METHOD AND DEVICE OF HEAT TRANSPORT
An air-to-air heat exchanger comprising first and second passages formed by interconnected separating walls according to a first structure is disclosed. An inlet and an outlet of each of the second passages are formed on a common side of the heat exchanger along the second passages.
Latest HUAWEI TECHNOLOGIES CO., LTD. Patents:
This application is a continuation of International Patent Application No. PCT/CN2010/080615, filed on Dec. 31, 2010, which is hereby incorporated by reference in its entirety.
TECHNICAL FIELDThe present invention relates to a technical field of heat transport by means of an air-to-air heat exchanger and to use and manufacturing of such a heat exchanger.
BACKGROUNDU.S. Pat. No. 5,785,117 discloses a core assembly for use in an air-to-air heat exchanger. The core is comprised of a plurality of square plates. Each plate is comprised of a square planar central region; a first pair of opposed edge flanges bent in a first direction with respect to the central region to form approximately 90 degree angle with the central region; and a second pair of opposed edge flanges bent in a direction opposite the first direction with respect to the central region to form approximately 90 degree angle with the central region. The core is formed by the plurality of square plates that are positioned into a stack of parallel plates such that the opposed flanges of one of the plurality of plates is located in contact with and inside mating opposed flanges of a plate directly adjacent thereto, thereby forming a plurality of air passages between adjacent plates such that two perpendicular air pathways are formed in an interleaved orientation. A frame is provided in contact with a bottom plate in the stack and a top plate in the stack for holding the plurality of plates in position.
U.S. Pat. No. 4,681,155 discloses a heat exchanger comprising a plurality of preassembled heat exchanger tubes separated by cooling fins. Each tube is formed from two identical U-shaped members having a folded and unfolded end. The unfolded end of each is slid into the fold end of the other.
U.S. Pat. No. 6,789,612 discloses a cooling device for cooling an inner part of an approximately sealed box. It includes a casing and a heat exchanger disposed in the casing. Plural inside air passages through which air flows inside the box, and plural outside air passages through which air flows outside the box, are alternately adjacently arranged in the heat exchanger. In the cooling device, both outside air introduction port and outside air discharge port are provided in an outer side plate of the casing, and a drain space is provided between the heat exchanger and the outer side plate of the casing so that outside air passages communicate with the outside air discharge port through the drain space.
SUMMARYAn object of an embodiment of the invention is to reduce the risk that water enters from an outdoor environment to an indoor environment of a heat exchanger.
A further object of an embodiment of the invention is to provide a heat exchanger capable of operating at low fan power.
It is also an object of an embodiment of the invention to provide a heat exchanger of reduced sensitivity to fire or mechanical damages.
Embodiments of the invention provide a heat exchanger capable of, e.g., being installed in an outdoor-climate environment or mounted in the ceiling of a cabinet comprising electronic circuitry as described further in the detailed description below. It also provides detailed example use and manufacturing thereof.
In the following detailed portion of the present description, the invention will be explained in more detail with reference to example embodiments shown in drawing, in which:
It is a problem of a heat exchanger that water may enter the structure so that use thereof in an outdoor environment requires particular measures to provide a more indoor-like climate.
It is also a problem of prior art solutions that extensive minor flow passages defined by fins or other corresponding internal structures may also give rise to a high pressure drop, with a corresponding high power consumption of the fan driving the air through the heat-exchanger. Making the minor flow passages wider would reduce the pressure drop but also the transferred heat energy.
An embodiment of the invention is based on the finding that by providing several heat transfer structures along the length of the flow path through the heat exchanger the fan power needed for driving the air through the heat exchanger is reduced significantly without a corresponding significant loss in the cooling capacity. This is achieved by the first air flow passages and/or the second air flow passages each including at least two heat transfer structures arranged in a spaced apart relationship in a direction of air flow through the air flow passages, a plenum between two adjacent heat transfer structures being defined in part by the separating walls of the first structure. With this configuration all or substantially all air flow through a first air flow passage and/or a second air flow passage flows first through the minor flow passages of a heat transfer structure, then through a plenum and then through the minor flow passages of a next heat transfer structure.
A theoretical background behind the latter embodiment believed to be as follows.
Two very important properties of a heat exchanger are its cooling capacity based on the heat transfer coefficient h(W/m2K) and the heat exchange area as well as the hydraulic resistance or pressure drop for air passing through the heat exchanger. A high flow resistance requires high fan power consumption and may increase the level of noise generated by the heat exchanger.
Relevant formulae showing the relationship between the above properties are:
Q=h*A* (T1−T2), (Equation 1)
where Q is transferred Heat, A the heat transferring area and T1−T2 is a temperature difference.
Pd=F*L/D*V̂2*Ro/2, (Equation 2)
where Pd is pressure drop, F a Reynolds dependent coefficient (different for turbulent and laminar flow), D is the equivalent diameter of the passage or channel (4*S/U S is the area of channel, U is channel's perimeter), V air velocity and Ro is the air density.
h=Nu*L/D, (Equation 3)
where Nu is Nusselt number and L is the lambda value.
From the above formulae it is apparent that h is higher in smaller and shorter channels in comparison with a traditional heat exchanger flow passage. It can also be seen that the pressure drop Pd becomes lower with the present heat exchanger. Using two or more heat transfer structures leads to an increased heat exchanger area and in combination with a better h and Pd results in a more efficient heat exchanger with a high cooling capacity and a low pressure drop.
The first 10 and second 20 flow passages are arranged adjacent each other alternatingly along the width of the component 1 between the outer side walls 35′. Each flow passage 10, 20 includes one or more heat transfer structures 40, to be discussed below. When incorporating more than one heat transfer structure 40 in each flow passage 10, 20 they are spaced apart in the flow direction. The heat transfer structures 40 provide an efficient heat exchange between the high and low temperature air flows. As shown, the first air flow passages 10 open up at an air lead-in or inlet at one of the opposite ends 3 of the component 1, and at an air lead out or outlet at the opposite end 3. The second air flow passages 20 are closed at the opposite ends 3 of the component 1 and open up at an air lead in near or adjacent to a respective end 3 through apertures formed in the bottom wall 2′. Air may be driven along the length of the air flow passages 10, 20 between opposed ends 3 by means of fans (not shown).
As shown, the heat transfer structures 40 may, depending on the dimensions of the component 1, i.e. the distance between the top and bottom wall 2, 2′ and the distance between the opposite ends 3, be arranged with the partitions 45 at an acute angle α, such as an angle α in the range of 20°-70°, with respect to the aforementioned linear dimension L between the opposite ends 3, or at an angle α of 0°, as shown in
Preferably, the heat exchanger component 1 is manufactured in the way where the heat transfer structures 40 are temporarily held in the spaced apart relationship and wherein the heat transfer structures 40 are then soldered to the separating walls 35 through a brazing process.
The corrugated structures may be formed by folding a metal plate; alternatively, the corrugated structure may be manufactured by extrusion.
Claims
1. An air-to-air heat exchanger having a first side and a second side, comprising:
- one or more first structures comprising spaced apart separating walls extending between the first side and the second side forming at least in part a plurality of first passages and a plurality of second passages, each one of the plurality of the first passages being arranged adjacent to and in parallel with at least one of the plurality of the second passages,
- at least one heat transfer structure arranged in the first and second passages, the heat transfer structure contacting a respective separating wall and including spaced apart partitions defining a plurality of minor flow passages, wherein the heat transfer structures are arranged between the first side and the second side, and
- respective inlets and outlets of the first and second passages, the inlets and outlets of the second passages being formed on a common side of the heat exchanger.
2. The air-to-air heat exchanger according to claim 1, comprising connecting walls connecting the separating walls, the separating walls and the connecting walls defining the first and second passages, the inlets and outlets of the second passages being formed in at least one of the connecting walls.
3. The air-to-air heat exchanger according to claim 1, wherein the second side is parallel with the first side.
4. The air-to-air heat exchanger according to claim 1, wherein at least one of the inlets and outlets of the first passages are formed at the first side or at the second side.
5. The air-to-air heat exchanger according to claim 1, wherein at least one of the first passages and the second passages include at least two of the heat transfer structures arranged in a spaced apart relationship between the first side and the second side, a plenum between two adjacent heat transfer structures being defined in part by two of the separating walls of the first structure.
6. The air-to-air heat exchanger according to claim 1, wherein the first structure or the heat transfer structure comprises one or more folded metal plates.
7. The air-to-air heat exchanger according to claim 1, wherein the one or more first structures comprises a corrugated sheet separating the first passages from the second passages.
8. The air-to-air heat exchanger according to claim 1, wherein the one or more first structures comprise a plurality U-shaped profiles arranged in a series having a cross-section comprising a series of Us.
9. The air-to-air heat exchanger according to claim 1, wherein the separating walls of the first structure are spaced apart by more than 5 mm.
10. The air-to-air heat exchanger according to claim 1, wherein the separating walls of the first structure are spaced apart by 5-30 mm.
11. The air-to-air heat exchanger according to claim 1, wherein the separating walls of the first or second passages are spaced apart by the same distance.
12. The air-to-air heat exchanger according to claim 1, wherein the partitions of the heat transfer structures extend at an angle, α, less than 90° to an axis (L) of the first or second passages.
13. The air-to-air heat exchanger according to claim 1, wherein the angle a is equal to or less than 75°.
14. The air-to-air heat exchanger according to claim 1, wherein the partitions of the heat transfer structures are spaced apart by less than 4 mm.
15. The air-to-air heat exchanger according to claim 1, wherein the partitions of the heat transfer structures are spaced apart by 1-3 mm.
16. The air-to-air heat exchanger according to claim 1, wherein the partitions of the heat transfer structures are spaced apart by a same distance.
17. A method of manufacturing a heat exchanger comprising
- providing one or more profile structures to form at least in part a first structure comprising spaced apart separating walls extending between a first side and a second side;
- providing at least one heat transfer structure in the one or more profile structures, the heat transfer structure contacting a respective separating wall and including spaced apart partitions defining a plurality of minor flow passages, wherein the heat transfer structures are arranged between the first side and the second side, and
- interconnecting the separating walls whereby the first and second passages are formed;
- wherein the interconnecting the separating walls comprises brazing or soldering.
18. The method according to claim 17, comprising
- arranging respective inlets and outlets (2″) of the first and second passages (10, 20), the inlets and outlets (2″) of the second passages (20) being formed on a common side of the heat exchanger.
19. The method according to claim 17, comprising
- arranging respective inlets and outlets of the first and second passages, the inlets and outlets of the first passages being formed on the first side or on the second side.
20. A system product of heat exchange comprising a cabinet and a heat exchanger comprising at least one air inlet and at least one air outlet arranged in one or more sides of the cabinet, the system product comprising,
- a heat exchanger, comprising one or more first structures comprising spaced apart separating walls forming at least in part a plurality of first passages and a plurality of second passages, each one of the plurality of the first passages being arranged adjacent to and in parallel with at least one of the plurality of the second passages, and at least one heat transfer structure arranged in the first and second passages, the heat transfer structure contacting a respective separating wall and including spaced apart partitions defining a plurality of minor flow passages, wherein the heat transfer structures are arranged between a first side and a second side of the cabinet, the separating walls of the first structure extending in direction from the first side to the second side;
- wherein
- the heat exchanger provides a water resistant seal between the first and second passages; and
- the heat exchanger is arranged in or forms the ceiling of the cabinet.
21. The system product of air-to-air heat exchange according to claim 20, wherein the front side of the cabinet comprises the first or second side.
22. An air-to-air heat exchanger including a first side and a second side, comprising:
- one or more first structures comprising spaced apart separating walls extending between the first side and the second side forming at least in part a plurality of first passages and a plurality of second passages, each one of the plurality of the first passages being arranged adjacent to and in parallel with at least one of the plurality of the second passages,
- at least one heat transfer structure arranged in the first and second passages, the heat transfer structure contacting a respective separating wall and including spaced apart partitions defining a plurality of minor flow passages, wherein the heat transfer structures are arranged between the first side and the second side, and
- the inlets and/or outlets of the first passages being at the first side or at the second side.
Type: Application
Filed: Dec 14, 2012
Publication Date: Apr 25, 2013
Applicant: HUAWEI TECHNOLOGIES CO., LTD. (Shenzhen)
Inventor: HUAWEI TECHNOLOGIES CO., LTD. (Shenzhen)
Application Number: 13/715,404
International Classification: F28F 3/00 (20060101);