METHOD AND APPARATUS FOR WIRELESS ROUTER MULTICAST
A system and method are provided to transmit messages in a wireless communication network to a multicast group using a single wireless channel. A base station processor having a plurality of wireless channels is in communication with a plurality of subscriber access units in a wireless communication network. The base station processor allocates the wireless channels to the subscriber access units for transmitting messages between the subscriber access units and the base station processor. The base station processor is also connected to a public access network such as the Internet via an Internet gateway. Multicast messages are received via the Internet gateway to be sent to a plurality of the subscriber access units, denoted as a multicast group, in the wireless communication network. The multicast message is sent concurrently to each of the subscriber access units by allocating a single wireless channel to all subscriber access units in the multicast group. The message is sent over the single wireless channel to all the subscriber access units in the multicast group and received concurrently by the subscriber access units in the multicast group.
Latest INTERDIGITAL PATENT CORPORATION Patents:
This application is a continuation of U.S. patent application Ser. No. 09/630,024, filed Jul. 31, 2000, which is incorporated by reference as if fully set forth.
BACKGROUND OF THE INVENTIONIn a telecommunications network, it is often desirable to send the same message to a group of recipients. Methods are known for establishing a group of message recipients as a multicast group. Such a group of recipients share a common group address for receiving messages sent to the multicast group. A message designated as a multicast message can then be sent to all members of the multicast group by simply addressing the message to the group address.
Message transmission in a telecommunications network occurs over a variety of physical media. For example, a telecommunications network may include wireless communication networks. Wireless communication networks are notable because message transmission occurs over a wireless connection via a radio channel, rather than via a physically conductive, or wired connection which is common in a telecommunications network. In a typical wireless communication network, a base station processor is in communication with a plurality of subscriber access units (subscribers). The base station processor also maintains a wired connection to the telecommunications network. Each of the subscriber access units is connected to a plurality of user computing devices, such as user PCs. In this manner, a user computing device is provided a wireless connection to a telecommunications network through the subscriber access unit and the base station processor in wireless communication with the subscriber access unit.
A base station processor includes a plurality of wireless channels for message transmission between the base station processor and the subscriber access units. Such wireless channels are a scarce resource in a base station processor. Accordingly, the base station processor allocates the wireless channels among the subscriber access units on a periodic basis as the users demand access.
A multicast message received by a base station processor may require delivery to a multiple of the subscriber access units which are members of a multicast group. In a typical base station processor, a separate channel is allocated for each of the subscriber access units that is a member of the multicast group. The multicast message therefore must be sent, in an iterative manner, to each of the subscriber access units over a separate dedicated channel allocated for each subscriber access unit. In this manner, a multicast message results in duplicate channel allocation and duplicate message transmission for each group member when a multicast message is received by the base station processor for delivery to each of the subscriber access units in the multicast group.
SUMMARY OF THE INVENTIONIt would be beneficial, therefore, to provide a method and system for allocating a single channel for all subscriber access units that are members of a multicast group, and sending the message to all the subscriber access units over the single allocated channel for concurrent receipt by the subscriber access units that are members of the multicast group.
According to the invention, a system and method are provided to transmit messages in a wireless communication network to a multicast group. A base station processor having a plurality of wireless channels is in communication with a plurality of subscriber access units in a wireless communication network. The base station processor allocates the wireless channels to the subscriber access units for transmitting messages between the subscriber access units and the base station processor on a demand basis. The base station processor is also connected to a public access network such as the Internet via an Internet gateway. Multicast messages are received via the Internet gateway to be sent to a plurality of the subscriber access units, denoted as a multicast group, in the wireless communication network. The multicast message is sent concurrently to each of the subscriber access units by allocating a single wireless channel for the multicast message to all subscriber access units in the multicast group. The message is sent over the single wireless channel to all the subscriber access units in the multicast group and received concurrently by the subscriber access units in the multicast group. A routing table stores entries associating subscriber access units with an interface; an interface is associated with a subscriber access units; and a wireless channel is associated with the interface. Multiple subscriber access units can therefore be associated with the same wireless channel used to send the multicast message. Subscriber access units which are members of a multicast group are associated with the same multicast group address in the routing table.
The multicast message traffic is determined by the base station processor which parses the incoming message traffic. The multicast message traffic conforms to a predetermined protocol such as the Internet Group Management Protocol (IGMP). Multicast message conforming to this protocol is used to identify multicast groups, identify requests for subscribers to leave and join the multicast groups, and determine which group a particular message is directed to.
The foregoing and other objects, features and advantages will be apparent from the following more particular description of particular embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
A description of a preferred embodiment of the invention follows.
The user PCs 12 may therefore be provided access to the internetworking gateway 18, which may be any remote entity located on the Internet or other network, through a combination of the wired 20, 24 and wireless connection 26 provided. The wired connection 20,24 is typically supported by a protocol such as TCP/IP or UDP/IP. The wireless connection is supported by a wireless link protocol such as IS95 or another wireless link protocol such as the protocol described in pending U.S. Patent Application entitled “Dynamic Frame Sizing Settings for Multichannel Transmission,” published as PCT application No. WO 99/44341, Sep. 2, 1999.
Typically, the PC 12 provides a data packet, which may for example be an Internet Protocol (IP) packet, to the subscriber access unit 14 over the wired connection 20, which may for example be an Ethernet type connection. The subscriber access unit 14 removes the framing of the data packet and transfers the data in the data packet to the base station processor 16 over the wireless connection 26 in accordance with the wireless link protocol. The base station processor 16 extracts the wireless connection frames and forwards them, in data packet form, over the wired connection 24 to the internetworking gateway 18.
Similarly, packets sent from the public access network are sent to the base station processor 16 over the wired link 24, transmitted to the corresponding subscriber access unit 14 over the wireless link 26, and sent to the user PC 12 over the wired link 20. The subscriber access unit 14 and the base station processor 16 therefore denote endpoints of the wireless connection 26, providing a wireless link from the user PC 12 to the public access network 28 such as the Internet.
Typical wireless systems employ a shared paging and access method, common to all subscriber access units 14, that is used to provide communication with subscriber access units 14 when no dedicated wireless traffic channels 22 are allocated to send and receive messages. In such a system, a common paging channel 32 is used to notify a subscriber access unit 14 that it is being allocated a traffic channel 22. Also in such a system, a common access channel 30 is used by a subscriber access unit 14 to request a traffic channel 22 from the base station processor 16. Once traffic channels 22 are allocated, and the subscriber access unit 14 has been notified, the waiting messages are then forwarded by the subscriber access units 14 to the PC 12 or to the base station processor 16, depending on message direction.
In the example shown, described further below, channel 22c is allocated to subscriber access unit 14d on connection ID C14. Channel 22a is allocated to subscriber access unit 14b on connection ID C5. There are no channels allocated to subscriber access unit 14e on connection ID C11. Channel 22f is allocated to the multicast group indicated as subscriber ID 15 on connection ID C23. Connection ID C23 refers to a multicast group containing member connection IDs C14 and C11 which correspond to subscriber access units 14d and 14e respectively. The multicast message is sent via channel 22f, providing both wireless connections 26a and 26b, and is received concurrently by subscriber access units 14d and 14e, respectively. In this manner, multiple redundant message transmissions, each entailing a separate channel allocation, are avoided.
Referring in more detail to
Prior to discussing message transmission as indicated in
Typically, all subscriber access units 14 are responsive to the paging channel 32, as indicated above. When the base station processor 16 allocates a channel 22 to a subscriber access unit 14, a paging message is sent via the paging channel 32 to indicate to the subscriber access unit 14 that a message is about to be transmitted on a particular channel 22. For a unicast message, only a single subscriber access unit 14 is involved. Therefore, while all subscriber access units 14 will receive, demodulate and decode the paging message on the paging channel 32, only the subscriber access unit 14 indicated in the paging message need act on it. When the message indicated in the paging message is sent, only the subscriber access unit 14 indicated by the paging message will demodulate and decode the message. The other subscriber access units 14, while capable of receiving the RF signals carrying the message, will not decode and may need not fully demodulate the message because the paging message did not designate them.
During a multicast message transmission, multiple subscriber access units 14 process the message. Therefore, the corresponding paging message is indicative of the collection of the subscriber access units 14 in the multicast group to whom the message is directed. The group members may be indicated specifically by individual subscriber access unit reference, or by a group designator known to each of the subscriber access units 14 in the group. In this manner, the same channel 22 is used to transmit to multiple subscriber access units 14 because multiple subscriber access units 14 are told to receive, or listen, on the same channel 22.
Continuing to refer to
Therefore, a multicast message sent to multicast group 224.27.4.6 results in the message being sent via channel 22f to both subscriber access unit 14d and 14e, because both subscriber access unit 14d and 14e are receiving, or listening, on channel 22f. Group establishment and the transmission of a multicast message will be described in more detail below.
An add member to group message 208 is received, indicative of a request to add user PC 12d, served by subscriber access unit 14e, to the multicast group 224.27.4.6. More specifically, the add member request message is indicative of an IP address served by subscriber access unit 14e, since a single subscriber access unit 14 may serve many user PCs 12. The routing table 34 is scanned, and the entry 202 for multicast group 224.27.4.6 is found to exist. The routing table 34 indicates that connection ID C23 serves the multicast group 224.27.4.6. The group management table 38 is scanned, and the entry 206 for connection ID C23 is found to exist. User PC 12d has an associated IP address of 218.114.3.7. The routing table 34 is scanned for IP address 218.114.3.7, and the entry is found to exist associated with connection ID C11. The group management table 38 entry 206 is then updated to include connection ID C11 in the group connection list 48.
Another add member to group message 210 is received, indicative of a request to add user PC12c, served by subscriber access unit 14d to the multicast group 224.27.4.6. The routing table 34 again indicates that connection ID C23 is associated with this multicast group. The group management table 38 is scanned, and the entry 206 for connection ID C23 is found to exist. User PC 12c has an associated IP address of 205.152.52.3. The routing table 34 is scanned for IP address 205.152.52.3, and the entry is found to exist associated with connection ID C14. The group management table 38 entry 206 is then updated to include connection ID C14 in its connection list.
As indicated above in
It should be noted that exemplary IGMP messages are described herein, and that other messages and protocols exist which are indicative of requests to create and delete multicast groups, and to join and remove members from the multicast groups. Such messages include, but are not limited to, group query, group member list, join host group, leave host group, and others. The system and methods described herein are illustrative of the notion that a wired line multicast group protocol, such as IGMP used in a TCP/IP network, can be employed in a base station processor to provide efficient multicast group transmission in a wireless network. Through examining the group management messages in the base station processor as defined herein, wireless channels, wireless connections, and wireless interfaces can be employed in an optimal manner.
Those skilled in the art should readily appreciate that the programs defining the operations and methods defined herein are deliverable to a base station processor in many forms, including but not limited to a) information permanently stored on non-writeable storage media such as ROM devices, b) information alterable stored on writeable storage media such as floppy disks, magnetic tapes, CDs, RAM devices, and other magnetic and optical media, or c) information conveyed to a computer through communication media, for example using baseband signaling or broadband signaling techniques, as in an electronic network such as the Internet or telephone modem lines. The operations and methods may be implemented in a software executable out of a memory by a processor or as a set of instructions embedded in a carrier wave. Alternatively, the operations and methods may be embodied in whole or in part using hardware components, such as Application Specific Integrated Circuits (ASICs), state machines, controllers or other hardware components or devices, or a combination of hardware and software components.
While the system and method for transmitting multicast messages in a wireless communication network have been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims. Accordingly, the present invention is not intended to be limited except by the following claims.
Claims
1. A method of multicasting messages in a wireless network comprising:
- receiving a multicast message addressed to a multicast group at a base station processor having a plurality of wireless channels;
- determining a plurality of multicast group members; and
- sending, over one of said wireless channels, said multicast message, wherein the same one of said wireless channels is used to simultaneously send said multicast message to said plurality of multicast group members.
2. The method of claim 1 further comprising receiving said message at each of the plurality of multicast group members via said same wireless channel.
3. The method of claim 2 wherein receiving said message further comprises concurrently receiving said multicast message at each of said plurality of multicast group members.
4. The method of claim 1 wherein sending said multicast message is preceded by:
- selecting, from among said plurality of wireless channels, a multicast channel adapted to transmit said multicast message; and
- sending, via one of said plurality of wireless channels to each of the multicast group members, a paging message indicative of said multicast channel over which to receive said multicast message, wherein said paging message is transmitted simultaneously to each of said multicast group members.
5. The method of claim 1 wherein said base station processor is operable to communicate with a plurality of subscriber access units adapted for communication in a wireless network via said plurality of wireless channels and said multicast group members comprise a subset of said plurality of said subscriber access units.
6. The method of claim 5 wherein determining further comprises:
- performing a lookup in a routing table adapted to store entries associating a multicast group with an interface identifier; and
- performing a lookup in an interface table adapted to associate said interface identifier with at least one of said plurality of subscriber access units, wherein each of said plurality of subscriber access units associated with the same interface identifier comprises said multicast group members.
7. The method of claim 6 wherein sending further comprises:
- performing a lookup in a connection table adapted to store connection identifier entries indicative of an association between at least one of said plurality of wireless channels and at least one of said plurality of subscriber access units.
8. The method of claim 6 further comprising:
- receiving a join group request indicative of at least one of said plurality of multicast group members; and
- adding an interface entry in said interface table indicative of an association between said at least one multicast group member indicated in said join group request and said multicast group.
9. The method of claim 8 further comprising receiving a join group request indicative of at least one other of said multicast group members; and
- adding an interface entry in said interface table indicative of an association between at least one other of said multicast group members and said multicast group.
10. The method of claim 1 wherein determining said multicast group members further comprises:
- scanning said multicast message; and
- parsing a group address indicative of a multicast group.
11. The method of claim 10 wherein said group address conforms to a protocol and said parsing comprises parsing in accordance with said protocol.
12. The method of claim 11 wherein said protocol is the Internet Group Management Protocol (IGMP).
13. A system for multicasting messages in a wireless network comprising:
- a base station processor having a plurality of wireless channels operable to transmit a wireless message; and
- a plurality of subscriber access units in communication with said base station processor over a wireless connection and adapted to receive messages via said plurality of wireless channels, wherein said base station processor is operable to receive a multicast message and simultaneously transmit said multicast message to at least one of said plurality of subscriber access units via the same one of said plurality of wireless channels.
14. The system of claim 13 wherein said base station processor further comprises a routing table adapted to store entries indicative of an association between each of said plurality of subscriber access units and an interface, wherein said subscriber access units corresponding to the same interface comprise a multicast group.
15. The system of claim 14 further comprising an interface table adapted to store entries indicative of an association between each of said plurality of subscriber access units and a wireless connection, wherein each of said subscriber access units in said multicast group correspond to the same interface.
16. The system of claim 15 wherein each of said entries in said interface table corresponds to a connection indicative of one of said plurality of wireless channels, and wherein each of said subscriber access units in said multicast group correspond to the same one of said plurality of wireless channels.
17. The system of claim 14 wherein said base station processor further comprises:
- a connection table adapted to store entries indicative of an association between at least one of said plurality of subscriber access units with at least one of said plurality of wireless channels, wherein said connection table is indicative of a common channel allocated to said plurality of subscriber access units which comprise said multicast group.
18. The system of claim 14 wherein said routing table further comprises entries including a group address and a corresponding one of said interface IDs, wherein said group address is indicative of one of said multicast groups.
19. The system of claim 18 wherein said group address conforms to a predetermined protocol.
20. The system of claim 19 where said predetermined protocol is IGMP.
21. The system of claim 14 wherein only the subset of the plurality of subscriber access units in said multicast group decode said multicast message.
22. The system of claim 13 further comprising a scheduler operable to designate which of said plurality of subscriber access units receive said multicast message on a predetermined one of said plurality of wireless channels.
23. The system of claim 22, wherein said scheduler is further operable to designate a plurality of subscriber access units to receive said multicast message over the same one of said plurality of wireless channels.
24. The system of claim 17, wherein said scheduler is further operable to query said connection table, wherein said same one of said plurality of wireless channels corresponds to subscriber access units associated with a common interface ID.
25. The system of claim 24 further comprising a paging channel in communication with said scheduler, wherein said paging channel is operative to send a paging message to each of said plurality of subscriber access units in said multicast group indicative of one of said wireless channels to be used for receiving said multicast message.
26. The system of claim 15 wherein said subscriber access units are added to said multicast group via a join group message, wherein said join group message is indicative of an additional subscriber access unit and said multicast group and said base station processor is further operative to store a new entry in said interface table indicative of said additional subscriber access unit and said multicast group.
27. The system of claim 15 wherein said subscriber access units are removed from said multicast group via a leave group message, wherein the leave group message is indicative of a deleted subscriber access unit and said multicast group and said base station processor is further operative to delete an entry from said interface table indicative of said deleted subscriber access unit and said multicast group.
28. The system of claim 13 wherein the base station processor is in communication with an Internet gateway operable to transmit messages via a public access network.
29. A computer program product having computer program code for multicasting messages in a wireless network comprising:
- computer program code for receiving a multicast message addressed to a multicast group at a base station processor having a plurality of wireless channels;
- computer program code for determining a plurality of multicast group members; and
- computer program code for sending, over one of said wireless channels, said multicast message, wherein the same one of said wireless channels is used to simultaneously send said multicast message to said plurality of multicast group members.
30. A computer data signal including computer program code for multicasting messages in a wireless network comprising:
- program code for receiving a multicast message addressed to a multicast group at a base station processor having a plurality of wireless channels;
- program code for determining a plurality of multicast group members; and
- program code for sending, over one of said wireless channels, said multicast message, wherein the same one of said wireless channels is used to simultaneously send said multicast message to said plurality of multicast group members.
31. A system for multicasting messages in a wireless network comprising:
- means for receiving a multicast message addressed to a multicast group at a base station processor having a plurality of wireless channels;
- means for determining a plurality of multicast group members; and
- means for sending, over one of said wireless channels, said multicast message, wherein the same one of said wireless channels is used to simultaneously send said multicast message to said plurality of multicast group members.
Type: Application
Filed: Oct 15, 2012
Publication Date: Feb 21, 2013
Applicant: INTERDIGITAL PATENT CORPORATION (Wilmington, DE)
Inventor: INTERDIGITAL PATENT CORPORATION (Wilmington, DE)
Application Number: 13/651,557
International Classification: H04H 20/71 (20080101);