Performance Enhancement System

A flow controller for an engine cooling system is disclosed and claimed. The flow controller includes a housing and a valve. The housing defines a first entrance, a second entrance, and an exit. A main coolant flow path is defined by the first entrance with the exit, and a bypass coolant flow path is defined by the second entrance with the exit. The first entrance is adapted to be connected to the cooler, the second entrance is adapted to be connected to the engine bypass port, and the exit is adapted to be connected to the pump. With the valve closed, the main flow path is blocked; that is, coolant from the cooler and/or reservoir is prevented from entering the pump.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application claims the benefit of U.S. Provisional Patent Application No. 61/573,487 filed on Sep. 6, 2011, which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a system and method for enhancing the performance of internal combustion engines, and, more particularly, the present invention relates to a system and method for preheating engine coolant prior to it being recirculated back through the heat generating components of an internal combustion engine.

2. Description of the Related Art

While the present invention will be discussed herein with respect to snow machines for illustrative purposes, the present invention applies equally to all types engines and should not be limited to only those explicitly discussed herein. The terms snow machine, snow mobile, and sled will be used interchangeably herein.

It has been known that, in certain circumstances, the life span of snow machine engines can be extremely short. In some instances, engines fail within a very short time span of initial use. The cause for this quick failure has been determined to be due to a flaw in the coolant system. For typical snow machines, the cooling system is a loop that starts at the coolant reservoir. The reservoir is connected to a coolant pump by a hose. The pump causes coolant to flow from the reservoir, through the pump, and into the engine where it removes heat in known fashion. The heated coolant is then pumped through coolers or coolers that run the length of the tunnel, which is the portion of the snow machine that the seat and gas tank sits on and which covers the track. The tunnel cooler is located behind the motor under the fuel tank and runs to the back of the snow machine, running up one side and back down the other side of the tunnel, where the coolant is returned to the reservoir.

A typical operating temperature for snow machines is approximate 120-125° F. (Unless otherwise specified, all temperatures cited herein will be understood to be in degrees Fahrenheit.) When the engine is shut off for approximately 10-15 minutes, the hot coolant in the motor causes the engine to heat soak to around 165-185° or more depending on conditions. The motor has a 130° thermostat in the head that closes at 125° and full is open at 135°. Due to the heat soak in the engine, the thermostat is wide open with the engine at this temperature.

At the same time the coolers are filled with coolant. The coolers are exposed to the atmosphere to transfer heat thereto, and the coolant within the coolers is rapidly cooled to approximately 65-85°.

When the sled is restarted within a time frame of approximately 10-15 minutes, the thermostat is open due to the residual engine temperature and the water pump on the front of the motor instantly pumps the 65-85′ coolant from the tunnel into the 165-185° motor. This causes contraction of the cylinder around the heat soaked and expanded pistons, causing scuffing of the pistons and rings, which can shorten the life of the engine. This also causes blow by of exhaust gases by the pistons. This confuses the on board computer, which can cause the computer to shut the sled down. On both carbureted and electronic fuel injection sleds, the sled is over fueled causing burn down and or poor running conditions. The effects are detrimental on both the engine and the electronics.

What is needed is a way to prevent or eliminate this “cold shot” to the engine upon restart.

SUMMARY OF THE INVENTION

The invention eliminates the cold shot by installing an inline thermostat between the tunnel coolers and the coolant pump, thereby stopping the cold coolant from ever reaching the heat-soaked motor. This equalizes the cooling system, creating longevity and increasing horsepower and torque. It also eliminates the constant temperature changes, reducing wear and tear on the electrical system and allowing the ECU (on bard computer) and other sensors to run at their designed specifications.

The invention is a flow controller for an engine cooling system including a cooler, a reservoir, a coolant pump, and an engine bypass port. The flow controller includes a housing and a valve. The housing defines a first entrance, a second entrance, and an exit. A main coolant flow path is defined by the first entrance with the exit, and a bypass coolant flow path is defined by the second entrance with the exit. The valve is positioned along the main flow path downstream from the second entrance. The first entrance is adapted to be connected to the cooler, the second entrance is adapted to be connected to the engine bypass port, and the exit is adapted to be connected to the pump. Preferably, these are direct connections without any other components (other than the coolant hoses or conduit) therebetween. The flow controller is positioned between the pump and the cooler, and preferably between the pump and the reservoir. With the valve closed, coolant from the cooler and/or reservoir is prevented from entering the pump.

The valve is a temperature controlled valve. Unless the coolant flowing along the main flow path (that is, coolant entering from the reservoir and cooler) is at a threshold temperature, the valve is closed, blocking the main flow path. Once the threshold level is reached, the valve opens allowing flow along the main flow path. The threshold temperature is chosen to ensure that no cold coolant is pumped into a hot engine. A preferred value for the threshold temperature is approximately 130° F.

The housing may be made of a variety of materials, but should be made of a material that will not act as a heat sink and cause the valve to be in an open position regardless of the coolant temperature along the main flow path. A preferred material for the housing is nylon reinforced fiberglass.

DESCRIPTION OF THE DRAWINGS

The present invention is described with reference to the accompanying drawings, which illustrate exemplary embodiments and in which like reference characters reference like elements. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.

FIG. 1 a flow controller of the present invention.

FIG. 2 shows an exploded view of the flow controller of FIG. 1.

FIG. 3 shows a cross-sectional view of the flow controller of FIG. 1.

FIG. 4 shows a thermostat valve of the flow controller of FIG. 1.

DETAILED DESCRIPTION OF THE INVENTION

The system of the invention extends the life of snow machine engines and on board electronics by balancing the coolant temperature to thereby control the expansion and contraction of the engine components. FIG. 1 shows a preferred embodiment of a flow controller 1 of the inventive system, FIG. 2 shows an exploded view of the flow controller 1, and FIG. 3 shows a cross-sectional view of the flow controller 1. The flow controller 1 has three orifices. A first orifice 12 connects the flow controller 1 to the snow machine coolant pump. A second orifice 14 connects the controller 1 to the snow machine coolant reservoir, which is fluidly connected to the snow machine coolers. In normal operation, the coolant enters the flow controller 1 through the second orifice 14, flows through the flow controller 1, and exits through the first orifice 12. A third orifice 16 provides a secondary input into the flow controller 1. The entrance of the third orifice 16 is located toward the exit 12 of the flow controller 1, preferably between a middle of the controller 1 and the exit orifice 12.

Preferably, the flow controller is provided in two parts, with the first and third orifices 12, 16 being located on one part and the second orifice 14 being located on the second part—see FIG. 2. The two parts are connected by a connector 18. An integral thermostat and valve 19 is provided between the two housing parts and retained in place by the connector 19. FIG. 4 shows an example valve 19 of the present invention. Preferably, the valve 19 includes a wax charge that expands or contracts with the change in temperature. This expansion and contraction opens and closes, respectively, the hat 20 in the thermostat valve. In this manner, flow from the reservoir inlet 14 can be blocked from exiting the orifice 12 into the pump and, subsequently, the engine of the snow machine. In this manner, cold coolant can be prevented from entering the hot engine.

Preferably, the valve 19 is configured to open when the coolant entering from the reservoir orifice 14 is approximately 130°. If the reservoir coolant is below this temperature, the valve 19 remains closed.

The secondary flow input orifice 16 can be fluidly connected to a source of heated engine coolant, such as the head bypass port that is typically provided on snow machine engines. With the third orifice 16 placed in fluid communication with a source of heated engine coolant, the cooling system loop remains complete even with the thermostat valve 19 closed. The pump is supplied by coolant entering through the third orifice 16, bypassing coolant from the coolant reservoir and tunnel coolers.

Mounting the inline flow controller thermostat valve 19 in the return hose from the tunnel coolers, along with the hot coolant bypass 16, stops the cold coolant from hitting the engine. Installing the hot bypass 16 allows the coolant to continue to circulate until it reaches at least 130°. The valve 19 includes bleeder holes, which allows a small flow of cold coolant from the coolant reservoir and coolers to pass therethrough. This cold coolant will be preheated by the coolant entering from the bypass orifice 16 before being pumped into the engine, so no cold shot occurs. The bleeder holes allow a small flow through the main flow path, allowing the temperature of the coolant in the coolers and reservoir to rise. Eventually, the temperature will be great enough to open the inline thermostat valve 19, allowing coolant from the reservoir orifice 14 to flow through the controller 1 and into the pump. With the thermostat valve 18 fully open, the flow exiting orifice 12 will be mostly from the reservoir and tunnel coolers through orifice 14 due to the greater size of the main flow path than the bypass flow path. Preferably, orifice 14 and its main flow path has a nominal diameter of approximately 1 inch, and orifice 16 and its bypass flow path has a nominal diameter of approximately ⅝ inch. Thus, the main flow path diameter is approximately twice the bypass flow path diameter.

In deep snow conditions and extreme cold, when the coolant is rapidly cooled below the optimal operating condition, the inline valve 19 will close and the bypass will preheat the coolant to the proper temperature. The flow controller 1 thus protects the engine while it is operating as well as when the engine has been shut off for a time period of insufficient length to allow the engine temperature to stabilize.

The flow controller 1 can be installed on newly manufactured engines, or it can be added to existing engines.

Preferably, the flow controller housing is formed of a material that will not act as a heat sink, which may cause the valve 19 to remain in an open position regardless of the temperature of the coolant entering through the reservoir orifice 14. One preferred material for the housing is nylon reinforced fiberglass.

While the preferred embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not of limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus the present invention should not be limited by the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. Furthermore, while certain advantages of the invention have been described herein, it is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.

Claims

1. A flow controller for a engine cooling system including a cooler, a coolant pump, and an engine bypass port, the flow controller comprising:

a housing defining a first entrance, a second entrance, and an exit, said first entrance defining a main coolant flow path with said exit, said second entrance defining a bypass coolant flow path with said exit; and
a valve positioned along said main flow path downstream from said second entrance;
wherein said first entrance is adapted to be connected to the cooler, said second entrance is adapted to be connected to the engine bypass port, and said exit is adapted to be connected to the pump.

2. The flow controller of claim 1, wherein said valve is a temperature controlled valve.

3. The flow controller of claim 2, wherein said valve is configured to be in a closed position if said main coolant flow has a temperature below a threshold value and in an open position if said main coolant flow temperature is above said threshold value.

4. The flow controller of claim 3, wherein said threshold value is approximately 130° F.

5. The flow controller of claim 1, wherein said housing is formed of nylon reinforced fiberglass.

6. The flow controller of claim 1, wherein the flow controller is adapted to be positioned intermediate the pump and the cooler.

7. The flow controller of claim 1, wherein the cooling system further includes a coolant reservoir and said first entrance is adapted to be connected to the reservoir.

8. The flow controller of claim 7, wherein the flow controller is adapted to be positioned intermediate the pump and the reservoir.

9. The flow controller of claim 1, wherein said main coolant flow path has a first diameter and said bypass coolant flow path has a second diameter, said first diameter being approximately twice said second diameter.

10. A method of protecting an engine having a cooling system that includes a cooler, a coolant pump, and an engine bypass port, the method comprising the steps of:

providing a flow controller including a housing and a valve, said housing defining a first entrance, a second entrance, and an exit, said first entrance defining a main coolant flow path with said exit, said second entrance defining a bypass coolant flow path with said exit, said valve being positioned along said main flow path downstream from said second entrance;
placing said first entrance in fluid communication with the cooler;
placing said second entrance in fluid communication with the engine bypass port; and
placing said exit in fluid communication with the pump.

11. The method of claim 10, wherein said providing includes providing a valve that is a temperature controlled valve.

12. The method of claim 11, wherein said providing further includes providing a temperature controlled valve that is configured to be in a closed position if said main coolant flow has a temperature below a threshold value and in an open position if said main coolant flow temperature is above said threshold value.

13. The method of claim 12, wherein said providing further includes providing a temperature controlled valve having a threshold value of approximately 130° F.

14. The method of claim 10, wherein said providing includes providing a housing formed of nylon reinforced fiberglass.

15. The method of claim 10, wherein the cooling system further includes a coolant reservoir in fluid communication with the cooler and said placing said first entrance in fluid communication with the cooler includes placing said first entrance in fluid communication with the reservoir.

16. The method of claim 15, wherein said providing a flow controller includes providing said flow controller intermediate the pump and the reservoir.

17. The method of claim 10, wherein providing a flow controller includes providing a controller defining a main coolant flow path having a first diameter and a bypass coolant flow path having a second diameter, said first diameter being approximately twice said second diameter.

Patent History
Publication number: 20130056077
Type: Application
Filed: Sep 5, 2012
Publication Date: Mar 7, 2013
Inventors: Trevor K. Eva (Wilson, WY), Alan M. Murdock (Victor, ID), Tyler J. Doucette (Jackson, WY)
Application Number: 13/603,529
Classifications
Current U.S. Class: Processes (137/1); With Pump (137/565.01)
International Classification: F01L 3/12 (20060101);