Solar Energy Collection Devices
Devices and methods for collecting solar energy using photovoltaic material are disclosed.
This application is a divisional application to Non-Provisional application Ser. No. 12/235,376, filed on Sep. 22, 2008 which claims the benefit of U.S. Provisional Application No. 61/052,117 filed May 9, 2008 and U.S. Provisional Application No. 61/088,967 filed Aug. 14, 2008.
BACKGROUND OF THE INVENTION1. Field of the Invention
This invention relates to devices and methods for the collection of solar energy using a photovoltaic solar cell.
2. Background and Description of the State of the Art
A photovoltaic power system may have a single solar cell module or panel, or multiple modules/panels connected by combinations of series and parallel circuits as a photovoltaic array, or solar array. In the case of a single module system producing AC power output, the solar cell module may be connected to an inverter or load through a junction box that incorporates a fuse to protect the photovoltaic module if back feeding from a power utility or a battery might occur. Solar cell modules may be configured either with a frame or without a frame. A frameless solar cell module is generally referred to as a laminate. Examples of power systems having interconnected solar modules or panels may be found in U.S. Pub. No. 2003/0111103.
In recent years efforts are being made to develop thin-film PV material. Some such types of material are a-Si, CdTe, and CIGS. At present, these solutions have an efficiency rating of about 10% in commercially available panels (in laboratory conditions CIGS has been shown to be up to about 20% efficient). some of these thin-film technologies suffer from degradation and loss of efficiency over time. Presently, single crystalline PV, and to some extent poly-Si (although not as efficient), offer highest efficiency as a long-term proven technology.
Concentrated photovoltaics (CPV) utilize lenses or minors to focus, or concentrate solar energy onto PV material. Low concentrators, e.g., 2.times. concentrators, can require no tracking or movement (e.g., linear Winston collectors). These concentrators often times need to be orientated in an East-to-West orientation and tilted towards the celestial equator which may not be easily accomplished given the available mounting locations. Additionally, these concentrators can be expensive to manufacture because they use non-standard shapes for the lenses, e.g., Winston collectors. High concentrators need active moving parts in two dimensions and active cooling of the PV cells.
A “concentrator” is intended to mean a device that concentrates reflected and/or refracted light for the purposes of increasing the solar flux onto PV material. Unless otherwise noted, when a “lens” or “lenses” is/are referred to, it carries the same meaning as a concentrator, i.e., intended to focus or concentrate solar energy. A “linear”, “one-dimensional” or “1-D” concentrator is intended to mean a concentrator configured for focusing light in only one-dimensions. One example of a 1-D concentrator is a rod lens. A “two-dimensional” or “2-D” concentrator is intended to focus light in two dimensions. A spherical lens is one example of a 2-D concentrator. A 1-D concentrator has a “line of focus”, which is intended to mean the line or strip of focused light over the length of the concentrator. A line of focus for a 1-D concentrator, oriented east to west, changes during the course of the year. Thus, for a 1D concentrator at the Earth's equator and pointed at the celestial equator at equinox, the line of focus is parallel to the lens. At the periods of solstice the line of focus is distanced farthest from this condition. Throughout the discussion, reference may sometimes be made to a solar panel, module or solar collection system. One of ordinary skill would appreciate that the terms ‘solar panel’ or ‘solar module’ do not necessarily limit the scope of the disclosure. Unless otherwise apparent, the disclosure applies to any solar collection device that utilizes concentrators to focus light onto PV material in accordance with the foregoing objectives.
A “tracking panel” is intended to mean a panel that is maintained to face the sun such that light rays are always orientated normal to the panel surface. A tracking panel may be rotated so that solar rays are always directed normal to the surfaces having PV material. Accordingly, the effective area, A.sub.EFF for a tracking panel is intended to always be equal to the corresponding surface area A.sub.PV of the panel. For a panel that does not track the sun's motion A.sub.EFF<A.sub.PV whenever the sun's apparent position changes from the position that the panel faces. For a fully tracked panel (as opposed to a partially tracked panel, e.g., partial tracking when rotation about only one axis as the sun changes its position in the sky) the acceptance angle is of lesser or no importance to a design because the panel is being tracked. For a partially tracked panel, e.g., when linear concentrators rotate about their longitudinal axes, the acceptance angle requirements reduce to only one dimension: the longitudinal dimension. Therefore, a linear concentrator is designed such that it provides a very large acceptance angle along its longitudinal direction so that there would be no need to move them, or the panel, in that direction.
For solar panels that use concentrators, “acceptance angle” means the angle beyond which not all focused or collected light is received on PV material. A CPV panel that does not track the sun but still collects sun light from morning to evening throughout the year (hereafter refer to as panels that increase the acceptance angle) does this in a few ways. It can be made of smaller units, such as linear Winston collectors, where the acceptance angle is designed into each collector. With such a design the CPV panel is oriented usually in an East-to-West direction and tilted towards the celestial equator. A CPV panel can also collect sunlight without tracking by incorporating moving parts within the panel, while the panel remains stationary, such as moving minors that focus light onto their corresponding focal points where a PV cell is positioned.
A solar panel's “collection plane” is intended to refer to the plane where the PV material is generally located to receive solar flux. For example, a two-axis tracking solar panel is configured to be rotated about two orthogonal axes that lie within the collection plane (x and y axes depicted in
The invention is directed to devices, methods, systems and apparatus for improving solar energy collection, reducing costs associated with manufacture of solar energy collection and improving the versatility and simplicity of solar collection devices. The methods and apparatus disclosed herein may provide a number of solutions to the high demand, but limited supply for photovoltaic (“PV”) material, especially high-efficiency PV material for converting solar energy to electrical energy.
According to one aspect of the invention, a collection device includes a series of glass (or other transparent material) rods, e.g., rods with a circular cross section, that are arranged parallel and side by side to each other. Each rod acts as a linear lens having, e.g., approximately a 5 to 1 concentration ratio when standard glass is used and the PV material is attached directly to the rod lenses. The rods can have a larger or smaller concentration ratio depending on the index of refraction of the material. Tracking may or may not be used. In some embodiments, tracking may not be necessary. Instead, the collection device may be rotated about a single axis normal to the panel, thereby rotating all rods simultaneously to allow collection of solar energy. In some embodiments, a minimal movement may be achieved by rotation of each rod lens about its longitudinal axis within the panel, thereby allowing the collection of solar energy as the sun's apparent position changes. Other aspects of the disclosure which can be practiced in view of the disclosure: no requirement for active cooling of the PV cells and no requirement for installation at an angle or orientation, thereby allowing a solar collection device to be more easily deployed; the same footprint as conventional panels; a higher efficiency than a flat panel (assuming the same type of PV material is used). In some embodiments, a solar collection device may be self installed, which offers the advantage of dramatically decreasing the installation cost (up to about 50%), as will be apparent from the disclosure. In other embodiments, a panel containing the rod lenses can be tracked on a 1D tracking platform without the need for each individual rod lens to rotate. In other embodiments, the cross section of the rod lenses can be elliptical or any other shape.
According to one aspect of the disclosure, rod lenses are used to collect solar energy onto a strip of PV material. According to these embodiments, the PV material may be affixed to the rod lenses and the rod lenses rotated about their longitudinal axis (or the panel axis) to follow the sun. When the PV material is affixed to the rods, the PV material may be made separately, then affixed to the rods using, e.g., an index-matching adhesive, or formed on the rods, e.g., by chemical vapor deposition, evaporation, electroplating, or other suitable manufacturing techniques. In terms of assessing the efficiency of a collector using rod lenses according to the disclosure, it is estimated that about 7% efficiency is lost due to reflection. However, as compared to a flat panel, rod lenses made of standard glass may have an approximate 5 to 1 concentration ratio, which provides about a 10% gain in efficiency over a flat panel using the same PV material. The combined effect, i.e., loss due to reflection (due to the curved lens surface)+5 to 1 concentration ratio, means a solar collector according to the disclosure is able to achieve the same, or in some cases a higher level of efficiency but with a lower manufacturing cost and in some cases installation cost. A rod lens may have a simple shape, e.g., cylindrical, which provides costs advantages because this structure is readily available at high volumes from most glass manufacturers. A circular cross-section rod lens may be desirable when collecting solar energy by rotating each rod because the lens is rotationally symmetric. Thus, when collecting solar energy by rotating lenses about their longitudinal axes, the individual lenses can be packed together closely without interface from neighboring rods.
According to another aspect of the disclosure, PV cell strips may be separated from the rod lenses so that there is a finite distance between the lens and PV cell strips. In these embodiments, the strips can be affixed to a separate plate and the rod lenses to another plate. The two plates may then be moved with respect to each other to keep the PV cell strips in focus.
Solar collection devices of the foregoing type may be utilized for roof top power generation and commercial-scale power generation, in which case the entire panel may or may not be tracked. Solar collection devices according to the disclosure may also be constructed as “curtain” applications in high rise buildings or integrated inside windows.
The following conventions/definitions are adopted. Movement of the sun during the day and over the course of the year means the apparent east-west and north-south motion, respectively, of the sun across the sky. For convenience of description, an apparent longitudinal and latitudinal motion of the sun is adopted, and intended to mean the daily and yearly apparent motion of the sun, respectively. Thus, the longitudinal motion of the sun over a single day is intended to mean the east-to-west apparent motion of the sun over a path that corresponds to the intersection of the celestial sphere and the ecliptic plane for that day. And the latitudinal motion of the sun over the year is intended to mean the movement of this path on the celestial sphere over the course of a year. Thus, for an observer located at the earth's equator, the longitudinal apparent path of the sun over the celestial sphere at the autumn or spring equinox passes directly overhead. Over the course of the year, this apparent path changes and reaches its maxima change in position from the spring/autumn equinox at the winter/summer solstices (.+−.23.5 degree latitudinal change). Thus, over the course of a year the sun has an apparent “latitudinal” motion or change in position and over the course of a day the sun has an apparent “longitudinal” motion or change in position.
In accordance with the foregoing objectives, embodiments include solar panels that increase the acceptance angle without the need to move the panel. In these embodiments, concentrators are used in various arrangements so that a solar collection system need not rely on a mechanical system for moving the panel or portions thereof as the sun's position changes. In other embodiments, a single-axis translational or rotational mechanical system may be used to increase the acceptance angle. This is accomplished by either orientating the PV material relative to a lens, or using different lens types. Other embodiments adopt a shifting method or place PV cells at different locations corresponding to the focus point of a lens throughout the year. Also disclosed are methods and devices for increasing the performance at the PV cell level, again, without an increased need for relatively scarce PV material, as the case may be; so that more electrical energy can be drawn from an existing, finite or limited number of PV cells. Also disclosed are cost-effective approaches for deploying solar collection systems. According to this aspect of the invention, a more versatile system for arranging panels is provided that takes into account different environments for mounting panels which may be less than ideal given the sun's position in the sky. The disclosure also includes descriptions of solar collection devices that may be used in connection with, e.g., tracking, partial tracking or non-tracking panels, depending on need.
According to another embodiment of the invention, a solar collecting tile includes a plurality of PV strips, a plurality of linear concentrators, each concentrator positioned to concentrate solar radiation on a respective one of the plurality of PV strips, and wherein the solar collecting tile has a perimeter that has four sides, more than four sides, or it is circular.
According to another embodiment of the invention, a solar panel kit includes a first and second solar collecting tile, wherein each tile's solar-collection area is defined by a perimeter having four sides, or having more than four sides, or having a round perimeter. Each tile includes a plurality of PV strips, a plurality of linear concentrators, each concentrator positioned to concentrate solar radiation on a respective one of the plurality of PV strips, and a connector for connecting any side of the first tile to any side of the second tile.
According to another embodiment of the invention, a method for mounting a solar panel includes the steps of placing a frame on a structure, the frame having a plurality of panel mounts, locating an optimal panel orientation based on the sun's path, and arranging one or more panels having linear concentrators in the mounts among at least three different angular positions depending on the located path of the sun.
According to another embodiment of the invention, a deployable solar panel includes a plurality of linear solar-collecting elements, each of which including a linear concentrator disposed over a PV strip such that the linear concentrator concentrates incident solar energy over a length of the PV strip, and a hinge interconnecting each of the linear solar-collecting elements to an adjacent solar-collecting element. In some embodiments, the linear concentrators are rod lenses.
According to another embodiment of the invention, a solar panel kit includes a plurality of solar energy collecting strips, each of which including a linear concentrator, a left and right hinge adapted for being engaged with other strips, and a PV strip located at the line of focus of the linear concentrator.
According to another embodiment of the invention, a method for deploying a deployable solar panel includes the steps of providing a panel in a rolled-up form, wherein the panels includes a plurality of concentrators connected by hinges and each concentrator has at least one PV cell integral to it such that the concentrator focuses reflected light onto the PV material, unrolling the panel, and then connecting the PV cells to each other to form a circuit.
According to another embodiment of the invention, a solar cell includes an upper, sun-facing side formed by a PV material and a current conducting material, and a reflector arranged over the current conducting material such that solar radiation directed towards the current conducting material is reflected towards the PV material.
According to another embodiment of the invention, a solar collection device includes a solar cell comprising a PV material and contacts for collecting current from the PV material, the contacts being disposed on a sun-facing side of the solar cell, and a substrate, disposed over the solar cell, having a plurality of notches formed thereon, wherein the substrate is arranged over the solar cell so that surfaces forming the notches will reflected light away from the contacts and towards the PV material.
According to another embodiment of the invention, a method of manufacture for a solar cell includes the steps of disposing a PV material and plurality of metallic contacts on a substrate, forming a plurality of reflectors matching the locations of at least some of the contacts, and disposing the reflectors over the at least some of the contacts.
According to another embodiment, a solar cell includes a means for concentrating light away from a current-carrying bus and towards PV material. The means may include lenses that focus reflected light onto PV material, refracted light onto PV material, or a combination of the two.
According to another embodiment, a solar cell includes conductors and PV material, and a first and second lens operatively disposed in relation to the conductors and PV material, respectively, so that light is reflected and/or refracted away from the conductors and reflected and/or refracted towards the PV material.
According to another embodiment of the invention, a static solar panel has a first spatial frequency for a plurality of PV strips or PV cells, and a second spatial frequency for concentrators configured to focus light on the cells or strips, wherein the spatial frequencies are different from each other. The focused light can be refracted light, as in a lens, and/or reflected light, as in a minor. The cells or strips may be separated by a length L, and the concentrators, e.g., rods, may be separated by a length M, and L is not equal to M. L can be such that L<<M, or L may be slightly less than M or greater than M or L>>M. L may be the same everywhere and/or M may be the same everywhere (equal spacing), such that the spacing may be described by a spatial frequency number.
The PV cells or strips may have a spatial frequency such that an intersection of this frequency with a spatial frequency for a concentrator corresponds to a particular time of year or a particular time of day in which at least one PV cell receives focused light and at least one other PV cell does not receive focused light. Or the PV cells may have a first spatial frequency and a second spatial frequency such that an intersection of these two frequencies with a spatial frequency for a concentrator corresponds to both a particular time of year and particular time of day in which at least one PV cell receives focused light and at least one other PV cell does not receive focused light.
According to yet another embodiment of the invention, a solar collection unit includes a first and second concentrator, each having an axis of symmetry, a first PV cell arranged relative to the first concentrator such that the first PV cell captures focused light when a substantial amount of focused light is not substantially coincident with the first axis of symmetry, and a second PV cell arranged relative to a second axis of symmetry such that the second PV cell captures focused light when a substantial amount of focused light is substantially coincident with the second axis of symmetry. The focused light can be either reflected or refracted light, or both reflected and refracted light. The reflected light can be TIR light. The lens may be a parabolic lens, partially parabolic lens, a lens approximating a parabolic lens, or other suitable lens type. The PV cell or strip may be arranged at different positions on a TIR plane (or above a TIR plane) corresponding to a different time of the day or time of the year, e.g., solstice, equinox, etc.
According to another embodiment of the invention, a static solar collection system includes a first set of concentrators configured for focusing solar energy onto PV material during a day of the year and/or time of day, and a second set of concentrators configured for not focusing solar energy onto PV material during the day of the year and/or time of day. In this case, the concentrators may be 1-axis or 2-axis concentrators (e.g., rod lens or spherical lens, respectively), the panel may be static in both axes or only one of the axes, and the concentrators may focus reflected, refracted or both refracted and reflected light onto PV material. The second set of concentrators are configured to focus light onto PV material during a different time of the day and/or year.
According to another embodiment of the invention, a static solar panel includes a plurality of linear concentrators, e.g., rods, each having a line of focus dependant upon the angle of incidence of solar energy during the course of the year, a plurality of PV strips, each of which being arranged below a respective one of the concentrators, and a support layer supporting the PV strips, wherein at least a portion of the support layer is configurable among a plurality of sun focusing positions by linear displacement of the support layer.
According to another embodiment of the invention, an apparatus for collecting solar energy throughout the year and of the type having all solar energy collecting units lying within a common plane includes a first collecting unit including concentrators having a line of focus, the concentrators being aligned with PV strips cells such that the line of focus is substantially not coincident with the PV strips during a first time or year, a second collecting unit including concentrators having a line of focus, the concentrators being aligned with PV strips cells such that the line of focus is substantially coincident with the PV strips during the first time of year. The first and second collection units may be separate, modular solar panels that are releasably connectable with each other to form a solar collection unit that is configured to focus light onto PV material at different times of the year.
According to a method of configuring a solar collection unit a first panel configured to focus light onto PV material only during a first portion of the calendar year is connected together with a second solar collecting unit configured to focus light onto PV material only during a second portion of the calendar year so as to create a solar collection unit configured for focusing light onto PV material during both the first and second portions of the year. The first portion of the year may include the equinox and the second portion of the year may include the solstice.
According to another embodiment of the invention, a solar panel that increases the acceptance angle includes a first layer forming a plurality of linear concentrators, each of which having an axis of symmetry for a lens type, and a plurality of PV strips arranged in a pattern such that a first PV strip is positioned to the left of the axis of symmetry, and a second PV strip is positioned to the right of the axis of symmetry, wherein the solar panel is configured as fixed relative to the earth.
According to another embodiment, a solar collecting unit capable of increasing an acceptance angle for PV material for a non-tracking panel includes a plurality of concentrators, wherein the axes of symmetry of lenses are arranged relative to a plurality of PV strips/cells such that no more than a portion of the PV strips/cells receive focused light during any time of the year.
According to other embodiments the acceptance angle of a solar collection device may be increased in various ways. In one such embodiment a solar collection device includes a concentrator having a collection area (meaning the area of the concentrated light on the PV material) and PV material having an exposure area, wherein the collection area is less than the exposure area.
According to another embodiment, a non-tracking solar collection system includes concentrators positioned relative to PV material such that at least a portion of the light collected by the concentrators is directed at PV material, wherein the acceptance angle for the solar collection device is such that the at least a portion of the collected light directed at PV material is approximately constant as the sun's apparent position changes.
According to another embodiment of the invention, a sun position sensing element for a solar panel includes a first end, a second end having at least one photodiode disposed thereon, and means for detecting a change in the sun's apparent position.
According to another embodiment of the invention, a sun position sensing element includes a photodiode having at least one active area, an aperture configured to receive sunlight, and a circuit for detecting the intensity of solar energy incident on the active area, wherein based on the intensity of detected light a determination can be made as to whether the sun is in a first or second position.
According to another embodiment, there is a method for increasing the acceptance angle for a solar panel, the solar panel including a plurality of concentrators and corresponding PV material configured to receive focused light from the concentrators. These methods include the step of rotating each of the concentrators about their lens axes as the sun's apparent position in the sky changes.
According to other embodiments a solar collection device is translucent. When mounted to structure, the panel may be less noticeable to an observer. In one example, a panel having linear concentrators with PV material attached to the concentrators is suspended from a frame. According to these embodiments, a solar panel can blend into the structure to which it is mounted, e.g., a rooftop. In other embodiments, the panel includes include patterns, messages, and/or colors. In one example, each rod lens includes a pattern or portion of a pattern over the unused part of the lens material, i.e., the portion of the lens not focusing solar energy.
According to other embodiments a solar collection device, having a collection plane, is configured to rotate about an axis normal to the collection plane when the sun's apparent position in the sky changes. In one example, the panel includes an array of linear concentrators, such as an array of rod lenses. Each rod lens may have PV material secured to it, or located relative to the lens, so that focused light is received on the PV material as the panel is rotated to follow the sun.
INCORPORATION BY REFERENCEAll publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Photovoltaic (PV) solar cell efficiency, i.e., the percentage or fraction of the sun's energy striking the surface of a PV cell that is converted into electrical energy, can range from about 5% to about 40% at present time. The supply of PV material, however, is not sufficient to meet demands at this time. This is particularly true for higher quality PV material such as crystal silicon or gallium arsenide. The disclosure provides several embodiments of solar collection devices intended to increase the amount of power that can be drawn from PV material, decrease costs of manufacture for solar panels, solar cells that can produce greater power output without increased demand on PV material, and simplify the deployment of solar cells/modules/panels or alignment of such systems to make the best use of the sun's energy.
It would be desirable to increase the percentage of the sun-facing side 2 occupied by the PV material 6 so that a greater percentage of the solar energy is absorbed by the PV material. However, if the width of the contacts 5a/5b, or number of contacts is reduced, then the resistance or loss in the circuit goes up. Resistance to the flow of current through contacts 5a/5b is inversely proportional to the cross-sectional area of the metal contacts and/or number of contacts over the cell. Thus, while it might seem desirable to simply remove current-conducting material, if the current pathways are too few, or reduced too much in size, then the lack of current conducting material can inhibit the flow of current.
In
In
In
In some embodiments the lens element disposed over the PV material, the contacts, or both may be a one-dimensional (1-D) concentrator, e.g., a cylindrical lens element, or a two-dimensional (2-D) concentrator, e.g., spherical lens element. The choice for the concentrator may also depend on the current conducting bus architecture.
The embodiment depicted in
The width at the base of the triangle depicted in
In some embodiments, one or more grooves 24 may be coated with a reflective material, such as by applying reflective paint to the grooves 24 or by a deposition process. Depositing or applying a reflective material may be desirable to account for situations when the cell 20 is not faced directly towards the sun. In some embodiments, the top surface 23a may be formed with linear convex surfaces, e.g., as depicted by convex surface 23c, which can focus light more towards the PV material between the contacts 5a,5b.
Thus, according to this embodiment there can be an increase in solar flux striking the PV material as a result of both R1′ and R2 (i.e., direct and reflected light) striking the PV material. An additional advantage of this arrangement is that the resistance in the circuit formed by contacts 5a may be decreased because there is less radiation heating of the contacts 5. Since the surfaces 25a, 25b reflect some, if not all light directed towards contacts 5 the temperature of the contacts 5 may be reduced which can reduce the resistance to current flow in the metallic material. In some embodiments, however, this difference may be negligible since most heating tends to occur from conduction, not radiation.
Referring to
In some embodiments strips (
In some embodiments a groove or triangular strip may be formed over one or both current collecting 5a and bus 5b contacts (see e.g.,
It will be appreciated that one or more of solar cells 20 and 30 may be incorporated into the following embodiments of a solar module or panel, which are additional aspects of this disclosure. For example, the principles set forth above may be incorporated into a preferred embodiment that uses rod lenses, as discussed in connection with FIGS. 17,19 and 22-24. The foregoing embodiments and the following additional embodiments therefore should be understood as not mutually exclusive of each other. Rather, one of ordinary skill will appreciate how the embodiments may be combined based on the teaching of Applicants' disclosure, and selected based on particular power needs, environments, available space, resources, budgets, etc. in view of this disclosure.
The embodiment depicted in
In an alternative embodiment the PV strips 11 may be positioned to receive reflected, as opposed to refracted light. For example, as depicted in
The foregoing embodiments of panels 50 and 60 refer to linear or 1-D concentrators.
Panels 50/60 may be tracked about a single axis or two axes using any known mechanism for rotating a solar panel so that the PV strips remain pointed directly at the sun throughout the day. For example, panels 50/60 may be tracked using the mechanisms disclosed in U.S. 2004/0246596. Referring to
In some embodiments, a panel 50/60 has only a mechanism, gearing or actuator for translation of a substrate holding, supporting or including PV material relative to concentrator lenses as the sun changes position above the horizon, as described in greater detail below. For this embodiment, it may only be necessary to translate the PV strips 11 relative to the lenses, i.e., lenses 52, 53, as the latitudinal position of the sun changes, since the linear concentrators can collect a significant amount of the sun's energy over the course of the day without adjustment in the longitudinal direction (e.g., rotation about the “Y” axis in
In some embodiments, a sun position sensing element 70 is used to determine which way to rotate (and/or translate) the panel 50/60 so that the most direct sunlight is received on the PV strips 11 at any time during the day and/or over the course of the year. The position sensing element 70 may be rigidly mounted to the panel 50/60 (i.e., so that the position sensing element 70 moves with the panel), or the position sensing element 70 may be moved separately from the panel 50/60, in which case angular adjustments in the position sensing element 70 are communicated to the actuator or mechanism for making similar adjustments in the panel 50/60. Preferably, a position sensing element 70 is based on the relative intensities of solar energy detected by active areas of one or more photodiodes. For example, a position sensing element 70 may be made using one or more of the SPOT Series Segmented Photodiodes offered by OSI Optoelectronics (downloaded from <http://www.osioptoelectronics.com/product detail.asp? id=20&series-=Quadrant+% 2F+Bi%2Dcell+Photodiodes> on Feb. 6, 2008). Such an approach for sun tracking is very low cost effective and offers a reliable and accurate method for tracking the sun's position in the sky. The position sensing element 70 uses one or more photodiodes' active areas to determine when the panel is no longer pointed directly at the sun based on the difference or change in/between/among the signal strength in active area(s) (note: the sun position sensing element 70 depicted in
A sun position sensing element 70 may have a photodiode with four (or more) active areas and as few as two active areas for sensing the sun's position.
The embodiment of 8B has a photodiode with four active areas, 76a, 76b, 76c, and 76d arranged about a central point and defining quadrants I, II, III, IV as shown. According to this embodiment, the position sensing element 70 can detect longitudinal and latitudinal changes in the sun's position relative to the panel 50/60. For example, assume that longitudinal motion of the sun corresponds to movement parallel to the Y-axis direction and latitudinal movement corresponds to movement parallel to the X-axis direction (see
In some embodiments, the costs and complexities of a tracking system for the panel 50/60 may be too much, not possible or simply not worth the effort for a given application; for example, if panel 50/60 is used as a roofing tile or otherwise formed as a layer of a building wall, or otherwise when a more simplified and cost-effective solution is needed for a year-round solar energy source. Tracking systems can be cumbersome, require maintenance, and may be difficult to maintain in climates with extreme weather changes. Additionally, the available space for mounting a panel may not be a design constraint. As such, it may be the case that a design need not concern itself with optimizing the efficiency of a panel when efficiency is being measured in terms of the total surface area occupied by the panel in relation to the power output. Rather, the design may prefer non-moving parts while providing a panel that focuses light onto PV material throughout the year, even at the expense of lowering the panel's efficiency.
The following discussion describes embodiments of solar panels capable of providing 1D and 2D increases in an acceptance angle. The embodiments include panels with and without moving parts. Examples of the later type, i.e., static panels, will be discussed first.
In some embodiments, a static solar collection device may correspond to disposing reflective material on the surfaces of a concentrator intended for concentrating reflected light onto PV material, such as in the embodiment depicted in
Referring now to
PV strips 11, 12, 13 and 14 in
The foregoing example referred to a collection device that included linear or 1-D concentrators. In other embodiments a collection device having 2-D collectors may have a 2-D capability for increasing an acceptance angle. As such, the foregoing discussion and the discussion that follows will be understood to apply equally to collection devices that include PV strips (1-D concentrator used) or PV cells (2-D concentrator used). In the 2-D case there may be a capability to increase the acceptance angle in one or two axes, e.g., along two axes that are perpendicular to each other.
As mentioned above, in some embodiments a static device may be described by a lens spatial period (“M”), and a PV strip/cell spatial period (“L”). Assuming the panel axis is along the East-West direction and the panel is directed and fixed at the celestial equator in the sky, because L is not equal to M some PV strips receive focused light at a certain time of year whereas others do not. This concept is depicted graphically in
As alluded to above, the solar collection device may increase the acceptance angle, statically in one axis, while the device is rotated about a second axis, i.e., the device may be both a static and dynamically device. In other embodiments the device is static in both directions by selecting a spatial frequency of PV cells in the “Y” direction (e.g., longitudinal apparent motion of the sun) and a spatial frequency of PV cells in the “X” direction (e.g., latitudinal apparent motion of the sun). These PV cell frequencies may be the same or different from each other. However, both are different from the respective X and Y spatial frequencies for the 2-D lenses (if spherical lens elements are used then the X and Y frequencies may be the same). Thus in similar fashion, different PV cells would receive focused light during the day, and those PV cells receiving focused light during a certain time of day during, e.g., the solstice period, would not receive focused light during the same time of day during the equinox. However, regardless of the time of day when the sun is in the sky, or the time of year, the solar collection device's PV cell/strip vs. lens spatial frequencies can be selected so that approximately the same amount of focused light is being received on PV material at any time when solar energy is available for collection.
In some embodiments, a method of designing or assembling a static tracking panel may be geared to arriving at a desired intersection of the spatial frequencies. For example, the patterns depicted in
In the foregoing examples of a static device the spacing or location of PV strips (or cells) relative to an axis of symmetry (see
Referring to
Lower frame portion 94 may have a heat dissipation side 94b that may include fins, heat pipes, or a vent for recirculation of air through the interior space of the panel. The upper portion 94a of the lower frame portion 94 may have a groove that receives a tongue or rail portion of the substrate or PV strip platform 92 so that the platform 92 can be slid over the frame 94. The platform 92 may be slid manually or by a motor when the PV strips are adjusted relative to the lens 52 in order to maximize solar flux as the seasons change. The panel may include a sun position sensing element that can be used to control the position of the platform, or the tracker may be used as a guide to locate the best position of the platform 92 when there is a manual adjustment made.
The metal connection 97 allows panel 90 to be electrically connected to an adjacent panel having a complimentary connection. Connection 97 on one side may be designated as the positive (+), and the opposing side negative (−) so that panels may be placed in series like batteries. Alternatively, the connection 97 may have both a .+−. connection, in which case each panel may be connected in parallel, or for purposes of connecting panel to a like panel, on any of the sides of the panel. Thus, if the same sides of two panels are intended to be connected; one connection would be set to positive, and the other to negative.
E. Solar Collection ModuleIn some embodiments, the panels may be a square, rectangle or another polygon.
Returning to
In regards to a static panel that provides an increase in the acceptance angle, panel 100 may have different spatial frequencies between the PV strips and lens axes, as described earlier. In other embodiments, panel 100 may have PV strip spatial frequencies that are the same as the lens axes' spatial frequencies (or have all PV strips located at the same position relative to the lens axes) yet when assembled as a part of a solar collection system still provide 1-D and/or 2-D increase in an acceptance angle. For example, a first panel type can have its PV strips located to the left of a lens axis of symmetry; a second panel type can have its PV strips located to the right of a lens axis of symmetry; and a third panel type can have its PV strips located coincident with a lens axis of symmetry. According to this embodiment (assuming each panel axis is along the East-West direction and the panels are all directed and fixed at the celestial equator direction in the sky), the PV material in the first panel may receive the most focused light during the summer solstice the second panel's PV material would receive the most focused light during the winter solstice, and the third panel's PV material would receive the most focused light during the equinox. The three panels may be manufactured as separate panel types, or three of one panel type having three settings may be used. In either case, three or more panels are connected to each other to provide a static solar collection system. Accordingly, in a method for assembling a static solar collection device, the steps may include selecting different spatial frequencies or selecting different locations relative to an axis of symmetry (as discussed earlier) and then assembling a panel according to these specifications. In an alternative method, a first, second and third (or more) types of panels are constructed and then assembled together (or one panel with multiple settings) to provide a static solar collection system.
F. Hexagonal Solar ModulePanel 100 has six sides 105. Referring to
The solar panels or modules of the embodiments set forth in the disclosure may be mounted in a variety of fashions. For example, the hex panel 100, or a square/rectangular or circular panel of other embodiments that incorporate principles of the disclosure may be mounted on roofs as roof tiles, or other structures that provide an unobstructed line-of-sight to the sun's path over the sky throughout the year. This may be a slanted or flat roof, a side of a building, etc. Sometimes it is difficult to position solar panels during installation so that they are orientated in an optimal position for collecting solar energy (i.e., in a position that does not become shaded during part of the day); individual panels may be difficult to replace when repairs are needed; or the available space limits the number of panels that can be safely mounted. Further, the available space for the panels may not be orientated so that a panel, especially a panel having linear concentrators for focusing light, can be positioned properly with respect to the sun's path because of limited space or the size of the panel(s). In other words, the panel axis does not lie within the ecliptic plane.
Referring now to
When a hex is used in combination with linear concentrators, there is another advantage. If the path of the sun relative to the panel mounting space allows a square or rectangular panel with linear concentrators to be aligned perfectly, i.e., so that the panel axis lies within the plane of the sun's daily path, or it is 90 degrees from the panel axis, then the panel can be easily aligned and all available space used because the panels can be placed side-by-side. However, if the space is orientated at an acute angle, e.g., 30, 45, 60 etc. degrees, relative to the plane of the sun's path (as if the panel was rotated about its normal axis P.sub.n in
For example, a square roof will be used to mount square solar panels having linear concentrators (i.e., single-axis, or static panels according to the above embodiments). If the sun's path is at 30 degrees relative to panel (i.e., 30 degrees rotation about axis P.sub.n in
When panels having linear concentrators are arranged as hexes 100 there are three different angular orientations available (60, 120, 180), as opposed to only two (90 or 180) when a square or rectangle is used. Thus, a hex panel is more versatile than a square because it can be positioned in an additional angular orientation without there being unused space, or without requiring a customized mounting arrangement to accommodate a roof/wall that is not ideally faced towards the sun (e.g., the broad side of the roof does not face north/south). Hexes 100 may be easier to mount than squares or rectangles. For instance, for a hex-shaped mounting frame, a single mounting position for rooftops may accommodate a greater variety of roof positions (relative to the sun) than a square type mounting frame. If the proper orientation of the panel axis is at an angle to the direction in which structural members of the roof or wall are orientated (e.g., frames, studs, or other hard points for mounting the panel mount), then it may be difficult to properly orient a four-sided panel because additional support would have to be added, or a specialized mount made so that the four side panel could be arranged at an angle such as 30, 60, or 120 degrees relative to the horizon. However, with a hex panel 100 configuration, the same mounting scheme can be used for a greater variety of roof positions because there is three different positions available for the same roof mounting scheme. This feature is depicted in
In other embodiments, panel 100 includes 2-D concentrators. These embodiments include embodiments in which panel 100 is capable of increasing an acceptance angle in two directions. By orientating multiple panels among 60 degree angle increments, the panel can in more cases be closely aligned along one of two orthogonal axes that correspond to a spatial frequency axis for PV cells/concentrators than a panel having four or less connecting sides.
G. Portable Solar CollectionA solar panel incorporating one or more of the foregoing embodiments may also be configured as a portable solar panel. A portable solar panel may allow a significant reduction in the storage, transportation and mounting of solar panels to a roof or exterior wall. In other embodiments, a portable solar panel be used for camping, hiking or other outdoors activities, as an emergency power source for automobiles when there is a breakdown, e.g., recharge an automobile battery, etc.
Referring now to
The width (d) of each element can be between 5-10 mm or any other dimension. The elements rotate between a stowed (or rolled-up) to a deployed configuration with hinges that permit rotation through an angle .PHI. (see
Referring to
Referring to
As depicted in
In the embodiments of the static or dynamic lenses discussed in connection with
In some embodiments, a solar panel may be arranged so that the panel is substantially translucent. For example, the solar panel 300 depicted in
The frame support may be configured for supporting a static panel or dynamic panel design, as discussed earlier in connection with
Between the ends 308a there may be mid-span supports 305 for the concentrators 302. These mid-span supports may include, or form cleaning or sweeping strips that can sweep or clean the surface of the concentrators 302 when the concentrators 302 are rotated to follow the sun. Referring to
In some embodiments, the drive assembly 306b and associated programming (i.e., daily, seasonally, etc.) for following the sun may include an additional cleaning cycle. In these embodiments, the motor or drive may rotate the concentrators through a 180 degree angle for cleaning purposes, e.g., at nighttime. In some embodiments, the frame may also include a cleaning solution, or simple water that flows over the cleaning strips to assist with removing debris or dirt from the surface of the concentrators 302.
In some embodiments, the solar collection device may include a cover on all sides, one side, two sides, e.g., opposing sides, or no covers at all. As will be appreciated, there are advantages and disadvantages in each case and depending on the application, there may be a preference for having covers completely or partially covering the solar collection device, or no covers at all.
As mentioned earlier, a panel 300 according to the disclosure may be constructed so that it appears essentially translucent when viewed from positions outside of the direction where light collects on the PV material. In other embodiments, the solar panel may include a combination of translucent structure, and opaque, semi-transparent, and/or patterned surfaces to provide an aesthetically pleasing, intriguing or eye catching appearance to a structure, e.g., a rooftop of a home or building. The patterns or designs may be formed over the unused portions of the concentrators, i.e., the portions of the concentrators which do not focus light onto PV material.
Referring to
In one example, the pattern on a concentrator may be the same as adjacent concentrators (e.g., a color complimentary to the roof color). In some embodiments, the pattern may be chosen to portray a message, display, e.g., a flag, to serve as an advertisement, i.e., a brand name, or to simply reflect a pleasing pattern. In some embodiments, multiple patterns may be provided when a dynamic panel is used. For instance, the arrays of concentrators 302 depicted in
According to another aspect of the disclosure, a solar panel is configured for being disposed over windows. In some embodiments, the solar panels may be static or dynamic panels, as described above, and may be positioned to cover windows, or be incorporated inside a window, and function as Venetian blinds or coverings that allow diffused light to pass through. Such placements of solar energy collectors may be especially advantageous at areas of high or low longitudes, i.e., far away from the Earth's equator, where the sun travels close to the horizon. For instance, a solar panel, e.g., one constructed in a manner consistent with panel 300 and discussed in connection with
In the embodiments of a solar collection device utilizing a linear concentrator the panel axis may be orientated east-to-west, north-to-south, or indeed in other directions depending on the location of, and/or optics used in the solar collection device, or based on other reasons. In the examples discussed above and depicted in the drawings, e.g.
A ray trace for a series of collecting elements placed side-by-side is shown in
In
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Claims
1. A solar collection device, comprising a concentrator having an exposure area; and PV material having a collection area; wherein the collection area is greater than the exposure area.
2. The solar collection device of claim 111, wherein the concentrator is a rod lens.
3. The solar collection device of claim 111, wherein the exposure area receives refracted light.
4. A non-tracking solar collection system, comprising: concentrators positioned relative to PV material such that at least a portion of the light collected by the concentrators is directed at PV material, wherein the acceptance angle for the solar collection device is such that the at least a portion of the collected light directed at PV material is approximately constant as the sun's apparent position changes.
5. The non-tracking solar collection device of claim 114, further including a means for increasing the acceptance angle including configuring the concentrators for rotational displacement as the sun's position changes.
6. The non-tracking solar collection device of claim 115, wherein the PV material rotates with the concentrator.
7. The non-tracking solar collection device of claim 116, wherein the concentrator approximates a cylindrical lens formed as a rod.
Type: Application
Filed: Sep 16, 2011
Publication Date: May 3, 2012
Inventors: Kasra Khazeni (San Jose, CA), Faraj Aalaei (Atherton, CA), Saeid Ghafouri (Saratoga, CA), Kambiz Farnaam (Danville, CA)
Application Number: 13/235,271
International Classification: H01L 31/052 (20060101);