WIND POWER INSTALLATION AND METHOD FOR ADJUSTING THE ROTOR ROTATION AXIS
The invention is directed to a wind power installation (1) with a rotor (4) which has two or possibly more rotor blades (5) and which is rotatably bearing-supported for rotation around a rotor rotation axis (2). The rotor is connected to a generator for generating electrical power, and the rotor and the generator form a part of a turbine (T) which is received by a turbine carrier (3; 40), and the turbine carrier is rotatably arranged at a supporting structure (7). The turbine is movably mounted in the turbine carrier by means of a bearing device so that the spatial position of the turbine (T) in the turbine carrier can be modified, and a pivoting range of the turbine (T) corresponding to a pivoting range of the rotor rotation axis includes a first angle range and a second angle range relative to a reference plane, and the entire pivoting range is at least 120°. The invention is also directed to a method for operating the wind power installation and to measures associated with an assembly or disassembly of the wind power installation (1).
Wind power installations based on different concepts have been known for some time. Reference is made by way of example to the known prior art, including U.S. Pat. No. 6,979,175, EP 2 014 912, DE 199 16 454 A1, DE 27 53 956 131, WO 82/04466, WO 2008/148874 A1, DE 102 05 988 B4, US 2001/0038207 A1, EP 1101 936 B1, EP 1 101 934 B1, and WO 96/10130. Reference is also made to Erich Hau, Windkraftanlagen [Wind Turbines], 1995 (ISBN 3-540-57430-1).
Generally, in previous wind power installations a main frame which receives the rotor with rotor blades, a generator and/or possibly gearboxes, and the like, is fixedly anchored atop a tower of the wind power installation and is preferably supported on a yaw bearing to enable adjustment of the rotor and, therefore, of the main frame in every direction so that the wind can flow against the rotor of the wind power installation in an optimal manner. To adjust the main frame, drives are provided for yaw adjustment which bring the rotor and, therefore, the main frame into a desired position relative to the wind by continuously adapting to the wind direction.
If there is a very sharp increase in wind, the total load on the unit comprising rotor, generator and main frame can become so great that the installation reaches an overload range which can ultimately result in damage to the installation but can at least also lead to an overloading of individual parts of the wind power installation,
In all wind power installations currently in operation which exceed a certain power rating, e.g., More than 500 kW, and are therefore not considered to be small wind power installations or medium wind power installations, the rotor of the wind power installation is generally arranged in front of the tower of the wind power installation considered in wind direction, and the rotor comprises at least one rotor blade, preferably two or three rotor blades. The rotor rotates around a substantially horizontal axis which can also be inclined by a few degrees relative to the tower.
During operation of the wind power installation, it is found that with continuously increasing wind speed not only does the pressure on the rotor blades of the rotor increase, but the distance between the rotor blade and tower as the rotor blade sweeps past the tower decreases.
Therefore, in almost all larger wind power installations, i.e., wind power installations with a nominal power of more than 300 or 500 kW, the rotor axis is adjusted to a specific fixed rotor axis angle, e.g., in the range of 4° to 8°, preferably 5° to 7°, relative to the tower of the wind power installation in order to reliably prevent a collision between a rotor blade and the tower when the rotor blade sweeps past the tower. By tilting the rotor axis, the rotor surface that is inclined toward the wind is reduced and the wind energy which can be received by the rotor, in particular in the range of wind speeds between 0 and 10 m/s, is therefore reduced.
When the rotor axis is tilted, the position of the centers of mass of the rotor blades leads to an alternating load on the rotor blade connection and drivetrain. The drivetrain is formed by the rotor and by the generator coupled to the rotor, which are preferably connected to one another via a gearbox.
Since the wind speed also increases with increasing height above the ground, the rotor blades in a typical “12-o′clock position” are subjected to a higher force than in a typical 6-o′clock position because of the higher wind speeds prevailing at that height. Therefore, the different wind speeds swept by the rotor or the blades of the rotor ultimately lead to alternating loads in the drivetrain.
WO 2009/056701 A2 shows a wind power installation with two rotor blades which can be dismantled in that the rotor, together with the rotor blades, is lowered from the nacelle atop the tower on which the wind power installation is provided by means of cable controls which are guided in the tower. The rotor blades are positioned and secured in each case by a cable or the like when lowered, and the rotor is guided away from the tower at a distance therefrom along two guide cables. The tractive forces acting radial to the tower or on the nacelle during disassembly are absorbed and conducted into the ground by three cables which brace and secure the tower laterally. The rotor blades can be set down upon the ground on a specially designed, contoured rotor blade support
A method for raising a nacelle of a wind power installation into the operational position by means of an external mechanism is known from US 2009/0087311 A1, wherein the mechanism for lifting the nacelle is arranged at the foot of the tower of the wind power installation and is constructed telescopically. The nacelle is guided along the tower when lifted.
For maintenance, repair or dismantling of a wind power installation, there is a need to convey the wind power installation to the ground, e.g., because maintenance cannot be performed using a helicopter only, or because repair or replacement of certain components is not feasible without complete disassembly. One difficulty consists in providing the crane that is normally required for disassembly of the rotor or the entire drivetrain. Due to limited availability, this may lead to extended downtime of the wind power installation and therefore to a loss of revenue.
Rotor systems having three or more rotor blades can be raised and lowered from a tower or other supporting structure by crane; however, with the newer, increasingly larger rotors and the resulting heavier nacelles and increasingly higher supporting structures (towers), increasingly heavier cranes and larger cranes with higher capacity and greater lifting heights must be used. This approach is very costly and time-consuming, and the handling of the nacelles on these cranes, as well as the handling of the cranes themselves, is difficult and fraught with risks.
FR 2 916 785 A1 shows a dismantling device for a wind power installation which can be dismantled in that a hinge around which the greater part of the tower, together with the nacelle or wind power installation and the rotor blades, can be pivoted and lowered to the ground is provided in the region of the foot of the tower on which the wind power installation is mounted. The high weight forces which occur in so doing and the bending moments acting on the tower can be contained by providing two levers which are constructed with a length in the range of half of the height of the tower. Cables guided over the levers engage at the top of the tower and can be manipulated from the foot of the tower by cable controls.
For maintenance or repair or when dismantling the wind power installation, it is generally necessary that the parts of the wind power installation which are arranged in the region of the top of the tower be lowered to the ground in the area surrounding the tower. Apart from the cost, the availability of cranes suitable for this purpose also presents a problem, in particular, in case of damage to wind power installations, the duration of downtime increases along with the time required for procuring a suitable crane. The wind power installation cannot be used during this time resulting in significant downtimes.
Therefore, it is the object of the invention to design a wind power installation of the type mentioned above in such a way that it is possible to lower or to raise parts of the wind power installation to the region of the top of the tower in a simple manner and in a short time. Another object of the invention is to configure the wind power installation in such a way that parts of the wind power installation can be selectively displaced and arranged at different positions of the tower.
These objects are met according to the present invention by a wind power installation comprising the means indicated in patent claim 1.
According to the invention, the wind power installation includes a rotor which has two or possibly more rotor blades and which is rotatably bearing-supported for rotation around a rotor rotation axis, wherein the rotor is connected to a generator for generating electrical power, and the rotor and the generator form a part of a turbine which is received by a turbine carrier, and the turbine carrier is rotatably arranged at a supporting structure, wherein the turbine is movably mounted in the turbine carrier by means of a bearing device so that the spatial position of the turbine in the turbine carrier can be modified, and a pivoting range of the turbine corresponding to a pivoting range of the rotor rotation axis includes a first angle range and a second angle range relative to a reference plane, and the entire pivoting range is at least 120°.
It is ensured by means of the arrangement according to the invention that the wind power installation can be rotated or tilted by an angle in the range from 0 to at least 120 degrees (total angle range), namely in such a way that this wind power installation can be moved and displaced optimally and in a space-saving manner along a supporting structure such as the tower of the wind power installation, and it can be ensured independently on the other hand that rotor blade connections in a wind power installation can be optimally aligned with a rotor blade which is to be assembled in certain situations.
In particular, it can be ensured by the above-mentioned features of the invention that in addition to a rotor axis inclination of about 4° to 10° (within a first angle range) relative to the horizontal (reference plane H) which is usual for operation, other tilt angles or angles of inclination which facilitate or enable assembly can also be adjusted according to a second angle range, that is, for example, also tilting positions in the range of vertical rotor axis inclination. In so doing, individual rotor blades can be mounted or dismantled in a simple manner, also in cases where the ground may be inclined, in that the position or orientation of the respective rotor blade is adjusted in relation to the ground especially for this case by means of the tilt angle, The rotor can be assembled on the ground beforehand completely and in a simple manner. Also, as regards the assembly/disassembly of other components the wind power installation can be tilted or rotated in such a way that, e.g., the installation of a (replacement) gearbox is facilitated. To this end, the wind power installation in its entirety (or without components which have already been removed in order to install the gearbox) can be lowered, for example, over a (replacement) gearbox prepared on an assembly site in an assembly position with the correct angular alignment of the rotor axis, and the (replacement) gearbox can then be coupled directly to the wind power installation. Lifting and aligning by means of a crane is not required. In the present specification, the terms assembly and disassembly are used synonymously with the terms maintenance and/or repair, as the same or similar measures are to be undertaken in all of these cases.
Further, wind power installations with multi-blade rotors can be pulled up or lowered to the ground close to the supporting structure, i.e., without requiring much space. In this regard, the space requirement is also small insofar as when a wind power installation is constructed, the rotor blades can be attached to the rotor on the ground in an assembly position immediately adjacent to the supporting structure (tower) and can then be displaced in this orientation vertically upward close alongside the supporting structure and need not be tilted until at a height at which the blades can no longer collide with adjacent objects when tilted. Also, this does not exclude a rotation of the rotor relative to the vertical axis of the supporting structure around the supporting structure. In the solution according to the invention, a vertical displacement and a pivoting are possible with one and the same device without additional means. A displacement of parts of the wind power installation is not dependent upon the rotation (pivoting or tilting) of the turbine, for example.
Advantageous further developments of the invention are described in the dependent claims.
In the wind power installation, the bearing device can comprise a pivot bearing, and the turbine can be supported by means of the pivot bearing so as to be pivotable around a rotation axis. The bearing device for the pivoting of the turbine (T) can also have a mechanical device which may include a four-bar linkage, for example,
The turbine carrier can include an actuator for pivoting the turbine around the first angle range during operation of the wind power installation. The turbine carrier and the turbine can include a pivoting device for pivoting the turbine around the second angle range when the wind power installation is not in operation. The turbine carrier can have a further bearing device in which the turbine is rotatably mounted at least temporarily during pivoting in the pivoting range according to the second angle range.
The further bearing device can be designed for temporarily engaging with at least one connection arm arranged at the turbine during pivoting, and the engagement between the turbine and the further bearing device is releasable by means of the pivoting device at the conclusion of the pivoting process.
The pivoting device can have a cable control for movably holding the turbine during the pivoting process and for releasing the engagement at the conclusion of the pivoting process. The pivoting device is also designed to lower the turbine in the pivoted position by means of the cable control.
The turbine carrier can have a displacing device for moving the turbine carrier along the supporting structure between an uppermost position at an upper end of the supporting structure and a lowermost position at the foot of the supporting structure. The turbine carrier can have a holding device for carrying and securing the turbine carrier at any position along the supporting structure. The pivot bearing can be arranged in the vicinity of the center of gravity of the turbine. Further, the pivoting device can comprise first pulleys at the turbine, and the first pulleys can be arranged at the turbine in the vicinity of the center of gravity thereof.
With regard to a method for operating a wind power installation including a rotor which has two or possibly more rotor blades and which is rotatably bearing-supported for rotation around a rotor rotation axis, wherein the rotor is connected to a generator for generating electrical power, and the rotor and the generator form a part of a turbine which is received by a turbine carrier, and the turbine carrier is rotatably bearing-supported on a supporting structure, the invention provides the steps whereby, depending on a detected wind speed during operation of the wind power installation, an actuator connected to the turbine is actuated for adjusting the inclination of the rotor axis within a first angle range relative to a reference plane.
Alternatively, the method for operating a wind power installation includes the steps whereby, depending on the detected wind speed, a displacing device is actuated for lowering the turbine carrier from a first position to further, lower position and holding the turbine carrier in the further position by means of a holding device (not the second position).
Further, the method for operating a wind power installation includes the steps whereby, with the rotor stopped, the turbine is pivoted by actuating a pivoting device according to a predetermined angle range such that the rotation axis of the rotor is approximately perpendicular to a reference plane, and the turbine is lowered from any position along the supporting structure to a lowermost position at the foot of the supporting structure and placed on a ground surface by further actuation of the pivoting device.
The invention basically allows the operation of a wind power installation in which the drivetrain, i.e., the rotor and generator, is adjusted depending on the wind speed to a desired height above the ground. In so doing, the invention proceeds from the fact that as the height above the ground increases, the wind speed also increases and, vice versa, at a low height above the ground the wind speed decreases and the wind power installation is accordingly also able to prevent overloading of the wind power installation in that the drivetrain is adjusted to a desired height so that a very high yield or very high exploitation of wind energy is possible and the installation need not be shut down due to the risk of overload.
The adjustment of the drivetrain, i.e., the adjustment of the height above the ground, can also he carried out during operation of the wind power installation, which means either that the height is adjusted during ongoing operation (i.e., during power generation) or that the height is adjusted during a brief interruption of operation so that the installation can then be switched on again immediately when reaching the desired height above the ground.
The present invention will described in detail in the following with reference to embodiment examples in conjunction with the accompanying drawings. The drawings show:
The arrangement of a wind power installation will be described in the following with reference to
The wind power installation 1 shown in
This type of wind power installation formerly had a fixed angle of the rotor axis relative to the vertical axis A-A of the tower or to a horizontal. Therefore, the arrangement shown in
On one hand, the entire rotor 4 can be rotated in a downward direction referring to the drawings around the rotation axis 8 with respect to its rotation angle a (small angle, first angle range) or by a substantially greater angle (second angle range). In this way, the rotation axis 8 for rotation angles in the range of larger angles can now coincide with the rotation axis for small rotation angles of, for example, 4° to 8° (
A fine adjustment of the inclination angle or tilt angle a can then be performed during operation at this one axis. However, the tilt axis and rotation axis can also be separated from one another. For each of the pivoting movements (small angles in operation, large angles for assembly or disassembly), a separate drive or actuator suitable for each can be provided; however, an actuator able to adjust both pivoting movements regardless of whether or not the two axes are coaxial (i.e., coincide with one another) can also be provided. One and the same axis for both the small tilt angles and the large tilt angles can offer the advantage that a fine adjustment of the tilt angle can also be carried out in a simple manner for purposes of assembly, e.g., with a very slow tilting movement, and this can be carried out with an individual actuator or with two special actuators which are optimized specifically for the respective tilting movement.
A drive 9 which is supported on the turbine carrier 3 and which exerts a force on a drivetrain 10 approximately perpendicular to the rotor rotation axis can be provided for carrying out the appropriate adjustment. The drivetrain 10 of the wind power installation 1 comprises the rotor 4 and a generator for converting the rotational energy into electrical power and, in some cases, a gearbox by means of which the rotor and the generator are connected to one another. The totality of elements comprising rotor 4 with rotor blades 5, gearbox, generator and rotor hub will be referred to hereinafter as turbine T,
A pivot bearing 11 which allows the movement of the turbine T around the rotation axis 8 is provided for rotating/pivoting the turbine T around rotation axis 8. The rotational movement is controlled by the drive 9, preferably by a plurality of identical or different drives. A hydraulic cylinder can be used as drive and/or, alternatively, other drive mechanisms can be provided, e.g., electric motors or other rotating or linear moving actuators. Accordingly, the turbine T can be adjusted around the rotation axis 8 to adjust a desired angle α of the rotor rotation axis 2 (corresponding to the turbine rotation axis).
By means of a rotation according to the invention of the rotor 4 around a rotation axis, whether for the purpose of adjusting a desired angle relative to the substantially horizontal reference plane H (also referred to as tilt angle) or for assembly or disassembly, the turbine T can be adjusted, e.g., depending on current wind speed, by a different angle α, and the rotor 4 or the entire turbine T can be assembled or disassembled and serviced in a simple manner, particular in a space-saving manner. For this purpose, the wind speed can also be measured or detected at different heights on the tower 7 by means of suitable devices. In so doing, it is advantageous during operation, for example, that the tilt angle α (inclination angle, pivoting angle) does not assume the value of 5° to 7° until a nominal wind speed or other predetermined wind speed impinging on the wind power installation is reached, but that the tilt angle is smaller, for example, close to zero degrees, in the range of lower wind speeds so that the effective swept area of the rotor blade and, therefore, the efficiency of the wind power installation are kept optimal.
The inventive adjustment of the rotor axis inclination depending upon wind speed is verified by means of a control loop. In this regard, the rotor axis inclination of the wind power installation is controlled, e.g., depending on the instantaneous wind speed VWind, in such a way that, for example, the desired angle or the rotor axis inclination α (from the first angle range) increases as wind speed increases. At low wind speeds of 2-4 m/s, for example, orientation is horizontal and the rotor axis inclination is accordingly α=0.
According to the invention, the wind speed VWind is converted in a mathematical function for α=f(VWind) to a preset for a rotor axis inclination a to be adjusted and is fed as set value to a suitable controller which then adjusts the desired rotor axis inclination of the rotor and turbine T by means of the drive 9 (actuator).
Further (or alternatively), a dynamic control of the rotor axis inclination can also be carried out during operation. Owing to the different forces acting on the rotor blades which is brought about, e.g., by the different wind speeds depending on height and when the blades pass through the shadow of the tower, a different load is exerted at each revolution of the rotor so that a slightly periodic pendulum motion occurs. According to the invention, by means of a corresponding control of the drive for adjusting the angle of inclination a of the rotor or turbine T, a dynamic, possibly periodic force can be generated which counteracts this pendulum movement and other transient rotor forces, Appropriate damping elements could also be provided.
For this purpose. forces are preferably measured in or on the rotor blades and subtracted from one another. Using a mathematical function Δαdyn=f(ΔF), a dynamic change in the adjusted rotor axis inclination α is calculated therefrom and subtracted from a preset value of the rotor axis inclination αset. The current rotor position PosBlade can be additionally included for optimal calculation of Δαdyn.
A control structure control loop) is shown in
In a schematic, simplified view.
The aim of the arrangement according to
The purpose of the bearing structure is to adjust the dynamic portion of a wind power installation 1, i.e., rotor 4, generator, gearbox if any, control and subsystems for the latter, e.g., brakes, actuators for the blade adjustment (pitch drives), etc., and thus the entire turbine T to a desired level and, therefore, a predetermined height above the ground. The bearing structure or turbine carrier 3 is supported at the tower 7 of the wind power installation 1 and can rotate the rotor 4, generator, optional gearbox, control, etc. around the vertical axis, i.e., the tower axis A-A 6 (yaw adjustment).
In case of repair work, the entire installation can be moved down the tower 7 to the ground by means of the turbine carrier 3, and in the event of a large storm it is also possible to displace the turbine T—with or without the turbine carrier 3—of the wind power installation 1 from its top position (general upper operating position) farther down to an intermediate position so as to also allow operation of the wind power installation 1 in very strong wind (during a storm, the wind speed close to the ground is lower than at a high altitude above the ground). This will be described in detail in the following with reference to additional drawings.
As is shown by
The displacing device 18 for raising and lowering the turbine T of the wind power installation 1 can comprise a cable system or be formed by rail systems, etc. Also, it is possible that the displacing device has one or more drive motors provided with a pinion which transmits its force to an opposing gear rim that is arranged on the tower of the wind power installation.
The holding device 19 can be formed by pins, clamps, or the like, so that the turbine carrier 3 can be locked at different predetermined heights on the tower 7. Basically, the holding device 19 can support the turbine carrier 3 at any location or position along the tower 7.
In a simplified schematic diagram,
Aside from the possible pivoting of the turbine T according to the diagram in
Accordingly, the rotor axis 2 can be pivoted (positive rotation angle α) by a few degrees (e.g., 3 to 10 degrees) relative to the horizontal during operation to adjust an optimum operating behavior and a good energy yield from the wind power installation 1 depending upon external factors such as wind strength, for example. These small rotation angles α of the first angle range may be referred to as positive rotation angles. When the turbine T is rotated or pivoted downward (in
A pivoting movement of the turbine T at the pivot bearing 11 for assembly or disassembly and maintenance can be achieved, for example, by providing an actuator (not shown) which is arranged, for example, between the back side of the turbine carrier 3 that faces the tower 7 during operation and which can act on the turbine carrier 3. The actuator can be constructed, for example, as a hydraulic cylinder, and it can rotate (pivot) the turbine T actively and in a controlled manner either by small positive rotation angles a or large negative rotation angles a for disassembly or assembly.
The actuator can optionally also be arranged in close proximity to the pivot bearing 11 between the one arm (or both arms) of the turbine carrier 3 in the exemplary diagram in
It can also be seen in
For rotating or pivoting the turbine T relative to the turbine carrier 3, the rotor 4 is brought into a position such that the tower 7 lies in a gap between two of the plurality of rotor blades 5, and the rotor 4 is held in this position.
As regards the term “ground” for a bearing support which is at least close to the ground, reference can be made to a reference surface which corresponds, for example, to the earth's surface or ground 100 (see
In this regard,
If the receiving device 30 is now uncoupled from the turbine carrier 40 at all of the interfaces where the joint device 46 is not provided, and if, in addition, the flange 462 of the joint device 46 is uncoupled from the turbine carrier 40, then the receiving device 30 is pivotable relative to the turbine carrier 40 in such a way that a rotor or the entire turbine T (not shown) can be pivoted out of an at least approximately vertical plane (rotation plane of the rotor) into an at least approximately horizontal plane (rotor rotation axis extends approximately vertically). This can be carried out, for example, in that the distance between the receiving device 30 and flanges 41 of the turbine carrier 40 in which the joint device 46 is not provided is increased slowly while pivoting, either by means of some kind of cable control between the receiving device 30 and these flanges 41 or, optionally in addition, via a braking torque which counteracts a rotation of the joint device 46 relative to the carrier device 40. The joint device 46 shown in
The joint device 46 can also be provided between a flexible interface 20 and the first structural component part 30 which corresponds, e.g., to a rotor receptacle, so that it is possible to uncouple the rotor from the flexible coupling device or interface and flexible elements 21 forming the latter. This can be advantageous for dismantling a particularly heavy structural component part or a particularly large rotor and thus a heavy turbine T of the wind power installation 1, because then the weight force of the rotor can be conducted directly into the turbine carrier 40 without passing through flexible elements 21. Depending on the configuration of the flexible elements 21, this is also useful with respect to an unnecessary stress and, therefore, a possibly resulting change in the spring properties or damping properties of the flexible elements or of sonic of the flexible elements 21 (flexible interface). In this respect, it is generally the case that a joint device can be incorporated directly into the force flow, as shown in
Whether an entire rotor together with rotor blades or only a rotor bearing and, as the case may be, further components of a drivetrain can be assembled or dismantled by means of this tilting mechanism will always depend on the strength or load-carrying capacity of the joint device 46 and flexible elements 21. In every case, a joint device according to
It should be noted that this variant of a joint device 36 does not rule out that the joint device 36 can also be rigidly connected, for example, i.e., blocked, so that there is also the possibility of providing another joint (not shown), e.g., a joint device according to
In the upper position at the tower 7, the turbine carrier 40 is in an operating position in the vicinity of the upper end of the tower 7 or is located in a slightly lowered position as is shown in
The upper portion of
Further, the arrangement shown in
The lower part of the diagram in
Accordingly, the yaw rotation around the longitudinal axis 6 of the tower 7, the rotation of the turbine T around the rotation axis 8, and the raising or lowering of the turbine carrier 40 along the length of the tower 7 can be carried out independently from one another. However, the turbine T must be rotated (tilted) before reaching a minimum height of the rotation axis 2 of the rotor 4 above the ground (depending on the length of the rotor blades 5) so as to prevent damage to the rotor blades 5.
While simplified, schematic diagrams were used in the preceding figures to illustrate the components involved and their functions,
In the idle position or operating position according to
The third pulleys 66 bring about an equilibrium of threes and load between the two sides of the arrangement shown in
The winch 60 shown in
The following illustration is based on the situation in which the turbine T has been completely lowered to the ground 100 and is now to be raised again and moved into the operative position. The illustrations in
As is shown in
When the rounded end of the connection arm 67 of the turbine T is located in the catching device 68, a pivot 70 can be formed around which the turbine T can rotate when it is moved further in direction of the turbine carrier 40 with reference to
In this situation, the connection arm 67 engages by its rounded end 69 in the catching device 68, and the turbine T can be fixedly connected to the turbine carrier 40 by other technical means such as a screw connection, for example. In this context, it is also possible, for example, according to the diagram in
According to
In
According to the arrangement in
It should also be noted that an inclination or a rotation of the turbine T of the wind power installation 1 need not necessarily take place around a specific pivot or rotation axis (e.g., rotation axis 8 according to
Therefore, according to the preceding description, the arrangement of a wind power installation 1 with turbine T and turbine carrier 40 comprises a system of levers and fulcrums for the kinematics of the movement particularly of the turbine T in the turbine carrier 40 or in the vicinity of the turbine carrier so as to ensure a better positioning and, at the same time, securer guidance during the movement. In particular, the engagement of the rounded end 69 of the connection arm 67 in the catching device 68 allows the formation of the (at least temporary) pivot connection 70 so as to ensure reliable guidance particularly of the turbine T carrying out a rotational movement, and therefore work can also continue under a predetermined wind load during assembly. In this way, it is possible to carry out assembly in operating situations which would not have been feasible in another known construction of the wind power installation so that further downtimes and outage times of the wind power installation 1 can be avoided according to the present invention.
it is also possible according to
Notwithstanding the fact that in
Further, irrespective of the possibility of lowering the turbine T by means of the cable 63, it is also possible, depending on further requirements and particularly depending on wind conditions, to lower the turbine carrier shown in
In connection with the assembly process according to
As in
Accordingly, the wind power installation I according to
Accordingly, the first module in the form of tower 7 can be formed as a universal support device; a first module can also be formed by the tower 7 and turbine carrier 40. If a standardized interface is formed on the side of the turbine carrier 40 opposite the intermediate module Z, i.e., if standardized connection elements are provided, a plurality of different modules can be arranged at the universal turbine carrier 40 provided that the interfaces and, therefore, the respective mechanical features match.
Therefore, it is possible for the manufacturers of wind power installations to design and produce the respective wind power installation with a modular construction, described above, so that the modules can be configured in different ways depending on different power classes or local conditions at a site of a wind power installation. Further, a manufacturer can also specialize in individual modules so that modules of different manufacturers and of different types can be combined provided the respective connection elements are defined and constructed correspondingly so as to permit a liberal combination of different components (modules). For example, the manufacturer specializing in the production of the module comprising the turbine T can combine his products with the first module (for example, the turbine carrier 40) directly or via the intermediate element Z.
The present invention is not limited to the division of modules described above. Rather, other divisions can also be defined as appropriate.
As a result, the simple displacement of the turbine carrier 40 along the tower 7 (
To improve guidance, the movement along the tower 7 both when lowering and lifting the turbine T during assembly can be guided in that, for example, guiding can take place by means of correspondingly tensioned cables or by means of rails arranged at the tower in that the turbine T carries out its movement, for example, along the rails arranged on the outer side of the tower. It is also possible that rollers are arranged at the constructional unit forming the turbine T or are arranged prior to lowering and lifting the turbine T so that it can roll on a predetermined surface of the outer surface of the tower 7 in a guided manner.
During the slow and gentle insertion of the turbine T into the turbine carrier 40 according to
The pivoting of the turbine T of the wind power installation 1 allows the turbine T, or the turbine T together with the turbine carrier 40 for multi-blade rotors, to be lowered to the ground 100 close to the tower 7 or lifted to a desired operating position or to the highest possible operating position according to the arrangement of the tower 7 (first position P1). Further, in connection with the rotation of the turbine, e.g., as shown in
The basic option of lowering the turbine T along with turbine carrier 40 makes it possible to arrange the turbine T and turbine carrier in an intermediate position on the tower so that changed wind conditions, and in particular a very strong wind can be taken into account.
Using the inventive arrangement, the rotor of the turbine T can be completely assembled on the ground beforehand so that easy assembly is ensured substantially without auxiliary mechanical means.
According to the arrangement shown in
Using the inventive arrangement of the wind power installation 1, several measures can be undertaken to adjust the power of the wind power installation 1 depending on wind conditions. It is possible to change the effective rotor surface by means of the pitch adjustment in that the rotor blades are rotated around their longitudinal axis. The rotation can be influenced by way of control or adjustment. In excessively strong wind which can affect the performance and stability of the wind power installation 1, it is possible in accordance with the above description to move the turbine T and turbine carrier 40 down to a lower height along the tower so the wind strength to be taken into account is reduced due to the lower height above the ground 100. Further, for example, according to the diagram in
By the measures of rotating or pivoting the turbine of the wind power installation relative to the reference plane H, lowering the turbine T together with the turbine carrier 3 or 40 (with turbine T already pivoted or still in the operating position) and, independent therefrom, the rotation of the rotor blades 5 around their longitudinal axis (pitch), many opportunities are afforded for influencing the operation of the wind power installation 1 or substantially facilitating assembly or disassembly, depending on need, wind conditions and the site where the wind power installation 1 is set up.
Expenditure on assembly and disassembly is considerably reduced because the devices installed in the wind power installation 1 for raising and lowering the turbine T and turbine carrier 3 and 40 make do without the use of a crane which very often leads to bottlenecks with respect to procurement and is costly. When the towers of wind power installations are higher, for example, more than 150 m, it is virtually impossible to procure a crane for lifting the corresponding masses of turbine T and turbine carrier 3 or 40. The arrangement according to the invention which makes do without a crane makes it possible to increase the height of the towers of wind power installations to ranges where there is a greater wind speed and the power outputs of the wind power installation can therefore be increased to a greater extent than provided by an increase of the rotor blade surface (greater rotor blade length). The wind power installation 1 according to the invention makes it possible to exploit wind speed ranges with higher yields without a correspondingly sharp rise in costs. In terms of yield, a larger tower height is better than a longer rotor blade length. The tower height can be further increased as a result of the convenient option of assembling and disassembling the wind power installation 1 according to the invention (built-in crane function) without the use of a crane. This also applies particularly to offshore applications, where it is hardly possible to procure a crane for the masses and heights in question.
The above measures can also be introduced independently from each other. It is only when lowering the turbine carrier 40 to a lower height (e.g., position P3 in
The present invention also comprises the following further aspects. The wind power installation can be provided with a rotor having two or optionally more rotor blades. The rotor is connected to a generator for generating electric power, and the rotor and generator are received by a main frame having a bearing structure which makes it possible during operation of the wind power installation to displace the main frame along a tower to which the wind power installation can be coupled. The bearing structure is connected to the tower via at least one holding device and is designed to hold the main frame at a desired height which preferably depends upon the wind speed at the desired height. In so doing, the bearing structure can allow a rotation of the main frame around the vertical axis of the tower. In addition, the bearing structure can have a displacing unit for displacing the main frame along the tower, specifically from the foot of the tower to the top of the tower.
A method for operating a wind power installation can be configured in such a way that a wind power installation is displaced by a drivetrain comprising a rotor and a generator in that the drivetrain is displaceable along the longitudinal axis of the tower, and the height of the drivetrain above the ground can be adjusted particularly depending on the wind speed.
A wind power installation of this kind having a rotor which has two or optionally more rotor blades, wherein the rotor is connected to a generator for generating electrical energy and the wind power installation comprises a main frame carrying the rotor and generator which form a drivetrain, can also be constructed in such a way that the rotor has a predetermined rotor axis inclination by an angle α and the rotor is pivotal around a pivot to change the rotor axis inclination, and that at least one drive is provided for the pivoting movement of the rotor or of the drivetrain, and that the drive is supported at the main frame and exerts an adjustable force on the drivetrain. The drive can be formed, e.g., by a hydraulic cylinder, but can also be formed by an electric motor or an alternative, rotational or linear actuator. In this regard, the rotor axis inclination can be adjusted (changed) to a predetermined value depending on the wind speed and/or the load on the rotor blades of the wind power installation. Further, to determine the predetermined value of the rotor axis inclination, forces on the rotor blades can be measured, the measured values can be processed in a computer according to a predetermined mathematical function, and the calculated value can be adjusted for rotor axis inclination by adjusting the drive for the pivoting movement of the drivetrain. Further, the rotor of the wind power installation can have a hub within which is accommodated a gearbox which receives the torque of the rotor on the input side and which is connected on the output side to the rotating parts of the generator. A clutch which is preferably designed as an elastomer coupling can be provided for transmitting the torque of the rotor to the gearbox so that the transmission of axial forces to the rotor and, therefore, to the hub and gearbox can be minimized. The wind power installation can be coupled to a tower on which the main frame is bearing-mounted. The drivetrain can be arranged at a lateral distance from the tower, and the pivot or rotation axis can be offset lateral to the tower for pivoting and adjusting the rotor axis inclination.
The present invention has been described with reference to embodiment examples in conjunction with the accompanying drawings.
However, it will be self-evident to skilled persons active in this field that the configuration of the present invention according to the above-described figures and the reference numerals used in the drawings and description for the respective structural component parts and components and exemplary specifications are not limiting. Accordingly, the invention is not limited to the depiction, particularly the dimensions and configurations, given in the figures. All of the embodiment forms and variants covered by the appended patent claims are considered to belong to the invention.
Claims
1. Wind power installation (1) with a rotor (4) which has two or possibly more rotor blades (5) and which is rotatably bearing-supported for rotation around a rotor rotation axis (2), wherein the rotor (4) is connected to a generator (10) for generating electrical power, and the rotor (4) and the generator (10) form a part of a turbine which is received by a turbine carrier (3; 40), and the turbine carrier is rotatably arranged at a supporting structure (7), wherein the turbine is movably mounted in the turbine carrier by means of a bearing device (11; 36, 46; 68) so that the spatial position of the turbine in the turbine carrier (3; 40) can be modified, and a pivoting range of the turbine (T) corresponding to a pivoting range of the rotor rotation axis (2) includes a first angle range and a second angle range relative to a reference plane (H), and the entire pivoting range is at least 120°.
2. Wind power installation according to claim 1, wherein the bearing device (11; 36, 46; 68) comprises a pivot bearing (11), and the turbine (T) is supported by means of the pivot bearing (11) so as to be pivotable around a rotation axis (8), or the bearing device for the pivoting of the turbine (T) has a mechanical device which comprises a four-bar linkage.
3. Wind power installation according to claim 1 or 2, wherein the turbine carrier (3; 40) includes a actuator (9) for pivoting the turbine (T) around the first angle range during operation of the wind power installation (1).
4. Wind power installation according to one of claims 1 to 3, wherein the turbine carrier (3; 40) and the turbine (T) include a pivoting device (51, 60-66) for pivoting the turbine (T) around the second angle range when the wind power installation (1) is not in operation.
5. Wind power installation according to claim 4, wherein the turbine carrier (3; 40) has a further bearing device (68, 70) in which the turbine (T) is rotatably mounted at least temporarily during pivoting in the pivoting range according to the second angle range.
6. Wind power installation according to claim 5, wherein the further bearing device (68, 70) is designed for temporarily engaging with at least one connection arm (67) arranged at the turbine (T) during pivoting, wherein the engagement between the turbine (1) and the further bearing device (68, 70) is releasable by means of the pivoting device (51, 60-66) at the conclusion of the pivoting process.
7. Wind power installation according to claim 6, wherein the pivoting device (51, 60-66) has a cable control (61-66) for movably holding the turbine (T) during the pivoting process and for releasing the engagement at the conclusion of the pivoting process.
8. Wind power installation according to claim 7, wherein the pivoting device (51, 60-66) is designed to lower the turbine (T) in the pivoted position by means of the cable control (61-66).
9. Wind power installation according to one of claims 1 to 8, wherein the turbine carrier (3; 40) has a displacing device (18) for moving the turbine carrier (3; 40) along the supporting structure (7) between an uppermost position (P1) at an upper end of the supporting structure (7) and a lowermost position (P2) at the foot of the supporting structure.
10. Wind power installation according to claim 9, wherein the turbine carrier (3; 40) has a holding device (19) for carrying and securing the turbine carrier (3; 40) at any position (P1, P2; P3) along the supporting structure (7).
11. Wind power installation according to one of claims 2 to 10, wherein the pivot bearing (11) is arranged in the vicinity of the center of gravity of the turbine (T).
12. Wind power installation according to one of claims 4 to 9, wherein the pivoting device (51, 60 to 65) comprises first pulleys (61) at the turbine (T), and the first pulleys are arranged at the turbine (T) in the vicinity of the center of gravity thereof.
13. Method for operating a wind power installation including a rotor (4) which has two or possibly more rotor blades (5) and which is rotatably bearing-supported for rotation around a rotor rotation axis (2), wherein the rotor (4) is connected to a generator (10) for generating electrical power, and the rotor (4) and the generator (10) form a part of a turbine (T) which is received by a turbine carrier (3; 40), and the turbine carrier is rotatably bearing-supported on a supporting structure (7), wherein, depending on a detected wind speed during operation of the wind power installation (1), an actuator (9) connected to the turbine (T) is actuated for adjusting the inclination of the rotor axis (2) within a first angle range relative to a reference plane (H).
14. Method for operating a wind power installation including a rotor (4) which has two or possibly more rotor blades (5) and which is rotatably hearing-supported for rotation around a rotor rotation axis (2), wherein the rotor (4) is connected to a generator (10) for generating electrical power, and the rotor (4) and the generator (10) form a part of a turbine (T) which is received by a turbine carrier (3; 40), and the turbine carrier is rotatably bearing-supported on a supporting structure (7), wherein, depending on the detected wind speed, a displacing device (18) is actuated for lowering the turbine carrier from a first position (P1) to further, lower position (P3), and the turbine carrier is held in the further position (P3) by means of a holding device (19).
15. Method for operating a wind power installation including a rotor (4) which has two or possibly more rotor blades (5) and which is rotatably bearing-supported for rotation around a rotor rotation axis (2), wherein the rotor (4) is connected to a generator (10) for generating electrical power, and the rotor (4) and the generator (10) form a part of a turbine (T) which is received by a turbine carrier (3; 40), and the turbine carrier is rotatably bearing-supported on a supporting structure (7), wherein, with the rotor (4) stopped, the turbine (T) is pivoted by actuating a pivoting device (51, 60-66) according to a predetermined angle range such that the rotor rotation axis (2) is approximately perpendicular to a reference plane (H), and the turbine (T) is lowered from any position (P1, P3) along the supporting structure (7) to a lowermost position (P2) at the foot of the supporting structure (7) and set down on a ground surface (100) by further actuation of the pivoting device.
Type: Application
Filed: Jul 7, 2011
Publication Date: May 2, 2013
Inventors: Frank Richert (Stedesand), Sebastian Pflaum (Maisach)
Application Number: 13/808,401
International Classification: F03D 11/04 (20060101); H02P 9/04 (20060101);