Annular Member For Supporting Artificial Heart Valve Patents (Class 623/2.38)
  • Patent number: 11318012
    Abstract: A method for delivery and deployment of a prosthetic mitral valve into a heart includes inserting an introducer sheath having a prosthetic mitral valve disposed therein in a collapsed configuration into the left atrium of a patient's heart, through a gap between the native mitral valve leaflets, the left ventricle and apex of the heart. An epicardial pad device coupled to the prosthetic valve via a tether is moved distally out of the sheath. The introducer sheath is withdrawn into the left atrium of the heart. An inner delivery sheath is extended distally from within the introducer sheath and disposed within the left atrium. The prosthetic mitral valve is moved distally out of the inner delivery sheath and assumes a biased expanded configuration. The valve is positioned within the mitral annulus of the heart, and secured in place via the tether and epicardial pad device.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: May 3, 2022
    Assignee: Tendyne Holdings, Inc.
    Inventors: Robert M. Vidlund, Igor Kovalsky
  • Patent number: 11304799
    Abstract: An anchoring element for a heart valve prosthesis can include an upper support, a lower support, and a flexible connector. The upper support is configured to be positioned adjacent to a native valve structure of a patient. The upper support can include an anterior portion and a posterior portion. The lower support is separate from the upper support and can be configured to engage the native valve structure from a ventricular side. The lower support can include at least two engagement members. The flexible connector includes an upper end portion coupled to the upper support and a lower end portion coupled to the lower support. The lower support and the upper support are radially expandable from a collapsed configuration to an expanded configuration for delivery within the patient to treat a valve disorder.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 19, 2022
    Assignee: Micor Limited
    Inventors: Ji Zhang, Brandon G. Walsh, Cheng Y. Yang, Jinhua Zhu
  • Patent number: 11304797
    Abstract: Methods for replacing a native heart valve. An anchor comprises coils adapted to support a heart valve prosthesis. The anchor is positioned at a native heart valve. An expansible heart valve prosthesis is delivered into the anchor and expanded inside the coils. This moves at least one coil from a first diameter to a second, larger diameter while securing the anchor and the heart valve prosthesis relative to each other. The heart valve prosthesis comprises a seal on the expansible heart valve prosthesis. Additional apparatus and methods are disclosed.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: April 19, 2022
    Assignee: Mitral Valve Technologies Sarl
    Inventors: Paul A. Spence, Landon H. Tompkins, Mark Chau, Alexander J. Siegel
  • Patent number: 11305097
    Abstract: A method includes disposing a lumen-defining device within a portion of a vein of a patient. A support member is inserted into a lumen of the lumen-defining device and advanced through at least a portion of the lumen of the lumen-defining device. At least a portion of the lumen-defining device is supported via the support member such that the support member limits complete occlusion of the lumen in response to a force exerted on the lumen-defining device. A volume of bodily fluid is withdrawn from the patient via the lumen-defining device when the support member is disposed in the lumen-defining device.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: April 19, 2022
    Assignee: Velano Vascular, Inc.
    Inventors: Brian Funk, Pitamber Devgon
  • Patent number: 11298223
    Abstract: Provided is a foldable one-way valve prosthesis has an open state allowing a fluid to pass therethrough, and a closed state, preventing or at least reducing a reverse fluid flow therethrough. Leaflets are attached to each other along their common side edges with a possibility of pivoting relative to each other about the common side edge when the leaflets are folded along their folding lines causing the short section of the downstream edge to be angled with respect to the long section thereof, so as to bring the valve prosthesis into the closed state.
    Type: Grant
    Filed: August 15, 2018
    Date of Patent: April 12, 2022
    Assignee: GEONOVATION MEDICAL TECHNOLOGIES LTD.
    Inventor: Michaella Schumacher
  • Patent number: 11278412
    Abstract: An orthopaedic prosthetic component comprises a fixation peg including a porous three-dimensional structure configured to permit bone in-growth. The porous three-dimensional structure has an outer surface boundary. The fixation peg includes a plate attached to the porous three-dimensional structure at the outer surface boundary. The plate includes a tapered body having an outer wall that faces away from the porous three-dimensional structure and is devoid of any openings.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: March 22, 2022
    Inventors: Abraham P. Wright, Nicholas A. Miltner, Weidong Tong, Tyler S. Boggs, Bryan J. Smith
  • Patent number: 11173026
    Abstract: In certain embodiments, a multiple component heart valve prosthesis includes an abutment ring and a removable bioprosthetic heart valve. The abutment ring is configured for attachment at a heart valve annulus location and includes a locking system. The removable bioprosthetic heart valve includes a valve frame and at least one locking feature. The at least one locking feature is configured to be received by the locking system. The bioprosthetic heart valve can be rotated relative to the abutment ring such that the at least one locking feature transitions from a disengaged position to a first engaged position. When in the disengaged position the bioprosthetic heart valve may be removed from the abutment ring, and when rotated to the engaged position the bioprosthetic heart valve is restrained from axial movement relative to the abutment ring.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: November 16, 2021
    Assignee: Corcym S.r.l.
    Inventors: Silvano Moiso, Felice Giuseppe Carlino, Paolo Monelli, Monica Francesca Achiluzzi
  • Patent number: 11166810
    Abstract: An implantable prosthetic valve includes an annular metallic frame and a valve assembly supported within the frame. The annular support frame is constructed with three longitudinal support beams of fixed length and web-like constructions that extend between and connect the support beams. The support beams are spaced apart in a substantially equidistant manner. The web-like constructions allow the annular support frame to be radially collapsible and expandable. Each support beam preferably has a column of pre-formed openings or bores extending along a length of the support beam. The valve assembly includes three valve leaflets, wherein each leaflet has opposing side portions and each side portion is paired with an adjacent side portion of an adjacent leaflet to form a commissure. The three commissures are secured to three respective support beams with stitching that extends through the leaflets and through the pre-formed openings or bores.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: November 9, 2021
    Assignee: Edwards Lifesciences PVT, Inc.
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash, Avraham Zakai
  • Patent number: 11147667
    Abstract: An implantable prosthetic valve can include an annular frame comprising an inflow end and an outflow end and being radially collapsible and expandable between a radially collapsed configuration and a radially expanded configuration. A leaflet structure can be positioned within the frame and secured thereto. An annular sealing member can be positioned around an outer surface of the frame, wherein the sealing member has a periodic, undulating shape. An outer skirt can be positioned around an outer surface of the sealing member and secured to the frame.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: October 19, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventors: Ziv Yohanan, Tamir S. Levi, David Maimon, Michael G. Valdez, Tram Ngoc Nguyen
  • Patent number: 11123183
    Abstract: Described embodiments are directed toward centrally-opening leaflet prosthetic valve devices having a leaflet frame and a leaflet construct including one or more leaflets. In some examples, the leaflet construct is coupled to the leaflet frame via a retention element. In some examples, the retention element is in the form of an outer frame that is coaxially arranged with the leaflet frame.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: September 21, 2021
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Nathan L. Bennett, Joshua A. Sprinkle
  • Patent number: 11090175
    Abstract: A method of connecting an expansion ring to at least one end of a braided implant, the method including positioning the braided implant about a tube; everting an end portion of the braided implant over a first end of the tube; assembling an expansion ring to the braided implant, the expansion ring being a multi-leaved expansion ring comprising clips terminating with an open-ended coupling opening, wherein the openings are pushed over a set of intersecting wires of the braided implant at respective circumferential locations on or adjacent the first end of the tube; closing the openings over the set of intersecting wire; trimming ends of the braided implant; and reversing eversion of the braided implant thereby positioning the expansion ring internal to the braided implant.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: August 17, 2021
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Pedro Pedroso, Christopher Krier
  • Patent number: 11065113
    Abstract: A tubular seal includes an outflow end region and an inflow end region. The inflow end region is a portion of a polymeric web retaining a woven fabric, wherein the woven fabric has a non-linear edge defining an interface between the inflow end region and the outflow end region.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: July 20, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Andrew J. H. Backus, Loren M. Crow
  • Patent number: 11039921
    Abstract: Apparatus and methods are described herein for use in the transvascular delivery and deployment of a prosthetic mitral valve. In some embodiments, an apparatus includes a prosthetic heart valve that includes an inner frame and an outer frame couplable to the inner frame via sutures. The prosthetic heart valve is movable between a first configuration for delivery and a second configuration when implanted in a heart. When in the first configuration, the inner frame can be disposed axially proximal of the outer frame and loosely coupled together via the sutures. When in the second configuration, the inner frame and outer frame are disposed in a nested configuration and can be secured together with the sutures. In some embodiments, the sutures are secured with slip knots. In some embodiments, a delivery device can be used to secure the slip knots and sutures to the prosthetic valve.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: June 22, 2021
    Assignee: Tendyne Holdings, Inc.
    Inventor: Zachary J. Tegels
  • Patent number: 10966823
    Abstract: A prosthetic heart valve includes at least one sealing member. The sealing member is adapted to conform to any surface irregularities found on the inner surface of the valve annulus, including any calcium deposits formed on the valve leaflets. The sealing member can be self-expanding or non-expanding. When deployed, the sealing member is adapted to create a blood tight seal between the prosthetic heart valve and the inner surface of the valve annulus thereby minimizing and/or eliminating perivalvular leakage at the implantation site.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: April 6, 2021
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Rakesh M. Suri, W. Andrew Ziarno, Eric Manasse
  • Patent number: 10940303
    Abstract: The various implementations described herein include a percutaneous port for promoting tissue in-growth around the percutaneous port. In one aspect, the percutaneous port includes a tubular structure having an outer surface, and a coil having an outer surface and comprised of a plurality of loops. Furthermore, at least a portion of the outer surface of the coil is joined to the outer surface of the tubular structure.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: March 9, 2021
    Assignee: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Guangqiang Jiang, Tom He
  • Patent number: 10926472
    Abstract: An internal tissue including a lesion region in the human body is modeled as a three-dimensional model. By reconstructing thickness or flexibility of a lumen wall portion including the lesion region and making it possible to confirm a motion of the lumen wall or a flow of fluid in the inside of the lumen wall, a state of the lesion region in the lumen can be confirmed clearly by visual inspection or the like. As a result, the diagnosis in the lumen can be made easier.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: February 23, 2021
    Assignee: TERUMO CORPORATION
    Inventor: Hiroshi Misawa
  • Patent number: 10912644
    Abstract: Systems, devices, and methods for treating a diseased native valve in a patient, the system comprising a compressible and expandable frame structure and an anchor. The anchor comprises a wire having a free end and is configured to be fully advanced from an atrial side of a native valve in a patient into a ventricle of the heart and anchor the frame structure to the native valve when the frame structure is in the expanded configuration adjacent the native valve.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: February 9, 2021
    Assignee: Shifamed Holdings, LLC
    Inventors: Claudio Argento, Andrew Backus, Alice Yang
  • Patent number: 10869764
    Abstract: A venous valve with a tubular frame that includes an outer surface and an inner surface opposite the outer surface and defining a lumen, and a cover over at least the outer surface of the tubular frame, where the cover includes surfaces defining a reversibly sealable opening for unidirectional flow of a liquid through the lumen. A system with the venous valve and a catheter including a proximal end and a distal end, the venous valve located between the proximal end and distal end of the catheter. A method including forming the venous valve and reversibly joining the venous valve and a catheter. A method including positioning at least part of the catheter including the venous valve at a predetermined location and deploying the venous valve from the catheter at the predetermined location.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: December 22, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Susan M. Shoemaker, Jason P. Hill, Paul F. Chouinard, Leonard B. Richardson
  • Patent number: 10769477
    Abstract: Disclosed are a method, an apparatus, a device and a storage medium for extracting a cardiovisceral vessel from a CTA image, including: performing corrosion operation and expansion operation on an image data successively via a preset structural element to obtain a structure template, wherein the image data is a coronary angiography image after a downsampling processing, and the structure template is a structure excluding a pulmonary region; performing a transformation in layer-by-layer on slice images of the structure template to acquire a first ascending aorta structure in the structure template, and acquiring an aorta center coordinate and an aorta radius in the last layer of slice image of the structure template; and establishing a binarized spherical structure according to the aorta center coordinate and the aorta radius, and synthesizing a second ascending aorta structure by combining the first ascending aorta structure with the structure template and the binarized spherical structure.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: September 8, 2020
    Assignee: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY
    Inventors: Shoujun Zhou, Baochang Zhang, Baolin Li, Cheng Wang, Pei Lu
  • Patent number: 10751174
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. Interlocking members or flexible loops are included to limit expansion of the valve to one or two valve sizes, for example, with a 2-mm gap between each valve size. The valve may include an internal structural band with overlapped free ends having structure for limiting expansion, or external loops of suture may be added to the fabric covering which limits expansion.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: August 25, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian S. Conklin, Da-Yu Chang
  • Patent number: 10687938
    Abstract: Docking devices can be configured to be positioned at a native valve of a human heart to provide structural support for docking a prosthetic valve. The docking devices generally have coiled structures that define an inner space in which the prosthetic valve can be held. Some docking devices can be adjusted from a first wider configuration which facilitates easier advancement of the docking device around the valve anatomy, to a second narrower configuration after the docking device has been delivered to more securely hold the prosthetic valve. The docking device may also be better held in position at the native valve after adjustment to the narrower configuration. Some docking devices include a stabilization segment or double coil configuration, where a main coil region is configured to securely hold a prosthetic valve, while a stabilization coil region is configured to more stably hold the docking device at the native valve.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: June 23, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Darshin S. Patel, Hernan Altman, Boaz Manash, Tamir S. Levi, Dinesh L. Sirimanne
  • Patent number: 10646361
    Abstract: A method of connecting an expansion ring to at least one end of a braided implant is disclosed. The method can include positioning the braided implant about a tube; everting an end portion of the braided implant over a first end of the tube; assembling an expansion ring to the braided implant, the expansion ring being a multi-leaved expansion ring including clips terminating with an open-ended coupling opening. The openings can be pushed over a set of intersecting wires of the braided implant at respective circumferential locations on or adjacent the first end of the tube. The method can also include closing the openings over the set of intersecting wire; trimming ends of the braided implant; and reversing eversion of the braided implant thereby positioning the expansion ring internal to the braided implant.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: May 12, 2020
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Pedro Pedroso, Christopher Krier
  • Patent number: 10543085
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: January 28, 2020
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace Myong Kim, Louis A. Campbell, Donald E. Bobo, Jr., Myron Howanec, Jr., David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas H. Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Patent number: 10478289
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: November 19, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Patent number: 10426604
    Abstract: A prosthetic heart valve is designed to be circumferentially collapsible for less invasive delivery into the patient. At the implant site the valve re-expands to a larger circumferential size, i.e., the size that it has for operation as a replacement for one of the patient's native heart valves. The valve includes structures that, at the implant site, extend radially outwardly to engage tissue structures above and below the native heart valve annulus. These radially outwardly extending structures clamp the native tissue between them and thereby help to anchor the prosthetic valve at the desired location in the patient.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: October 1, 2019
    Assignee: St. Jude Medical, LLC
    Inventor: Peter N. Braido
  • Patent number: 10413401
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the tubular stent. The anti-paravalvular leakage component includes a radially-compressible annular scaffold, which is a sinusoidal patterned ring of self-expanding material, and an impermeable membrane extending over the annular scaffold. The anti-paravalvular leakage component has an expanded configuration in which at least segments of the annular scaffold curve radially away from the tubular stent. Alternatively, the anti-paravalvular leakage component includes a plurality of self-expanding segments and an annular sealing element coupled to inner surfaces of the segments. The anti-paravalvular leakage component has an expanded configuration in which the segments curve radially away from the tubular stent and the annular sealing element is positioned between an outer surface of the tubular stent and inner surfaces of the segments.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: September 17, 2019
    Assignee: MEDTRONIC CV LUXEMBOURG S.A.R.L.
    Inventors: Carol Eberhardt, Gopikrishnan Soundararajan, Kenny Dang, Hussain Rangwala
  • Patent number: 10376680
    Abstract: Devices and methods for treating heart disease by normalizing elevated blood pressure in the left and right atria of a heart of a mammal are disclosed. Devices may include an adjustable hydraulic diameter and/or a removable and/or replaceable shunt portion. Devices may include absorbable materials, the absorption of which directly or indirectly causes alterations of the fluid flow capacities the devices.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: August 13, 2019
    Assignee: Corvia Medical, Inc.
    Inventors: Edward I. McNamara, Michael W. Sutherland, Matthew J. Finch, Stephen J. Forcucci
  • Patent number: 10314693
    Abstract: A prosthetic heart valve includes a collapsible and expandable stent having a proximal end, a distal end, an annulus section adjacent the proximal end and an aortic section adjacent the distal end, the stent including a plurality of struts. A cuff may be coupled to the stent so that a flat, bottom edge of the cuff lies adjacent the proximal end of the stent. A pattern of stitches may be circumferentially disposed around the flat bottom edge of the cuff, the pattern of stitches alternating between stitches sewn to the cuff only and stitches sewn to both the cuff and the stent.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: June 11, 2019
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter N. Braido, Andrea L. McCarthy, Kent J. Smith
  • Patent number: 10226336
    Abstract: A stented prosthetic heart valve including a stent assembly, a leaflet assembly, and mounting members. The stent assembly includes a stent post frame, a stent post frame covering, and a base frame. The stent post frame includes a continuous rail forming a closed-curved shape defining a longitudinal axis, and a plurality of circumferentially-spaced posts projecting from cusp segments in a direction of the longitudinal axis. The cloth covering encompasses the rail. The base frame supports the cusp segments. The valve leaflet assembly is attached to the stent assembly, and includes a leaflet clamped between one of the cusp segments and the base frame. The mounting members each directly pass through the stent post frame cloth covering, the first leaflet and the base frame. The rail can have a constant cross-sectional shape with a major axis dimension that is greater than a minor axis dimension.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: March 12, 2019
    Assignee: Medtronic, Inc.
    Inventors: Jason Beith, Elliot Howard
  • Patent number: 10130462
    Abstract: An intra-annular mounting frame for an aortic valve having native aortic cusps is provided which includes a frame body with native leaflet reorienting curvatures and interconnecting points; the curvatures shaped to be received inside the valve below the native aortic cusps and to reorient the native aortic cusps within the aortic valve, where each of the curvatures extends concavely upward from a reference latitudinal plane tangential to each curvature's base.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: November 20, 2018
    Assignee: BioStable Science & Engineering, Inc.
    Inventor: J. Scott Rankin
  • Patent number: 10086184
    Abstract: The various implementations described herein include methods used to manufacture a percutaneous port for promoting tissue in-growth around the percutaneous port. In one aspect, the method includes providing a tubular structure having an outer surface and providing a coil having an outer surface and comprised of a plurality of loops. The method further includes joining at least a portion of the outer surface of the coil to the outer surface of the tubular structure.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: October 2, 2018
    Assignee: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Guangqiang Jiang, Tom He
  • Patent number: 10080653
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. Interlocking members or flexible loops are included to limit expansion of the valve to one or two valve sizes, for example, with a 2-mm gap between each valve size. The valve may include an internal structural band with overlapped free ends having structure for limiting expansion, or external loops of suture may be added to the fabric covering which limits expansion.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: September 25, 2018
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian S. Conklin, Da-Yu Chang
  • Patent number: 10052198
    Abstract: A coiled anchor for docking a mitral valve prosthesis at a native mitral valve of a heart has a first end, a second end, and a central axis extending between the first and second ends, and defines an inner space coaxial with the central axis. The coiled anchor includes a coiled core including a bio-compatible metal or metal alloy and having a plurality of turns extending around the central axis in a first position, and a cover layer around the core, the cover layer including a bio-compatible material that is less rigid than the metal or metal alloy of the coiled core.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: August 21, 2018
    Assignee: Mitral Valve Technologies Sarl
    Inventors: Mark Chau, Alexander J. Siegel, Paul A. Spence, Landon H. Tompkins
  • Patent number: 10052202
    Abstract: A heart valve assembly has a frame comprising an anchoring section, a generally cylindrical leaflet support section, and a neck section that transitions between the anchoring section and the valve support section. The anchoring section has a ball-shaped configuration defined by a plurality of wires that extend from the leaflet support section, with each wire extending radially outwardly to a vertex area where the diameter of the anchoring section is at its greatest, and then extending radially inwardly to a hub. A plurality of leaflets are stitched to the leaflet support section. The heart valve assembly is delivered to the location of a native pulmonary trunk, the vertex area of the anchoring section is deployed into the native pulmonary arteries such that the vertex area is retained in the pulmonary arteries, and then the leaflet support section is deployed in the pulmonary trunk.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 21, 2018
    Assignee: Venus Medtech (Hangzhou) Inc
    Inventors: Min Frank Zeng, Pham Lo
  • Patent number: 9980814
    Abstract: The kit (10) of the invention includes a valve bearing (16) that can be radially deformed. The bearing (16) includes an outer peripheral wall (22) defining a central passage (40) having an axis (X-X?). The bearing (16) further includes an inner peripheral wall (24) defining an inner lumen (44) having a radial dimension lower than that of the central passage (40). The kit (10) includes a prosthetic valve (18) to be placed on the inner peripheral wall (24). The inner peripheral wall (24) extends in the central passage axially relative to the outer wall (22). The valve bearing (16) includes a means (26) for maintaining the inner peripheral wall (24) radially remote from the outer peripheral wall (22). The inner peripheral wall (24) and the maintaining means (26) define an inner blood circulation region (56) containing the lumen (44) which is tightly isolated from an outer region (58).
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: May 29, 2018
    Assignee: CORMOVE
    Inventor: Mikolaj Styrc
  • Patent number: 9827095
    Abstract: A stentless support structure capable of being at least partly assembled in situ. The support structure comprises a braided tube that is very flexible and, when elongated, becomes very long and very small in diameter, thereby being capable of placement within a small diameter catheter. The support structure is preferably constructed of one or more thin strands of a super-elastic or shape memory material such as Nitinol. When released from the catheter, the support structure folds itself into a longitudinally compact configuration. The support structure thus gains significant strength as the number of folds increase. This radial strength obviates the need for a support stent. The support structure may include attachment points for a prosthetic valve.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: November 28, 2017
    Assignee: HLT, Inc.
    Inventors: Gary A. Thill, Robert Foster Wilson, John P. Gainor, Christopher M. Banick
  • Patent number: 9820851
    Abstract: A prosthetic heart valve is designed to be circumferentially collapsible for less invasive delivery into the patient. At the implant site the valve re-expands to a larger circumferential size, i.e., the size that it has for operation as a replacement for one of the patient's native heart valves. The valve includes structures that, at the implant site, extend radially outwardly to engage tissue structures above and below the native heart valve annulus. These radially outwardly extending structures clamp the native tissue between them and thereby help to anchor the prosthetic valve at the desired location in the patient.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: November 21, 2017
    Assignee: St. Jude Medical, LLC
    Inventor: Peter N. Braido
  • Patent number: 9775704
    Abstract: The present invention provides valve prostheses adapted to be initially crimped in a narrow configuration suitable for catheterization through body ducts to a target location and adapted to be deployed by exerting substantially radial forces from within by means of a deployment device to a deployed state in the target location.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: October 3, 2017
    Assignee: Medtronic3F Therapeutics, Inc.
    Inventors: Bjarne Bergheim, Keith E. Myers, Jeffrey P. DuMontelle, Christine Nguyen
  • Patent number: 9649192
    Abstract: A method for heart valve surgery may include providing a cardiac valve ring and suture loops connected to the cardiac valve ring, accessing a valve annulus of the heart of the patient, stapling at least one of the sutures loop to the valve annulus, and parachuting the cardiac valve ring down the suture to the valve annulus after the stapling. The cardiac valve ring may be an annuloplasty ring, a replacement heart valve, or other medical device.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: May 16, 2017
    Assignee: Dextera Surgical Inc.
    Inventor: Bernard A. Hausen
  • Patent number: 9622863
    Abstract: This application relates to methods, systems, and apparatus for replacing native heart valves with prosthetic heart valves and treating valvular insufficiency. In a representative embodiment, a support frame configured to be implanted in a heart valve comprises an annular main body formed by a plurality of angled struts, the main body including a plurality of peaks formed by the intersection of respective adjacent struts. The support frame further comprises one or more leaflet-engaging mechanisms configured to engage leaflets of the heart valve. The support frame can be radially expandable and collapsible.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: April 18, 2017
    Assignee: Edwards Lifesciences Corporation
    Inventors: Emil Karapetian, Charles Stanislaus, Gregory Bak-Boychuk, Christopher Olson, Cristobal Hernandez, William Brunnett, Netanel Benichou, Lauren Freschauf, Alex Siegel
  • Patent number: 9605534
    Abstract: A system, method and computer-readable medium for monitoring a fluid injection at a downhole location in a wellbore is disclosed. A member is provided in the wellbore. The member includes a passage for flow of fluid and a fiber optic cable including a plurality of temperature sensitive sensors wrapped around the member. A selected temperature signal is imparted into the fluid flowing in the member. A temperature of the fluid exiting the member at the downhole location is measured using the plurality of temperature sensors. The measured temperature and the imparted temperature signal are compared to determine a flow parameter of the injected fluid.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: March 28, 2017
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Jeff Chen, Luis E. Mendez, Chee M. Chok, Xudong Yang
  • Patent number: 9585749
    Abstract: A replacement heart valve assembly. An expandable anchor is disclosed that has a skirt region, a lip region, and a plurality of posts attached to the skirt region. A replacement heart valve is attached to the posts. The lip region has interlocking elements that are secured to the posts where the interlocking elements have eyelets. Tabs extend into the eyelets to mate with holes in the posts.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: March 7, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Patent number: 9539088
    Abstract: A fixation band for affixing a prosthetic heart valve to tissue having proximal and distal annular portions positionable relative to one another, the proximal and distal annular portions each having a proximal and distal sides, the proximal side of the distal annular portion and the distal side of the proximal annular portion being oriented toward one another, and a prosthetic heart valve being attachable to one of the distal side of the distal annular portion and the proximal side of the proximal annular portion; staples configured between the distal side of the proximal annular portion and the proximal side of the distal annular portion; and a compression device operative between the proximal and distal annular portions for selectively positioning the proximal and distal annular members toward one another for compressing the staples therebetween and deploying the staples into tissue so as to affix the prosthetic heart valve to tissue.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: January 10, 2017
    Assignee: Medtronic, Inc.
    Inventors: Steven B. Woolfson, Richard B. Streeter, Daniel C. Taylor, John R. Liddicoat
  • Patent number: 9526614
    Abstract: A device for improving the function of a heart valve comprises a first loop-shaped support, which is configured to abut a first side of the heart valve, and a second loop-shaped support, which is configured to abut a second side of the heart valve opposite to said first side, whereby a portion of the valve tissue is trapped between the first and second supports. An outer boundary of the second support is greater than an outer boundary of the first support.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: December 27, 2016
    Assignee: Medtentia International Ltd. Oy
    Inventor: Olli Keränen
  • Patent number: 9474601
    Abstract: A heart valve assembly includes a base including a multi-lobular annular shape within a plane, a valve member or other annular body including a multi-lobular shape complementary to the shape of the base, and cooperating connectors on the base and the annular body for connecting the annular body to the base. The base includes an anchoring ring, and a flexible cuff for attaching the base to a biological annulus. The base and the annular body include guides for aligning their multi-lobular shapes, e.g., visual, tactile, or other markers, or tethers that extend from the base that are slidable through the annular body. During use, the base is attached to a biological annulus, the annular body is directed adjacent the annulus, oriented such that the multi-lobular shape of the annular body valve member is aligned with the base, and the annular body is attached to the base.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: October 25, 2016
    Assignee: Medtronic, Inc.
    Inventors: Michael J. Drews, Donnell W. Gurskis, Stephen R. Bacich
  • Patent number: 9393113
    Abstract: A method for endovascularly replacing a heart valve of a patient. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor in an unexpanded configuration within a catheter to a vicinity of the heart valve; deploying the anchor from the catheter; expanding the anchor to contact tissue at an anchor site; and retrieving the anchor into the catheter. The invention also includes an apparatus for endovascularly replacing a heart valve, including: a catheter; a replacement valve configured to be disposed within the catheter for delivery to a vicinity of the heart valve; and an expandable anchor configured to be disposed within the catheter for delivery to a vicinity of the heart valve, to be deployed from the catheter, to be expanded to contact tissue at an anchor site and to be retrieved back into the catheter after having been expanded.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: July 19, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Patent number: 9289289
    Abstract: A device for anchoring a prosthetic heart valve on biological tissue, includes first and second anchoring assemblies, mutually couplable to secure biological tissue therebetween. The anchoring assemblies include at least one pair of complementary arched portions having anchoring formations for anchoring on the biological tissue. The anchoring formations include integral extensions of the anchoring assemblies extending radially outwardly of one of the anchoring assemblies.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: March 22, 2016
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Giovanni Rolando, Mauro Ercolani, Paolo Gaschino, Andrea Marchisio
  • Patent number: 9277991
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a delivery catheter having a diameter of 21 french or less; an expandable anchor disposed within the delivery catheter; and a replacement valve disposed within the delivery catheter. The invention also includes a method for endovascularly replacing a heart valve of a patient. In some embodiments the method includes the steps of: inserting a catheter having a diameter no more than 21 french into the patient; endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve through the catheter; and deploying the anchor and the replacement valve.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: March 8, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Patent number: 9211361
    Abstract: This invention relates to processes of preparing heterogeneous graft material from animal tissue. Specifically, the invention relates to the preparation of animal tissue, in which the tissue is cleaned and chemically cross-linked using both vaporized and liquid cross-linking agents, resulting in improved physical properties such as thin tissue and lowered antigenicity, thereby increasing the ease of delivering the tissue during surgery and decreasing the risk of post-surgical complication, respectively.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: December 15, 2015
    Inventor: Kemal Schankereli
  • Patent number: RE45865
    Abstract: A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable valve support. If desired, one or more anchor may be used. The valve support, which entirely supports the valve annulus, valve leaflets, and valve commissure points, is configured to be collapsible for transluminal delivery and expandable to contact the anatomical annulus of the native valve when the assembly is properly positioned. The anchor engages the lumen wall when expanded and prevents substantial migration of the valve assembly when positioned in place. The prosthetic valve assembly is compressible about a catheter, and restrained from expanding by an outer sheath. The catheter may be inserted inside a lumen within the body, such as the femoral artery, and delivered to a desired location, such as the heart.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: January 26, 2016
    Assignee: Medtronic CoreValve LLC
    Inventors: Jacques Seguin, Georg Börtlein