FLEXIBLE MULTI-PROCESSING SYSTEM

A processor includes a scalar computation unit; a vector co-processor coupled to the scalar computation unit; and one or more function-specific engines coupled to the scalar computation unit, the engines adapted to minimize data exchange penalties by processing small in-out bit slices.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND

The present invention relates to a flexible processing system.

Advances in computer technology have provided high performance, miniaturized computers that are inexpensive. Even with these impressive achievements, manufacturers are constantly looking for improvements in areas such as user-friendliness and connectivity so that users can be productive any time anywhere. Wireless communications networks offer the user such capabilities. However, the speed and computational robustness of present-day wireless communications systems leave much to be desired.

In response, the industry is adopting new technologies such as 802.11A, GPRS and EDGE wireless networking technologies that drive transparent connections between all computing, communications, audio and video devices. 802.11A transceivers communicate at the 5 GHz frequency and offer 100 Mbps throughput, in contrast to the 2.4 GHz frequency and the 11 Mbps throughput of 802.11B transceivers.

General Packet Radio Service (GPRS) brings packet data connectivity to the Global System for Mobile Communications (GSM) market. GPRS integrates GSM and Internet Protocol (IP) technologies and is a bearer for different types of wireless data applications with bursty data, especially WAP-based information retrieval and database access. GPRS packet-switched data technology makes efficient use of radio and network resources. Session set-up is nearly instantaneous, while higher bit rates enable convenient personal and business applications. Consequently, GPRS not only makes wireless applications more usable, but also opens up a variety of new applications in personal messaging and wireless corporate intranet access.

EDGE stands for Enhanced Data rates for Global Evolution. EDGE is the result of a joint effort between TDMA operators, vendors and carriers and the GSM Alliance to develop a common set of third generation wireless standards that support high-speed modulation. EDGE is a major component in the UWC-136 standard that TDMA carriers have proposed as their third-generation standard of choice. Using existing infrastructure, EDGE technology enables data transmission speeds of up to 384 kilobits per second.

The new standards such as 802.11A, EDGE and GPRS achieve increased transmission throughput by using complex digital signal processing algorithms, many of which require high processing power exceeding that offered by today's baseband processors.

One way to increase processing power is to perform computations in parallel using hardwired, dedicated processors that are optimized for one particular radio frequency (RF) protocol. Although highly effective when geared to handle one RF protocol, this approach is relatively inflexible and cannot be easily switched to handle today's multi-mode cellular telephones that need to communicate with a plurality of RF protocols.

Another way to increase processing power is to perform computations in parallel using general-purpose processors. Although flexible in programmability, such an approach may not provide the highest possible computational power that may he needed when performing digital signal processing for specific wireless applications such as 802.11A or GPRS applications.

Yet another approach uses reconfigurable logic computer architectures that include an array of programmable logic and programmable interconnect elements. The elements can be configured and reconfigured by the end user to implement a wide range of logic functions and digital circuits and to implement custom algorithm-specific circuits that accelerate the execution of the algorithm. High levels of performance are achieved because the gate-level customizations made possible with FPGAs results in an extremely efficient circuit organization that uses customized data-paths and “hardwired” control structures. These circuits exhibit significant fine-grained, gate-level parallelism that is not achievable with programmable, instruction-based technologies such as microprocessors or supercomputers. This makes such architectures especially well suited to applications requiring the execution of multiple computations during the processing of a large amount of data. A basic reconfigurable system consists of two elements: a reconfigurable circuit resource of sufficient size and complexity, and a library of circuit descriptions (configurations) that can be down-loaded into the resource to configure it. The reconfigurable resource would consist of a uniform array of orthogonal logic elements (general-purpose elements with no fixed functionality) that would be capable of being configured to implement any desired digital function. The configuration library would contain the basic logic and interconnect primitives that could be used to create larger and more complex circuit descriptions. The circuit descriptions in the library could also include more complex structures such as counters, multiplexers, small memories, and even structures such as controllers, large memories and microcontroller cores. For example, U.S. Pat. No. 5,784,636 to Rupp on Jul. 21, 1998 discusses a reconfigurable processor architecture using a programmable logic structure called an Adaptive Logic Processor (ALP). The Rupp structure is similar to an extendible field programmable gate array (FPGA) and is optimized for the implementation of program specific pipeline functions, where the function may be changed any number of times during the progress of a computation. A Reconfigurable Pipeline Instruction Control (RPIC) unit is used for loading the pipeline functions into the ALP during the configuration process and coordinating the operations of the ALP with other information processing structures, such as memory, I/O devices, and arithmetic processing units. Multiple components having the Rupp reconfigurable architecture may he combined to produce high performance parallel processing systems based on the Single Instruction Multiple Data (SIMD) architecture concept.

SUMMARY

A processor includes a scalar computation unit; a vector co-processor coupled to the scalar computation unit; and one or more function-specific engines coupled to the scalar computation unit, the engines adapted to minimize data exchange penalties by processing small in-out bit slices.

Implementations of the system may include one or more of the following. The hardware blocks have their own local memory and rely on the scalar processor only for configuration and parametric settings at the beginning of each computation sequence. The vector co-processor performs computationally intensive operations, as ‘functions’ within the software algorithm implementation. The hardware blocks act as subroutines, expanding the data flow locally to achieve high throughput without a large bus-capacitance penalty. The frequency of the hardware and processor can be scaled from baseline crystal frequency to a maximum operating frequency. Each hardware block has a synchronized switch, such that it can be turned off without affecting the delay to the other blocks. The switch adds an identical delay whether or not the hardware block is on or not. A flexible analog interface can provide a varying bit-width and sampling frequency. The analog interface also handles variable filtering, DC offset compensation and I/Q mismatch compensation, such that the processing load can be shared among the digital and analog elements. This allows the use of direct-conversion radios as well as the more traditional super-heterodyne radios. The specific hardware subroutines can be re-used from protocol to protocol by changing the input parameters and the clock frequency.

Advantages of the system may include one or more of the following. The system uses a RISC-like architecture with a vector co-processor and an extensive library of engines or function-specific hardware blocks. The engines perform vector operations, but they are not generic arithmetic units. Rather, they aggregate several specific multiply, add, compares to perform a high level function such as the FFT. This is advantageous because the RISC controller can be used to write simple control software in ANSI-C without the need for complex DSP or VLIW languages, and the engine or hardware blocks can be turned on and off as simple subroutines within embedded code. The RISC controller can also run upper layer protocol stacks. This allows for hardware re-use, since the same processor will process initial packet data and also provide the necessary configuration parameters to the vector processor.

Most of the implementation is in hardware, which has the highest computing power density (MIPS/mW/cm2). The RISC engine is small, and the Vector co-processor is also small. By implementing many of the instructions and subroutines in hardware, code size can be limited, thereby reducing the embedded SRAM instruction memory. New protocols can be implemented by adding new hardware accelerator blocks (RAKE, correlator etc) and simply scaling the process generation (milliwatts/Megahertz). The system's bus-less design gives significant power savings since the bus capacitance does not need to switch with every cycle.

A high performance, low overhead system for wireless communication system expanding the functionality and capabilities of a computer system is provided. The system effectively combines multiple components required to implement cellular radio, 802.11A and/or Bluetooth™ into a single integrated circuit device. The complete integration of components greatly reduces manufacturing costs. Another benefit is the fact that a single chip solution results in much lower communication overhead, in comparison to prior art multiple chip card system. The system provides for fast, easy migration of existing designs to high performance, high efficiency single chip solutions. Many elements of the LAN and WAN architecture are the same and can be re-used. For example, the Gaussian filter is used both in GSM communication and in Bluetooth communication. Similarly, the MLSE decoder and convolutional decoder are present in almost every wireless protocol, so they can be used without resource duplication. The system provides a combination of software/DSP/ASIC resources that are globally and transparently ‘alterable’ and that can be scaled to provide vast processing power to handle the requirements of RF digital signal processing.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:

FIG. 1 is a block diagram of a single chip processor.

FIG. 2 is an exemplary vector engine of the processor.

FIG. 3 is an exemplary scalar engine of the processor.

DESCRIPTION

Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.

FIG. 1 shows a block diagram of a processing system to support a multi-mode wireless communicator device is shown. The processing system includes a scalar computation unit, a vector co-processor coupled to the scalar computation unit; and one or more function-specific engines coupled to the scalar computation unit and the vector co-processor. The function-specific engines are adapted to minimize data exchange penalties by processing small in-out bit slices. In the processing system, an instruction memory 10 communicates with a vector co-processor 20. Vector co-processor 20 receives data from a vector register file 22. The vector processor 20 also communicates with a Reconfigurable Switch Fabric 44. Also in communication with the Reconfigurable Switch Fabric 44 is a Scalar Processor 30. The Scalar Processor 30 receives instructions from the Instruction Memory 10 and a Scalar Vector Register File 24. The Scalar Processor 30, Vector Co-processor 20 and Reconfigurable Switch Fabric 44 communicate with a Cache Memory 32, which in turn communicates with a Memory Controller 34. The Memory Controller writes to a Buffer 38, which can be a FIFO output buffer. The Memory Controller 34 also receives inputs from a buffer 36 such as a FIFO input. The FIFO input 36 and FIFO output 38 communicates with an intelligent analog subsystem 40. The Memory Controller 34 in turn controls a DRAM main memory 42.

In accordance with the present invention, the processing system of FIG. 1 that supports a multi-mode wireless communicator device can include an analog portion integrated on the substrate (e.g. the intelligent analog subsystem 40). The analog portion can include a radio frequency (RF) front-end adapted to receive an RF signal from an antenna, and an analog to digital converter (ADC) coupled to the RF front-end to digitize the RF signal.

The Reconfigurable Switch Fabric 44 also communicates with a plurality of functions of specific blocks. For example, the Reconfigurable Switch Fabric communicates with a Viterbi Block 46, OFDM Block 48, and GMSK Block 50, Scrambler Block 52, Viterbi Block 54, FHT Block 56, Maper Block 58, CRC Block 60, and AES Block 62.

Referring on to FIG. 2, an exemplary implementation of the Vector Processor 20 of FIG. 1 is detailed. The Vector Processor 20 includes a Vector Register File 22. Further, the Vector Register File 22 communicates with a plurality of Blocks 65. Block 65 includes a multiply of 66 which communicates with an accumulator 68. The accumulator 68 also receives data from the Vector Register File 64. The operative of the accumulator 68 is provided to a multiplexor 76. One input to the multiplexor 76 is a Logic Operation Block 70 another input to the multiplexor 76 is a Shifter 74. The multiplexor 76 in term communicates with a Cross Bar 78 which communicates to a multiplexor 80 and which in term communicates to a Second Cross Bar 82.

Referring on to FIG. 3, an embodiment of the Scalar Processor 30 is detailed. In this embodiment, an adder 84 receives data from a program counter register (PCR) 86. The PCR 86 communicates with an Instruction Memory Block 88. The Instruction Memory also communicates with a Destruction Coder 90 whose output is provided to a decoder 92. The Instruction Memory 88 also communicates with a Register File 24 whose output is provided to a Buffer 96 and 97. The output of the buffers 96 and 97 are provided to a Multiplexor 98, Logic Operation Block 101 and Shifter 103, respectively. The output of the Demultiplexor 98 Logic Operation Block 101 and Shifter 103 are provided to a Multiplexor 105, which in term drives a buffer Block 107 and 109. Blocks 107 and 109 in term communicate with a Data Memory Block 111. Blocks 107,109 and Data Memory 111 also communicates with a Demultiplexor 113, which in term communicates with a Buffer 115 whose output is looped back to the Register File 94.

The scalar processor is used for flow control. The vector processor is used for parallel computation of vector operation. Applications of vector operations are DCT, FFT, convolution, FIR filtering, etc. At every cycle the processor will fetch a new instruction, which can of either scalar or vector type. Scalar and vector instructions are intermixed in the same program. Vector instructions are executed in SIMD mode (single instruction-multiple-data). Both, the scalar and the vector processor are pipelined. This processor should be easy to implement in a 0.18 micron CMOS technology.

The scalar instructions include:

    • ADD
    • SUB
    • AND
    • OR
    • XOR
    • LSHIFT
    • RSHIFT
    • JMP
    • BEQ
    • BNE
    • LDI
    • LOAD
    • STORE
      The vector instructions include:

VADD vector add VSUB vector subtract VMUL vector multiply VMADD vector multiply-add VSHIFT VAND VOR VXOR VLOAD VSTORE

The data path of the scalar processor is 32-bit wide. The data path of the vector processor is 16-bit wide (or the width of the A/D word).

In one implementation, the processor of FIG. 1 is implemented in an integrated CMOS device with radio frequency (RF) circuits, including a cellular radio core, a short-range wireless transceiver core, and a sniffer, along side digital circuits, including a reconfigurable processor (such as the core of FIG. 1), a high-density memory array core, and a router. The high-density memory array core can include various memory technologies such as flash memory and dynamic random access memory (DRAM), among others, on different portions of the memory array core.

In another implementation, a ‘pipeline’ architecture is achieved by linking the processors in series and performing differing operations on each (this is more suitable for processing GPRS data) and then switching to a parallel implementation for high-speed standards. The general-purpose cores have a granular control over clock speeds, which can be multiples of the master clock to achieve synchronous operation to allow precise control over the processors.

Additionally, dedicated hardware can be provided to handle specific algorithms more efficiently than the processing cores. The number of active processors is controlled depending on the application, so that power is not used when it is not needed. This embodiment does not rely on complex clock control methods to conserve power, since the individual clocks are not run at high speed, but rather the unused processor is simply turned off when not needed.

Through the router, the multi-mode wireless communicator device can detect and communicate with any wireless system it encounters at a given frequency. The router performs the switch in real time through an engine that keeps track of the addresses of where the packets are going. The router can send packets in parallel through two or more separate pathways. For example, if a Bluetooth™ connection is established, the router knows which address it is looking at and will be able to immediately route packets using another connection standard. In doing this operation, the router working with the RF sniffer periodically scans its radio environment (‘ping’) to decide on optimal transmission medium. The router can send some packets in parallel through both the primary and secondary communication channel to make sure some of the packets arrive at their destinations.

The processor controls the cellular radio core and the short-range wireless transceiver core to provide a seamless dual-mode network integrated circuit that operates with a plurality of distinct and unrelated communications standards and protocols such as Global System for Mobile Communications (GSM), General Packet Radio Service (GPRS), Enhance Data Rates for GSM Evolution (Edge) and Bluetooth™. The cell phone core provides wide area network (WAN) access, while the short-range wireless transceiver core supports-local area network (LAN) access. The reconfigurable processor core has embedded read-only-memory (ROM) containing software such as IEEE802.11, GSM, GPRS, Edge, and/or Bluetooth™ protocol software, among others.

Although specific embodiments of the present invention have been illustrated in the accompanying drawings and described in the foregoing detailed description, it will be understood that the invention is not limited to the particular embodiments described herein, but is capable of numerous rearrangements, modifications, and substitutions without departing from the scope of the invention. The following claims are intended to encompass all such modifications.

Claims

1-20. (canceled)

21. An apparatus, comprising:

a computation unit configured to execute control software to process data for wireless transmission, wherein the control software includes a plurality of function calls respectively corresponding to a plurality of digital signal processing functions;
a plurality of dedicated hardware engines configured to perform respective ones of the plurality of digital signal processing functions; and
a switch fabric coupled to the computation unit and to the plurality of dedicated hardware engines, the switch fabric being configured to perform operations including reconfiguring the apparatus from processing data for transmission via a first wireless protocol to processing data for transmission via a second wireless protocol.

22. The apparatus of claim 21, wherein the computation unit is configured to cause at least first and second dedicated hardware engines of the plurality of dedicated hardware engines to:

responsive to ones of the plurality of function calls included in the control software, perform the corresponding digital signal processing functions; and
subsequently send information to the computation unit.

23. The apparatus of claim 21, wherein the computation unit comprises:

a scalar computation unit configured to provide configuration settings to the plurality of dedicated hardware engines at a beginning of a computation sequence; and
a vector co-processor configured to perform parallel computational operations.

24. The apparatus of claim 23, wherein the scalar computation unit is further configured to cause the vector co-processor to perform the parallel computational operations in response identifying the parallel computational operations in the control software.

25. The apparatus of claim 21, wherein the first wireless protocol is a cellular radio protocol, and wherein the second wireless protocol is a short-range wireless protocol.

26. The apparatus of claim 21, wherein the plurality of dedicated hardware engines are implemented as part of an integrated circuit.

27. The apparatus of claim 21, wherein one or more of the plurality of dedicated hardware engines is configured to be reconfigured from use with the first wireless protocol to use with the second wireless protocol by changing configuration settings.

28. The apparatus of claim 21, wherein the plurality of dedicated hardware engines includes at least two different dedicated hardware engines selected from the group consisting of:

a convolutional decoding engine, a modulation engine, a transform engine, an error correction engine, and a cryptographic engine.

29. A wireless device, comprising:

a radio frequency (RF) front end configured to receive an RF signal from an antenna; and
a logic portion coupled to the RF front-end, the logic portion including: a computation unit configured to execute control software to process data packets for transmission via a wireless protocol, wherein the control software includes a plurality of function calls respectively corresponding to a plurality of digital signal processing functions; a plurality of dedicated hardware engines configured to perform respective ones of the plurality of digital signal processing functions; and a switch fabric coupled to the computation unit and to the plurality of dedicated hardware engines, the switch fabric being configured to perform operations including reconfiguring the logic portion from processing data for transmission via a first wireless protocol to processing data for transmission via a second wireless protocol.

30. The wireless device of claim 29, wherein the reconfiguring the logic portion includes disabling one or more of the plurality of dedicated hardware engines without disabling other ones of the plurality of dedicated hardware engines.

31. The wireless device of claim 29, wherein the plurality of dedicated hardware engines includes a modulation engine and a cryptographic engine.

32. The wireless device of claim 29, further comprising:

a cellular radio core configured to support transmission via the first wireless protocol; and
a short-range wireless transceiver core configured to support transmission via the second wireless protocol.

33. The wireless device of claim 29, wherein the plurality of dedicated hardware engines includes an orthogonal frequency division multiplexing (OFDM) engine.

34. The wireless device of claim 29, wherein the first dedicated hardware engines includes a transform engine and an error correction engine.

35. The wireless device of claim 34, wherein the transform engine is an FHT engine and the error correction engine is a CRC engine.

36. The wireless device of claim 29, wherein the computation unit is configured to provide configuration and parametric settings to the plurality of dedicated hardware engines at a beginning of a computation sequence.

37. The wireless device of claim 29, wherein the plurality of dedicated hardware engines are implemented in one application-specific integrated circuit.

38. The wireless device of claim 29, wherein the wireless device is configured to communicate one or more of the data packets in parallel via at least two different wireless protocols.

39. An apparatus, comprising:

first means for executing control software to process data packets for transmission via a wireless protocol, wherein the control software includes a plurality of function calls respectively corresponding to a plurality of digital signal processing functions
a plurality of dedicated hardware engines configured to perform respective ones of the plurality of digital signal processing functions; and
second means for reconfiguring the apparatus from processing data for transmission via a first wireless protocol to processing data for transmission via a second wireless protocol, the reconfiguring including disabling one or more of the plurality of dedicated hardware engines without disabling remaining ones of the plurality of dedicated hardware engines.

40. The apparatus of claim 39, wherein the plurality of dedicated hardware engines are implemented as part of a single integrated circuit.

Patent History
Publication number: 20120173864
Type: Application
Filed: Jan 2, 2012
Publication Date: Jul 5, 2012
Applicant: Intellectual Ventures I LLC (Wilmington, DE)
Inventors: Dominik J. Schmidt (Stanford, CA), Robert Warren Sherburne, JR. (Kentfield, CA)
Application Number: 13/342,157
Classifications
Current U.S. Class: Reconfiguration (e.g., Changing System Setting) (713/100)
International Classification: G06F 9/06 (20060101);