HAND RAILS
A handrail system comprising a top rail (50) and one r more support posts (25). The rail and post/s may be formed from a synthetic material such as a fibre reinforced plastics material.
The present invention relates generally to hand rails and particularly to aspects of safety, production and assembly of, and connections of, hand rails.
Hand rail structures are used in a wide range of circumstances and for a variety of reasons. For example, hand rail structures may be deployed along staircases or walkways to serve as a support for people as they move. Alternatively or additionally hand rail systems can be used as barriers or “fences” to delimit an area.
There are a variety of considerations when designing a hand rail system, primarily safety aspects but also material choice, production techniques and ease of assembly which will influence the properties and performance of the resulting structure that is in turn dictated by, for example, the final application (such as offshore installations).
The present invention seeks to provide improvements in or relating to hand rail systems.
According to a first aspect of the present invention there is provided a handrail system comprising a top rail and one or more support posts, in which the rail and post/s are formed from a synthetic material.
The material from which the hand rail system is produced is an important consideration. The material from which all of the components of the hand rail system may be the same or, depending on the circumstances may be different.
The synthetic material may comprise a composite material such as an advanced composite. For example, the material may comprise a reinforced composite material such as a fibre-reinforced plastic (FRP) material, which is a composite material of fibre glass (or other fibre) in a polymer matrix. FRP is seen as a particularly suitable material from which to form the hand rail structures of the present invention. FRP combines low weight with high strength and provides corrosion resistance and excellent thermal and electrical insulation. Because FRP materials have low thermal conductivity they can have particular benefits when used in cold weather conditions, where they are “warm” to the touch. Other advantageous properties may include low electrical conductivity and electromagnetic transparency.
The FRP material can be selected on the basis of required properties for the resulting hand rail systems, for example polyester-, epoxy-, and vinyl ester-based materials. For example phenolic-based FRP materials can be used. Other suitable component materials may include bioresins and natural fibres to form a reinforced composite material.
Phenolic-based FRP materials have presented significant difficulties in production, for example, by pultrusion. However, the inventors have surprisingly found that phenolic-FRP can be used to form hand rail structures which have particularly good fire-resistance properties. Phenolic-based FRP hand rails may have particular benefits for off shore applications, such as oil rigs.
The material may be provided in various forms for production (for example by moulding) such as sheet moulding compound (SMC) or dough moulding compound (DMC).
The connection of the post to the rail may be articulated so that, in use, the rail slope is adjustable. This allows, for example, posts to stay generally vertical whilst the rail can be used for level and sloping applications.
The rail may comprise one or more sockets for receiving respective posts. The post is therefore fitted into the rail interior which removes the need for an external bracket. The articulation part of the joint can thereby be hidden in the top rail moulding. This minimises the trapping risk presented by the rail in use because and allows the rail to be constructed with no sharp corners which might, for example, allow loose clothing to get caught.
The system may comprise connectors for receiving the post/s and for receiving rail sections. The connector may be arranged to receive a rail section at either end thereof and to receive the post on its underside (in use).
The connector may comprise a post joint portion hingedly connected to a rail body portion. The joint portion therefore serves as a connector between the rail and the main post structure, with the rail body portion effectively forming an integral part of the rail.
The post joint portion may comprise a post adapter receivable in the rail portion and connectable to a support post.
The post may be connected to the rail by a hinge pin. The hinge pin permits articulation of the post and rail with respect to each other.
The rail and post/s may have square cut ends. Simple square cut ends make accurate fabrication simpler and generally give a better quality finish. Configuring the hand rail system so that no sloping cuts or mitre joints are required gives significant production and assembly benefits.
According to the present invention there is also provided a handrail system comprising a top rail and one or more support posts connected to the rail, in which the or each post-rail connection region is adapted to permit a user to maintain a continuous grip of the rail during a sliding movement across the region.
This allows provision of a handrail system in which the entire handrail can be gripped i.e. uninterrupted grip can be obtained along the rail rather than having to release grip across post-rail connection regions.
In known hand rail systems it is usual for posts to connect to the top rail with cumbersome brackets which are of a size, shape and position which forces a user to remove their hand from the hand rail and pass over the bracket to the other side before they can replace their hand. The provision of a “continuous” top rail is an important safety and ergonomic feature. This allows a hand to hold the rail and slide it along continuously as someone is walking. This means that as a person is walking besides the hand rail they do not have to take their hand off. The provision of a continuous hand grip/contact area which is unencumbered by post-rail connections is an important safety feature because the user can be in continual gripping contact with the top rail. This would be particularly important, for example, in the event of a fire or other emergency in which visibility is impaired so that the user can feel their way along the hand rail with no interruptions.
According to a further aspect of the present invention there is provided a handrail system comprising a generally cylindrical top rail and one or more support posts connected to the rail, in which the circumferential area of the rail occupied by the or each post at respective post-rail interfaces is less than the diameter of the rail.
By providing a post-rail interface with a reduced circumferential extent a user is able to grip the rail across the interface.
The area occupied by the or each post may be less than half the diameter of the rail.
The unoccupied circumference of the rail may be in the range of 110 mm to 200 mm at the or each post-rail interface. The unoccupied circumference of the rail may be at least 124 mm at the or each post-rail interface. In an alternative interpretation of the invention the unoccupied circumference may be determined as a value equating to a circular sector i.e. the post occupies an included arc. For example, the post may occupy a sector in the range of 10 degrees to 180 degrees, for example in the ranges of 30 to 120 degrees or 40 to 60 degrees, such as approximately 50 degrees.
Other rail sections may be used, such as elliptical or square with round corners.
Rails without protrusions and with a generally smooth surface may be preferred.
According to a further aspect of the present invention there is provided a handrail system comprising a top rail and one or more support posts connected to the rail in which the or each post-rail connection interface provides a grip zone so that a user can grip the rail across the interface.
According to a further aspect of the present invention there is provided a hand rail system comprising a top rail and one or more support posts, in which the effective hand grip area of the rail is substantially continuous whereby to provide uninterrupted support along the length of the rail.
The post-rail interface may be facilitated by a connector which can receive one or more rail sections and connect (directly or indirectly) to a support post. The system may therefore comprise connectors for receiving the post/s and for receiving rail sections. The connector may be arranged to receive a rail section at either end thereof and to receive the post on its underside (in use).
The connector may comprise a main body part which both forms part of the top rail and receives a support post in use.
The top rail connection part may comprise a projection or recess for engaging a corresponding recess or projection on a rail section.
The rail connection part may be adapted to be flush fitting with a rail section.
The post connector may include a post adapter received in the connector and being connectable to a support post. The post adapter may be hingedly received.
The post connection part of the rail may comprise a socket for receiving part of a post or a post adapter internally. The rail (or rail connector part) may therefore comprise one or more sockets for receiving respective posts (or post adapters). The post is therefore fitted into the rail interior which removes the need for an external bracket. The articulation part of the joint can thereby be hidden in the top rail moulding. This minimises the trapping risk presented by the rail in use because and allows the rail to be constructed with no sharp corners which might, for example, allow loose clothing to get caught.
The post connection part may form a hinging joint with the support post. This means that, in use, the top rail and/or support post can be inclined to accommodate different surfaces. The or each post may be connected to the rail by an articulated joint, in which the joint is provided inside the rail. In other words, the joint is a discreet connection with the articulation part of the joint hidden in the top rail. The post and rail can be moved with respect to each other prior to fixing in position and thereafter provides an unobtrusive joint.
The connector may be adapted to form an integral part of the top rail structure. In some embodiments part of the connector effectively forms an intermediate top rail section so that the top rail is not interrupted by the connector.
The connection of the post to the rail may be articulated so that, in use, the rail slope is adjustable. This allows, for example, posts to stay generally vertical whilst the rail can be used for level and sloping applications.
The connector may comprise a post joint portion hingedly connected to a rail body portion. The joint portion therefore serves as a connector between the rail and the main post structure, with the rail body portion effectively forming an integral part of the rail.
The post may be connected to the rail by a hinge pin. The hinge pin permits articulation of the post and rail with respect to each other.
The rail and post/s may have square cut ends. Simple square cut ends make accurate fabrication simpler and generally give a better quality finish. Configuring the hand rail system so that no sloping cuts or mitre joints are required gives significant production and assembly benefits.
According to a further aspect of the present invention there is provided a handrail connector comprising a top rail connection part attachable to one or more top rail sections and a post connection part attached or attachable to a support post, in which the post connection part is articulated with respect to the rail connection part.
This means that, in use, the top rail and/or support post can be inclined to accommodate different underlying surfaces/slopes.
The connector may comprise a main body part which both forms part of the top rail and receives a support post in use.
The top rail connection part may comprise a projection or recess for engaging a corresponding recess or projection on a rail section.
The rail connection part may be adapted to be flush fitting with a rail section.
The post connection part may comprise a socket for receiving part of a post internally. The post connection part may be formed separately from the rail connection part.
The post connection part may form a joint with the rail connection part. The joint between the rail connection part and the post connection part may be made inside the rail connection part.
The post connection part may form a hinging joint with a, or for a, support post. This means that, in use, the top rail and/or support post can be inclined to accommodate different surfaces.
The post connector may include a post adapter received in the connector and being connectable to a support post. The post adapter may be hingedly received.
The connector may be adapted to form an integral part of the top rail structure. In some embodiments part of the connector effectively forms an intermediate top rail section so that the top rail is not interrupted by the connector.
The post connection part may be connected to the rail connection part by a hinge pin. The hinge pin permits articulation of the post and rail with respect to each other.
The connector may be generally T-shape.
The post and rail connector parts may be formed integrally with a post/rail, or may be formed separately and with some means of a stable connection to a post/rail.
According to a further aspect of the present invention there is provided a handrail system comprising one or more top rail sections, one or more support posts and one or more connectors as described herein.
According to a further aspect there is provided an adjustable hand rail corner connector part hingedly connectable to another such part and being attachable to further hand rail components, in which the part comprises a cranked portion.
The crank angle may be in the range of 15° and 30° and in some embodiments is approximately 22.5°.
The first and second parts of a connector may be substantially the same. This results in substantial cost savings with two parts that can be produced in the same mould.
The material from which the hand rail system is produced is an important consideration. The material from which all of the components of the hand rail system may be the same or, depending on the circumstances may be different.
Components may, for example, be formed from a synthetic material. The synthetic material may comprise a composite material such as an advanced composite. For example, the material may comprise a reinforced composite material such as a fibre-reinforced plastic (FRP) material, which is a composite material of fibre glass (or other fibre) in a polymer matrix. FRP is seen as a particularly suitable material from which to form the hand rail structures of the present invention. FRP combines low weight with high strength and provides corrosion resistance and excellent thermal and electrical insulation. Because FRP materials have low thermal conductivity they can have particular benefits when used in cold weather conditions, where they are “warm” to the touch. Other advantageous properties may include low electrical conductivity and electromagnetic transparency.
The FRP material can be selected on the basis of required properties for the resulting hand rail systems, for example polyester-, epoxy-, and vinyl ester-based materials. For example phenolic-based FRP materials can be used. Other suitable component materials may include bioresins and natural fibres to form a reinforced composite material.
Phenolic-based FRP materials have presented significant difficulties in production, for example, by pultrusion. However, the inventors have surprisingly found that phenolic-FRP can be used to form hand rail structures which have particularly good fire-resistance properties. Phenolic-based FRP hand rails may have particular benefits for off shore applications, such as oil rigs.
The material may be provided in various forms for production (for example by moulding) such as sheet moulding compound (SMC) or dough moulding compound (DMC).
According to a further aspect of the present invention there is provided a hand rail system as described herein in combination with a corner connector as described herein.
All combinations of the different aspects and embodiments are envisaged.
The present invention will now be more particularly described, by way of example, with reference to the accompanying drawings, in which:
Referring first to
The top rail 15 is of generally cylindrical shape with a circular cross section and is formed from an FRP material. The rail 15 is made up of a number of rail sections 40 which are joined by connectors 45 which also receive the post 20 as described in more detail below. Each post 20 is received on the underside of the connector 45 and the connectors 45 are the same diameter as the sections 40. This means that the connector 45 provides a surface which can itself be gripped by a user and the interface between the connector 45 and the adjacent rail sections 40 is such that a user does not need to remove their hand to pass over the intersections. Accordingly, the rail 15 presents a substantially continuous gripping surface along its length.
Referring now to
The connector 45 is generally T-shape and comprises a rail connector section and a post connector section. The rail connector section comprises a central body 50 having at either end a cylindrical dowel portion 55. The dowel portions 55 are dimensioned to fit tightly within the ends of rail sections 40 and each dowel 55 is provided with ribs 60 on their outer surfaces to centralise the fit to ensure a consistent adhesive line thickness.
The central section 50 includes a socket 65 having a generally rectangular cross section.
The socket 65 receives a post connector 70 which comprises an articulation leg 75 received in the socket 65 which extends to a post cap 80 from which depends a fixing section 85. The fixing section 85 has a generally square cross section and is provided on its external surface with a plurality of longitudinal ribs 90. The section 85 is received in the top of a post 20 and pushed in until the cap 80 abuts against the end of the post 20. The rail sections 40 are pushed onto the dowels 55 until they abut against the central section 50. The central section 50 has the same cross section and diameter as the rail sections 40 so that there is a flush fit at the intersections.
The central section 50 is provided with a pin hole 95 and the leg 75 is also provided with a pin hole 100. The holes 95, 100 are aligned and a hinge pin 105 is passed through to join the leg 75 to the body 50 in a hinging joint. This means that the joint between the body 50 and the legs 75 is articulated so that in use the angle between posts and the hand rail can be varied to accommodate different situations.
Referring now to
The top rail 15 is of generally cylindrical shape with a circular cross section. The rail 15 is made up of a number of rail sections 40 which are joined by connectors 45 which include a post adapter 70 so that they also receive the post 20 as described in more detail below. Each post 20 is received on the underside of the connector 45. The connectors 45 are the same diameter as the sections 40 and the interface region (a) between the post and the rail (described in more detail below) means that the connector 45 provides a surface which can itself be gripped by a user and the interface between the connector 45 and the adjacent rail sections 40 is such that a user does not need to remove their hand to pass over the intersections. Accordingly, the rail 15 presents a substantially continuous gripping surface along its length.
Referring now to
The connector 45 is generally T-shape and comprises a rail connector section 46 and a post connector section 70. The rail connector section 46 comprises a central body 50 having at either end a cylindrical dowel portion 55. The dowel portions 55 are dimensioned to fit tightly within the ends of rail sections 40 and each dowel 55 is provided with ribs 60 on their outer surfaces to centralise the fit to ensure a consistent adhesive line thickness.
The central section 50 includes a socket 65 having a generally rectangular cross section.
The socket 65 receives a post connector 70 which comprises an articulation leg 75 received in the socket 65 which extends to a post cap 80 from which depends a fixing section 85. The fixing section 85 has a generally square cross section and is provided on its external surface with a plurality of longitudinal ribs 90. The section 85 is received in the top of a post 20 and pushed in until the cap 80 abuts against the end of the post 20.
The rail sections 40 are pushed onto the dowels 55 until they abut against the central section 50. The central section 50 has the same cross section and diameter as the rail sections 40 so that there is a flush fit at the intersections.
The central section 50 is provided with a pin hole 95 and the leg 75 is also provided with a pin hole 100. The holes 95, 100 are aligned and a hinge pin 105 is passed through to join the leg 75 to the body 50 in a hinging joint. This means that the joint between the body 50 and the legs 75 is articulated so that in use the angle between posts and the hand rail can be varied (see
As shown best in
In other embodiments (not shown) the post may be fixed directly to the rail or form an integral part thereof and/or there may be no hinging joint. However, the relationship between extent to which the post occupies the rail is still restricted so that grip can be maintained at the interface.
Referring now to
The section 146 is generally cylindrical and the sector occupied by the post 125 is 52 degrees, leaving 308 degrees available for a user to grip across the post-rail connection region.
Referring now to
The top rail 15 is of generally cylindrical shape with a circular cross section. The rail 15 is made up of a number of rail sections 40 which are joined by connectors 45 which also receive the post 20 as described in more detail below. Each post 20 is received on the underside of the connector 45 and the connectors 45 are the same diameter as the sections 40. This means that the connector 45 provides a surface which can itself be gripped by a user and the interface between the connector 45 and the adjacent rail sections 40 is such that a user does not need to remove their hand to pass over the intersections. Accordingly, the rail 15 presents a substantially continuous gripping surface along its length.
Referring now to
The connector 45 is generally T-shape and comprises a generally cylindrical rail connector part 46 and an elongate post connector part 70.
The rail connector part 46 comprises a central body 50 having at either end a cylindrical dowel portion 55, 56. The dowel portions 55, 56 are dimensioned to fit tightly within the ends of rail sections 40 and each dowel 55, 56 is provided with circumferential ribs 60 on their outer surfaces to centralise the fit to ensure a consistent adhesive line thickness.
The central section 50 includes a socket 65 having a generally rectangular cross section. The socket 65 is offset from the centre of the section 50 towards the dowel 55.
The socket 65 receives the post connector part 70.
The post connector part 70 comprises an articulation leg 75 received in the socket 65 and having a semi-circular end 76 with a fixing hole 77. The leg 75 extends to a post cap 80 from which depends a fixing section 85. The fixing section 85 has a generally square cross section and is provided on its external surface with a plurality of longitudinal ribs 90. The section 85 is received in the top of a post 20 and pushed in until the cap 80 abuts against the end of the post 20 in a flush fit.
In use the rail sections 40 are pushed onto the dowels 55, 56 until they abut against the central section 50. The central section 50 has the same cross section and diameter as the rail sections 40 so that there is a flush fit at the intersections.
The central section 50 is provided with a pin hole 95 and the leg 75 is also provided with a pin hole 77. The holes 95, 77 are aligned and a hinge pin 105 is passed through to join the leg 75 to the body 50 in a hinging joint.
This means that the joint between the body 50 and the leg 75 is articulated so that in use the angle between posts (via post connectors) and the hand rail can be varied as illustrated by
Referring now to
The top rail 15 is of generally cylindrical shape with a circular cross section. The rail 15 is made up of a number of rail sections 40 which are joined by connectors 45 which also receive the post 20 as described in more detail below. Each post 20 is received on the underside of the connector 45 and the connectors 45 are the same diameter as the sections 40. This means that the connector 45 provides a surface which can itself be gripped by a user and the interface between the connector 45 and the adjacent rail sections 40 is such that a user does not need to remove their hand to pass over the intersections. Accordingly, the rail 15 presents a substantially continuous gripping surface along its length.
Referring now to
In this embodiment the connector 30 comprises two identical parts 50, 55 fitted together in a mirror-image arrangement.
As shown in more detail in
Each dowel section 52, 57 has a plurality of external longitudinal ribs or splines 54, 59 which help with fastening the parts onwardly to other hand rail components.
As shown best in
The connector could, of course, be used in conjunction with any hand rail system and is not restricted to the particular class or configuration of hand rail systems specifically described herein.
Claims
1. An offshore handrail system comprising a top rail and one or more support posts, in which the top rail and the one or more support posts are formed from a phenolic-based FRP material.
2-72. (canceled)
73. A system as claimed in claim 1, in which the system comprises one or more connectors for receiving the one or more support posts and for receiving rail sections.
74. A system as claimed in claim 73, in which the connector is substantially T-shape.
75. A system as claimed in claim 73, in which the connector comprises a main body part which both forms part of the top rail and receives at least one of the one or more support posts in use.
76. A system as claimed in claim 1, in which the system comprises a connector which forms an integral part of the top rail structure.
77. A system as claimed in claim 73, in which the connector comprises a post connection part and a rail connection part.
78. A system as claimed in claim 77, in which the post connection part is formed separately from the rail connection part.
79. A system as claimed in claim 77, in which the rail connection part is adapted to be flush fitting with a rail section.
80. A system as claimed in claim 77, in which the post connection part forms a joint with the rail connection part.
81. A system as claimed in claim 1, in which the top rail and the one or more support posts have square cut ends.
82. A system as claimed in claim 1, in which a connection of the one or more support posts to the top rail is articulated so that in use, a slope of the top rail is adjustable.
83. An adjustable hand rail corner connector comprising a first and a second part hingedly connected to each other and being attachable to further hand rail components, in which the first and second parts comprise a cranked portion and in which the first and second parts are substantially the same.
84. An adjustable hand rail corner connector part configured to be hingedly connectable to another connector part and being attachable to further hand rail components, in which the part comprises a cranked section and an articulation section, the cranked sections and the articulation section being substantially cylindrical and having substantially same diameters.
85. A connector as claimed in claim 83, in which a crank angle is in the range of 15° to 30°.
86. A connector as claimed in claim 83, in which a crank angle is approximately 22.5°.
87. A connector as claimed in claim 83, in which the connector is formed from an FRP material.
88. A handrail system comprising a top rail, one or more support posts and one or more connectors for receiving the one or more support posts and for receiving rail sections, in which the rail, the one or more support posts and the one or more connectors are formed from an FRP material and in which the connection of the one or more support posts to the one or more connectors is articulated so that in use a slope of the top rail is adjustable.
89. A system as claimed in claim 88, in which the FRP material is phenolic-based.
90. A handrail connector comprising a top rail connection part attachable to one or more top rail sections and a post connection part attachable to a support post, the top rail connection part comprising a one-piece body with a slot and the post connection part comprising a post adapter including an articulation leg which is hingedly received in the slot, in which the articulation leg extends from the post connection part to a post cap from which depends a post fixing section attachable to the support post, whereby the post cap is spaced from the top rail connection part by the articulation leg and the articulation leg provides a reduced post-rail interface between the top rail connector part and the post cap such that a user can maintain grip across the top rail connection part and is unencumbered by the post-rail interface.
91. A connector as claimed in claim 90, in which the connector is formed from an FRP material.
Type: Application
Filed: Feb 2, 2011
Publication Date: Dec 27, 2012
Applicant: PIPEX STRUCTURAL COMPOSITES LIMITED (Plymouth)
Inventors: Simon Eves (Glasgow), Matthew John Hewstone (Exeter)
Application Number: 13/577,837
International Classification: E04F 11/18 (20060101);