Liquid Disposal System For Kitchen Safety

A liquid disposal system comprises a nozzle configured to suck liquid from a kitchen container, wherein the nozzle is configured to be manipulated by a user's hand. The system comprises a pipe coupled to the nozzle, wherein the pipe is configured to direct liquid from the nozzle to a disposal means. The system comprises a suction pump coupled to the nozzle and to the pipe, wherein the suction pump is configured to suck liquid through the nozzle and pipe when the suction pump is activated.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 61/461,494, filed on Jan. 18, 2011 the disclosure of which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

The disclosed embodiments relate generally to management of liquids in residential or commercial kitchens or workshops.

BACKGROUND

Kitchens often contain pots of hot or boiling liquid for preparing food. Such pots are also used for industrial production or processing. Such pots of hot liquid may pose a scald hazard (e.g., boiling water) or burn hazard (e.g., frying oil). A pot containing liquid may also pose a weight hazard. Even if the liquid is cold the pot may be heavy enough to cause injury to a person lifting it (e.g., back strain, or risk of dropping the pot) or losing balance and falling.

Conventional methods of emptying pots often require a user to lift the full pot of liquid (heavy and usually hot or boiling) to a sink or waste disposal area, and pour the pot down. Alternative methods involve scooping liquid out step by step to reduce the volume/weight of the pot contents prior to lifting the pot. This also is risky as it poses a splash and/or steam scald hazard. Further for liquids that may be flammable (e.g., frying oil) one must take care to avoid the liquid spilling onto the cooking/heating surface as it poses a fire and/or fume hazard (from oil fuming, smoking, or igniting under heat).

It would be desirable to have a method and system to empty pots or other containers of liquid so that the liquid may be safely, cleanly, and rapidly removed from the pot. It would be desirable to allow this removal to be controlled by the user or controlled automatically by the system.

SUMMARY

A liquid disposal system, comprises a nozzle configured to suck liquid from a kitchen container, wherein the nozzle is configured to be manipulated by a user's hand, a pipe coupled to the nozzle, wherein the pipe is configured to direct the liquid from the nozzle to a disposal means, and a suction pump coupled to the nozzle and to the pipe, wherein the suction pump is configured to suck the liquid through the nozzle and the pipe when the suction pump is activated.

In some embodiments, the suction pump is electrically operated and configured to be activated by the user's hand. In some embodiments, the suction pump comprises a self-priming pump. In some embodiments, the nozzle is configured to be coupled to a filter for preventing particles from clogging the nozzle, pipe, or pump.

In some embodiments, the system comprises a back-flow preventer for preventing previously sucked liquid or particles from flowing back out the nozzle. In some embodiments, the operation of the suction pump is configured to be controlled by the user's hand manipulating the nozzle. In some embodiments, the operation of the suction pump is configured to be activated automatically by a liquid sensor in the nozzle. In some embodiments, the liquid sensor is configured to activate the pump when placed in a liquid, and to deactivate the pump when removed from the liquid or when the liquid runs dry or runs below a shut-off level. In some embodiments, the suction pump and the nozzle are housed in a handheld unit configured to be manipulated by the user's hand. In some embodiments, the handheld unit further comprises a grinder for reducing the size of a solid particle entering the nozzle.

In some embodiments, disposal means comprises a waste water drain. In some embodiments the disposal means comprises a kitchen garbage disposal unit. In some embodiments, the suction pump is configured to be electrically coupled to the kitchen garbage disposal. In some embodiments, the disposal means comprises a settling tank for separating liquid from solid waste.

In some embodiments, a mount for securing the nozzle is proximate to a cooktop. In some embodiments, the mount comprises a lifting mechanism coupled to the nozzle for lifting the nozzle to an elevated level above the cooktop or allowing the nozzle to be lowered to the cooktop. In some embodiments, the mount comprises a swinging mechanism coupled to the nozzle for positioning the nozzle in a first position above the cooktop and allowing the nozzle to be lowered to the cooktop, or in a second position away from the cooktop. In some embodiments, the mount comprises a holder for securing the nozzle substantially level with the cooktop.

A handheld liquid disposal unit comprises a nozzle configured to suck liquid from a kitchen container, a pipe coupling for attaching an exit pipe to the handheld liquid disposal unit, wherein the pipe coupling is configured to direct liquid from the handheld liquid disposal unit to an exit pipe, and a suction pump coupled to the nozzle and to the pipe coupling, wherein the suction pump is configured to suck liquid through the nozzle and direct the liquid to the pipe coupling when the suction pump is activated.

In some embodiments the suction pump is configured to be powered by an electrical supply. In some embodiments, the suction pump is configured to be powered by a rechargeable battery coupled to the unit. In some embodiments, the rechargeable battery is configured to be removable from the unit and to be charged separately from the unit. the rechargeable battery is configured to be charged while coupled to the unit by direct or indirect electrical contact.

A handheld liquid disposal unit comprises a nozzle configured to suck liquid from a kitchen container, and a pipe coupling for attaching an exit pipe to the handheld liquid disposal unit, wherein the pipe coupling is configured to direct liquid from the handheld liquid disposal unit to an exit pipe, wherein the nozzle and pipe are configured to be coupled to a suction pump external to the unit to suck liquid through the nozzle and direct the liquid to the pipe coupling when the suction pump is activated.

In some embodiments, the handheld liquid disposal unit comprises a switch configured to send an activation signal to the suction pump or to a controller coupled to the suction pump, in response to a user's input or in response to a sensor instruction. In some embodiments, the activation signal is transmitted wirelessly from the unit to the suction pump or to the controller coupled to the suction pump. In some embodiments, the activation signal is transmitted over a physical connection from the unit to the suction pump or to the controller coupled to the suction pump.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a first embodiment.

FIG. 2 illustrates a second embodiment.

FIG. 3 illustrates a third embodiment.

FIG. 4 illustrates a fourth embodiment.

FIG. 5 illustrates a fifth embodiment.

FIG. 6 illustrates a sixth embodiment.

FIG. 7 illustrates a seventh embodiment.

FIG. 8 illustrates an eighth embodiment.

FIG. 9 illustrates a ninth embodiment.

FIG. 10 illustrates a tenth embodiment.

FIG. 11 illustrates an eleventh embodiment.

FIG. 12 illustrates a twelfth embodiment.

Like reference numerals refer to corresponding parts throughout the drawings.

DESCRIPTION OF EMBODIMENTS

FIG. 1 illustrates a first embodiment where a suction vent (in some embodiments, also referred to as a nozzle) is stored or located proximate to (e.g., above, to the side of, on level with, or below) a kitchen or commercial range or area where hot liquids are used. The nozzle provides or directs a suction function to remove liquid from pots or other containers. In some embodiments, the suction is controllable by the user to remove liquid at a fast or slow rate. The suction vent is coupled via a vacuum mechanism or pump (vacuum) to a waste drain.

In some embodiments, when a user activates the suction vent and places it in the pot of liquid, the suction vent removes the liquid from the pot in a controlled fashion.

FIG. 1A illustrates 100 a cook-top (e.g., a range) 101. A pot (e.g., a kitchen container) 105 sits on or above the cook-top 100. The pot contains hot liquid 110. A nozzle 120 as described is coupled to a pipe 125 (also referred to as a hose). The nozzle is configured to suck liquid up and through the pipe 125 when activated. In FIG. 1A the nozzle is located above the liquid 110 and is not yet active (i.e., suction is not yet activated).

FIG. 1B illustrates 150 the pot (kitchen container) 105 and the cook-top 101 of FIG. 1A. The nozzle 120 has been lowered into the pot and suction has been activated, and is sucking 135 up the liquid in the pot, thus causing the liquid level to fall 115.

FIG. 2A illustrates 200, a second embodiment, where the nozzle 120 comprises an upper portion 210 and a lower portion 220. In this embodiment, a user may activate and deactivate the suction function by rotating 224 the lower portion 220 relative to the upper portion 210, e.g., around joint 225. Water can flow through opening 226, or in some embodiments through one or more holes 227 on the side of the lower portion 220.

In some embodiments, the suction function (e.g., a suction pump) is electrically operated and configured to be activated by a user's hand. For example, the suction pump may draw power from an external source or from an internal rechargeable battery, and may be activated by a control (e.g., button, lever, or capacitive sensor) on the nozzle. In some embodiments, the suction pump comprises a self-priming pump.

FIG. 2B illustrates 230 a push-in type valve 231, where a button or control is pushed to activate and released to deactivate the suction function. FIG. 2C illustrates 240 a twist open type value 241, where twisting 242 a handle, key or knob serves to activate and deactivate the suction function. FIG. 2D illustrates 250 a lever type valve (e.g., a 90 degree or 180 degree type lever) where a lever is moved from a first position 255 to a second position 251 to activate or deactivate the suction function. In other embodiments, different types or arrangements of commonly used valves and switches may be used to control the activation or deactivation of the suction function.

In the embodiments of FIG. 2, the user may control the rate of liquid removal by adjusting the valve open or closed by degrees.

FIG. 3 illustrates 300 a third embodiment, where nozzle 120 is placed in liquid 115 and a suction function activated, sucking 135 the liquid up through pipe 125 to a liquid suction pump 310 (e.g., for example constructed like a bilge pump or garden water pump). In this embodiment, the suction pump 310 provides the suction function, and is powered by a supply (e.g., battery or mains current) 330. The suction pump sends the liquid to a waste or sewer pipe 320 to dispose of it.

In some embodiments, the operation of the suction pump is configured to be controlled by the user's hand manipulating the nozzle. For example, a user may manually turn on the pump with same hand that holds the nozzle. In some embodiments, one-handed operation is a preferred embodiment of the system.

In some embodiments, the operation of the suction pump is 310 configured to be activated automatically by a liquid sensor in the nozzle 120. For example, the pump may turn on when it senses or is immersed in liquid. In some embodiments, the liquid sensor is configured to activate the pump when placed in a liquid, and to deactivate the pump when removed from the liquid, or when the liquid runs dry or runs below a shut-off level. For example, the pump may have an automatic shut-off function to prevent damage to the pot or pump if most or all liquid removed.

In the example of FIG. 3, the liquid 115 that is suctioned from the pot (e.g., 105) goes through a liquid pump 310 to a waste disposal drain. In some embodiments, the liquid pump is designed to go directly to a waste pipe (e.g., a sewer pipe) 320.

In another embodiment illustrated 350 in FIG. 3B the pump 310 may be coupled (e.g., plumbed) to a garbage disposal (e.g., a waste disposal unit/grinder 340 such as one found in many household kitchens) to send the liquid through the garbage disposal to a waste or sewer pipe 320. This avoids the need to have a separate waste connection for the pump 310. In another embodiment, the pump 310 may be configured as an attachment to garbage disposal 340, drawing electrical power 330 from the garbage disposal power supply. In another embodiment, the pump 310 may be housed within the same chassis or casing as garbage disposal 340, i.e., as a built in function of the garbage disposal unit.

FIG. 4 illustrates 400 a fourth embodiment where waste from pipe 125 passes through pump 310 to a settling tank 410. In some embodiments, the settling tank is for separating liquid from solid waste. A valve 420 (e.g., manually or automatically controlled) allows liquid to flow to drain 430, but prevents the solid waste from draining out. In some embodiments, this arrangement may be used to separate liquid (e.g., waste vegetable oil) from particles or solids suspended in the liquid (e.g., food or burned particles) to allow the liquid to be recycled or re-used (e.g., after filtration).

FIG. 5 illustrates 500 a fifth embodiment (e.g., illustrated in FIGS. 5A, 5B, 5C) wherein the nozzle 120 is configured to be coupled to a filter or mesh 520 for preventing particles from clogging the nozzle, pipe, or pump. For example, a removable mesh filter may be used to prevent large particles clogging the nozzle, or prevent food a user wants to keep from getting sucked up (e.g., spaghetti strands). In FIG. 5A, a grip 510 coupled to or formed as part of the nozzle 120 allows the filter 520 to be easily and securely attached to the nozzle 120. The filter 520 may also be easily detached by a user as desired.

In an embodiment 501 (FIG. 5A) a press-fit or friction grip 510 may be used to couple the filter 520 to nozzle 120. In an embodiment 531 (FIG. 5B), screw threads 530 may be used to couple the filter 520 to nozzle 120. In an embodiment 541 (FIG. 5C), a magnetic attachment 530 (e.g., using rare-earth magnets) may be used to couple the filter 520 to nozzle 120. In some embodiments, a quick-disconnect valve (e.g., such as those used on gas canisters or gas lines) may be used to couple the filter 520 to nozzle 120. In some embodiments, any of these described means may be used to couple nozzle 120 to pipe 125, e.g., by a pipe grip.

In some embodiments, the nozzle 120 comprises a grinder for reducing the size of a solid particle entering the nozzle. For example, a small rotating blade may be coupled to the nozzle or handheld unit, to prevent large food particles from clogging the nozzle or pump. For example hand-held food blender blade or the likes may be used.

In some embodiments, the nozzle 120 may comprise a back-flow preventer to prevent previously sucked liquid or particles from flowing back out the nozzle. In some applications it is desirable to prevent waste that has been sucked up from flowing back down and contaminating the pot 105. This is particularly relevant in kitchen or food preparation applications. In some embodiments, the nozzle 120 may contain an anti-siphon valve.

FIG. 6 illustrates 600 a sixth embodiment wherein the nozzle 120 is shown with the filter 520 removed, e.g. for washing or cleaning. Having a removable attachment point such as grip 510 (shown 601 in FIG. 6A as 612, 613), screw thread 530 (shown 631 in FIG. 6B as 632, 633), or magnetic attachment 540 (shown 641 in FIG. 6C as 642, 643) allows a variety of attachments or toolheads to be coupled to the nozzle. In other embodiments, other attachment means could be used.

FIG. 7 illustrates 700 a seventh embodiment wherein a pot 105 containing liquid 115 sits on range or cooktop 101. Nozzle 120 is coupled by a hose 725 (e.g., a flexible or bendable hose) to a mount or support 710. The mount allows the nozzle 120 to be stored proximate to (e.g., within easy reach of, where a user is most likely to use it) the range 101 or pot 105. In some embodiments, the mount is configured to be installed against or near a back wall 720 or a side wall of the range itself or of a kitchen area. An advantage of placing the mount against or near the back wall is that it can prevent any liquid drips from the nozzle from falling onto the range 101 or pot 105.

Mount 710 is configured to direct hose 725 (or another hose or pipe to which hose 725 is coupled) to a pump 310 and/or to a drain 320. In embodiments where a pump is included in the handheld unit (of which nozzle 120 is part) then pump 310 may not be necessary.

FIG. 8 illustrates 800 an eighth embodiment wherein pot 105 containing liquid 115 sits on range or cooktop 100. Nozzle 120 is coupled by a hose or pipe 810 (e.g., in some embodiments a flexible or bendable hose, or some embodiments a rigid pipe) to a spring or elastic support 820, coupled to attachment 830. In some embodiments, the spring 820 and attachment 830 provide a vertical mount. The function of the spring 820 is to provide a lifting mechanism (coupled to the pipe 810 and nozzle 120) for lifting the nozzle to an elevated level above the cooktop or allowing the nozzle to be lowered to the cooktop. This provide an automatic lift up of nozzle above the range (e.g., if a user releases his/her grip on the nozzle), or allows nozzle to be lowered to the range if a user so directs it, e.g., with his/her hand. The pipe 810 is coupled to a drain or waste pipe 840 as previously described. In some embodiments pipe 810 is coupled to a pump (not shown in FIG. 8).

An advantage of this arrangement is that it allows a user to easily grasp the nozzle and direct it to the pot, activate the suction function to drain liquid from the pot, and then release the nozzle so it that it raises up above the cooktop out of the way. In some embodiments, the spring 820 may be locked in an extended position so a user can place the nozzle 120 in the pot 105 to drain the liquid 115, and step away for a short period while the draining is occurring. This avoids the need for the user to stand at the pot holding the nozzle in the pot during the draining process. Alternatively, the nozzle 120 may have a clip to attach to the pot or to a handle of the pot to keep the nozzle in place in the pot during the suction operation.

FIG. 9 illustrates 900 a ninth embodiment wherein pot 105 containing liquid 115 sits on range or cooktop 100. Nozzle 120 is coupled to a sliding or rotatable joint 730, which is coupled to pipe 740. In some embodiments, pipe 740 is coupled to a sliding or rotatable joint 735, which is coupled in turn to drain 320. In some embodiments, a pump 310 is coupled to pipe 740 and drain 320.

This arrangement provides a swinging mechanism (e.g., via connection 730 and/or 735) coupled to the nozzle for positioning the nozzle in a first position above the cooktop and allowing the nozzle to be lowered (e.g., via connection 730 and/or 735) to the pot 105 on the cooktop, or in a second position away from the cooktop. The swinging mechanism allows the nozzle to be swung back towards or against a wall, or swung out over the cooktop so the nozzle can be lowered into a kitchen container 105. This provides a convenient means for positioning the nozzle, draining liquid, and storing the nozzle out of the way, via a one-handed operation.

FIG. 10A illustrates 1000 a tenth embodiment wherein pot 105 containing liquid 115 sits on range or cooktop 100. Nozzle 1105 is configured to be stored in mount/holder 1010, where the holder is configured to secure the nozzle substantially level with the cooktop. In some embodiments, a cooktop-level mount is advantageous so no liquid can drop down from above into the pot 105. In some embodiment (as illustrated in FIG. 10) the nozzle is configured to be stored upside down, with the excess hose stored out of the way below the cooktop. In some embodiments, the nozzle could be stored to the side of the cooktop. In some embodiments, the nozzle could be stored oriented downwards (e.g., nozzle down and hose up, like in normal operation).

FIG. 10B illustrates 1050 how the nozzle 1005 may be lifted and placed in the pot 105 to drain the liquid to a drain 320 and/or to pump 310, as described. This provides a convenient means for positioning the nozzle, draining liquid, and storing the nozzle out of the way, via a one-handed operation. In some embodiments, mount 70 may or may not be used, depending on a kitchen layout or on a particular application.

An advantage of this arrangement is that the nozzle is stored out of the way so no liquid or drips can fall out into the pot or on the range. A further advantage is that the excess or unused hose is stored in a visually pleasing manner out of sight, and there is nothing store above or to the side of the range/cooktop, providing a sleeker and less cluttered arrangement.

FIG. 11A illustrates 1100 a nozzle 1105 configured to be held in a grip area 1110 by a user's hand 1115. The grip area 1110 may include a texture, ridges, ergonomically shaped grip to suit a user's hand 1115, etc. The grip area provides a firm grip so that the nozzle 1105 will not slip from a user's hand even if wet, oily, etc. In some embodiments, the nozzle 1105 is designed with a suction area 1120 separated from the grip area 1110 by a distance 1121. The purpose of this separation/distance is to reduce the likelihood of a user accidentally holding the grip area 1110 too close to hot contents of a pot and burning his/her hand 1115. In some embodiments, the separation/distance may be varied according to the application. In some embodiments, a funnel or pipe attachment may be coupled (e.g., using the attachment mechanisms described in FIG. 5) to the nozzle 1105 to provide a greater distance between the hand and the point at which the funnel or pipe end enters hot liquid. This may be particularly useful when dealing with tall pots such as stock pots, pasta pots, etc.

FIG. 11B illustrates 1150 a nozzle 1155 configured to be held in a grip area 1110 by a user's hand 1115. The nozzle comprises a ridge or splashguard 1160 that extends around at least partially the circumference of nozzle 1155. This ridge 1160 serves to protect the hand 1115 from splashes of hot liquid when the nozzle 1155 is being held by hand 1115.

In some embodiments of the described system, the suction pump and the nozzle are housed in a handheld unit configured to be manipulated by the user's hand. In this arrangement, the nozzle and pump are in single unit/chassis for one-handed operation, like a one-handed food blender.

FIG. 12 illustrates 1200 a handheld liquid disposal unit. The handheld liquid disposal unit (HLDU) provides a self-contained nozzle 1220 and suction system. The nozzle comprises an opening 1221 configured to suck liquid from a kitchen container. A pipe coupling 1235 is coupled to the nozzle 1220 and the opening 1221, where the pipe coupling is configured to attach to an exit pipe. The pipe coupling is configured to direct liquid from the nozzle (via the opening 1221) to an exit pipe or waste drain (not shown on this figure, but similar to the drain 320 on earlier figures). In some embodiments, the nozzle comprises a back-flow preventer or anti-siphon valve.

A suction pump 1215 housed within the nozzle (HLDU) is coupled to the opening 1221 and to the pipe coupling 1235, wherein the suction pump is configured to suck liquid through the opening and direct the liquid to the pipe coupling when the suction pump is activated.

A battery 1210 (in some embodiments, rechargeable) is housed within the nozzle (HLDU) is coupled to the pump 1215 and to a switch 1210. Upon a user activating the switch 1210 (or upon automatic activation), the battery provides power to the pump 1215 and liquid is sucked up through opening 1221 and expelled through pipe coupling 1235.

In some embodiments, the suction pump is configured to be powered by an electrical supply. In some embodiments, the suction pump is configured to be powered by a rechargeable battery coupled to the nozzle. In some embodiments, the suction pump is configured to be activated by a user input (e.g., a switch, lever, button, etc.) or through electrical means (optical sensor, capacitive sensor, heat sensor, etc.) or through an automatic means (liquid sensor, proximity sensor, heat sensor, or other sensor or computer means).

In some embodiments, the rechargeable battery 1210 is configured to be removable from the unit and to be charged separately from the unit. This separate charging may operate like a garage power tool that has a removable and chargeable battery.

In some embodiments, the rechargeable battery is configured to be charged while coupled to the unit by direct or indirect electrical contact. For example, a direct connection for charging may be provided through regular conductive contacts. Alternatively, an indirect connection for charging may be provided by inductive charging. An advantage of inductive charging is that there are no exposed electrical contacts to get wet and short or corrode. In some embodiments, the battery may be recharged when the nozzle (HLDU) is stored, such as in a mount/holder as previously described. For safety reasons, it may be desirable to electrically isolate the charging power supply from the nozzle when the nozzle is in use (e.g., used next to liquid).

In an embodiment, a handheld liquid disposal unit (HLDU) provides a self-contained nozzle and pipe coupling, configured to couple to a suction system. The HLDU comprises a nozzle configured to suck liquid from a kitchen container, and a pipe coupling for attaching an exit pipe to the handheld liquid disposal unit. The pipe coupling is configured to direct liquid from the handheld liquid disposal unit to an exit pipe, in response to a suction force. The nozzle and pipe are configured to be coupled to a suction pump external to the unit to suck liquid through the nozzle and direct the liquid to the pipe coupling when the suction pump is activated.

In some embodiments, the HLDU furthers comprising a switch or sensor means (as described) configured to send an activation signal to the suction pump or to a controller coupled to the suction pump, in response to a user's input or in response to a sensor instruction. For example, a switch on the handheld unit when activated by a user or automatically activated sends a command to the suction pump or controller to turn the suction pump on or off.

In some embodiments, the activation signal is transmitted wirelessly from the HLDU to the suction pump or to the controller coupled to the suction pump. For example, such wireless transmission may include a Bluetooth network or a short range wireless network connection, including a wireless Personal Area Network, a wireless Home Automation Network, or other wireless control means.

In some embodiments, the activation signal is transmitted over a physical connection from the HLDU to the suction pump or to the controller coupled to the suction pump. For example, a low-voltage wire circuit may be used. In embodiments where it is desirable to avoid sending electricity in parallel with a water line (e.g., due to building code or industrial safety, electrical, or fire codes, ordinances or best practices), an optical connection may be used (e.g., a fiber optic type cable) to convey an activation signal to the pump or controller. In some embodiments a high frequency audio signal (e.g., a signal above the range of human and/or domestic animal hearing) could be used.

In some embodiments, the liquid disposal system can be constructed from one or more components which allow for a sanitary system for the transport of fluids. Such components are resistant to soaps, solvents, chemicals or agents utilized in the removal and cleaning of particulate matter, pathogens (bacteria, viruses, fungus, mold and algae) and biofilm from surfaces capable of cross contamination. In alternate embodiments, in portions of the liquid disposal system where the temperature does not exceed 170 degrees Fahrenheit, antimicrobial coatings can be utilized. In further embodiments, tubing capable of higher temperatures such as polysulfone can be used. In other embodiments, the liquid disposal system may comprise one or more materials including stainless steel, copper, neoprene, carbon composites or professional grade plastics, polymers and ceramics. In some embodiments, combinations of one or more of these materials may be used on interior and/or exterior surfaces of the liquid disposal system.

Each of the systems and components described herein may be represented as electronic designs or code for manufacturing via computer-aided design/manufacture (CAD/CAM) or computer numerical controlled (CNC) systems. These designs or code may be stored in one or more memory devices, and correspond to a set of instructions for performing a function or manufacturing a component described above.

Such memory devices may include high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices; and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory devices may optionally include one or more storage devices remotely located from manufacturing machines or systems described. Memory devices may include computer cloud storage and data attached to email systems.

While the foregoing has been described in the context if kitchens and food preparation, it is applicable to other environments also. The described embodiments may also be used in kitchen cleanup and/or food disposal environments (for example, a home, restaurant, or institution (prison, hospital, school, office, etc.)

In a further example, the embodiments may be adapted for use with hazardous liquids or materials. For example, in some environments liquids may require disposal that are corrosive, acidic, basic, poisonous, radioactive, toxic, or otherwise hazardous. The described embodiments may be adapted for use in safe disposal of such liquids. Such liquids could include paint, oil, solvents, chemical byproducts, biological material, manufacturing process waste, etc.

The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.

Claims

1. A liquid disposal system, comprising:

a nozzle configured to suck liquid from a kitchen container, wherein the nozzle is configured to be manipulated by a user's hand;
a pipe coupled to the nozzle, wherein the pipe is configured to direct the liquid from the nozzle to a disposal means;
a suction pump coupled to the nozzle and to the pipe, wherein the suction pump is configured to suck the liquid through the nozzle and the pipe when the suction pump is activated.

2. The system of claim 1, wherein the suction pump is electrically operated and configured to be activated by the user's hand.

3. The system of claim 2, wherein the suction pump comprises a self-priming pump.

4. The system of claim 1, wherein the nozzle is configured to be coupled to a filter for preventing particles from clogging the nozzle, pipe, or pump.

5. The system of claim 1, further comprising a back-flow preventer for preventing previously sucked liquid or particles from flowing back out the nozzle.

6. The system of claim 2, wherein the operation of the suction pump is configured to be controlled by the user's hand manipulating the nozzle.

7. The system of claim 1, wherein the operation of the suction pump is configured to be activated automatically by a liquid sensor in the nozzle.

8. The system of claim 7, wherein the liquid sensor is configured to activate the pump when placed in a liquid, and to deactivate the pump when removed from the liquid or when the liquid runs dry or runs below a shut-off level.

9. The system of claim 2, wherein the suction pump and the nozzle are housed in a handheld unit configured to be manipulated by the user's hand.

10. The system of claim 9, wherein the handheld unit further comprises a grinder for reducing the size of a solid particle entering the nozzle.

11. The system of claim 1, wherein disposal means comprises a waste water drain.

12. The system of claim 1, wherein disposal means comprises a kitchen garbage disposal unit.

13. The system of claim 12 wherein the suction pump is configured to be electrically coupled to the kitchen garbage disposal.

14. The system of claim 1 wherein the disposal means comprises a settling tank for separating liquid from solid waste.

15. The system of claim 1 further comprising a mount for securing the nozzle proximate to a cooktop.

16. The system of claim 15, wherein the mount comprises a lifting mechanism coupled to the nozzle for lifting the nozzle to an elevated level above the cooktop or allowing the nozzle to be lowered to the cooktop.

17. The system of claim 15, wherein the mount comprises a swinging mechanism coupled to the nozzle for positioning the nozzle in a first position above the cooktop and allowing the nozzle to be lowered to the cooktop, or in a second position away from the cooktop.

18. The system of claim 15, wherein the mount comprises a holder for securing the nozzle substantially level with the cooktop.

19. A handheld liquid disposal unit, comprising:

a nozzle configured to suck liquid from a kitchen container;
a pipe coupling for attaching an exit pipe to the handheld liquid disposal unit, wherein the pipe coupling is configured to direct liquid from the handheld liquid disposal unit to the exit pipe; and
a suction pump coupled to the nozzle and to the pipe coupling, wherein the suction pump is configured to suck liquid through the nozzle and direct the liquid to the pipe coupling when the suction pump is activated.

20. The unit of claim 19, wherein the suction pump is configured to be powered by an electrical supply.

21. The unit of claim 19, wherein the suction pump is configured to be powered by a rechargeable battery coupled to the unit.

22. The unit of claim 21, where the rechargeable battery is configured to be removable from the unit and to be charged separately from the unit.

23. The unit of claim 21, where the rechargeable battery is configured to be charged while coupled to the unit by direct or indirect electrical contact.

24. A handheld liquid disposal unit, comprising:

a nozzle configured to suck liquid from a kitchen container; and
a pipe coupling for attaching an exit pipe to the handheld liquid disposal unit, wherein the pipe coupling is configured to direct liquid from the handheld liquid disposal unit to an exit pipe,
wherein the nozzle and pipe are configured to be coupled to a suction pump external to the unit to suck liquid through the nozzle and direct the liquid to the pipe coupling when the suction pump is activated.

25. The unit of claim 24, further comprising a switch configured to send an activation signal to the suction pump or to a controller coupled to the suction pump, in response to a user's input or in response to a sensor instruction.

26. The unit of claim 25, wherein the activation signal is transmitted wirelessly from the unit to the suction pump or to the controller coupled to the suction pump.

27. The unit of claim 25, wherein the activation signal is transmitted over a physical connection from the unit to the suction pump or to the controller coupled to the suction pump.

Patent History
Publication number: 20120298230
Type: Application
Filed: Jan 18, 2012
Publication Date: Nov 29, 2012
Inventors: Daniel Patrick Jones (Carmichael, CA), Michael Timothy Moore (Milpitas, CA), Bridget Mary Jones (Carmichael, CA)
Application Number: 13/353,144
Classifications
Current U.S. Class: Vacuum Pump (137/565.23)
International Classification: F04F 3/00 (20060101);