HYDROGEN PRODUCTION FROM MICROBIAL STRAINS
The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.
Latest UNIVERSITY OF WASHINGTON Patents:
- Methods of lowering the error rate of massively parallel DNA sequencing using duplex consensus sequencing
- Aircraft wing motion prediction systems and associated methods
- Production of engineered T-cells by sleeping beauty transposon coupled with methotrexate selection
- OPTIMAL DATA-DRIVEN DECISION-MAKING IN MULTI-AGENT SYSTEMS
- Optical fixation monitor
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/868,233 filed Dec. 1, 2006, which is hereby incorporated by reference in its entirety.
The subject matter of this application was made, at least in part, with funding received from the U.S. Department of Energy under grant DE-FG02-05ER64063 and the U.S. Department of Defense under grant W911NF-05-1-0176. The U.S. Government may have certain rights.
FIELD OF THE INVENTIONThe present invention generally relates to the production of hydrogen from microbial strains.
BACKGROUND OF THE INVENTIONHydrogen biofuel has the potential to solve a variety of challenges related to the global need for a clean and sustainable form of energy. Hydrogen can be produced from a variety of domestic resources including: fossil fuels such as natural gas and coal; renewable resources such as solar, wind, and biomass; or nuclear energy. The current challenge, however, is to develop technologies for hydrogen production from these resources that are clean, efficient, and cost effective.
Photobiological processes, specifically those which involve the production of hydrogen from specialized microorganisms, offer an attractive long term renewable mechanism of hydrogen production that will minimally impact the environment (Gest, et al. “Studies on the Metabolism of Photosynthetic Bacteria. V. Photoproduction of Hydrogen and Nitrogen Fixation by Rhodospirilum rubrum,” J. Biol, Chem. 182:153-170 (1950); Das, et al. “Hydrogen Production by Biological Processes: A Survey of Literature,” Int. J. Hydrogen Energy 26:13-28 (2001); Prince & Kheshgi, “The Photobiological Production of Hydrogen: Potential Efficiency and Effectiveness as a Renewable Fuel,” Crit. Rev. Microbial. 31:19-31 (2005)). For this technology to be commercially efficient, however, these hydrogen producers must be identified and potentially modified for optimized production.
Microbes possess two enzymes, hydrogenase and nitrogenase, which produce hydrogen either directly through fermentation, or indirectly as a by-product of other metabolic processes. Nitrogenases are chiefly involved in the conversion of nitrogen gas to ammonia with the concomitant obligate production of hydrogen during the process of nitrogen fixation. This difficult reaction requires large amounts of ATP and reductant and, therefore, does not represent an efficient method of hydrogen production in terms of commercial utility (Simpson & Burris, “A Nitrogen Pressure of 50 Atmospheres Does Not Prevent Evolution of Hydrogen by Nitrogenase,” Science. 224:1095-7 (1984)). However, a strategy to identify microbe strains, either naturally occurring or mutant forms, which have uncoupled hydrogen production from nitrogen fixation so that hydrogen production is metabolically advantageous to the growth and survival of the organism may represent a suitable means to develop a commercially efficient biocatalyst for hydrogen production.
The present invention is directed to achieving this objective.
SUMMARY OF THE INVENTIONOne aspect of the present invention relates to a method of screening for microbial strains capable of generating hydrogen. The method includes inoculating a sample containing one or more microbes into a cell culture medium to form an inoculated culture medium. The inoculated culture medium is incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the inoculated culture medium are identified as candidate microbe strains capable of generating hydrogen.
Another aspect of the present invention relates to a method of producing hydrogen. This method includes providing a microbe strain in a culture medium under conditions in which the microbe strain is capable of producing hydrogen. The culture medium containing the microbe strain is incubated under conditions effective to produce hydrogen.
The present invention also relates to an isolated hydrogen producing microbe strain. This strain may contain one or more mutations within nucleic acid molecules of the wild-type form of the microbe strain encoding one or more regulatory proteins involved in hydrogen production
The present invention, described to obtain and maintain bacteria for which hydrogen production is advantageous, can be useful in the context of a commercial process as it provides a selection strategy that can be applied to maintain continuous hydrogen production.
An analysis of strains of diverse species of photosynthetic bacteria using the present invention can reveal new hydrogen-producing enzymes, highlight the diversity of strategies that can be used by bacteria to regulate hydrogen production, and uncover new genes for enabling hydrogen-producing enzymes to function efficiently in whole cells.
One aspect of the present invention relates to a method of screening for microbial strains capable of generating hydrogen. The method includes inoculating a sample containing one or more microbes into a cell culture medium to form an inoculated culture medium. The inoculated culture medium is incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the inoculated culture medium are identified as candidate microbe strains capable of generating hydrogen.
In some cases, the candidate microbe strain contained in the sample may grow in the hydrogen producing conditions without acquiring any mutation. In other cases, the candidate microbe strain contained in the sample may be unable to grow in the hydrogen producing conditions without acquiring one or more mutations. These mutants adapt a phenotype in which hydrogen production is metabolically required for the survival and growth of the organism under the screening conditions.
Candidate microbe strains may include anoxygenic photosynthetic bacteria. Genera of bacteria suitable for screening include, but are not limited to, Rhodopseudomonas, Blastochloris, Rhodobacter, Rhodospirillum, Rubrivivax, Rhodomicrobium, Rhodoferax, and Rhodocyclus. In a preferred embodiment of the invention, Rhodopseudomonas, a genus of purple non-sulfur, metabolically versatile bacteria found in many terrestrial and marine soil and water environments is utilized. Members of this genus include, but are not limited to, R. cryptolactis, R. faecalis, R. julia, R. palustris, and R. rhenobacensis.
When grown in light under anaerobic conditions, with organic compounds present, most anoxygenic photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds biosynthetically to make cell biomass. Carbon substrates that are electron-rich relative to cell material cannot be assimilated unless an external electron sink such as carbon dioxide, nitrate, or dimethyl sulfoxide is available to dissipate excess reducing equivalents (McEwan, “Photosynthetic Electron Transport and Anaerobic Metabolism in Purple Non-Sulfur Phototrophic Bacteria,” Antonie Van Leeuwenhoek. 66:151-64 (1994), which is hereby incorporated by reference in its entirety). Alternatively, some cells dissipate excess reducing power via the production of hydrogen through nitrogen fixation (Joshi et al., “A Global Two Component Signal Transduction System that Integrates the Control of Photosynthesis, Carbon Dioxide Assimilation, and Nitrogen Fixation,” Proc. Natl. Acad. Sci. USA. 93:14515-20 (1996), which is hereby incorporated by reference in its entirety). For these bacteria, non-nitrogen fixing conditions are unfavorable for survival presumably, because synthesis of nitrogenase is repressed, and, therefore, hydrogen production is also repressed. The strategy underlying the screening method described herein takes advantage of this finding. Inoculating microbes into an environment which combines an electron-rich source of carbon with light energy under non-nitrogen fixing conditions will identify natural hydrogen producing strains and will force the mutagenesis of other strains to become hydrogen producing strains. Microbes which grow under the screening conditions described herein represent strains which have redirected metabolism to uncouple hydrogen production from nitrogen fixation and which utilize nitrogenase to produce hydrogen directly.
The sample containing one or more microbes is inoculated into a cell culture medium and incubated under anaerobic conditions, in the presence of light, in an electron-rich carbon containing culture medium under non-nitrogen fixing conditions. Sunlight provides an ideal energy source, however, other sources of energy include incandescent light bulbs or any other artificial sources of light. The source of nitrogen is preferably a reduced form or one that is capable of repressing nitrogenase activity. One such form of nitrogen is ammonium sulfate. Sources of electron-rich reduced carbon include, but are not limited to, cyclohexanecarboxylate, acetate, p-coumarate, succinate, ethanol, toluene, benzoate, butyrate, and butanol.
Once a hydrogen producing strain has been identified it can be isolated and utilized for the production of hydrogen. The method of producing hydrogen involves providing a microbe strain in culture medium under conditions in which the microbe strain is capable of producing hydrogen. The culture medium containing the microbe strain is incubated under conditions effective to produce hydrogen. Hydrogen production can occur under a variety of cultivation conditions in the absence of oxygen, nitrogen or other gases as long as light and an electron donor are supplied.
If the hydrogen producing microbe strain that has been identified is a mutant strain, said strain can be subjected to gene expression analysis to identify genes substantially involved in hydrogen production pathways. Such analysis can include standard nucleic acid amplification assays such as quantitative RT-PCR or PCR or hybridization based assays using oligonucleotide arrays such as those disclosed in U.S. Pat. No. 6,045,996 to Cronin et al., or U.S. Pat. No. 5,925,525 to Fodor et al., which are hereby incorporated by reference in their entirety. Additionally, hydrogen producing strains can also be subjected to genetic analysis and mapping using any standard DNA sequencing techniques known in the art to identify any possible mutations responsible for hydrogen production. Such methods of nucleic acid sequencing include the Sanger dideoxy method which utilizes enzymatic elongation procedures with chain terminating nucleotides as described in Sanger et al. Proc. Natl. Acad. Sci. USA 74:5463-5467 (1977) which is hereby incorporated by reference in its entirety, or the Maxam and Gilbert method which utilizes chemical reactions exhibiting specificity of reaction to generate nucleotide specific cleavages as described in Maxam et al., Methods in Enzymology 65:499-559 (1980) which is hereby incorporated by reference in its entirety. Additionally, the methods and apparatus for sequencing nucleic acids as disclosed in WO/92/010588 to Fodor et al, which is hereby incorporated by reference in its entirety, can also be used.
The hydrogen producing microbe strain may have increased hydrogenase activity, which for example, may result from an increase in hydrogenase gene expression. Likewise, the hydrogen producing microbe strain may have increased nitrogenase activity, which may result from an increase in nitrogenase gene expression. The hydrogen producing microbe strain may contain one or more mutations within nucleic acid molecules encoding one or more of the regulatory proteins involved in hydrogen production. Hydrogen producing microbe strains that have one or more mutations which directly or indirectly increase hydrogenase or nitrogenase activity are also contemplated. The molybdenum nitrogenase gene cluster represents one target of a network of regulatory proteins that is indirectly involved in hydrogen production and may be a preferred target for mutation. The hydrogen producing microbe strain may be R. palustris having one or more mutations occurring within the transcription activator protein NifA, comprising the amino acid sequence of SEQ ID NO:1, which is encoded by the nucleic acid sequence of SEQ ID NO:2. In particular, SEQ ID NO:1 is as follows:
SEQ ID NO:2 is as follows:
NifA is an RNA polymerase sigma 54-dependant transcriptional activator that is required for nitrogenase gene expression in R. palustris. Preferably, the amino acid mutations in NifA promote a conformational change in the protein, rendering it competent to activate gene expression constitutively. Because NifA regulates nitrogenase activity, preferable mutations promote a conformational change consistent with rendering the protein competent to activate nitrogenase gene expression constitutively. Individual amino acid mutations within the amino acid sequence of SEQ ID NO:1 which are suitable for increasing nitrogenase gene expression and activity include, for example, a glutamine to proline substitution at amino acid 209 (Q209→P), a methionine to lysine substitution at amino acid 202 (M202→K), a leucine to arginine substitution at amino acid 212 (L212→R), a serine to proline substitution at amino acid 213 (S213→P), and combinations thereof.
In addition to the molybdenum nitrogenase gene cluster, bacteria such as R. palustris, encode other nitrogenases, such as vanadium and iron nitrogenases, that may be capable of facilitating hydrogen production (Larimer, et al., “Complete Genome Sequence of the Metabolically Versatile Photosynthetic Bacterium Rhodopseudomonas palustris,” Nat. Biotechnol. 22:55-61 (2004), which is hereby incorporated by reference in its entirety). Alternative nitrogenase synthesis depends on many of the cofactor and assembly proteins encoded by the nif gene cluster (Oda, et al., “Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudapmonas palustris,” J. Bacterial. 187:7784-94 (2005), which is hereby incorporated by reference in its entirety). Thus, it is possible that a second mutation within the nif gene cluster in addition to a NifA mutation may promote constitutive synthesis of anf and vnf genes for alternative nitrogenase production. Likewise, mutations within the vanadium nitrogenase and iron nitrogenase gene clusters that directly or indirectly result in the constitutive expression of one or both of these enzymes, alone or in combination with the molybdenum nitrogenase are also contemplated.
Amino acid mutations which influence the expression or activity of genes indirectly affecting nitrogenase activity are also contemplated. Such genes include those involved in the conversion of light to ATP such as (gene numbers given before the parenthetical and location on the chromosome given in parentheses) RPA3012-3013 (3410110-3410457), RPA1505-1554 (1671137-1725322), RPA2653-2654 (3017745-3018093), RPA4291-4292 (4838558-4838926) and RPA1491-1492 (1655417-1655764) in R. palustris (the GenBank/EMBL/DDBJ accession number of the R. palustris CGA009 genome is BX571963). Additionally, genes encoding proteins involved in channeling electrons to nitrogenase such as R. palustris genes, RPA1928 (2162133-2163041), RPA4602-4605 (5188040-5191666), RPA4612 (5197263-5197574), RPA4629 (5209974-5210195), and RPA4631 (5211934-5212128); genes involved in supplying iron required for enzyme function such as R. palustris genes RPA2380-2391 (2697057-2711837); and genes involved in supplying other transition metal ions such as molybdenum for enzymes function, including the R. palustris gene RPA0148 (166873-167409) are also contemplated. The complete genome sequence of R. palustris has been described in Larimer, et al., “Complete Genome Sequence of the Metabolically Versatile Photosynthetic Bacterium Rhodopseudomonas palustris,” Nature Biotechnology. 22(1):55-61 (2004), which is hereby incorporated by reference in its entirety.
Once amino acid mutations rendering a microbe strain competent of constitutive hydrogen production have been identified through genetic sequencing, customary cloning techniques known in the art can be utilized to construct recombinant strains. The microbe strain capable of producing hydrogen can be a recombinant strain containing one or more mutations within nucleic acid molecules of the wild-type form of the microbe strain as described above.
The present invention also relates to an isolated hydrogen producing microbe. This strain may contain one or more mutations within nucleic acid molecules of the wild-type form of the microbe strain which encode for one or more regulatory proteins involved in hydrogen production. The isolated hydrogen producing microbe strain may have one or more mutations that increase hydrogenase activity. Likewise, the isolated hydrogen producing microbe strain may have one or more mutations that increase nitrogenase activity. Other characteristics of such microbes are described above.
EXAMPLESThe Examples set forth below are for illustrative purposes only and are not intended to limit, in any way, the scope of the present invention.
Example 1 Bacterial Strains and Growth ConditionsThe bacterial strains and plasmids used are listed in Table 1.
All work was carried out with the R. palustris wild type strain CGA009 or its derivatives. Strain CGA009 is defective in uptake hydrogenase activity (Rey, et al., “Regulation of Uptake Hydrogenase and Effects of Hydrogen Utilization on Gene Expression in Rhodopseudomonas palustris,” J. Bacteriol. 188:6143-52 (2006), which is hereby incorporated by reference in its entirety). R. palustris was grown and manipulated aerobically in defined mineral medium containing 10 mM succinate as a carbon and energy source and a 100 μg per ml gentamicin (Gm) (Kim et al., “Regulation of Benzoate-CoA Ligase in Rhodopseudomonas palustris,” FEMS Microbiol. Lett. 83:199-204 (1991), which is hereby incorporated by reference in its entirety). Otherwise R. palustris strains were grown in defined medium anaerobically with light in sealed tubes containing argon gas in the headspace and (NH4)2SO4 supplied as a nitrogen source (non-nitrogen-fixing conditions) or with a nitrogen gas headspace and (NH4)2SO4 omitted (nitrogen-fixing conditions). Carbon sources included succinate (10 mM), acetate (20 mM), p-coumarate (4.5 mM), or cyclohexanecarboxylate (5.7 mM). Escherichia coli strains DH5α and S17-1 were grown at 37° C. in Luria-Bertani (LB) medium. Where indicated, R. palustris was grown with 100 μg per ml gentamicin (Gm). E. coli was grown with 100 μg per ml ampicillin, or 20 μg per ml Gm.
Example 2 Strain ConstructionsDNA fragments (˜3 kb) spanning nifA plus flanking regions from CGA571 and CGA574 were generated by PCR. The amplification products contained engineered XbaI cloning sites at both ends. These products were digested with XbaI and cloned into XbaI-digested pUC19 to generate pUC19-nifA *571, and pUC19-nifA*574. The Xba-I fragments were then cloned into pJQ200KS to generate pJQ200KS-nifA *571, and pJQ200KS-nifA*574. These constructs were mobilized from E. coli S17-1 into R. palustris CGA757 (ΔnifA, this strain cannot grow under nitrogen-fixing conditions) by conjugation. Colonies that contained plasmids that had undergone a single recombination to become inserted into the chromosome were identified by growth on PM plus Gm. These colonies were spread onto nitrogen-fixing agar medium supplemented with 10% sucrose and incubated anaerobically in order to select for strains that had undergone a double recombination to lose the sacB-containing vector. Gene replacements were confirmed by PCR and sequencing.
Example 3 Description of the R. palustris GenechipR. palustris custom designed GeneChip was manufactured by Affymetrix (Santa Clara, Calif.) with the following specifications: 99.8% of R. palustris predicted open reading frames genes were represented by unique probe sets (16 probe pairs and their corresponding mismatch for each). In addition, the GeneChip contains information for all intergenic regions larger than 150 bp.
Example 4 DNA Microarray ExperimentsRNA was isolated as previously described (Oda, et al., “Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris,” J. Bacterial. 187:7784-94 (2005), which is hereby incorporated by reference in its entirety). cDNA was synthesized from 10 μg of purified RNA, with semirandom hexamer primers having an average G+C content of 75%, and Superscript II reverse transcriptase (Life Technologies, Carlsbad, Calif.). Fragmentation and labeling were performed according to the manufacturer's recommendations (Affymetrix). Samples were hybridized and scanned at the Center for Expression Arrays, University of Washington according to specifications provided by the manufacturer. The expression profiles were analyzed as previously described (Schuster, et al., Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: A Transcriptome Analysis,” J. Bacterial. 18:2066-79 (2003), which is hereby incorporated by reference in its entirety).
Example 5 Nitrogenase Activity and Hydrogen MeasurementsNitrogenase activity was measured by the acetylene reduction assay as described previously (Oda, et al., “Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris,” J. Bacterial. 187:7784-94 (2005), which is hereby incorporated by reference in its entirety). Hydrogen production was measured using a Hewlett Packard 5890 series II gas chromatograph equipped with a thermal conductivity detector and molecular sieve-13X column (80/100 mesh, I.D.¼ in. by 8 ft) (Oda, et al., “Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris,” J. Bacteriol. 187:7784-94 (2005), which is hereby incorporated by reference in its entirety). Protein concentrations were determined using the Bio-Rad (Richmond, Calif.) protein assay kit.
Example 6 Gene SequencingIn order to identify the mutation(s) responsible for the hydrogen-producing phenotype, nifA and its promoter region, glnK1, draT1, draT2, draG, were sequenced in all strains. In addition, regS, regR, cbbR, glnB, glnK2, in CGA570 and ntrB, ntrC, glnK2,vnfA, anfA in CGA572 were also sequenced. All mutations identified map to the regulatory protein NifA.
100391 When grown in light with organic compounds present, anoxygenic photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds biosynthetically to make cell biomass. Carbon substrates that are electron-rich relative to cell material cannot be assimilated unless an external electron sink, such as carbon dioxide, nitrate, or dimethyl sulfoxide, is available to dissipate excess reducing equivalents. Another process by which some cells dissipate excess reducing power is nitrogen fixation. Consistent with this, R. palustris grew on the electron-rich carbon compound cyclohexanecarboxylate if it was able to generate hydrogen as part of the process of nitrogen fixation (
Each of the four mutant strains produced hydrogen from renewable carbon compounds including acetate and p-coumarate, a plant lignin monomer, and cyclohexanecarboxylate, as depicted in
Because the mutants were not supplied with nitrogen gas during growth, it is hypothesized that nitrogenase catalyzed the synthesis of hydrogen without accompanying ammonia production. Many reports have shown that hydrogen is the only product formed by nitrogenase in the absence of nitrogen gas. Apparently, these mutant strains had overcome the regulatory barriers that prevent nitrogenase gene expression.
Transcriptome analysis using the R. palustris custom GeneChip identified that the structural genes nifHDK, encoding the two subunits of molybdenum nitrogenase, were among the genes most highly expressed in the hydrogen-producing strains. Most of the 30 genes that surround nifHDK on the R. palustris chromosome were also expressed at high levels in the mutant strains (
Normally, cells produce hydrogen as an unintended consequence of nitrogen fixation during ammonia deprivation, an environmental cue that alters the expression level of about 4% of the genome (Oda, et al., “Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris,” J. Bacterial. 187:7784-94 (2005), which is hereby incorporated by reference in its entirety). Transcriptome analysis of the hydrogen-producing strains allows for the identification of genes that might be important for hydrogen production, as opposed to adaptation to ammonium starvation. Only 21 genes that are physically distant from the molybdenum nitrogenase cluster showed increased expression in at least three of the hydrogen-producing mutant strains compared to wild type. A subset of 18 of these genes also had increased expression levels in the wild type under nitrogen-fixing (and hydrogen-producing) conditions (
The R. palustris genome encodes for a set of regulatory proteins that overlap with those in other bacteria known to control nitrogen fixation in response to intracellular nitrogen status (Oda, et al., “Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris,” J. Bacterial, 187:7784-94 (2005); Larimer, et al., “Complete Genome Sequence of the Metabolically Versatile Photosynthetic Bacterium Rhodopseudomonas palustris,” Nat. Biotechnol. 22:55-61 (2004); Dixon et al., “Genetic Regulation of Biological Nitrogen Fixation,” Nat. Rev. Microbiol. 2:621-31 (2004); Masepohl, et al., “Regulation of Nitrogen Fixation in the Phototrophic Purple Bacterium Rhodobacter capsulatus,” J. Mol. Microbial. Biotechnol. 4:243-248 (2002); Zhang, et al., “Functional Characterization of Three GlnB Homologs in the Photosynthetic Bacterium Rhodospirillum rubrum: Roles in Sensing Ammonium and Energy Status,” J. Bacteriol. 183:6159-68 (2001); Zhang, et al., “GlnD is Essential for NifA Activation, NtrB/NtrC-Regulated Gene Expression, and Posttranslational Regulation of Nitrogenase Activity in the Photosynthetic, Nitrogen-Fixing Bacterium, Rhodospirillum rubrum,” J. Bacteriol. 187:1254-65 (2005), which are hereby incorporated by reference in their entirety). To identify the mutations responsible for constitutive hydrogen production, genes predicted to be involved in these regulatory networks were sequenced (Oda, et al., “Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris,” J. Bacterial. 187:7784-94 (2005); Dixon et al., “Genetic Regulation of Biological Nitrogen Fixation,” Nat. Rev. Microbiol. 2:621-31 {2004), which are hereby incorporated by reference in their entirety). Four different single point mutations were identified in the regulatory gene nifA in the four hydrogen-producing strains (
All mutations identified localized to the linker region between the regulatory domain and the AAA-domain (
To determine if the amino acid changes identified in NifA were sufficient to cause the hydrogen production phenotype, two of the mutated nifA genes, one encoding the Q209P change and the other the M202K change, were introduced by homologous recombination into the chromosome of a R. palustris strain that has a nifA deletion mutation. Both recombinant strains behaved similarly to the original nifA mutants and grew with cyclohexanecarboxylate as a carbon source, had nitrogenase activity, and produced hydrogen in the presence of ammonium (Table 4).
Transcriptome analysis of one of the recombinant strains revealed that it had elevated levels of gene expression that were similar in magnitude to those of the original hydrogen-producing mutant (Table 5).
This indicates that the mutations identified in nifA are sufficient to activate all genes necessary for hydrogen production. It cannot be excluded that the strains may have additional mutations that contribute to the differences observed in growth, nitrogenase activity, and hydrogen production among the isolated mutant strains.
In addition to its molybdenum nitrogenase, R. palustris encodes vanadium and iron nitrogenases (Larimer, et al., “Complete Genome Sequence of the Metabolically Versatile Photosynthetic Bacterium Rhodopseudomonas palustris,” Nat. Biotechnol. 22:55-61 (2004), which is hereby incorporated by reference in its entirety). Alternative nitrogenase synthesis depends on many of the cofactor synthesis and assembly proteins encoded by the nif gene cluster (Oda, et al., “functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris,” J. Bacteriol. 187:7784-94 (2005), which is hereby incorporated by reference in its entirety). Thus, it would be expected that a second mutation in addition to a nifA mutation would be necessary for constitutive synthesis of anf and vnf genes for alternative nitrogenases.
Development of a process for hydrogen production will likely depend on using whole bacterial cells as biocatalysts to efficiently supply ATP and electrons needed for nitrogenase activity. Hydrogen formation in the context of nitrogen fixation is wasteful for cells, because it represents a loss of reductant that could have been used for ammonia formation. In addition, anoxygenic photosynthetic bacteria accumulate nitrogenase mutations under conditions where the fixation of nitrogen gas into ammonia is not obligatory (Wall, et al., “Spontaneous Nif-Mutants of Rhodopseudomonas capsulate,” J. Bacterial. 159:652-7 (1984), which is hereby incorporated by reference in its entirety). Here, a strategy is described to select for mutants of R. palustris for which hydrogen production is advantageous and required in order for cells to use electron-rich carbon sources for growth. This could be a useful trait in the context of an eventual commercial process as it provides a selection strategy that can be applied to maintain continuous hydrogen production.
Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions, and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the claims which follow.
Claims
1-14. (canceled)
15. A method of producing hydrogen, said method comprising:
- providing a microbe expressing a NifA protein comprising an activating mutation;
- wherein the activating mutation relieves GAF domain repression of NifA transactivating activity and results in constitutive transactivation of a gene in a nitrogenase gene cluster;
- wherein the activating mutation comprises a mutation located in the linker region between the GAF regulatory domain and the AAA+ ATPase domain;
- and incubating the microbe in a culture medium under conditions effective for the microbe to produce hydrogen;
- thereby providing increased hydrogen production.
16. The method of claim 15, wherein the microbe strain is an anoxygenic photosynthetic bacterium.
17. The method of claim 16, wherein the microbe strain is a microbe of the genus selected from the group consisting of Rhodopseudomonas, Blastochloris, Rhodobacter, Rhodospirillium, Rubrivirax, Rhodomicrobium, Rhodoferax and Rhodocyclus.
18. The method of claim 17, wherein the microbe strain is Rhodopseudomonas palustris.
19. (canceled)
20. The method of claim 15, wherein expression of said NifA protein permits increased hydrogenase activity by said microbe.
21. The method of claim 15, wherein expression of said NifA protein permits increased nitrogenase activity by said microbe.
22-24. (canceled)
25. The method of claim 15, wherein the activating mutation renders the protein competent to increase nitrogenase gene expression.
26. The method of claim 47, wherein the activating mutation results in one or more amino acid substitutions in SEQ ID NO: 1 selected from the group consisting of Q209→P, M202→K, L212→R, S213→P, and combinations thereof.
27. The method of claim 15, wherein the microbe is a recombinant strain.
28-32. (canceled)
33. The method of claim 15, wherein said incubating is carried out under anaerobic conditions, in the presence of light, in an electron-rich carbon containing culture medium under non-nitrogen fixing conditions.
34. The method of claim 33, wherein the electron-rich carbon is a reduced carbon.
35. The method of claim 34, wherein the reduced carbon is selected from the group consisting cyclohexanecarboxylate, acetate, p-coumarate, succinate, ethanol, toluene, benzoate, butyrate, and butanol.
36. The method of claim 15, wherein said culture medium contains a form of nitrogen that represses nitrogenase activity.
37. The method of claim 36, wherein the form of nitrogen that represses nitrogenase activity is ammonium sulfate.
38-43. (canceled)
44. The method of claim 15 wherein the activating mutation comprises a mutation that changes at least one amino acid residue in said NifA protein relative to SEQ ID NO: 1.
45. (canceled)
46. The method of claim 15, wherein the mutation in NifA located in the linker region between the GAF regulatory domain and the AAA+ ATPase domain changes the polarity of the affected position.
47. The method of claim 15, wherein the microbe comprises a nucleic acid molecule encoding NifA with an activating mutation relative to the NifA-encoding nucleic acid sequence of SEQ ID NO: 2.
Type: Application
Filed: Nov 29, 2007
Publication Date: Aug 30, 2012
Applicant: UNIVERSITY OF WASHINGTON (Seattle, WA)
Inventors: Caroline S. HARWOOD (Seattle, WA), Federico E. REY (Brentwood, MO)
Application Number: 11/947,535
International Classification: C12P 3/00 (20060101);