METHODS AND DEVICES FOR REPAIR OR REPLACEMENT OF HEART VALVES OR ADJACENT TISSUE WITHOUT THE NEED FOR FULL CARDIOPULMONARY SUPPORT
Methods and systems for endovascular, endocardiac, or endoluminal approaches to a patient's heart to perform surgical procedures that may be performed or used without requiring extracorporeal cardiopulmonary bypass. Furthermore, these procedures can be performed through a relatively small number of small incisions. These procedures may illustratively include heart valve implantation, heart valve repair, resection of a diseased heart valve, replacement of a heart valve, repair of a ventricular aneurysm, repair of an arrhythmia, repair of an aortic dissection, etc. Such minimally invasive procedures are preferably performed transapically (i.e., through the heart muscle at its left or right ventricular apex).
This application claims the benefit of U.S. provisional patent application No. 60/615,009, filed Oct. 2, 2004, which is hereby incorporated by reference herein in its entirety.
FIELD OF THE INVENTIONThis invention relates generally to devices and methods for performing cardiovascular procedures wherein a heart valve or segment of the aorta is being repaired or replaced without the use of extracorporeal cardiopulmonary support (commonly referred to as of procedures). For example, the invention relates to devices and methods for accessing, resecting, repairing, and/or replacing one of the heart valves, in particular the aortic valve. This invention also relates to methods and systems for performing minimally-invasive cardiac procedures such as the endovascular, endocardiac or endoluminal placement, implantation or removal and consecutive replacement of heart valves. These techniques may be generally referred to as direct access percutaneous valve replacement (“DAPVR”).
BACKGROUND OF THE INVENTIONOf particular interest to the present invention is the treatment of heart valve disease. There are two major categories of heart valve disease: (i) stenosis, which is an obstruction to forward blood flow caused by a heart valve, and (ii) regurgitation, which is the retrograde leakage of blood through a heart valve. Stenosis often results from calcification of a heart valve that makes the valve stiffer and less able to open fully. Therefore, blood must be pumped through a smaller opening. Regurgitation can be caused by the insufficiency of any of the valve leaflets such that the valve does not fully close.
In the past, repairing or replacing a malfunctioning heart valve within a patient has been achieved with a major open-heart surgical procedure, requiring general anesthesia and full cardiopulmonary by-pass. This requires complete cessation of cardiopulmonary activity. While the use of extracorporeal cardiopulmonary by-pass for cardiac support is a well accepted procedure, such use has often involved invasive surgical procedures (e.g., median sternotomies, or less commonly, thoracotomies). These operations usually require one to two weeks of hospitalization and several months of rehabilitation time for the patient. The average mortality rate with this type of procedure is about five to six percent, and the complication rate is substantially higher.
Endovascular surgical techniques for heart surgery have been under recent development. In contrast to open-heart surgical procedures, endovascular procedures may have a reduced mortality rate, may require only local anesthesia, and may necessitate only a few days of hospitalization. However, the range of procedures that has been developed for an endovascular approach to date has been limited to repair of the coronary arteries, such as angioplasty and atherectomy.
Some progress has been made in the development of endovascular heart valve procedures. For example, for patients with severe stenotic valve disease who are too compromised to tolerate open-heart surgery to replace the heart valve as described above, surgeons have attempted endovascular balloon aortic or mitral valvuloplasty. These procedures involve endovascularly advancing a balloon dilatation catheter into the patient's vasculature until the balloon of the catheter is positioned between the valve leaflets. Then the balloon is inflated to either: (i) split the commissures in a diseased valve with commissural fusion, or (ii) crack calcific plaques in a calcified stenotic valve. However, this method may only provide partial and temporary relief for a patient with a stenotic valve. Instances of restenosis and mortality following balloon aortic valvuloplasty have led to virtual abandonment of this procedure as a treatment for a diseased aortic valve.
Endovascular procedures for valve implantation inside a native and diseased valve have been explored. A catheter-mounted valve is incorporated into a collapsible cylindrical structure, such as a stent (commonly referred to as a “valved stent”). In these procedures, an elongated catheter is used to insert a mechanical valve into the lumen of the aorta via entry through a distal artery (e.g., the femoral or brachial artery). Such procedures have been attempted on selective, terminally ill patients as a means of temporarily relieving the symptoms of a diseased valve.
The percutaneous placement of an artificial valve may have certain limitations and ancillary effects. For example, at present, such procedures are only of benefit to a small number of patients and are not meant to become an alternative to surgical heart valve procedures requiring the use of extracorporeal bypass. Another issue is that performing the entire procedure via small diameter vessels (e.g., the femoral, iliac or brachial arteries) restricts the use of larger tools and devices for the resection or repair of the diseased heart valve. Furthermore, this endovascular procedure may increase the risk of various vascular complications such as bleeding, dissection, rupture of the blood vessel, and ischemia to the extremity supplied by the vessel used to perform the operation.
Moreover, in some cases, one or more of a patient's femoral arteries, femoral veins, or other vessels for arterial and venous access may not be available for introduction of delivery devices or valve removal tools due to inadequate vessel diameter, vessel stenosis, vascular injury, or other conditions. In such cases, there may not be sufficient arterial and venous access to permit the contemporaneous use of the necessary interventional devices (e.g., an angioplasty catheter, atherectomy catheter, or other device) for a single surgical procedure. Therefore, unless alternate arterial or venous access for one or more of these catheters can be found, the procedure cannot be performed using endovascular techniques.
Another possible disadvantage of the small vessel procedure is that the new valve must be collapsed to a very small diameter that could result in structural damage to the new valve. Additionally, such remote access sites like the femoral artery may make precise manipulation of the surgical tools more difficult (e.g., exchange of guide wires and catheters and deployment of the new valve). Furthermore, placing wires, catheters, procedural tools, or delivery devices through one or more heart structures (e.g., the mitral valve) to reach the target site can result in damage to those structures (e.g., acute malfunctioning or insufficiency of the valve being mechanically hindered by the surgical equipment or valve deterioration resulting from mechanical friction inflicting micro-lesions on the valve).
Also to be considered in connection with such procedures is the potential of obstructing the coronary ostia. The known percutaneous procedures for implanting heart valves do not have a safety mechanism to ensure proper orientation of the new valve. Therefore, there is a possibility that the deployed valve will obstruct the coronary ostia, which can result in myocardial ischemia, myocardial infarction, and eventually the patient's death.
These procedures leave the old valve in place, and the new valve is implanted within the diseased valve after the diseased valve has been compressed by a balloon or other mechanical device. Therefore, there may be a possibility of embolic stoke or embolic ischemia from valve or vascular wall debris that is liberated into the blood flow as the diseased valve is dilated and compressed. Furthermore, a rim of diseased tissue (e.g., the compressed native valve) decreases the diameter and cross-sectional surface of the implanted valve, potentially under-treating the patient and leading to only partial relief of his symptoms.
It would therefore be desirable to develop systems and methods for satisfactorily performing various cardiovascular procedures, particularly procedures for heart valve placement or removal and replacement, which do not require the use of an extracorporeal bypass or invasive surgical procedure, such as a sternotomy. It would be further desirable to perform such procedures through very small incisions in the patient (e.g., via several small thoracotomies). The devices and methods will preferably facilitate the access, resection, repair, implantation, and/or replacement of the diseased cardiac structure (e.g., one or more diseased heart valves). The devices and methods should preferably minimize the number of arterial and venous penetrations required during the closed-chest procedures, and desirably, should require no more than one cardiac and one femoral arterial penetration. The present invention satisfies these and other needs.
The descriptive terms antegrade and retrograde mean in the direction, of blood flow and opposite the direction of blood flow, respectively, when used herein in relation to the patient's vasculature. In the arterial system, antegrade refers to the downstream direction (i.e., the same direction as the physiological blood flow), while retrograde refers to the upstream direction (i.e., opposite the direction of the physiological blood flow). The terms proximal and distal, when used herein in relation to instruments used in the procedure, refer to directions closer to and farther away from the heart, respectively. The term replacement normally signifies removal of the diseased valve and implantation of a new valve. However, a new valve may also be implanted directly over top of a diseased valve. An implantation procedure would be the same as a replacement procedure without the removal of the diseased valve.
SUMMARY OF THE INVENTIONThe present invention is directed to a method and system for an endovascular, endocardiac, or endoluminal approach to a patient's heart to perform an operation that does not require an extracorporeal cardiopulmonary bypass circuit and that can be performed through a limited number of small incisions, thus eliminating the need for a sternotomy. The invention contemplates, at least in its preferred embodiments, the possibility of effective aortic valve implantation, aortic valve repair, resection of the aortic valve and replacement of the aortic valve, all without necessitating extracorporeal cardiopulmonary by-pass, a median sternotomy or other grossly thoracic incisions.
The present invention contemplates replacing any of the four valves of the heart via an antegrade approach through the wall of the appropriate chamber. Preferably, valves are implanted transapically (i.e., through the heart muscle at its left or right ventricular apex). However, in this case, replacement of the mitral and tricuspid valves may be performed via a retrograde approach, because accessing these valves via the left or right ventricles requires approaching these valves against the flow of blood through the valve.
In, accordance with the present invention, a surgeon may perform a minimally invasive operation on a patient that includes accessing the patient's heart and installing an access device in a wall of the heart that has means for preventing bleeding through the access device. A new heart valve may be implanted via the access device. In addition to implanting a heart valve during such a procedure, the surgeon can also resect a diseased native heart valve. The surgeon may also repair an aortic dissection using such a procedure. The surgeon may also choose to repair a damaged heart valve using similar techniques. The access device described may be preferably installed in the ventricular apex of the heart.
Surgical methods in accordance with the present invention may also include resecting a diseased heart valve percutaneously, while installing the new heart valve transapically. Alternatively, a surgeon may resect a diseased valve transapically and implant a new valve percutaneously. Additionally, both removal and implantation could be performed transapically. The new heart valve is preferably implanted by radially expanding the heart valve. In some embodiments, the radial expansion occurs in multiple stages that may be effectuated by a multi-stage balloon. The implantation device may include a mechanism to pull the leaflets of a native valve downward while the new valve is installed within the native valve.
A device for resecting a diseased heart valve in accordance with the present invention may include a first set of annularly enlargeable componentry having a first longitudinal axis and a proximal cutting edge and a second set of annularly enlargeable componentry having a second longitudinal axis and a distal cutting edge. The device resects the diseased heart valve when the first set of componentry is enlarged on a distal side of the diseased heart valve and the second set of componentry is enlarged on a proximal side of the diseased heart valve and the sets of componentry are drawn axially together along the longitudinal axes. The first and second sets of annularly enlargeable componentry may be coaxial.
In accordance with the present invention, blood flow through the surgical devices placed in the patient (e.g., inside the patient's aorta) may be supplemented with artificial devices such as ventricular assist devices. The surgical site may be visualized with direct optical technology. For example, transparent oxygen-carrying fluid may be injected into a portion of the circulatory system of a patient, and an optical device may be inserted into the transparent fluid to transmit images of the surgical site. Using such techniques, all blood of a patient's circulatory system may be temporarily exchanged with the transparent oxygen-carrying fluid.
Instrumentation for accessing a chamber of a patient's heart may include a catheter having a proximal sealing device for sealing the catheter against a proximal surface of the myocardium. The instrumentation may also include means for preventing bleeding through the catheter. In some embodiments, the instrumentation includes a distal sealing device for sealing the catheter against the distal surface of the myocardium.
In accordance with the present invention, an implantable heart valve may include a tissue support structure and tissue valve leaflets that are grown inside the tissue support structure by genetic engineering. The genetically engineered leaflets may grow inside a stainless steel stent, a nitinol stent, or any other suitable tissue support structure. Low-profile heart valves may also be used that include at least three leaflets. One side of each leaflet overlaps a neighboring leaflet such that the leaflets open sequentially and close sequentially. Replacement heart valves may also be used that correct overly-dilated heart valve annuluses. Such a heart valve may include an inner circumference defined by the leaflets of the heart valve and an outer circumference defined by the outer limits of a fluid-tight diaphragm. The diaphragm fills the space between the inner circumference and the outer circumference.
Surgeons may be aided by a device for inserting more than one guidewire into a patient. Such a device includes an annular wire placement device and one or more guidewires removably attached to the annular wire placement device. The annular wire placement device is configured to track an already placed guidewire.
In accordance with the present invention, calcification of a heart valve may be broken down by inserting a catheter-based ultrasound device into a calcified heart valve and concentrating ultrasound radiation on the calcification of the calcified heart valve to break down the calcification. Such a procedure may be enhanced by inserting a reflector into the calcified heart valve to magnify the ultrasound radiation.
A mitral valve repair device in accordance with the present invention may include a first head defining an operating plane and a second head operably attached to the first head. The second head is configured to displace a leaflet with respect to the operating plane. The first head may be U-shaped and include an attachment mechanism for attaching at least two portions of a mitral valve leaflet. The repair device includes a handle for operating the second head with respect to the first head.
In accordance with the present invention, aortic dissections may be repaired by accessing a patient's heart and placing an access device in a wall of the heart that prevents bleeding through the access device. A dissection repair device is inserted through the access device to repair the aortic dissection. The device may include annularly enlargeable componentry configured to be inserted into the patient's aorta and means for closing a void created by the aortic dissection. The void can be closed by injecting a biologically compatible glue (e.g., fibrin, thrombin, or any other suitable chemical or biological substance) through needles into the void. It may also be closed using mechanical sutures or surgical staples, for example.
Further features of the invention, its nature, and various advantages will be more apparent from the following detailed description and the accompanying drawings, wherein like reference characters represent like elements throughout, and in which;
Because the present invention has a number of different applications, each of which may warrant some modifications of such parameters as instrument size and shape, it is believed best to describe certain aspects of the invention with reference to relatively generic schematic drawings. To keep the discussion from becoming too abstract, however, and as an aid to better comprehension and appreciation of the invention, references will frequently be made to specific uses of the invention. Most often these references will be to use of the invention to resect and replace or implant an aortic valve with an antegrade surgical approach. It is emphasized again, however, that this is only one of many possible applications of the invention.
Assuming that the invention is to be used to resect and replace or implant an aortic valve, the procedure may begin by setting up fluoroscopy equipment to enable the surgeon to set and use various reference points during the procedure. The surgeon may begin by performing a thoracotomy to create an access site for the surgical procedure. The endovascular, endocardiac or endoluminal surgical system of the present invention incorporates accessing the interior of the heart by directly penetrating the heart muscle, preferably through the heart muscle at its left or right ventricular apex (hereinafter referred to as “transapically”). Thoracotomy sites may be prepared at any of third intercostal space 12, fourth intercostal space 14, fifth intercostal space 16, or subxyphoidal site 18 (i.e., just below xyphoid process 19) of patient 11, as shown in
Once the heart is exposed, the surgeon may place one or multiple purse-string sutures around the ventricular apex surgical site. This will allow the surgeon to synch the heart muscle around any equipment that is passed through the heart wall during surgery to prevent bleeding. Other techniques for preventing bleeding from the heart chamber that is accessed for surgery will be described in more detail below.
In addition to the thoracotomy access site, the surgeon may also desire endoluminal (e.g., percutaneous) access sites, preferably via the patient's femoral vein or artery. A femoral vein access site may be used to place ultrasound equipment 34 inside the patient's right atrium adjacent aortic valve 20 and sino-tubular junction 36, as shown in
After accessing the heart muscle via one or more thoracotomies described above, an incision is made to pericardium 30 at access site 32. Next, myocardium 40 is punctured with needle 42 or other suitable device to gain access to the inner heart structures (in this case, left ventricle 26), as illustrated in
Guidewire 44 may be a relatively thin and flexible guidewire. In order to provide sturdier support for the exchange of surgical tools, it may be desirable to replace guidewire 44 with a stiffer guidewire. This is accomplished by passing catheter 50 over guidewire 44, removing guidewire 44 from the patient while catheter 50 holds its place, and inserting a stiffer guidewire, as shown by
In some embodiments of the present invention, multiple guidewires may be placed to provide access for more surgical devices. Using multiple guidewires may provide advantages such as allowing two devices to be placed next to each other (e.g., intravascular ultrasound could be operated next to valve deployment devices). Multiple guidewires may be placed simultaneously as shown in
Next, a dilator (not shown) may be advanced over stiffer guidewire 66 (
A second access device or introducer may be placed inside the distal artery (e.g., the femoral artery at the endoluminal access site). Furthermore, additional guidewires may be placed from the endoluminal access site. One or more additional guidewires may be placed using the piggy-back approach described in more detail above.
Access device 60 may include catheter 64 with distal balloon 61 and proximal balloon 62. Balloons 61 and 62 may sandwich myocardium 40 to prevent bleeding from left ventricle 26. Access device 60 may be anchored in other suitable ways, as long as left ventricle 26 is appropriately sealed to prevent bleeding, and such that blood flow through the coronary arteries is not occluded. Access device 60 also includes valve 63. Valve 63 allows the passage of guidewire 66 and the insertion of surgical tools while preventing bleeding through catheter 64. Valve 63 may be mechanically operable as an iris diaphragm (e.g., like the aperture of a lens). Alternatively, valve 63 may be constructed of an elastic material with a small central opening that is dilated by whatever equipment is inserted therethrough, but always maintains a fluid-tight seal with the inserted equipment. Valve 63 may compose any fluid-tight valve structure.
Access device 60 can include one or multiple valve-like structures, like valve 63. Multiple valves in series may act as added protection against leakage from the heart chamber. Furthermore, because of the potential for leakage around multiple tools, access device 60 may include multiple valves in parallel. Thus, each tool could be inserted through its own valve. This could ensure that a proper seal is created around each tool being used during the operation.
In some embodiments of the present invention, various endovascular, endocardiac, and/or endoluminal visualization aids may be used. Such devices are illustrated in
IVUS 70 may be used to locate aortic valve 20, sino-tubular junction 36, and brachiocephalic trunk 72. In order to determine the precise location of each, IVUS probe 70's location is simultaneously tracked with AcuNav™ 34 and fluoroscopy. Once each landmark is located, a radioopaque marker may be placed on the patient's skin or the heart's surface so that extracorporeal fluoroscopy can later be used to relocate these points without IVUS 70 taking up space inside the surgical site. The end of the native leaflet in systole may also be marked with a radioopaque marker in order to temporarily define the target zone. This technique requires that the patient and the fluoroscopy equipment not be moved during the procedure, because landmarks inside the heart and aorta are being marked by radioopaque markers placed on the patient's skin outside the body or on the beating heart's surface. It may be desirable to place the radioopaque markers directly on the heart and aorta.
IVUS 70, AcuNav™, and the fluoroscopy equipment can also be used to take measurements of the diseased valve. This allows the surgeon to chose a properly sized replacement heart valve. As an alternative to fluoroscopy, a surgeon may choose to use standard dye visualization techniques such as angiography. Although it would create material limitations for manufacturing the replacement heart valve, MRI technology could be used as an alternative means of visualizing the target surgical site. Additionally, with the development of cameras that can see through blood, direct optical technology could be used to create an image of the target site. Real-time three-dimensional construction of ultrasound data is another visualization procedure that is currently under development that could provide a suitable alternative.
With respect to direct optical technology, a clear liquid could be introduced to the aorta or other components of the circulatory system near the target surgical site. Placing a clear liquid that is capable of carrying oxygen (i.e., capable of carrying on the blood's biological function, temporarily) in the patient's circulatory system would improve the ability to use direct optical imaging. Furthermore, because the heart is beating, the patient could be transfused with the clear oxygen-carrying fluid for the duration of the procedure so that direct optical visualization is enabled throughout the procedure. The patient's regular blood would be retransfused at the conclusion of the procedure.
Another option for a direct visualization technique includes placing a transparent balloon (filled with a transparent fluid such as water) in front of the camera. The camera and liquid-filled balloon are pushed against the surface that the surgeon wishes to view. The transparent balloon displaces blood from the camera's line of sight such that an image of what the camera sees through the balloon is transmitted to the surgeon.
Furthermore, the invention may include the placement of embolic protection device 80 in the ascending aorta by means of a catheter, as shown in
Single embolic protection device 80 may have unique properties to protect the outflow region of the aortic valve which feeds aorta 28 and coronary sinuses 82 and 84. Device 80 may comprise tight mesh 200 (see
In some embodiments, embolic protection device 80 may be replaced with multiple embolic protection devices 90, 92, and 94, as illustrated in
In certain embodiments of the present invention, the embolic protection device may be placed in an antegrade approach. For example,
Additionally, embolic filters may be placed in the brachiocephalic, left common carotid, and left subclavian arteries of the aortic arch.
Some embodiments of the present invention may employ a valve-tipped catheter or other temporary valve device that is capable of temporarily replacing the native valve function during and after resection or removal until the new valve is deployed and functional. Such temporary valve devices may be placed in any number of acceptable locations. For example, when replacing the aortic valve's function, it may be preferable to place the temporary valve in the ascending aorta just distal to the native aortic valve. However, it is possible to temporarily replace the aortic valve function with a device placed in the descending aorta. Such a placement may have the disadvantage of causing the heart to work harder, but such placements have been proven acceptable in previous surgical procedures.
Additionally, some embodiments of the present invention may include the use of a percutaneously placed small caliber blood pump containing an impellor (e.g., a VAD (Ventricular Assist Device)). The VAD may be inserted in a retrograde or in an antegrade direction over guidewire 66. Alternatively, the VAD may be inserted over a secondary guidewire. Because of the resection and implantation equipment that will be inserted in the antegrade direction, it may be desirable to place the VAD in a retrograde approach from the percutaneous femoral access site. The VAD or other temporary pump device will be used to support the heart's natural function while the native valve is being resected or repaired. The temporary assistance device will remain in place until the new valve is deployed and functional.
In some embodiments of the present invention, the placement of a new valve may first involve the full or partial resection of the diseased valve or cardiac structure. To perform a resection of the diseased valve, a surgeon may use valve removal tool 110, shown in
As shown in
Further, valve removal device 110 may possess self-centering properties. Valve removal device 110's cutting mechanism may allow the device to cut or resect any calcified or diseased tissue within the heart cavities or the vasculature. The size or cut of each bite made by the removal device, as well as the shape of the cut may be determined by the surgeon by adjusting the valve removal device.
When performing surgical techniques inside a patient's vasculature, it may be beneficial to use ring-shaped balloons so that blood can continue to circulate through the balloon. Also, whether using ring-shaped balloons or more standardized balloons, it may be beneficial to use a balloon that has more than one chamber, so that the balloon can be selectively inflated. Examples of a ring-shaped balloon and a cylindrical balloon, both having more than one inflation chamber are illustrated in
In some embodiments of the present invention, a valve removal tool such as ronjeur device 210 may be used (see
In other embodiments of the present invention, valve resector 220 of
In preparation for valve resection, it may be beneficial to soften or break-up the calcification of the diseased valve. Concentrated ultrasound waves could be used to break-up the valve's calcification. A similar procedure is used to break down kidney stones in some patients. Calcification of the aortic valve is often trapped in tissue pockets. Thus the broken-down calcification would likely be retained by the valve leaflets. However, the leaflets would now be more pliable and easier to compress behind a new valve or to remove. An intraluminal ultrasound device may be used to deliver the concentrated ultrasound waves. Furthermore, an intraluminal reflector may be used to magnify the waves' intensity and break-up the calcium deposits even quicker.
In addition to or as an alternative to resecting the diseased valve, plaque or calcification of a diseased valve may be chemically dissolved. With embolic protection devices 90, 92, and 94 in place, a chemical can be introduced to the diseased valve that will dissolve or release the plaque deposits. The target valve site may first be isolated to contain the chemical during this process. This isolation may be achieved by inflating two balloons to create a chemical ablation chamber defined by the wall of the aorta and the two balloons.
Isolation may also be achieved by a device like ablation chamber 360 shown in
As another alternative, the diseased and calcified valve can be left as is and a new valve can be implanted within and over top of the diseased valve. In some embodiments of the present invention, it may be desirable to perform a valvuloplasty to percutaneously destroy the leaflets of the diseased valve. It may be easier to dilate the diseased valve with the new valve if it has been partially destroyed first.
Once any manipulation of the diseased valve is complete (e.g., marking landmark locations, resecting the diseased leaflets, chemically dissolving calcification, etc.), embolic protection devices 90, 92, and 94 can be removed (
In embodiments like that shown in
In other embodiments of the present invention, the placement of valve 140 may be assisted by intracardiac ultrasound (i.e., ultrasound equipment 34 of
Additionally, valve delivery device 142 may contain two radioopaque markers. With the coronaries being visualized with fluoroscopy, the surgeon could visualize the alignment of the two marker bands on delivery device 142. Thus, the surgeon would be able to properly orient the valve such that the commissure posts are properly positioned upon valve deployment.
Valve delivery device 142 may terminate in two phase balloon 150, as shown in
Continued expansion of balloon 150 causes base ring 154 of valve 140 to expand. As base ring 154 expands, hooks 156 may bite into remaining aortic rim 141. Alternatively, hooks 156 may not penetrate rim 141, but rather grasp the rim tightly. Commissure support tissue 158 also begins to open up. In some embodiments of the present invention, valve 140 includes distal stent-like structure 152 to support a replacement aortic valve distal to coronary sinuses 82 and 84 in sino-tubular junction 36.
During expansion, intracardiac ultrasound and fluoroscopy can be used to monitor the orientation and placement of valve 140. Before valve 140 is fully expanded, the surgeon may rotate delivery device 142 such that the spaces between commissure supports 158 align with coronary sinuses 82 and 84. Upon full expansion of ring 154 (see
The implantation process should be done quickly, because there will be a brief total occlusion of the aorta. It may be desirable to block the inflow to the heart. Thus, the heart is not straining to pump blood out, and a dangerous lowering of the patient's heart rate may be prevented.
Valve delivery device 142 may be designed to draw the native leaflets downward when a new valve is being implanted over top of an existing diseased valve. The native leaflets could obstruct blood flow to the coronary arteries. However, pulling the native leaflets downward before compressing them against the aorta wall would prevent such occlusion.
In some embodiments of the present invention, new valve 140 may be a self-expanding valve that can be implanted without the use of a balloon. Base ring 154, hooks 156, and stent-like structure 152 may be constructed of nitinol or some other shape-memory or self-expanding material. In some embodiments, valve 140 may be deployed by mechanical means, such as by releasing a lasso that surrounds the exterior of valve 140 or by operating a mechanical expansion device within valve 140.
In certain embodiments of the present invention, valve 140 may not have a stent-like support structure at the distal end stent-like structure 152). If commissure supports 158 are constructed from or supported by a stiff enough support post, valve 140 may not be fixed to the aorta at its distal end. The mounting at base ring 154 may sufficiently secure valve 140 in place to function normally and not obstruct blood flow to the coronary arteries.
Valve 140 may be secured in place by any suitable. Method for anchoring tissue within the body. The radial expansion forces of base ring 154 may be strong enough to secure valve 140 against dislodgment by radial strength alone. If no native valve rim remains, hooks 156 may be designed to grasp aortic wall 151. Mechanically placed sutures or staples could be used to secure valve 140 in place. Furthermore, biocompatible glue could be used to secure valve 140 in the appropriate position.
During a valve implantation procedure, it may be desirable to have the ability to retract expansion of new valve 140. If the commissures are not properly aligned with the coronary arteries or if the valve is not properly positioned within the native annulus, retracting the expansion would enable repositioning or realignment of the valve. Such a retraction technique is illustrated in
Valve 230 has radially expandable support ring 232 and radially expandable mounting structure 231. Mounting structure 231 may be a sinusoidal ring of nitinol wire. Mounting structure 231 is attached to wires 237, 238, and 239 at points 234, 235, and 236, respectively. By advancing tube 233 or withdrawing wires 237, 238, and 239, mounting structure 231 may be drawn radially inward, effectively retracting the expansion of valve 230. Other means of retracting valve expansion could be employed in accordance with the principles of the present invention.
In some embodiments of the present invention, the dilated opening in myocardium 40 is sealed with an automatic closure device. The automatic closure device may be part of access device 60. Alternatively, the automatic closure device may be inserted through access device 60 such that removal of access device 60 leaves the automatic closure device behind.
For example,
Bleeding into the space between the myocardium and the pericardium should be prevented. The myocardium can be closed without a need to close the pericardium. However, if the pericardium is to be sealed with the automatic closure device, the seal must be tight enough to prevent bleeding into the void between the two.
The percutaneous femoral access site will also need to be sealed. This may be done with sutures, or with a self-closing device such as an Angioseal™ Hemostatic Puncture Closure Device.
Implantable valves in accordance with the preferred embodiments of the present invention may take on a number of forms. However, the implantable valves will likely exhibit several beneficial characteristics. Implantable valves should preferably be constructed of as little material as possible, and should be easily collapsible. The valve may be radially compressed to a size significantly smaller than its deployed diameter for delivery. The implantable valve or support elements of the valve may contain Gothic arch-type structural support elements to efficiently support and maintain the valve once it is implanted.
The implantable valve may have an outer stent that is installed before deploying the valve structure. Valves manufactured in accordance with the principles of the present invention are preferably constructed of biocompatible materials. Some of the materials may be bioabsorbable, so that shortly after the implantation procedure, only the anchoring device and tissue valve remain permanently implanted. The valve leaflets may be composed of homograph valve tissue, animal tissue, valve rebuild material, pericardium, synthetics, or alloys, such as a thin nitinol mesh.
Implantable valves in accordance with the principles of the present invention may be drug eluding to prevent restenosis by inhibiting cellular division or by preventing reapposition of calcium. The drug may act as an active barrier that prevents the formation of calcium on the valve. Additionally, the drug may stimulate healing of the new valve with the aorta. Furthermore, the implantable valves are preferably treated to resist calcification. The support elements of the implantable valve may be exterior to the valve (e.g., between the new valve tissue and the aorta wall), interior to the valve (e.g., valve tissue is between the support elements and the aorta wall), or may form an endoskeleton of the valve (e.g., support elements of the valve may be within the tissue of the implantable valve).
Valve 240 may have distal mounting ring 248 in some embodiments. Ring 248 may engage the distal portion of the sino-tubular junction. Ring 248 may have segments 249 that are biased radially outward so as to more securely engage the inner wall of the aorta. The replacement valve may be designed to mimic the natural curvature of the sino-tubular junction. This curvature creates a natural bulge, in which the replacement valve may be able to secure itself against dislodgement.
Valve 250 of
Valve 260 of
Additionally, spiral, or rolled valves may be used in the implantation or replacement procedure. Such valves unwind instead of being radially expanded. Rolled valves are reduced in diameter for percutaneous or minimally invasive implantation by rolling the valve material into a spiral.
It may be beneficial to replace an insufficient valve with a new valve that is designed so that it does not dilate to the size of the diseased valve. Insufficient valves do not fully close, permitting regurgitation in the blood flow. This is often the result of a dilated valve annulus, which does not allow the valve leaflets to come together in the center. Therefore, it may be desirable for the new valve to fill a smaller annulus. This can be achieved by designing a valve such as valve 270 of
In some embodiments of the present invention, the new valve may be designed to be exchangeable. Many replacement heart valves have a life expectancy of 10-20 years. Therefore, many patients will require follow-up valve replacements. Certain structural components of the heart valve (e.g., the base ring, hooks, etc.) could be permanent, while the tissue leaflets may be exchangeable. It may be preferable to simply dilate the old valve with the new valve.
In some embodiments of the present invention, a valve implantation procedure may take place “off-pump,” but the patient's heart may be temporarily arrested. The patient's heart is stopped using fibrillation. A surgeon will have just under three minutes to perform the surgical procedure without risking harm to the patient. However, the anesthetized patient could be cooled to provide the surgeon with more time without increasing the risk for brain damage.
Once the patient's heart is stopped, an incision is made to the aorta just distal to the aortic valve. Blood is cleared from this region so that the surgeon can visualize the valve site. Using a delivery device like that described above (except making a retrograde approach in this case), the new valve is implanted directly over the diseased valve. Because the valve is being installed in a retrograde approach, the native leaflets will be pushed downward before being compressed against the aorta wall. Therefore, there is no concern of coronary artery occlusion.
Once the new valve is installed, the surgical site inside the aorta is cleared of air, and a side bite clamp is placed on the lesion. The heart is restarted with the electrodes that were used to stop it previously. Once the heart is beating again, the clamped lesion is sutured closed. An introducer device (similar to access device 60) can be used at the incision site to prevent the need for clearing the blood from the surgical site and, later deairing the site.
There are numerous procedures that may be performed transapically in accordance with the principles of the present invention. The following describes several of the illustrative procedures that may be performed via a transapical access device.
Insufficient mitral valves often result from a dilated posterior leaflet.
Aortic dissection is another defect that may be repaired via transapical access to the heart. Aortic dissection occurs from a tear or damage to the inner wall of the aorta. Aortic dissection may be caused by traumatic injury or connective tissue diseases such as Marfan syndrome or Ehlers-Danlos syndrome, for example. Aortic dissection may result in atherosclerosis or high blood pressure. As shown in
Aortic dissection repair device 310 may be transapically inserted into a patient via access device 311 (substantially similar to access device 60 of
Once repair device 310 is properly located, balloon 312 may be inflated as shown in
In order to make sure that the biologically compatible glue is only injected into void 319, and not the remainder of the aorta (which may introduce the biologically compatible glue to the circulatory system), dye may first be injected through select channels (i.e., needles 320). This will allow a surgeon to determine if injected glue would only end up in the desired locations. Repair device 310 may then be rotated to alias the needles that will inject the biologically compatible glue with void 319. Alternatively, the needles that will be used to inject the glue may be selectable so that the surgeon activates only the needles aligned with void 319.
Because balloon 312 fully occludes the aorta, balloon 312 may be doughnut-shaped to allow blood to pass, like balloon 330 of
Left ventricular aneurysms are another deformity of the heart that may be treated transapically. The heart muscle in the area of a blood vessel blockage can die over time. The healing process may form a scar that could thin and stretch to form a ventricular aneurysm. Such aneurysms may be repaired as described below.
Left ventricular aneurysm 340 may form in left ventricle 341 of a patient, as shown in
In some embodiments of the present invention, aneurysm 340 may be repaired by pulling the ends of aneurysm 340 together, as depicted by
In some embodiments of the present invention, endoprostheses may be placed percutaneously, transapically, or via any combination of surgical approaches. Endoprostheses may be placed in the ascending aorta that have arms capable of extending into the coronary arteries. Endoprostheses for the ascending aorta could also include a replacement valve or a valved stent. Endoprostheses for the descending aorta could also be placed transapically or percutaneously, for example, to repair an abdominal aortic aneurysm.
Additionally, endoprostheses may be placed in the aortic arch. One embodiment of an endoprosthesis for the aortic arch is shown in
Endoprosthesis 402 may be placed using guidewires 410, 412, 414, and 416, as shown in
Currently, ventricular arrhythmias are percutaneously repaired with radio frequency, cold, heat, or microwave that is applied to the offending tissue to destroy the source of the arrhythmia. Ventricular arrhythmias could be repaired transapically in accordance with the principles of the present invention. Radio frequency, cold, heat, or microwave devices can be introduced through an access device like access device 60 of
Hypertrophic obstructions (i.e., obstructions distal to a heart valve) and subvalvular stenosis (i.e., an obstruction proximal to a heart valve) may also be treated transapically. Devices such as those described above to resect a diseased valve could be inserted transapically to cut away the hypertrophic or subvalvular obstruction. The extra tissue could be removed from the heart in the same way that the diseased valve is resected and removed.
Robotic technology similar to that currently used in operating rooms could be used to perform some of the steps of the heart valve removal and replacement or implantation procedure. For example, it may be desirable to have a robot perform the delicate resection procedure via the access device. Furthermore, a robot could exercise precision in rotating and positioning the replacement valve with proper alignment of the commissure posts.
Because the heart valve operation is being performed inside one or more of the heart's chambers, all of the equipment described above should be atraumatic to limit damage to the endothelial wall of the heart.
It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the order of some steps in the procedures that have been described are not critical and can be changed if desired. Also, various steps may be performed with various techniques. For example, the diseased valve may be removed transapically, while the replacement valve is implanted percutaneously, or vice versa. The manner in which visualization equipment and techniques are used for observation of the apparatus inside the patient may vary. Many surgical repair procedures can be performed on or near the heart in accordance with the principles of the present invention.
Claims
1-45. (canceled)
46. A heart valve having a longitudinal axis, the valve comprising a self-expanding stent that includes a curved tissue-engaging peak that curves away from the longitudinal axis.
47. The valve of claim 46 wherein the self-expanding stent defines: wherein:
- a first circumference in a first plane perpendicular to the longitudinal axis;
- a second circumference in a second plane perpendicular to the longitudinal axis; and
- a third circumference in a third plane perpendicular to the longitudinal axis;
- the second circumference is between the first and third circumferences;
- the first and third circumferences are greater than the second circumference; and
- the tissue-engaging peak is part of the third circumference.
48. The valve of claim 47 wherein the first, second and third circumferences, together, conform to a native valve rim to secure the valve against dislodgement from the native valve rim.
49. The valve of claim 47 further comprising a securement element that is supported by the self-expanding stent, the securement element providing security against dislodgement, from heart tissue, of the self-expanding stent.
50. The valve of claim 49 wherein the securement element is a hook.
51. The valve of claim 49 wherein the securement element is configured to bite into an aortic rim.
52. The valve of claim 49 wherein the securement element is configured to bite into an aortic wall.
53. The valve of claim 49 wherein the securement element is configured to grasp an aortic rim.
54. The valve of claim 49 wherein the securement element is configured to grasp an aortic wall.
55. The valve of claim 46 wherein the self-expanding stent includes a sinusoidal structure.
56. The valve of claim 46 wherein the self-expanding stent is configured to exert radial expansion forces that are strong enough to secure the valve against dislodgment.
57. The valve of claim 46 further including several proximal peaks and distal peaks.
58. The valve of claim 59 wherein the proximal peaks and distal peaks are configured to engage a native valve annulus.
59. The valve of claim 60 wherein the proximal peaks and the distal peaks are pointed or sharpened.
60. The valve of claim 60 wherein the distal peaks are curved and curve radially outward, such as to engage an aortic wall.
61. The valve of claim 46 further comprising a distal mounting ring supported by distal ends of the commissure supports, the distal mounting ring corresponding to an aortic wall extending from an aortic sino-tubular junction.
62. The valve of claim 46 further comprising a stent-like support structure supported by a distal end of the commissure supports and corresponding to an aortic wall extending from an aortic sino-tubular junction.
63. The valve of claim 64 wherein the stent-like support structure is configured to support, relative to the aortic wall, a distal end of the valve such that the valve is supported against the aortic wall at a location distal to coronary sinuses.
64. The valve of claim 46 wherein the self-expanding stent includes a bulge that corresponds to a natural curvature below an aortic sino-tubular junction, the bulge providing securement against dislodgement of the valve relative to the curvature.
65. The valve of claim 64 wherein the bulge mimics the natural curvature.
66. The valve of claim 64 further comprising a commissure support that has a portion that is included in the bulge.
67. The valve of claim 46 further comprising:
- a stent frame; and
- valve leaflets, the stent frame attached to the commissure supports and supporting the valve leaflets.
68. The valve of claim 46 further comprising attachment points designated for attachment to corresponding retraction devices.
69. The valve of claim 68 wherein the attachment points are designated for attachment to corresponding retraction wires.
70. The valve of claim 46 wherein the self-expanding stent is configured to be mechanically attached to a delivery device.
71. The valve of claim 46 wherein the self-expanding stent is compressible.
72. The valve of claim 46 wherein the commissure supports include stainless steel.
73. The valve of claim 46 wherein the self-expanding stent comprises a shape-memory material.
Type: Application
Filed: May 8, 2012
Publication Date: Aug 30, 2012
Inventor: Christoph Hans Huber (Bern)
Application Number: 13/466,401
International Classification: A61F 2/24 (20060101);