry for identifying binding sites, by molecular dynamics (MD) simulations using ligand competitive saturation. The method includes: inputting a 3-dimensional (3D) structure of a protein; preparing multiple solutions for ligand competitive saturation, each of the multiple solutions corresponding to a volumetric grid in which either a benzene, a propane, or a water molecule is randomly placed on a grid point, such that, a spacing of the grid points and the random placing of the benzene, propane, or water molecules corresponds to a concentration sufficient for competitive saturation of the benzene and propane molecules; overlaying the 3D structure of the protein with each of the multiple solutions and removing all benzene, propane and water molecules that overlay the protein in the volumetric grid; introducing a repulsive interaction energy between the benzene and the propane molecules to prevent non-polar aggregation; minimizing energies and equilibrating each of the multiple solutions with the protein by MD simulations to produce multiple equilibrated systems; propagating MD simulations for each of the multiple equilibrated systems; binning atoms from each of the propagated MD simulations into voxels, in which benzene and propane carbon atoms are binned as aromatic and aliphatic carbons, respectively, and in which water oxygen and hydrogen atoms are binned as hydrogen bond acceptors and hydrogen bond donors, respectively; using bin counts for each of the aromatic and aliphatic carbons, and the hydrogen bond acceptors and hydrogen bond donors, based on their free energies of binding from the propagated MD simulations, to identify surface regions of the protein having a high probability to bind one of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom; and using the identified surface regions of the protein as docking grids for high-throughput in silico docking of drug-like compounds.
Another embodiment of the method of the invention further includes assigning an orientation of each of His, Gln, and Asn sidechains to the 3D structure of the protein.
Yet another embodiment of the method of the invention further includes aligning the protein from a trajectory of the propagated MD simulations.
Yet another embodiment of the method of the invention further includes introducing harmonic positional restraints to all atoms of the protein before equilibrating the multiple systems, and subsequently replacing the harmonic positional restraints with weak restraints on protein backbone carbon atoms to prevent denaturation before propagating the MD simulations.
Yet another embodiment of the method of the invention further includes creating fragment binding maps (FragMaps) of the surface regions of the protein, each of the FragMaps corresponding to the high probability of binding one of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom, wherein the FragMap represents a single isocontour value, empirically chosen, to optimize visualization of each of the FragMaps.
Yet another embodiment of the invention provides the method in which the protein is a glycoprotein.
Yet another embodiment of the invention provides the method in which the concentration sufficient for competitive saturation of the benzene and propane molecules is 1 M benzene and 1 M propane.
Yet another embodiment of the invention provides the method in which the concentration sufficient for competitive saturation of the benzene and propane molecules is greater than 0.01 mM and less than 10 M benzene and greater than 0.01 mM and less than 10 M propane.
Yet another embodiment of the invention provides for a method of computational chemistry for identifying binding sites, by molecular dynamics (MD) simulations using ligand competitive saturation. The method includes: inputting a 3-dimensional (3D) structure of a large molecule, in which the large molecule comprises one of DNA, RNA, a carbohydrate and a glycolipid; preparing multiple solutions for ligand competitive saturation, each of the multiple solutions corresponding to a volumetric grid in which either a small aromatic molecule, a small aliphatic molecule, or a water molecule is randomly placed on a grid point, such that, a spacing of the grid points and the random placing of small aromatic molecules, small aliphatic molecules, or water molecules corresponds to a concentration sufficient for competitive saturation of the small aromatic molecules and the small aliphatic molecules; overlaying the 3D structure of the large molecule with each of the multiple solutions and removing all the small aromatic molecules, the small aliphatic molecules, and the water molecules that overlay the large molecule in the volumetric grid; introducing a repulsive interaction energy between the small aromatic molecules and the small aliphatic molecules to prevent non-polar aggregation; minimizing energies and equilibrating each of the multiple solutions with the large molecule by MD simulations to produce multiple equilibrated systems; propagating MD simulations for each of the multiple equilibrated systems; binning atoms from each of the propagated MD simulations into voxels, in which carbon atoms of the small aromatic molecules and the small aliphatic molecules are binned as aromatic and aliphatic carbons, respectively, and in which water oxygen and hydrogen atoms are binned as hydrogen bond acceptors and hydrogen bond donors, respectively; using bin counts for each of the aromatic and aliphatic carbons, and the hydrogen bond acceptors and hydrogen bond donors, based on their free energies of binding from the propagated MD simulations, to identify surface regions of the large molecule having a high probability to bind one of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom; and using the identified surface regions of the large molecule as docking grids for high-throughput in silico docking of drug-like compounds.
Yet another embodiment of the invention provides for a method of computational chemistry for identifying binding sites, by molecular dynamics (MD) simulations using ligand competitive saturation, for drug design optimization. The method includes: inputting a 3-dimensional (3D) structure of a complex of a protein and a bound ligand; preparing multiple solutions for ligand competitive saturation, each of the multiple solutions corresponding to a volumetric grid in which either a benzene, a propane, or a water molecule is randomly placed on a grid point, such that, a spacing of the grid points and the random placing of the benzene, propane, or water molecules corresponds to a concentration sufficient for competitive saturation of the benzene and propane molecules; overlaying the 3D structure of the protein and the bound ligand with each of the multiple solutions and removing all benzene, propane and water molecules that overlay the protein and the bound ligand in the volumetric grid; introducing a repulsive interaction energy between the benzene and the propane molecules to prevent non-polar aggregation; minimizing energies and equilibrating each of the multiple solutions with the protein and the bound ligand by MD simulations to produce multiple equilibrated systems; propagating a first tier of MD simulations for each of the multiple equilibrated systems; binning atoms from each of the propagated MD simulations into voxels, wherein benzene and propane carbon atoms are binned as aromatic and aliphatic carbons, respectively, and wherein water oxygen and hydrogen atoms are binned as hydrogen bond acceptors and hydrogen bond donors, respectively; using bin counts for each of the aromatic and aliphatic carbons, and the hydrogen bond acceptors and hydrogen bond donors, based on their free energies of binding, from the first tier of propagated MD simulations to identify surface regions of the protein having a high probability to bind one of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom; identifying a surface region of the protein that is proximate to the bound ligand and has a high probability of binding to at least two of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom; selecting multiple fragment molecules, containing the at least two of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom, for a second tier of MD simulations; preparing multiple solutions for ligand competitive saturation of the selected multiple fragment molecules; introducing an intermolecular repulsive interaction energy between nonpolar regions of the selected multiple fragment molecules to prevent non-polar aggregation; minimizing energies and equilibrating each of the multiple solutions with the protein and the bound ligand by MD simulations to produce multiple equilibrated systems; propagating the second tier of MD simulations for each of the multiple equilibrated systems; and analyzing the second tier of MD simulations to determine which one of the selected multiple fragment molecules has a highest probability of improving binding to the surface region of the protein that is proximate to the bound ligand.
Yet another embodiment of the method of the invention further includes chemically linking one of the selected multiple fragment molecules, having a highest probability of improving binding to the surface region of the protein that is proximate to the bound ligand, to the bound ligand to design an optimized drug.
Yet another embodiment of the method of the invention further includes assigning an orientation of each of His, Gln, and Asn sidechains to the 3D structure of the protein.
Yet another embodiment of the method of the invention further includes aligning the protein from a trajectory of the first and second tier propagated MD simulations.
Yet another embodiment of the method of the invention further includes introducing harmonic positional restraints to all atoms of the protein before equilibrating the multiple systems in the first and second tier MD simulations, and subsequently replacing the harmonic positional restraints with weak restraints on protein backbone carbon atoms to prevent denaturation before propagating the first and second tier MD simulations.
Yet another embodiment of the invention provides the method in which the multiple fragment molecules comprise any of methanol, phenol, imidazole, aniline, pyridine, pyrrole, and acetone.
Yet another embodiment of the invention provides the method in which the protein is a glycoprotein.
Yet another embodiment of the invention provides the method in which the concentration sufficient for competitive saturation of the multiple fragment molecules is 1 M.
Yet another embodiment of the invention provides the method in which the concentration sufficient for competitive saturation of the fragment molecules is greater than 0.01 mM and less than 10 M.
Yet another embodiment of the invention provides the method in which analysis of the second tier of MD simulations is based on binning atoms of the selected multiple fragment molecules from each of the propagated MD simulations into voxels for each of the multiple equilibrated systems.
Yet another embodiment of the invention provides for a method of computational chemistry for identifying binding sites, by molecular dynamics (MD) simulations using ligand competitive saturation, for drug design optimization. The method includes: inputting a 3-dimensional (3D) structure of a complex of a large molecule and a bound ligand, in which the large molecule comprises one of DNA, RNA, a carbohydrate and a glycolipid; preparing multiple solutions for ligand competitive saturation, each of the multiple solutions corresponding to a volumetric grid in which either a benzene, a propane, or a water molecule is randomly placed on a grid point, such that, a spacing of the grid points and the random placing of the benzene, propane, or water molecules corresponds to a concentration sufficient for competitive saturation of the benzene and propane molecules; overlaying the 3D structure of the large molecule and the bound ligand with each of the multiple solutions and removing all benzene, propane and water molecules that overlay the large molecule and the bound ligand in the volumetric grid; introducing a repulsive interaction energy between the benzene and the propane molecules to prevent non-polar aggregation; minimizing energies and equilibrating each of the multiple solutions with the large molecule and the bound ligand by MD simulations to produce multiple equilibrated systems; propagating a first tier of MD simulations for each of the multiple equilibrated systems; binning atoms from each of the propagated MD simulations into voxels, in which benzene and propane carbon atoms are binned as aromatic and aliphatic carbons, respectively, and in which water oxygen and hydrogen atoms are binned as hydrogen bond acceptors and hydrogen bond donors, respectively; using bin counts for each of the aromatic and aliphatic carbons, and the hydrogen bond acceptors and hydrogen bond donors, based on their free energies of binding, from the first tier of propagated MD simulations to identify surface regions of the large molecule having a high probability to bind one of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom; identifying a surface region of the large molecule that is proximate to the bound ligand and has a high probability of binding to at least two of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom; selecting multiple fragment molecules, containing the at least two of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom, for a second tier of MD simulations; preparing multiple solutions for ligand competitive saturation of the selected multiple fragment molecules; introducing an intermolecular repulsive interaction energy between nonpolar regions of the selected multiple fragment molecules to prevent non-polar aggregation; minimizing energies and equilibrating each of the multiple solutions with the large molecule and the bound ligand by MD simulations to produce multiple equilibrated systems; propagating the second tier of MD simulations for each of the multiple equilibrated systems; and analyzing the second tier of MD simulations to determine which one of the selected multiple fragment molecules has a highest probability of improving binding to the surface region of the large molecule that is proximate to the bound ligand.
The embodiments of the invention will be better understood from the following detailed description with references to the drawings, in which:
The embodiments of the invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments of that are illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale. Descriptions of well-known materials, components, and processing techniques are omitted so as to not unnecessarily obscure the embodiments of the invention. The examples used herein are intended to merely facilitate an understanding of ways in which the embodiments of the invention may be practiced and to further enable those of skill in the art to practice the embodiments of the invention. Accordingly, the examples should not be construed as limiting the scope of the embodiments of the invention.
As stated above, there remains a need for a method of computational chemistry that identifies the binding site of fragments to a molecule which mitigates the costs of NMR spectroscopy and x-ray crystallography in experimental fragment-based drug discovery and that overcomes the limited treatment of a large molecule's conformational heterogeneity and solvation effects in existing computational methods.
In the following exemplary embodiment of the invention, 3D probability maps, i.e., Site Identification by Ligand Competitive Saturation (SILCS) FragMaps, were generated to reveal what types of small molecule functionalities bound most strongly to regions in a large molecule, in this example, the BTB domain of the BCL-6 oncoprotein (Ahmad K F, et al. (2003) Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell 12:1551-1564; Ghetu A F, et al. (2008) Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Mol Cell 29:384-391). The SILCS FragMaps generated from the MD simulations, initiated from the BCL-6:SMRT cocrystal conformation, predicted the pattern of aliphatic, aromatic, hydrogen bond donor, and hydrogen bond acceptor interactions seen in both the BCL-6:SMRT and BCL-6:BCOR 3-dimensional cocrystal structures, which bound the SMRT and the BCOR corepressors, respectively. Thus, the predictive MD simulations of the present invention replicated the molecular solvation effects and the free-energy criteria indicated by the binding patterns of the two corepressors to the BCL-6 protein in the cocrystals. Furthermore, the MD simulations also sampled the sidechain conformation for His116 as seen in the BCL-6:BCOR cocrystal, a conformation that is required for hydrogen bonding with BCOR Ser508 and which is significantly different from that of the SMRT-bound BCL-6 MD initial conformation, emphasizing the ability of the present invention to replicate the protein flexibility indicated by the two different sidechain conformations associated with the binding of the two different corepressors.
Methods:The Site Identification by Ligand Competitive Saturation (SILCS) methodology may include: computationally “immersing” a large molecule, to which a fragment ligand is bound, in an aqueous solution of different small molecules, in which each of the different small molecules corresponds to a particular fragment type and each of the small molecule concentrations is sufficient for a competitive saturation assay, e.g., 0.01 mM≦[small molecule]≦10 M); running multiple nanosecond−length MD simulations of the composite large molecule+small molecules+water system; computing probability maps for each of the different small molecules' binding and the binding of water functionalities, i.e., hydrogen bond donor and hydrogen bond acceptor, to the large molecule for each of the multiple simulations; and combining probability maps of the same small molecule and water molecule functionalities from each of the multiple simulations to generate a single probability map, i.e., a SILCS FragMap, corresponding to an affinity for each of the different small molecules and the water functionalities. Once generated, the SILCS FragMaps for each small molecule, corresponding to a fragment type, and for each water functionality may be used to qualitatively inform the assembly of a lead compound for drug-discovery, based on a fragment library, or as docking grids for high-throughput in silico screening. Two important aspects of the SILCS methodology include the choice of small molecule types and overcoming small molecule aggregation.
Choice of Small Molecules:The majority of moieties on drug-like molecules that may target a large molecule, for example, a protein, a glycoprotein, DNA, RNA, a carbohydrate, and a glycolipid, fall into four functional classes: aliphatic, aromatic, hydrogen bond donor, and hydrogen bond acceptor. This reflects the relatively limited chemical diversity of the amino acid sidechains of a protein, of the nucleotides of DNA and RNA, and of the carbon-carbon, carbon-hydrogen, carbon-oxygen, oxygen-phosphate and oxygen-hydrogen bonds of carbohydrates and glycolipids. Salt bridges between two amino acids in a protein or a glycoprotein, may, for example, be considered as a special case of hydrogen bonding, since the interaction is never directly between two charged heavy atoms but between a negatively-charged oxygen and a proton on a positively-charged nitrogen. Fragment libraries generated from existing drugs and drug-like molecules reflect this limited diversity, largely comprising hydrogen bond donors of amides, hydrogen bond acceptors of carbonyls and ethers, hydrophobic groups of small-length aliphatic chains, and aromatic/cyclic groups of benzene (Kolb P, et al. (2006) Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking. J Med Chem 49:7384-7392).
A first goal in the choice of small molecules for use in the inventive method of SILCS was to minimize the set of fragments, so as to be able to maximize their individual concentrations, which in turn maximizes binding for a competitive saturation assay and helps computational convergence on the MD simulation's timescale. To this end, the inventors selected a minimalist small-molecule set that contained hydrophobic aliphatic moieties, aromatic moieties, hydrogen bond donors, and hydrogen bond acceptors. Propane was chosen to represent hydrophobic aliphatic groups because propane's termini are small enough to fit into cavities only large enough to accommodate a methyl group, while the propane molecule itself is large enough to disrupt the hydrogen bonding structure of water so as to induce strong hydrophobic binding (Huang D M, et al. (2000) Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc Natl Acad Sci U S A 97:8324-8327). Additionally, unlike longer-chain alkanes, propane is essentially a rigid body, excepting the rotation of the two terminal methyl groups, and thus computational convergence of internal degrees of freedom is not an issue. The inventors selected benzene to represent aromatic groups as benzene occurs in over 40% of drug-like compounds and is four times more common than the next most-common aromatic moiety (Kolb P, et al. (2006) Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking. J Med Chem 49:7384-7392). Finally, water was selected as a small molecule that contains both hydrogen bond donating and accepting capabilities and that mimics physiological conditions. Water is at a concentration of 55 M in solution and also has no internal conformational degrees of freedom, again promoting computational convergence on the MD timescale. Other small-molecule possibilities for hydrogen bond donors and acceptors may include acetone, formaldehyde, small amides, and related molecules.
A second goal in a choice of small molecules for use in the inventive method of SILCS was to minimize their molecular sizes, to maximize convergence, both by facilitating reversible binding on the MD simulation's timescale and allowing for fast diffusion through the bulk solvent. Even with a high-ligand efficiency, i.e. 0.4 kcal*mol−1 per heavy atom, fragments consisting of 3-6 heavy atoms will have binding affinities of only 1.2 to 2.4 kcal*mol−1 (100 millimolar to 10 millimolar). While such weak binding affinity can be a liability in an experimental NMR or x-ray crystallography approach, as it may push the limits of detection, it is an asset in the SILCS approach, allowing for ligand exchange from a binding site on the MD simulation's timescale; thus, facilitating the implementation of a competitive saturation in silico binding assay.
Another benefit of small fragment molecules, having only 3-6 heavy atoms, is their high diffusion rate that leads to quick mixing and rapid translation in the solution to different regions of the large molecule surface. Thus, small fragment molecules of minimal molecular size are beneficial both because of rapid binding exchange with the large molecule and rapid diffusion around the large molecule. However, it should be emphasized that the SILCS approach may be amenable to a wide selection of fragment-like small molecules and competitive saturation concentrations of the selected small molecules, and that the small molecules selected for the present example, i.e., benzene, propane, and water, were chosen for computational expediency of the exemplary embodiments.
Overcoming Small-Molecule Aggregation:To ensure binding of small low-affinity molecules, a concentration sufficient to ensure competitive saturation of each small molecule was used in the MD simulations. However, a simulation of a solution of, for example, 1M propane and 1M benzene in water, would be prone to severe hydrophobic aggregation, as seen in the intermolecular carbon . . . carbon (C . . . C) radial distribution function, g(r), of
Because the inventive method of SILCS is a computational approach, it is possible to modify the interactions between hydrophobic/aromatic fragments to prevent small molecule aggregation. This was done by introducing a repulsive interaction energy between the hydrophobic/aromatic fragments, which comes into effect only when two such fragments come closer than a given interaction distance. This repulsive interaction energy was applied to selected fragment:fragment interactions in the exemplary system, i.e., propane-propane, benzene-benzene, and propane-benzene pairs, while all fragment:water, fragment:large molecule, water:water, water:large molecule, and large molecule:large molecule interactions remained unperturbed. This repulsive interaction energy stops nonpolar aggregation of hydrophobic/aromatic fragments but does not effect interactions of the nonpolar ligands with water or the large molecule. In essence, application of the repulsive interaction energy to small nonpolar molecules achieves ideal solution behavior in a solution having competitive saturation of the small nonpolar molecules, which is computationally necessary for convergence of the system. This repulsive interaction was implemented using the Lennard-Jones term (Allen, M P, et al., (1987) Computer Simulation of Liquids, Oxford University Press, Oxford, pp. ______) by adding an additional massless particle to the geometric center of each selected aromatic small molecule, for example, benzene, and the central carbon of each selected hydrophobic small molecule, for example, propane. These massless particles served as interaction sites for the inter-fragment repulsive interaction energy between nonpolar hydrophobic/aromatic fragments.
As illustrated in
An exemplary embodiment of the invention used the experimentally-derived BCL-6 protein conformation from the BCL-6:SMRT complex to seed all SILCS MD simulations. The Reduce software (Word J M, et al. (1999) Asparagine and glutamine: Using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735-1747; kinemage.biochem.duke.edu/software/reduce.php) was used to place missing hydrogen positions, including assignment of protonation states, and to choose optimal Asn and Gln sidechain amide and His sidechain ring orientations. In this exemplary embodiment, the small hydrophobic molecule, propane, and the small aromatic molecule, benzene, were placed on a square grid, with the identity of the small molecule at each grid point randomly determined Ten such grids were generated with the grid spacing selected to yield a concentration of 1M propane and 1M benzene when combined with a box of water molecules at the experimental density of water. Ten protein+small molecules+water systems were generated by overlaying the coordinates of the experimentally-derived BCL-6 protein conformation and water molecules from the BCL-6:SMRT co-crystal structure with each of the ten solutions, then removing all water, propane, and benzene molecules that overlapped the target BCL-6 protein,and finally replacing two random water molecules with chloride ions to give a net neutral system charge. The final systems were rectangular boxes of 72×58×43 Å, which accommodated the BCL-6 protein with maximum dimensions of 64×48×35 Å.
In an exemplary embodiment of the invention, harmonic positional restraints with a force constant of 1 kcal*mol−1*A−2 were placed on all protein atoms and the system was minimized for 500 steps with a steepest descent algorithm. Molecular dynamics (MD) simulations were performed on each minimized system using the “leap frog” version of the Verlet integrator with a 2-fs timestep to propagate the system. The SHAKE algorithm (Ryckaert J P, et al. (1977) Numerical integration of Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327-341) was applied to constrain bonds to hydrogen atoms to their equilibrium lengths and maintain rigid water geometries; long-range electrostatic interactions were handled with the particle-mesh Ewald method with a real-space cutoff of 8 Å, a switching function was applied to Lennard-Jones interactions in the range of 5 to 8 Å, and a long-range isotropic correction was applied to the pressure for Lennard-Jones interactions beyond the 8 Åcutoff length. With the harmonic positional restraints still in place, the system was heated to 298K over 20 ps by periodic reassignment of velocities, followed by 20 ps of equilibration at 298K, also using velocity reassignment. Alternatively, the MD simulations may be done without the harmonic positional restraints, if the protein molecule is aligned in accordance with the trajectories of the MD simulations.
After the heating and equilibration periods, the harmonic positional restraints were replaced by weak restraints on only protein backbone Ca positions with a very weak force constant of 0.01 kcal*mol−1*A−2 so as to prevent possible denaturation of the protein. These weak restraints on the protein backbone atoms allowed for significant protein flexibility, while preventing possible protein denaturation during the subsequent SILCS MD simulations. It is possible that in some cases, these weak restraints may not be necessary to prevent denaturation. Alternatively, the MD simulations may be done without the weak restraints, if the protein molecule is aligned in accordance with the trajectories of the MD simulations.
In an exemplary embodiment of the invention, each system was subsequently simulated for 5 nanoseconds at 298K and 1 atm, with the Nose-Hoover thermostat and the Langevin piston barostat, for a total of 50 nanoseconds of simulation time. All simulations were done with the CHARMM molecular simulation software (Brooks B R, et al. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187-217), the CHARMM protein force field (MacKerell A D, Jr., et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586-3616) with CMAP backbone correction (MacKerell A D, Jr., et al. (2004) Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400-1415), and the TIP3P water model (Jorgensen W L, et al. (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926-935) modified for the CHARMM force field (Durell S R, et al. (1994) Solvent-induced forces between two hydrophilic groups. J Phys Chem 98:2198-2202).
Fragmap Construction:In an exemplary embodiment of the invention, FragMaps were prepared for each SILCS simulation by binning atoms from SILCS MD snapshots taken at 2-ps intervals into 1 Å×1 Å×1 Å cubic volume elements, i.e., voxels, of a grid spanning the entire system in an exemplary embodiment of the invention. For the aliphatic and aromatic carbon FragMaps, carbon atoms for propane and benzene molecules, respectively, were binned if they were within 5 Å of the protein. For the hydrogen bond donor and acceptor FragMaps, water hydrogen and oxygen atoms, respectively, were binned if they were within 2.5 Å of the protein. For each type of FragMap, the respective FragMaps from each of the ten simulations were added together to create a single FragMap. A single isocontour value resulting in optimal visualization was empirically chosen for each FragMap type, and this value was used to generate all isocontour molecular graphics for that FragMap type. The ratio of the isocontour value to the average cubic volume element occupancy in an equilibrated system consisting of only propane, benzene, and water molecules was 9.8 for propane carbons, 9.8 for benzene carbons, 1.3 for water hydrogens, and 1.1 for water oxygens. Visualization of FragMaps and preparation of molecular graphics were done with VMD (Humphrey W, et al. (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33-38.
Experimental Results and Discussion:The BTB domain of the BCL-6 protein was chosen as an exemplary embodiment of the inventive SILCS method because of several favorable properties. The first is that the BCL-6 protein has two-fold symmetry, with two identical symmetry-related binding sites, allowing for measuring convergence of fragment sampling by analyzing the two-fold symmetry in the SILCS FragMaps. A second reason is that the binding of native ligands to the two binding sites shows no cooperativity; thus, the binding sites are independent of each other and the occupancy of one site will not affect the occupancy of the other. A third reason is that two known ligands for BCL-6, SMRT and BCOR, are peptides 17 amino-acids in length that bind in extended conformations to the same groove over a large contact-area, allowing for comparison of FragMaps over a large portion of the protein. Fourth, there is thermodynamic data available from competition assays using single-residue alanine or glycine-substituted analogs of these two peptides for every position in each peptide. Fifth, SMRT and BCOR have different binding modes in the BCL-6 peptide-binding cleft and lack sequence similarity. The different binding modes include BCL-6 sidechains in the binding cleft assuming different conformations in the presence of SMRT vs. BCOR. And finally, BCL-6 has clinical importance because of its association with diffuse large B-cell lymphoma, and competitive inhibitors that bind to the BCL-6 peptide-binding cleft may have therapeutic applications.
Convergence is Achievable in the MD Timescale:In an exemplary embodiment of the invention, convergence of the SILCS FragMaps was facilitated by the inventors' selection of propane, benzene, and water as the “fragments,” by the use of 1 M propane and 1 M benzene concentrations, and by combining results from 10 independent 5-ns SILCS MD simulations, as discussed above. The two-fold symmetry of the BCL-6 protein with its two symmetric binding sites and non-cooperative binding may allow for using two-fold symmetry in the FragMaps as a measure of convergence in accordance with the reality that convergence is never absolute. Analysis of the separate 5-ns simulations showed them to yield somewhat different FragMaps that did not clearly demonstrate two-fold symmetry (not shown); however, FragMaps generated as an ensemble average of all ten 5-ns simulations did exhibit the expected two-fold symmetry.
To visualize the extent of convergence, slices of the aliphatic carbon atom FragMap from propane along with the protein molecular surface were taken perpendicular to the two-fold symmetry axis of the protein. As shown in
In an exemplary embodiment of the invention, SILCS FragMaps were compared with the crystal structures of the BCL-6:SMRT and BCL-6:BCOR complexes to validate the exemplary inventive method's ability to identify known binding interactions between the BCL-6 protein and the two bound peptide corepressors, SMRT and BCOR. FragMaps overlaid on the BCL-6:SMRT and BCL-6:BCOR structures are shown in
BCL-6 binding interactions conserved between the non-homologous SMRT and BCOR peptides were exclusively hydrogen bonding interactions with the peptide backbones, and the hydrogen bond donor and acceptor FragMaps showed these conserved interactions. As illustrated in
More interesting than the conserved backbone hydrogen bonds were the non-conserved interactions involving sidechains from the C-terminal ends of the two peptides. These C-terminal amino acids have large contact areas and buried surfaces, correlating with these residues contributing most strongly to the peptide binding affinities, as measured by competitive fluorescence polarization titrations involving SMRT or BCOR peptides that have single amino acid substitutions to either alanine for non-alanine residues or glycine for alanine residues. To be considered useful, the SILCS method should be capable of predicting these important interactions.
The SILCS FragMaps of an exemplary embodiment of the invention captured every one of the thermodynamically important C-terminal sidechain interactions of the SMRT peptide with BCL-6. In the SMRT peptide, Arg1423, Ser1424, Ile1425, Asp1427, Ile1428, and Pro1429 in the C-terminal half make large contributions to the binding affinity. Analysis of the crystal structures showed that the sidechains of Arg1423, Ser1424, and Asp1427 all formed hydrogen bonds to BCL-6, while both the Ile1425 and Ile1428 aliphatic sidechains were buried in hydrophobic pockets. As illustrated in
Pro1429 is interesting in that it is the only amino acid in the C-terminal region of the SMRT peptide that makes a large thermodynamic contribution to binding, yet whose sidechain is not involved in an interaction with the BCL-6 protein. Rather, its backbone carbonyl acts as a hydrogen bond acceptor, and this interaction is indeed seen in the corresponding FragMaps of
As illustrated in
Because the SILCS simulations of an exemplary embodiment of the invention used all-atom explicit-solvent MD simulations, flexibility of a large molecule, for example, the BCL-6 oncoprotein, was included. As observed crystallographically, there are important differences in the conformations of BCL-6 sidechains in the peptide-binding groove between the BCL6 apo, BCL-6:SMRT and BCL-6:BCOR crystal structures. For example, as shown in
The SILCS MD behavior of the BCL-6 His116 sidechain is especially relevant because of the large experimentally-determined conformational change required in this sidechain for BCL-6 to accommodate both the SMRT and the BCOR peptides. The SILCS MD of an exemplary embodiment of the invention sampled both the His116 sidechain conformation observed in the BCL-6:SMRT crystal structure used to initiate all the SILCS simulations, and the very different conformation in the BCL-6:BCOR crystal structure, as illustrated in
An additional example of the ability of SILCS simulations of the invention to take into account protein flexibility exploits the experimental structures where the BCL-6 Arg24 sidechain dihedral angles have significantly different values in crystal structures of the unliganded protein, the BCL-6:SMRT complex, and the BCL-6:BCOR complex. Two BCL-6 Arg24 residues in the SILCS MD sample sidechain χ dihedral values were observed in the unliganded BCL-6 and the BCL-6:BCOR complex crystals, even though all SILCS simulations were seeded with the BCL-6:SMRT complex coordinates. This is demonstrated by χ dihedral distributions from the cumulative 50-ns of MD simulation, in which these sidechains sample conformations significantly differ from their starting seed conformations. As illustrated in
These results emphasized the ability of the SILCS method of an exemplary embodiment of the invention to include protein flexibility and the ability of the method to identify locations of favorable interaction sites on the protein surface that arise from protein flexibility. It should be emphasized that the conformational changes that SILCS may take into account are related to the timescales of the MD simulations and of the conformational changes themselves; the present results imply that readily-accessible timescales can account for biologically important sidechain conformational heterogeneity.
Application of SILCS to Optimization of a Low Molecular Weight Inhibitor:SILCS simulations were undertaken to apply the SILCS method of an exemplary embodiment of the invention to the 57-6/BCL-6 complex, where 57-6 is an inhibitor known to bind to the BCL-6 protein (Cerchiettil L C, et al, “A small molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo.” Submitted for publication.). A SILCS MD simulation was performed starting from the 57-6/BCL-6 crystal structure with the acidic groups model built on the inhibitor. The simulation included thirteen fragment ligands that are analogs of amino acid sidechains at concentrations of approximately 100 mM and was extended for 100 ns. In parallel, a simulation of the thirteen fragment ligands in aqueous solution was undertaken to obtain the average voxel number counts in the absence of the protein.
Analysis of the SILCS simulation in the presence of the 57-6 inhibitor was next undertaken to determine the utility of the SILCS approach for ligand optimization. From the 100 ns simulation, SILCS maps for atoms in the different fragments were calculated. Of the SILCS maps, selected isosurfaces are illustrated in
It was then undertaken to identify synthetically accessible chemical analogs of the 57-6 inhibitor that could exploit this information. From these efforts, the three chemical analogs illustrated in
In an exemplary embodiment of the invention, computer aided drug design (CADD) may be used to facilitate the drug discovery optimization process by a two-tier approach using SILCS: (1) suggesting possible modifications to synthetic chemists by using SILCS in the first tier and (2) evaluating the collection of modifications suggested by synthetic chemists for those modifications with the highest probability of improving binding affinity in the second tier.
SILCS maps may be generated by performing MD simulations of a complex of a large molecule, for example, the BCL-6 protein, and known bound ligand, such as, for example, the 57-6 inhibitor, initiated from x-ray structures or CADD models of the complex. SILCS simulations of an exemplary embodiment of the invention may be performed in two tiers. Tier one may involve a minimal set of chemical ligands to identify general classes of binding sites on the exemplary protein in the vicinity of the exemplary inhibitor that may indicate regions of the exemplary inhibitor appropriate for certain types of chemical modifications. Stage one ligands may, for example, include propane and benzene to identify sites amenable to aliphatic or aromatic groups, respectively, and may use water to identify sites appropriate fro hydrogen bond donors and acceptors.
Analysis of the initial tier one SILCS FragMaps may identify classes of functionalities to investigate in the tier two SILCS simulations. For example, if the tier one SILCS analysis indicates a hydrogen bond donor site adjacent to the exemplary inhibitor, then the tier two ligands may include any of a variety of molecules that include the functionality of a hydrogen bond donor, such as, for example, methanol, acetamide, imidazole, and pyrrole. Similarly, if an aliphatic functionality is indicated by the tier one analysis, the tier two ligands may include any of, for example, propane, butane, isobutane, and isopentane. In many case, it is anticipated that tier one SILCS analysis may identify sites appropriate for different types of functionalities, which are adjacent to one another, as illustrated in
The foregoing description of exemplary embodiments will so fully reveal the general nature of the invention that others can, by applying current knowledge, readily modify and/or adapt for various applications such embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended with the meaning and range of equivalents of the disclosed exemplary embodiments. It is to be understood that the phraseology or terminology employed herein is for the purposes of description and not of limitation. Therefore, while the exemplary embodiments of the invention are described in terms of preferred embodiments, those skilled in the art will recognize that the embodiments of the invention can be practiced with modification within the spirit and scope of the appended claims.
Claims
1. A method of computational chemistry for identifying binding sites, by molecular dynamics (MD) simulations using ligand competitive saturation, said method comprising:
- inputting a 3-dimensional (3D) structure of a protein;
- preparing multiple solutions for ligand competitive saturation, each of said multiple solutions corresponding to a volumetric grid in which either a benzene, a propane, or a water molecule is randomly placed on a grid point, such that, a spacing of said grid points and said random placing of said benzene, propane, or water molecules corresponds to a concentration sufficient for competitive saturation of said benzene and propane molecules;
- overlaying said 3D structure of said protein with each of said multiple solutions and removing all benzene, propane and water molecules that overlay said protein in said volumetric grid;
- introducing a repulsive interaction energy between said benzene and said propane molecules to prevent non-polar aggregation;
- minimizing energies and equilibrating each of said multiple solutions with said protein by MD simulations to produce multiple equilibrated systems;
- propagating MD simulations for each of said multiple equilibrated systems;
- binning atoms from each of said propagated MD simulations into voxels, wherein benzene and propane carbon atoms are binned as aromatic and aliphatic carbons, respectively, and wherein water oxygen and hydrogen atoms are binned as hydrogen bond acceptors and hydrogen bond donors, respectively;
- using bin counts for each of said aromatic and aliphatic carbons, and said hydrogen bond acceptors and hydrogen bond donors, based on their free energies of binding, from said propagated MD simulations to identify surface regions of said protein having a high probability to bind one of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom; and
- using said identified surface regions of said protein as docking grids for high-throughput in silico docking of drug-like compounds.
2. The method of claim 1, further comprising, assigning an orientation of each of His, Gln, and Asn sidechains to said 3D structure of said protein.
3. The method of claim 1, further comprising aligning said protein from a trajectory of said propagated MD simulations.
4. The method of claim 1, further comprising:
- introducing harmonic positional restraints to all atoms of said protein before equilibrating said multiple systems; and
- subsequently replacing said harmonic positional restraints with weak restraints on protein backbone carbon atoms to prevent denaturation before propagating said MD simulations.
5. The method of claim 1, further comprising creating fragment binding maps (FragMaps) of said surface regions of said protein, each of said FragMaps corresponding to said high probability of binding one of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom, wherein said FragMap represents a single isocontour value, empirically chosen, to optimize visualization of each of said FragMaps.
6. The method of claim 1, wherein said protein is a glycoprotein.
7. The method of claim 1, wherein said concentration sufficient for competitive saturation of said benzene and propane molecules is 1 M benzene and 1 M propane.
8. The method of claim 1, wherein said concentration sufficient for competitive saturation of said benzene and propane molecules is greater than 0.01 mM and less than 10 M benzene and greater than 0.01 mM and less than 10 M propane.
9. A method of computational chemistry for identifying binding sites, by molecular dynamics (MD) simulations using ligand competitive saturation, said method comprising:
- inputting a 3-dimensional (3D) structure of a large molecule, wherein said large molecule comprises one of DNA, RNA, a carbohydrate and a glycolipid;
- preparing multiple solutions for ligand competitive saturation, each of said multiple solutions corresponding to a volumetric grid in which either a small aromatic molecule, a small aliphatic molecule, or a water molecule is randomly placed on a grid point, such that, a spacing of said grid points and said random placing of small aromatic molecules, small aliphatic molecules, or water molecules corresponds to a concentration sufficient for competitive saturation of said small aromatic molecules and said small aliphatic molecules;
- overlaying said 3D structure of said large molecule with each of said multiple solutions and removing all said small aromatic molecules, said small aliphatic molecules, and said water molecules that overlay said large molecule in said volumetric grid;
- introducing a repulsive interaction energy between said small aromatic molecules and said small aliphatic molecules to prevent non-polar aggregation;
- minimizing energies and equilibrating each of said multiple solutions with said large molecule by MD simulations to produce multiple equilibrated systems;
- propagating MD simulations for each of said multiple equilibrated systems;
- binning atoms from each of said propagated MD simulations into voxels, wherein carbon atoms of said small aromatic molecules and said small aliphatic molecules are binned as aromatic and aliphatic carbons, respectively, and wherein water oxygen and hydrogen atoms are binned as hydrogen bond acceptors and hydrogen bond donors, respectively;
- using bin counts for each of said aromatic and aliphatic carbons, and said hydrogen bond acceptors and hydrogen bond donors and their free energies of binding from said propagated MD simulations to identify surface regions of said large molecule having a high probability to bind one of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom; and
- using said identified surface regions of said large molecule as docking grids for high-throughput in silico docking of drug-like compounds.
10. A method of computational chemistry for identifying binding sites, by molecular dynamics (MD) simulations using ligand competitive saturation, for drug design optimization, said method comprising:
- inputting a 3-dimensional (3D) structure of a complex of a protein and a bound ligand;
- preparing multiple solutions for ligand competitive saturation, each of said multiple solutions corresponding to a volumetric grid in which either a benzene, a propane, or a water molecule is randomly placed on a grid point, such that, a spacing of said grid points and said random placing of said benzene, propane, or water molecules corresponds to a concentration sufficient for competitive saturation of said benzene and propane molecules;
- overlaying said 3D structure of said protein and said bound ligand with each of said multiple solutions and removing all benzene, propane and water molecules that overlay said protein and said bound ligand in said volumetric grid;
- introducing a repulsive interaction energy between said benzene and said propane molecules to prevent non-polar aggregation;
- minimizing energies and equilibrating each of said multiple solutions with said protein and said bound ligand by MD simulations to produce multiple equilibrated systems;
- propagating a first tier of MD simulations for each of said multiple equilibrated systems;
- binning atoms from each of said propagated MD simulations into voxels, wherein benzene and propane carbon atoms are binned as aromatic and aliphatic carbons, respectively, and wherein water oxygen and hydrogen atoms are binned as hydrogen bond acceptors and hydrogen bond donors, respectively;
- using bin counts for each of said aromatic and aliphatic carbons, and said hydrogen bond acceptors and hydrogen bond donors, based on their free energies of binding, from said first tier of propagated MD simulations to identify surface regions of said protein having a high probability to bind one of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom;
- identifying a surface region of said protein that is proximate to said bound ligand and has a high probability of binding to at least two of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom;
- selecting multiple fragment molecules, containing said at least two of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom, for a second tier of MD simulations;
- preparing multiple solutions for ligand competitive saturation of said selected multiple fragment molecules;
- introducing an intermolecular repulsive interaction energy between nonpolar regions of said selected multiple fragment molecules to prevent non-polar aggregation;
- minimizing energies and equilibrating each of said multiple solutions with said protein and said bound ligand by MD simulations to produce multiple equilibrated systems;
- propagating said second tier of MD simulations for each of said multiple equilibrated systems; and
- analyzing said second tier of MD simulations to determine which one of said selected multiple fragment molecules has a highest probability of improving binding to said surface region of said protein that is proximate to said bound ligand.
11. The method of claim 10, further comprising, chemically linking said one of said selected multiple fragment molecules, having a highest probability of improving binding to said surface region of said protein that is proximate to said bound ligand, to said bound ligand to design an optimized drug.
12. The method of claim 10, further comprising, assigning an orientation of each of His, Gln, and Asn sidechains to said 3D structure of said protein.
13. The method of claim 10, further comprising, aligning said protein from a trajectory of said first and second tier propagated MD simulations.
14. The method of claim 10, further comprising:
- introducing harmonic positional restraints to all atoms of said protein before equilibrating said multiple systems in said first and second tier MD simulations; and
- subsequently replacing said harmonic positional restraints with weak restraints on protein backbone carbon atoms to prevent denaturation before propagating said first and second tier MD simulations.
15. The method of claim 10, wherein said multiple fragment molecules comprise any of methanol, phenol, imidazole, aniline, pyridine, pyrrole, and acetone.
16. The method of claim 10, wherein said protein is a glycoprotein.
17. The method of claim 10, wherein said concentration sufficient for competitive saturation of said multiple fragment molecules is 1 M.
18. The method of claim 11, wherein said concentration sufficient for competitive saturation of said fragment molecules is greater than 0.01 mM and less than 10 M.
19. The method of claim 10, wherein analysis of said second tier of MD simulations is based on binning atoms of said selected multiple fragment molecules from each of said propagated MD simulations into voxels for each of said multiple equilibrated systems.
20. A method of computational chemistry for identifying binding sites, by molecular dynamics (MD) simulations using ligand competitive saturation, for drug design optimization, said method comprising:
- inputting a 3-dimensional (3D) structure of a complex of a large molecule and a bound ligand, wherein said large molecule comprises one of DNA, RNA, a carbohydrate and a glycolipid;
- preparing multiple solutions for ligand competitive saturation, each of said multiple solutions corresponding to a volumetric grid in which either a benzene, a propane, or a water molecule is randomly placed on a grid point, such that, a spacing of said grid points and said random placing of said benzene, propane, or water molecules corresponds to a concentration sufficient for competitive saturation of said benzene and propane molecules;
- overlaying said 3D structure of said large molecule and said bound ligand with each of said multiple solutions and removing all benzene, propane and water molecules that overlay said large molecule and said bound ligand in said volumetric grid;
- introducing a repulsive interaction energy between said benzene and said propane molecules to prevent non-polar aggregation;
- minimizing energies and equilibrating each of said multiple solutions with said large molecule and said bound ligand by MD simulations to produce multiple equilibrated systems;
- propagating a first tier of MD simulations for each of said multiple equilibrated systems;
- binning atoms from each of said propagated MD simulations into voxels, wherein benzene and propane carbon atoms are binned as aromatic and aliphatic carbons, respectively, and wherein water oxygen and hydrogen atoms are binned as hydrogen bond acceptors and hydrogen bond donors, respectively;
- using bin counts for each of said aromatic and aliphatic carbons, and said hydrogen bond acceptors and hydrogen bond donors and their free energies of binding from said first tier of propagated MD simulations to identify surface regions of said large molecule having a high probability to bind one of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom;
- identifying a surface region of said large molecule that is proximate to said bound ligand and has a high probability of binding to at least two of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom;
- selecting multiple fragment molecules, containing said at least two of an aromatic carbon atom, an aliphatic carbon atom, a hydrogen bond acceptor oxygen atom, and a hydrogen bond donor hydrogen atom, for a second tier of MD simulations;
- preparing multiple solutions for ligand competitive saturation of said selected multiple fragment molecules;
- introducing an intermolecular repulsive interaction energy between nonpolar regions of said selected multiple fragment molecules to prevent non-polar aggregation;
- minimizing energies and equilibrating each of said multiple solutions with said large molecule and said bound ligand by MD simulations to produce multiple equilibrated systems;
- propagating said second tier of MD simulations for each of said multiple equilibrated systems; and
- analyzing said second tier of MD simulations to determine which one of said selected multiple fragment molecules has a highest probability of improving binding to said surface region of said large molecule that is proximate to said bound ligand.
Type: Application
Filed: Apr 29, 2010
Publication Date: Mar 1, 2012
Applicant: UNIVERSITY OF mARYLAND, BALTIMORE (Baltimore, MD)
Inventors: Alexander D. MacKerell, JR. (Baltimore, MD), Olgun Guvench (Portland, ME)
Application Number: 13/265,568
International Classification: C40B 30/02 (20060101); G06G 7/58 (20060101);