SWITCHING BACK TO A PREVIOUSLY-INTERACTED-WITH APPLICATION

This document describes techniques and apparatuses for switching back to a previously-interacted-with application. In some embodiments, these techniques and apparatuses enable selection of a user interface not currently exposed on a display through a simple gesture that is both easy-to-use and remember.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History

Description

BACKGROUND

moon Conventional techniques for selecting a previously-interacted-with application that is not currently exposed on a display are often confusing, take up valuable display space, cannot be universally applied across different devices, or provide a poor user experience.

Some conventional techniques, for example, enable selection of a previously-interacted-with application through onscreen controls in a task bar, within a floating window, or on a window frame. These onscreen controls, however, take up valuable display real estate and can annoy users by requiring users to find and select the correct control.

Some other conventional techniques enable selection of a previously-interacted-with application through hardware, such as hot keys and buttons. At best these techniques require users to remember what key, key combination, or hardware button to select. Even in the best case users often accidentally select keys or buttons. Further, in many cases hardware-selection techniques cannot be universally applied, as hardware on computing devices can vary by device model, generation, vendor, or manufacturer. In such cases, either the techniques will not work or work differently across different computing devices. This exacerbates the problem of users needing to remember the correct hardware, as many users have multiple devices, and so may need to remember different hardware selections for different devices. Further still, for many computing devices hardware selection forces users to engage a computing device outside the user's normal flow of interaction, such as when a touch-screen device requires a user to change his or her mental and physical orientation from display-based interactions to hardware-based interactions.

Still another conventional technique enables users to select a previously-interacted-with application by selecting to enter an application-selecting mode, search through various gesture-based controls, select the control, and then select to interact with the selected application's user interface once it is presented. As is readily apparent, this technique requires numerous user actions and can provide a poor user experience.

SUMMARY

This document describes techniques and apparatuses for switching back to a previously-interacted-with application. In some embodiments, these techniques and apparatuses enable selection of a user interface not currently exposed on a display through a simple gesture that is both easy-to-use and remember.

This summary is provided to introduce simplified concepts for switching back to a previously-interacted-with application that are further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter. Techniques and/or apparatuses for switching back to a previously-interacted-with application are also referred to herein separately or in conjunction as the “techniques” as permitted by the context.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments for switching back to a previously-interacted-with application are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:

FIG. 1 illustrates an example system in which techniques for switching back to a previously-interacted-with application can be implemented.

FIG. 2 illustrates an example method for enabling edge gestures that can be used to select to switch back to a previously-interacted-with application, the edge gestures being approximately perpendicular to an edge in which the gesture begins.

FIG. 3 illustrates an example tablet computing device having a touch-sensitive display presenting an immersive interface.

FIG. 4 illustrates the example immersive interface of FIG. 3 along with example edges.

FIG. 5 illustrates the example immersive interface of FIGS. 3 and 4 along with angular variance lines from a perpendicular line and a line from a start point to a later point of a gesture.

FIG. 6 illustrates the edges of the immersive interface shown in FIG. 4 along with two regions in the right edge.

FIG. 7 illustrates an application-selection interface presented by a system-interface module in response to an edge gesture made over the immersive interface and webpage of FIG. 3.

FIG. 8 illustrates an example method for enabling edge gestures including determining an interface to present based on some factor of the gesture.

FIG. 9 illustrates an example method enabling expansion of, or ceasing presentation of, a user interface presented in response to an edge gesture or presentation of another user interface.

FIG. 10 illustrates a laptop computer having a touch-sensitive display having a windows-based email interface and two immersive interfaces.

FIG. 11 illustrates the interfaces of FIG. 10 along with two gestures having a start point, later points, and one or more successive points.

FIG. 12 illustrates the windows-based email interface of FIGS. 10 and 11 along with an email handling interface presented in response to an edge gesture.

FIG. 13 illustrates the interfaces of FIG. 12 along with an additional-email-options interface presented in response to a gesture determined to have a successive point a preset distance from the edge.

FIG. 14 illustrates a method for switching back to a previously-interacted-with application using a queue.

FIG. 15 illustrates an example interaction order in which a user interacts with various applications.

FIG. 16 illustrates the immersive interface of FIG. 3 along with a thumbnail image of a user interface of a prior application.

FIG. 17 illustrates a method for switching back to a previously-interacted-with application, which may or may not use a queue.

FIG. 18 illustrates the immersive interface of FIGS. 3 and 16, two progressive presentations, and two gesture portions.

FIG. 19 illustrates an example device in which techniques for switching back to a previously-interacted-with application can be implemented.

DETAILED DESCRIPTION

Overview

This document describes techniques and apparatuses for switching back to a previously-interacted-with application. These techniques, in some embodiments, enable a user to quickly and easily select prior applications.

Consider a case where a user visits a shopping website, then interacts with a local word-processing document, then visits the shopping website again, then visits a social-networking website, and then visits a web-enabled radio website. Assume that the user, when listening to songs on the radio website, decides to revisit the shopping website. The described techniques and apparatuses enable her to do so quickly and easily with two or even one input. She may simply swipe at an edge of her display to quickly see the social-networking website and then swipe again to revisit the shipping website. The techniques in this example permit the user to revisit prior applications based on which were most-recently interacted with rather than when opened, without taking up valuable display real estate with onscreen controls, and without requiring the user to find or remember a hardware button. Further still, no gesture, other than one starting from an edge, is used by the techniques in this example, thereby permitting applications to use nearly all commonly-available gestures.

This is but one example of many ways in which the techniques enabling switching back to a previously-interacted-with applications, others of which are described below.

Example System

FIG. 1 illustrates an example system 100 in which techniques for switching back to a previously-interacted-with application can be embodied. System 100 includes a computing device 102, which is illustrated with six examples: a laptop computer 104, a tablet computer 106, a smart phone 108, a set-top box 110, a desktop computer 112, and a gaming device 114, though other computing devices and systems, such as servers and netbooks, may also be used.

Computing device 102 includes computer processor(s) 116 and computer-readable storage media 118 (media 118). Media 118 includes an operating system 120, windows-based mode module 122, immersive mode module 124, system-interface module 126, gesture handler 128, application manager 130, which includes or has access to application queue 132, and one or more applications 134, each having one or more application user interfaces 136.

Computing device 102 also includes or has access to one or more displays 138 and input mechanisms 140. Four example displays are illustrated in FIG. 1. Input mechanisms 140 may include gesture-sensitive sensors and devices, such as touch-based sensors and movement-tracking sensors (e.g., camera-based), as well as mice (free-standing or integral with a keyboard), track pads, and microphones with accompanying voice recognition software, to name a few. Input mechanisms 140 may be separate or integral with displays 138; integral examples include gesture-sensitive displays with integrated touch-sensitive or motion-sensitive sensors.

Windows-based mode module 122 presents application user interfaces 136 through windows having frames. These frames may provide controls through which to interact with an application and/or controls enabling a user to move and resize the window.

Immersive mode module 124 provides an environment by which a user may view and interact with one or more of applications 134 through application user interfaces 136. In some embodiments, this environment presents content of, and enables interaction with, applications with little or no window frame and/or without a need for a user to manage a window frame's layout or primacy relative to other windows (e.g., which window is active or up front) or manually size or position application user interfaces 136.

This environment can be, but is not required to be, hosted and/or surfaced without use of a windows-based desktop environment. Thus, in some cases immersive mode module 124 presents an immersive environment that is not a window (even one without a substantial frame) and precludes usage of desktop-like displays (e.g., a taskbar). Further still, in some embodiments this immersive environment is similar to an operating system in that it is not closeable or capable of being un-installed. While not required, in some cases this immersive environment enables use of all or nearly all of the pixels of a display by applications. Examples of immersive environments are provided below as part of describing the techniques, though they are not exhaustive or intended to limit the techniques described herein.

System-interface module 126 provides one or more interfaces through which interaction with operating system 120 is enabled, such as an application-launching interface, a start menu, or a system tools or options menu, to name just a few.

Operating system 120, modules 122, 124, and 126, as well as gesture handler 128 and application manager 130 can be separate from each other or combined or integrated in any suitable form.

Example Methods

Example methods 200, 800, and 900 address edge gestures and are described prior to methods 1400 and 1700, which address switching back to a previously-interacted-with application. Any one or more of methods 200, 800, and 900 may be used separately or in combination with, in whole or in part, methods 1400 and/or 1700. An edge gesture may be used to select to switch back to a prior application as but one example of ways in which the various methods can be combined or act complimentary, though use of the edge gesture is not required by methods 1400 and/or 1700.

FIG. 2 depicts a method 200 for enabling edge gestures based on the edge gesture being approximately perpendicular to an edge in which the gesture begins. In portions of the following discussion reference may be made to system 100 of FIG. 1, reference to which is made for example only.

Block 202 receives a gesture. This gesture may be received at various parts of a display, such as over a windows-based interface, an immersive interface, or no interface. Further, this gesture may be made and received in various manners, such as a pointer tracking a movement received through a touch pad, mouse, or roller ball or a physical movement made with arm(s), finger(s), or a stylus received through a motion-sensitive or touch-sensitive mechanism.

By way of example consider FIG. 3, which illustrates a tablet computing device 106. Tablet 106 includes a touch-sensitive display 302 shown displaying an immersive interface 304 that includes a webpage 306. As part of an ongoing example, at block 202 gesture handler 128 receives gesture 308 as shown in FIG. 3.

Block 204 determines whether a start point of the gesture is at an edge. As noted above, the edge in question can be an edge of a user interface, whether immersive or windows-based, and/or of a display. In some cases, of course, an edge of a user interface is also an edge of a display. The size of the edge can vary based on various factors about the display or interface. A small display or interface may have a smaller size in absolute or pixel terms than a large display or interface. A highly sensitive input mechanism permits a smaller edge as well. Example edges are rectangular and vary between one and twenty pixels in one dimension and an interface limit of the interface or display in the other dimension, though other sizes and shapes, including convex and concave edges may instead be used.

Continuing the ongoing example, consider FIG. 4, which illustrates immersive interface 304 and gesture 308 of FIG. 3 as well as left edge 402, top edge 404, right edge 406, and bottom edge 408. For visual clarity webpage 306 is not shown. In this example the dimensions of the interface and display are of a moderate size, between that of smart phones and that of many laptop and desktop displays. Edges 402, 404, 406, and 408 have a small dimension of twenty pixels, an area of each shown bounded by dashed lines at twenty pixels from the display or interface limit at edge limit 410, 412, 414, and 416, respectively.

Gesture handler 128 determines that gesture 308 has a start point 418 and that this start point 418 is within left edge 402. Gesture handler 128 determines the start point in this case by receiving data indicating [X,Y] coordinates in pixels at which gesture 308 begins and comparing the first of these coordinates to those pixels contained within each edge 402-408. Gesture handler 128 often can determine the start point and whether it is in an edge faster than a sample rate, thereby causing little or no performance downgrade from techniques that simply pass gestures directly to an exposed interface over which a gesture is made.

Returning to method 200 generally, if block 204 determines that the start point of the gesture is not at an edge, method 200 proceeds along a “No” path to block 206. Block 206 passes the gestures to an exposed user interface, such as an underlying interface over which the gesture was received. Altering the ongoing example, assume that gesture 308 was determined not to have a start point within an edge. In such a case gesture handler 128 passes buffered data for gesture 308 to immersive user interface 304. After passing the gesture, method 200 ends.

If block 204 determines that the start point of the gesture is in an edge, method 200 proceeds along a “Yes” path to block 208. Block 208 responds to the positive determination of block 204 by determining whether a line from the start point to a later point of the gesture is approximately perpendicular from the edge.

Block 208, in some embodiments, determines the later point used. Gesture handler 128, for example, can determine the later point of the gesture based on the later point being received a preset distance from the edge or the start point, such as past edge limit 410 for edge 402 or twenty pixels from start point 418, all of FIG. 4. In some other embodiments, gesture handler 128 determines the later point based on it being received a preset time after receipt of the start point, such an amount of time slightly greater than used generally by computing device 102 to determine that a gesture is a tap-and-hold or hover gesture.

For the ongoing embodiment, gesture handler 128 uses a later-received point of gesture 308 received outside of edge 402 so long as that later-received point is received within a preset time. If no point is received outside of the edge within that preset time, gesture handler 128 proceeds to block 206 and passes gesture 308 to immersive interface 304.

Using the start point, block 208 determines whether a line from the start point to the later point of the gesture is approximately perpendicular to the edge. Various angles of variance can be used in this determination by block 208, such as five, ten, twenty, or thirty degrees.

By way of example, consider an angle of variance of thirty degrees from perpendicular. FIG. 5 illustrates this example variance, showing immersive interface 304, gesture 308, left edge 402, left edge limit 410, and start point 418 of FIGS. 3 and 4 along with a thirty-degree variance lines 502 from perpendicular line 504. Thus, gesture handler 128 determines that line 506 from start point 418 to later point 508 (which is at about twenty degrees from perpendicular) is approximately perpendicular based on being within the example thirty-degree variance line 502.

Generally, if block 208 determines that the line is not approximately perpendicular to the edge, method 200 proceeds along a “No” path to block 206. As noted in part above, block 208 may also determine that a later point or other aspect of a gesture disqualifies the gesture. Examples include when a later point is within the edge, such as due to a hover, tap, press-and-hold, or up-and-down gesture (e.g., to scroll content in the user interface), or when the gesture is set to be a single-input gesture and a second input is received (e.g., a first finger starts at an edge but a second finger then lands anywhere).

If block 208 determines that the line is approximately perpendicular based a later point outside the edge, method 200 proceeds along a “Yes” path to block 210.

Block 210 responds to the positive determination of block 208 by passing the gesture to an entity other than the exposed user interface. This entity is not a user interface over which the gesture was received, assuming it was received over a user interface at all. Block 210 may determine to which entity to pass the gesture as well, such as based on an edge or region of an edge in which the start point of the gesture is received. Consider FIG. 6, for example, which illustrates immersive interface 304 and edges 402, 404, 406, and 408 of FIG. 4 but adds top region 602 and bottom region 604 to right edge 406. A start point in top region 602 can result in a different entity (or even a same entity but a different user interface provided in response) than a start point received to bottom region 604. Likewise, a start point in top edge 404 can result in a different entity or interface than left edge 402 or bottom edge 408.

In some cases, this entity is an application associated with the user interface. In such a case, passing the gesture to the entity can be effective to cause the application to present a second user interface enabling interaction with the application. In the movie example above, the entity can be the media player playing the movie but not the immersive interface displaying the movie. The media player can then present a second user interface enabling selection of subtitles or a director's commentary rather than selections enabled by the interface displaying the movie, such as “pause,” “play,” and “stop.” This capability is permitted in FIG. 1, where one of applications 134 can include or be capable of presenting more than one application user interface 136. Thus, block 210 can pass the gesture to system-interface module 126, the one of applications 134 currently presenting the user interface, or another of applications 134, to name just three possibilities.

Concluding the ongoing embodiment, at block 210 gesture handler 128 passes gesture 308 to system-interface module 126. System-interface module 126 receives the buffered portion of gesture 308 and continues to receive the rest of gesture 308 as it is made by the user. FIG. 7 illustrates a possible response upon receiving gesture 308, showing an application-selection interface 702 presented by system-interface module 126 and over immersive interface 304 and webpage 306 from FIG. 3. Application-selection interface 702 enables selection of various other applications and their respective interfaces at selectable application tiles 704, 706, 708, and 710.

The example application-selection interface 702 is an immersive user interface presented using immersive mode module 124, though this is not required. Presented interfaces may instead be windows-based and presented using windows-based module 122. Both of these modules are illustrated in FIG. 1.

Block 210 may also or instead determine to pass the gesture to different entities and/or interfaces based on other factors about the gesture received. Example factors are described in greater detail in method 800 below.

Note that method 200 and other methods described hereafter can be performed in real-time, such as while a gesture is being made and received. This permits, among other things, a user interface presented in response to a gesture to be presented prior to completion of the gesture. Further, the user interface can be presented progressively as the gesture is received. This permits a user experience of dragging out the user interface from the edge as the gesture is performed with the user interface appearing to “stick” to the gesture (e.g., to a mouse point or person's finger making the gesture).

FIG. 8 depicts a method 800 for enabling edge gestures including determining an interface to present based on some factor of the gesture. In portions of the following discussion reference may be made to system 100 of FIG. 1, reference to which is made for example only. Method 800 may act wholly or partly separate from or in conjunction with other methods described herein.

Block 802 determines that a gesture made over a user interface has a start point at an edge of the user interface and a later point not within the edge. Block 802 may operate similarly to or use aspects of method 200, such as determining a later point on which to base block 802's determination. Block 802 may act differently as well.

In one case, for example, block 802 determines that a gesture is a single-finger swipe gesture starting at an edge of an exposed immersive user interface and having a later point not at the edge but not based on an angle of the gesture. Based on this determination, block 802 proceeds to block 804 rather than pass the gesture to the exposed immersive user interface.

Block 804 determines which interface to present based on one or more factors of the gesture. Block 804 may do so based on a final or intermediate length of the gesture, whether the gesture is single or multi-point (e.g., a single-finger or multi-finger gesture), or a speed of the gesture. Thus, block 804 may determine to present a start menu in response to a multi-finger gesture, an application-selection interface in response to a relatively short single-finger gesture, or a system-control interface permitting selection to shut down computing device 102 in response to relatively long single-finger gesture, for example. To do so, gesture handler 128 may determine the length of the gesture or a number of inputs (e.g., fingers). In response, block 806 presents the determined user interface.

Assume, by way of example, that gesture handler 128 determines, based on a factor of the gesture, to present a user interface enabling interaction with operating system 120. In response system-interface module 126 presents this user interface. Presentation of the user interface can be similar to manners described in other methods, such as with a progressive display of application-selection user interface 702 of FIG. 7.

Following method 200 and/or method 800 in whole or in part, the techniques may proceed to perform method 900 of FIG. 9. Method 900 enables expansion of a user interface, presentation of another interface, or ceasing presentation of the user interface presented in response to an edge gesture.

Block 902 receives a successive point of the gesture and after presentation of at least some portion of the second user interface. As noted in part above, methods 200 and/or 800 are able to present or cause to be presented a second user interface, such as a second user interface for the same application associated with a current user interface, a different application, or a system user interface.

By way of example, consider FIG. 10, which illustrates a laptop computer 104 having a touch-sensitive display 1002 displaying a windows-based email interface 1004 and two immersive interfaces 1006 and 1008. Windows-based email interface 1004 is associated with an application that manages email, which can be remote or local to laptop computer 104. FIG. 10 also illustrates two gestures, 1010 and 1012. Gesture 1010 proceeds in a straight line while gesture 1012 reverses back (shown with two arrows to show two directions).

FIG. 11 illustrates gesture 1010 having a start point 1102, a later point 1104, and a successive point 1106, and gesture 1012 having a same start point 1102, a later point 1108, and a first successive point 1110, and a second successive point 1112. FIG. 11 also shows a bottom edge 1114, a later-point area 1116, and an interface-addition area 1118.

Block 904 determines, based on the successive point, whether the gesture includes a reversal, an extension, or neither. Block 904 may determine a reversal by determining that a successive point is at the edge or is closer to the edge than a prior point of the gesture. Block 904 may determine that the gesture extends based on the successive point being a preset distance from the edge or the later point. If neither of these is determined to be true, method 900 may repeat blocks 902 and 904 to receive and analyze additional successive points until the gesture ends. If block 904 determines that there is a reversal, method 900 proceeds along “Reversal” path to block 906. If block 904 determines that the gesture is extended, method 900 proceeds along an “Extension” path to block 908.

In the context of the present example, assume that gesture handler 128 receives first successive point 1110 of gesture 1012. Gesture handler 128 then determines that first successive point 1110 is not at edge 1114, is not closer than a prior point of the gesture to edge 1114 (e.g., is not closer than later point 1108), and is not a preset distance from the edge or later point by not being within interface-addition region 1118. In such a case method 900 returns to block 902.

On a second iteration of block 902, assume that gesture handler 128 receives second successive point 1112. In such a case, gesture handler 128 determines that second successive point 1112 is closer to edge 1114 than first successive point 1110 and thus gesture 1012 includes a reversal. Gesture handler 128 then proceeds to block 906 to cease to present the second user interface previously presented in response to the gesture. By way of example, consider FIG. 12, which illustrates an email handling interface 1202. In this example case of block 906, gesture handler 128 causes the email application to cease to present interface 1202 in response to a reversal of gesture 1012 (not shown removed).

Block 908, however, presents or causes presentation of a third user interface or expansion of the second user interface. Continuing the ongoing example, consider FIG. 13, which illustrates additional-email-options interface 1302 in response to gesture 1010 determined to have successive point 1106 a preset distance from edge 1104, in this case being within interface-addition region 1118 of FIG. 11. This region and preset distance can be set based on a size of the user interface previously presented in response to the gesture. Thus, a user wishing to add additional controls may simply extend the gesture past the user interface presented in response to an earlier portion of the gesture.

Method 900 can be repeated to add additional user interfaces or expand a presented user interface. Returning to the example interface 702 of FIG. 7, for example, gesture handler 128 can continue to add interfaces or controls to interface 702 as gesture 308 extends past interface 702, such as by presenting an additional set of selectable application tiles. If gesture 308 extends past the additional tiles, gesture handler 128 may cause system-interface module 124 to present another interface adjacent the tiles to enable the user to select controls, such as to suspend, hibernate, switch modes (immersive to windows-based and the reverse), or shut down computing device 102.

While the above example user interfaces presented in response to an edge gesture are opaque, they may also be partially transparent. This can be useful by not obscuring content. In the movie example described above, a user interface presented can be partially transparent thereby permitting the movie to be only partially obscured during use of the user interface. Similarly, in the example of FIGS. 12 and 13, interfaces 1202 and 1302 may be partially transparent, thereby enabling a user to see the text of the email while also selecting a control in one of the interfaces.

As noted above, example methods 200, 800, and 900 address edge gestures and are described prior to methods 1400 and 1700, which address switching back to a previously-interacted-with application. Any one or more of methods 200, 800, and 900 may be used separately or in combination with, in whole or in part, methods 1400 and 1700.

FIG. 14 depicts a method 1400 for switching back to a previously-interacted-with application using a queue. In portions of the following discussion reference may be made to system 100 of FIG. 1, methods 200, 800, and/or 900, and example embodiments described above, reference to which is made for example only.

Block 1402 maintains a queue of multiple interacted-with applications, the queue arranged by most-recently-interacted-with to least-recently-interacted-with applications other than a current application. Consider, for example, FIG. 15, which illustrates an interaction order 1502 in which a user interacts with various applications. First, the user interacts with a web-searching application 1504 through its interface. Second, the user interacts with a web-enabled media application 1506 through a web browser. Third, the user interacts with a local (non-web) photo application 1508 through its interface. Fourth, the user interacts with a social-networking application 1510 through the web browser. Fifth, the user returns to interacting with the web-enabled media application 1506. Sixth, the user interacts with a web-enabled news application 1512 again through the web browser.

For the first interaction no queue is maintained as no other applications have been interacted with prior to this first interaction. For the second through sixth interactions of interaction order 1502, consider queues 1514, 1516, 1518, 1520, and 1522, which correspond to each interaction in interaction order 1502 after the first interaction, respectively. Queues 1514 to 1522 are example iterations of application queue 132 maintained by application manager 130, both of FIG. 1.

As shown in FIG. 15, application manager 130 keeps application queue 132 up-do-date based on a user's interactions. Queue 1522, for example, includes media application 1506 as the most-recently-interacted application, followed by social-networking application 1510, photo application 1508, and ending with web-searching application 1504. As the user interacts with media application 1506 twice (at the second and fifth interaction) application manager 130 removes it from application queue 130 at the fifth interaction and reorders the other applications to reflect an up-to-date order of interactions but excluding currently-interacted-with applications.

Block 1404 receives a gesture or gesture portions. This gesture or gesture portions can include one or more of the various gestures or portions described elsewhere herein, such as a pointer tracking a movement received through a touch pad, mouse, or roller ball or a physical movement made with arm(s), finger(s), or a stylus received through a motion-sensitive or touch-sensitive mechanism. In some embodiments, gesture portions are received, each portion being part of one gesture and each resulting in presentation of an application in the queue. Each of these portions may have, but are not required to have, a start point at an edge of a display, a later point not at the edge of the display, and a successive point at the edge of the display. A gesture having multiple portions in this case would look something like a multi-loop spiral, multiple circles, or a back-and-forth (e.g., zigzag) where each loop, circle, or back-and-forth starts, leaves, and returns to an edge of a user interface or display. Optionally, block 1404 may receive a number of gestures or gesture portions. These gestures or gesture portions can include one or more of the various gestures or gestures portions described elsewhere herein.

Continuing the ongoing embodiment, consider again FIG. 3, which illustrates tablet computing device 106 having touch-sensitive display 302 shown displaying immersive interface 304 including webpage 306. For this example, assume that immersive interface 304 is associated with news application 1512 and that webpage 306 is content from news application 1512.

As part of this example, at block 1404, gesture handler 128 receives gesture 308 as shown in FIG. 3, which gesture handler 128 passes to application manager 130. For the ongoing example, assume that gesture 308 is determined to be associated with switching back to a previously-interacted-with application rather than some other function or application.

Block 1406, responsive to receiving the gesture or gesture portions, precedes through the queue to another application of the multiple interacted-with applications. Thus, on receiving the gesture or gesture portion(s), application manager 130 may precede to the first, and thus the most-recently-interacted-with of the applications of application queue 132. In some embodiments, on receiving two gestures or portions, application manager 130 may proceed to the second most-recently-interacted-with application of application queue 132, though method 1400 may do so by repeating blocks 1404, 1406 and/or 1408, and so forth as described below.

Continuing the ongoing embodiment, assume that gesture 308 is received after the sixth interaction at which time the currently-interacted-with application is news application 1512 and that application queue 132 is up-to-date and represented by queue 1522 of FIG. 15. In such a case, application manager 130 proceeds to media application 1506 on receiving the gesture or gesture portion.

Block 1408 presents a user interface associated with the other application. This user interface, in some embodiments, is the same user interface through which interaction with the application was previously made. In some embodiments, the user interface is presented as a thumbnail or transparent overlay above the currently presented user interface. Application manager 130 presents this user interface alone or in combination with the associated application, such as by causing the associated application to present the user interface with which the user last interacted.

For this example, application manager 130 presents a thumbnail image of the user interface for the application progressively as gesture 308 is received and then expands the thumbnail to encompass the available real estate of the display when the gesture ends. Application manager 130 thereby replaces webpage 306 in immersive interface 304 or replaces immersive interface 304 with another interface, which can be immersive or windows-based.

This is illustrated in FIG. 16 with thumbnail image 1602 of a user interface of media application 1506 presented over immersive interface 304 and webpage 306 of news application 1510. After gesture 308 ends, thumbnail image 1602 expands into full image 1604, replacing webpage 306 in immersive interface 304. This is but one example manner for presenting the user interface for the selected application, others manners for responding progressively or otherwise are described elsewhere herein.

In some embodiments, block 1408 shrinks the current user interface to a second thumbnail image and passes the second thumbnail image toward a region of a display from which the first-mentioned thumbnail image is progressively presented. Thus, block 1408 expands thumbnail image 1602 into full image 1604 while shrinking webpage 306 to a thumbnail image and passing that thumbnail to the edge from which thumbnail image 1602 was selected.

During the presentation of the user interface at block 1408, another gesture or gesture portion may be received, returning to block 1404. In some cases, the other gesture or gesture portion is received within an amount of time while the user interface is presented by block 1408. Following the return to block 1404, block 1406 may then proceed to yet another or subsequent application of the multiple interacted-with applications. Continuing this progression, block 1408 then presents a user interface associated with the subsequent application of the multiple interacted-with applications.

Thus, by repeating blocks 1404, 1406, and 1408 user interfaces associated with previously interacted-with applications can be successively presented. In some cases, a user interface associated with a previously-interacted with application can be presented responsive to each gesture received. In the context of the present example, when another gesture is received while presenting the user interface of media application 1506, a user interface associated with social-networking application 1510 (the second most-recently interacted with application of queue 1522) is presented. Receiving yet another gesture or gesture portion during the presentation of the user interface associated with social-networking application 1510 results in a presentation of a user interface associated with photo application 1508 (the third most-recently interacted with application of queue 1522) and so forth.

Following this switch from presenting a current application to presenting another selected, prior application, block 1410 updates the queue responsive to interaction with, or a time period passing during presentation of, the user interface associated with the other application. In some cases a prior application may be selected and then another quickly selected after it, effectively a scanning through of the applications in the queue. In such cases, block 1410 may forgo updating the queue, as a quick viewing may not be considered an interaction.

Example interactions with which application manager 130 updates application queue 132 include an explicit selection to interact with the newly presented interface, such as to control playback or edit information relating to currently playing media using controls shown in the user interface of media player 1604 of FIG. 16. In other cases an interaction is determined based on a time period passing. Assume, for example, that the news application's webpage is presented on selection rather than being the current application. After some period, such as one, two, or three seconds, for example, application manager 130 determines that the delay is effectively an interaction based on a likelihood that the user is reading the news article in the webpage. Similarly, presentation of a user interface for a media application at block 1408 that is playing media and remains on the display without another selection of applications in application queue 132 can also be considered an interaction.

As noted in part above, application queue 132 can be circular. In so doing, selection of applications is not stopped but rather rolls if a user reaches a least-recently-interacted with application of application queue 132. For example, on selecting to switch back to a prior application from social-networking application 1510 and thus using queue 1518, switching back once results in selecting photo application 1508, twice results in media application 1506, and three times to web-searching application 1504. A fourth selection to switch back returns, in a circular fashion, to again result in presenting photo application 1508.

Method 1400 describes various ways in which the techniques can enable selection of previously-interacted-with applications and determine which to present based on a queue. Method 1700 may operate in conjunction with method 1400 and other methods described herein, though using a queue is not required. Therefore, method 1400 is not intended to limit the techniques as described in example method 1700.

FIG. 17 depicts a method 1700 for switching back to a previously-interacted-with application, which may or may not use a queue. In portions of the following discussion reference may be made to system 100 of FIG. 1, methods 200, 800, 900, 1400, and example embodiments described above, reference to which is made for example only.

Block 1702 enables selection of a previously-interacted-with application through a gesture made over a current user interface associated with a current application. Block 1702 may do so in various manners described above, such as with an edge gesture or portion thereof, as but one example.

Block 1704, responsive to receiving the gesture and without further selection, presents a previous user interface associated with the previously-interacted-with application.

Assume, for example, that a portion of a gesture is received associated with selection of a prior application, such as an edge gesture starting at an edge of the current user interface and proceeding approximately perpendicularly away from the edge. In response, block 1704 presents the user interface for the previously-interacted-with application or a thumbnail image of the interface, or some indicator that selection has successfully been made along with an indicator of the application or the interface selected.

Example thumbnail images or indicators include any of selectable application tiles 704, 706, 708, and 710 of FIG. 7 some of which include a thumbnail image of an interface while other indicate the application selected. Another example is thumbnail image 1602 of FIG. 16.

Block 1704 presents the user interface of the selected, previously-interacted-with application, as shown in FIG. 16 at full image 1604. In so doing, block 1704 may enable interaction with photo application 1508 through immersive interface 304 without further selection. Thus, a user after selecting, with as little as one gesture, a prior application may interact without needing to make another selection. The user need not select to exit an application-selection mode, for example, or make the presented interface “live” or primary or on top of the stack. Simply put, the techniques enable selection of a prior application and further interaction with that prior application with a single input.

In this example of FIG. 16, immediately after full image 1604 is presented and replaces webpage 306, a next input to immersive interface 304 is passed immediately to photo application 1508. Thus, a tap, hot key, or other input is passed directly to photo application 1508, thereby enabling an immediate response by photo application 1508 to the input.

In some embodiments, the gesture made over the current user interface includes portions, each of which indicates a selection of a prior application. In such a case, block 1704 presents the previous user interface in response to the first portion and then, responsive to block 1702 receiving the second portion of the gesture, presents a further-previous user interface associated with a further previously-interacted-with application, and so forth.

This is illustrated in FIG. 18, which presents immersive interface 304 of FIG. 16 (shown twice for visual clarity), and ways in which block 1704 can respond to multiple gestures or portions of a single gesture. FIG. 18 illustrates two progressive presentations, 1802 and 1804, and gesture 1806 having two gesture portions 1806-1 and 1806-2, respectively. First progressive presentation 1802 illustrates a drag from a left edge of immersive interface 304 of thumbnail image 1602, and thus selection of the previously-interacted with photo application 1508. Note that thumbnail image 1602 “sticks” to gesture portion 1806-1. Note also that gesture 1806, unlike gesture 308 of FIGS. 3 and 16, returns to the left edge. In response, rather than gesture 308 ending and full image 1604 replacing webpage 306, gesture portion 1806-1 of gesture 1806 returns to the edge at which it began. In this case thumbnail image 1602 is progressively displayed with gesture portion 1806-1 but then disappears when gesture portion 1806-1 returns to the edge or another invalid gesture ending position.

Gesture 1806 continues with second portion 1806-2. In response, block 1704 presents second progressive presentation 1804, illustrating a second drag from the left edge of immersive interface 304. Here a social network thumbnail image 1808 of a further prior application, social-networking application 1510, is progressively presented. Gesture 1806 returns to the left edge as part of second portion 1806-2. In response, block 1704 drops off thumbnail image 1808 when gesture portion 1806-2 returns to the edge. This is but one example of ways in which the techniques enable users to select and view prior applications, even all of the previously-interacted-with applications, with only a single gesture. At any point in this example, gesture 1806 may end or indicate selection to present the full user interface for the selected application, at which time block 1704 presents the user interface (e.g., full image 1604 of FIG. 16 or a full user interface for the social-networking application).

The preceding discussion describes some methods in which the techniques may enable switching back to a previously-interacted-with application. Other methods describe ways in which the techniques enable and/or use edge gestures. These methods are shown as sets of blocks that specify operations performed but are not necessarily limited to the order shown for performing the operations by the respective blocks.

Aspects of these methods may be implemented in hardware (e.g., fixed logic circuitry), firmware, a System-on-Chip (SoC), software, manual processing, or any combination thereof. A software implementation represents program code that performs specified tasks when executed by a computer processor, such as software, applications, routines, programs, objects, components, data structures, procedures, modules, functions, and the like. The program code can be stored in one or more computer-readable memory devices, both local and/or remote to a computer processor. The methods may also be practiced in a distributed computing environment by multiple computing devices.

Example Device

FIG. 19 illustrates various components of example device 1900 that can be implemented as any type of client, server, and/or computing device as described with reference to the previous FIGS. 1-18 to implement techniques enabling and using edge gestures and/or switching back to a previously-interacted-with application. In embodiments, device 1900 can be implemented as one or a combination of a wired and/or wireless device, as a form of television client device (e.g., television set-top box, digital video recorder (DVR), etc.), consumer device, computer device, server device, portable computer device, user device, communication device, video processing and/or rendering device, appliance device, gaming device, electronic device, and/or as another type of device. Device 1900 may also be associated with a user (e.g., a person) and/or an entity that operates the device such that a device describes logical devices that include users, software, firmware, and/or a combination of devices.

Device 1900 includes communication devices 1902 that enable wired and/or wireless communication of device data 1904 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). The device data 1904 or other device content can include configuration settings of the device, media content stored on the device, and/or information associated with a user of the device. Media content stored on device 1900 can include any type of audio, video, and/or image data. Device 1900 includes one or more data inputs 1906 via which any type of data, media content, and/or inputs can be received, such as user-selectable inputs, messages, music, television media content, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.

Device 1900 also includes communication interfaces 1908, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. The communication interfaces 1908 provide a connection and/or communication links between device 1900 and a communication network by which other electronic, computing, and communication devices communicate data with device 1900.

Device 1900 includes one or more processors 1910 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of device 1900 and to enable techniques for switching back to a previously-interacted-with application. Alternatively or in addition, device 1900 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 1912. Although not shown, device 1900 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.

Device 1900 also includes computer-readable storage media 1914, such as one or more memory devices that enable persistent and/or non-transitory data storage (i.e., in contrast to mere signal transmission), examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. Device 1900 can also include a mass storage media device 1916.

Computer-readable storage media 1914 provides data storage mechanisms to store the device data 1904, as well as various device applications 1918 and any other types of information and/or data related to operational aspects of device 1900. For example, an operating system 1920 can be maintained as a computer application with the computer-readable storage media 1914 and executed on processors 1910. The device applications 1918 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, and so on.

The device applications 1918 also include any system components or modules to implement the techniques, such as device applications 1918 including system-interface module 122, gesture handler 128, application manager 130, and application(s) 134.

CONCLUSION

Although embodiments of techniques and apparatuses for switching back to a previously-interacted-with application have been described in language specific to features and/or methods, it is to be understood that the subject of the appended claims is not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as example implementations for switching back to a previously-interacted-with application.

Claims

1. A computer-implemented method comprising:

maintaining a queue of multiple interacted-with applications, the queue arranged by most-recently-interacted-with to least-recently-interacted-with applications other than a current application;
receiving a gesture or gesture portions;
responsive to receiving the gesture or gesture portions, proceeding to another application of the multiple interacted-with applications of the queue; and
presenting a user interface associated with the other application and through which interaction with the other application was previously made.

2. A computer-implemented method as described in claim 1, further comprising updating the queue responsive to interaction with, or a time period passing during presentation of, the user interface associated with the other application.

3. A computer-implemented method as described in claim 1, wherein the gesture or gesture portions include gesture portions of one gesture, the gesture portions each having a start point at an edge of a display, a later point not at the edge of the display, and a successive point at the edge of the display.

4. A computer-implemented method as described in claim 1, wherein the queue is circular and proceeding through the queue proceeds through the queue more than once responsive to receiving a number of gesture or gesture portions larger than a number of applications in the queue.

5. A computer-implemented method as described in claim 1, the other application is the most-recently-interacted-with application other than the current application, the current application having a current user interface displayed when the gesture or gesture portions are received.

6. A computer-implemented method as described in claim 1, further comprising receiving a number of gestures or gesture portions and wherein proceeding through the queue presents, responsive to the number of gestures or gesture portions, a user interface associated with an application of the multiple interacted-with applications that corresponds to the number.

7. A computer-implemented method as described in claim 1, wherein the gesture or gesture portions are independent gestures received at start points within an edge of a display and later points not within the edge of the display.

8. A computer-implemented method comprising:

enabling selection of a previously-interacted-with application through a gesture made over a current user interface associated with a current application; and
responsive to receiving the gesture and without further selection, presenting a previous user interface associated with the previously-interacted-with application.

9. A computer-implemented method as described in claim 8, wherein the gesture made over the current user interface includes a first portion and a second portion, presenting the previous user interface is responsive to the first portion, and further comprising, responsive to receiving the second portion of the gesture, presenting a further previous user interface associated with a further previously-interacted-with application.

10. A computer-implemented method as described in claim 8, wherein enabling selection of a previously-interacted-with application through a gesture made over a current user interface associated with a current application does not present a visible, selectable control over the current user interface or on a display presenting the current user interface.

11. A computer-implemented method as described in claim 8, wherein the gesture is received through a mouse-like device and represented by movement of a point or indicator over the current user interface.

12. A computer-implemented method as described in claim 8, further comprising determining that the gesture has a start point at an edge of the gesture-sensitive display and a later point not at the edge, and wherein presenting the previous user interface associated with the previously-interacted-with application is responsive to the determining.

13. A computer-implemented method as described in claim 8, further comprising receiving a second gesture made over the previous user interface and passing the second gesture to the previous user interface effective to enable the second user interface to respond to the second gesture without further selection.

14. A computer-implemented method as described in claim 8, wherein the current user interface and the previous user interface are immersive interfaces.

15. A computer-implemented method as described in claim 8, wherein presenting the previous user interface replaces the current user interface.

16. A computer-implemented method as described in claim 8, wherein presenting the previous user interface includes presenting a thumbnail image of the previous user interface progressively with the gesture as the gesture is received and, responsive to the gesture ending, expanding the thumbnail image.

17. A computer-implemented method as described in claim 16, further comprising shrinking the current user interface to a second thumbnail image and passing the second thumbnail image toward a region of a display or the current user interface from which the first-mentioned thumbnail image is progressively presented.

18. A computer-implemented method as described in claim 8, further comprising, prior to receiving the gesture:

receiving a first portion of a prior gesture made over the current user interface;
responsive to receiving the first portion of the prior gesture, presenting an indicator of, a part of, or all of a second previous user interface associated with a second previously-interacted-with application;
receiving a later portion of the prior gesture; and
responsive to receiving the later portion, ceasing to present the indicator of, the portion of, or all of the second previous user interface.

19. A computer-implemented method as described in claim 8, further comprising, after presenting the previous user interface associated with the previously-interacted-with application:

enabling selection of a second previously-interacted-with application through a second gesture made over the previous user interface associated with the previously-interacted-with application; and
responsive to receiving the second gesture and without further selection, presenting a further previous user interface of a further-previously-interacted-with application.

20. A computer-implemented method comprising:

receiving a gesture made through a gesture-sensitive display presenting a current immersive user interface of a current application, the gesture having a start point at an edge of the gesture-sensitive display and a later point not at the edge of the gesture-sensitive display;
determining a most-recently-interacted-with application other than the current application; and
responsive to determining, presenting an immersive user interface associated with the most-recently-interacted-with application and enabling interaction with the most-recently-interacted-with application through the immersive user interface without further interaction following receipt of the gesture.

Patent History

Publication number: 20120304132
Type: Application
Filed: May 27, 2011
Publication Date: Nov 29, 2012
Inventors: Chaitanya Dev Sareen (Seattle, WA), Tsz Yan Wong (Seattle, WA), Jesse Clay Satterfield (Seattle, WA), Matthew I. Worley (Bellevue, WA), Bret P. Anderson (Kirkland, WA), Nils A. Sundelin (Bothell, WA), Patrice L. Miner (Kirkland, WA), Jennifer Nan (Seattle, WA), Robert J. Jarrett (Snohomish, WA), David A. Matthews (San Francisco, CA)
Application Number: 13/118,302

Classifications

Current U.S. Class: Gesture-based (715/863)
International Classification: G06F 3/033 (20060101);