METHOD AND SYSTEM FOR ISOLATING LOCAL AREA NETWORKS OVER A CO-AXIAL WIRING FOR ENERGY MANAGEMENT
An energy management system. The system includes a coax controller apparatus comprising an exterior housing and plurality of coax modules numbered from 2 through N, where N is an integer greater than 3. In a specific embodiment, each of the coax modules comprises a powerline chip (PLC) module coupled to an analog front end, which is coupled to a coaxial connector. The system also has an electromagnetic shield configured to each of the coax modules. In a specific embodiment, the electromagnetic shield is configured to substantially maintain the coax module substantially free from interference noise or other disturbances. The system has a power meter coupled to one or more ports of the coax controller apparatus.
Latest Jetlun Corporation Patents:
- METHOD AND SYSTEM FOR POWERLINE TO MESHED NETWORK FOR POWER METER INFRA-STRUCTURE
- Method and system for automated power meter infrastructure
- METHOD AND SYSTEM FOR AUTOMATED POWER METER INFRASTRUCTURE
- Method and system for isolating local area networks over a co-axial wiring for energy management
- METHOD AND SYSTEM FOR INTELLIGENT ENERGY NETWORK MANAGEMENT CONTROL SYSTEM
This application claims priority and is a continuation of U.S. patent application Ser. No. 12/559,486 filed Sep. 14, 2009, which claims priority to U.S. Provisional Application 61/204,820 filed Jan. 13, 2009, commonly assigned and incorporated by reference herein for all purposes.
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENTA portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to the software and data as described below and in the drawings hereto: Copyright (c) 2009, Jetlun Corporation, All Rights Reserved.
REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISKNOT APPLICABLE
BACKGROUND OF THE INVENTIONThe present invention relates generally to energy management techniques. More particularly, the present invention provides a method and system for isolating local area networks over at least a co-axial wiring for energy management, but it can be applied to many other applications.
As larger universities and research labs obtained more computers during the late 1960s, increasing pressure mounted to provide high-speed interconnections to share information across a common network, often referred to as a Local Area Network (LAN). The development and proliferation of DOS-based personal computers from the early 1980's and the introduction of the World-Wide Web (WWW), which enabled the spread of information over the Internet through an easy-to-use and flexible format, popularized the adoption of home networking. A home network is a residential LAN, and is used to connect multiple devices within the home. More recently Internet Service Providers (ISP) such as AT&T and British Telecom have been using home networking to provide triple play services (voice, video and data) to customers.
Early LAN cabling used for LAN had always been based on various grades of co-axial cable, but IBM's Token Ring used shielded twisted pair cabling of their own design, and in about 1984 StarLAN showed the potential of simple CAT3 unshielded twisted pair—the same simple cable used for telephone systems. This led to the development of 10Base-T (and its successors) and structured cabling which is still the basis of most LANs today. Structural cabling is most cost efficient in new facilities but it becomes technically challenging and cost prohibitive in existing facilities. Given that the majority of buildings are existing and new buildings are just a small percentage of the overall market, other technologies were developed that transmit data either over the air or through the use of existing wiring.
As new applications such as Internet Protocol Television (IPTV)—a system where a digital television service is delivered using Internet Protocol over a network infrastructure, which may include delivery by a broadband connection, and Video of Demand (VoD)—a system that either stream content through a set-top box, allowing viewing in real time, or download it to a device such as a computer, digital video recorder, personal video recorder or portable media player for viewing at any time, matures, the bandwidth requirement for a LAN will need to be increased to be able to support these applications.
Wireless 802.11 technologies are limited in bandwidth, coverage, interferences and security. Other network technologies that use the existing wiring of a facility such as HomePNA Phoneline and HomePlug™ Powerline uses bare copper wires which are easily susceptible to interferences and they are also limited by its shared medium; thus, making it extremely challenging to deploy bundled applications and services. A co-axial wire is a cable consisting of an inner conductor, surrounded by a tubular insulating layer typically made from a flexible material with a high dielectric constant, all of which is then surrounded by another conductive layer (typically of fine woven wire for flexibility, or of a thin metallic foil), and then finally covered again with a thin insulating layer on the outside—making it the most ideal network infrastructure for high-bandwidth applications that is part of the existing wiring of a facility.
Although highly successful, networking techniques have not been used successfully in energy management applications. That is, energy management applications have been crude and often difficult to use in an easy and convenient manner. Energy management applications are also non-existent in some areas. These and other limitations of conventional energy management techniques have been described throughout the present specification and more particularly below.
From the above, it is seen that improved techniques are desired to improve use of existing co-axial wiring for LAN and in particularly energy management applications.
BRIEF SUMMARY OF THE INVENTIONAccording to the present invention, techniques related to maximizing the use of existing co-axial wiring for networking are provided. More particularly, the present invention provides a method to isolate networks over existing co-axial wiring of a facility. Merely by example, the invention provides a network solution to support various applications such as data networking, Voice over Inter Protocol (VoIP), Internet Protocol Television (IPTV), or Video on Demand (VoD), for a variety of environments such as a hospital, an apartment building, a hotel, a ship, a home, a shopping mall, or other distribution center or warehouse, school or large campus, office setting or large building area environment, manufacturing campuses.
According to one or more embodiments of the present invention, techniques have been provided using at least co-axial wiring in deployments of a larger network where a host device is connected to and managing N clients, where N is greater than 1. Placing multiple conventional co-axial wiring together causes interferences, which hinder overall bandwidth and performance. MOCA, Ultra-Wide Band (UWB), HomePNA and HomePlug Powerline and other network technologies see its performance drop when deployed due to the physical limitations of the co-axial wiring. The present method and system, however, overcomes some if not all of the limitations of conventional coaxial based systems and methods.
An energy management system is provided in one or more embodiments. The system includes a coax controller apparatus comprising an exterior housing and plurality of coax modules numbered from 2 through N, where N is an integer greater than 3. In a specific embodiment, each of the coax modules comprises a powerline chip (PLC) module coupled to an analog front end, which is coupled to a coaxial connector. The system also has an electromagnetic shield configured to each of the coax modules. In a specific embodiment, the electromagnetic shield is configured to substantially maintain the coax module substantially free from interference noise or other disturbances. The system has a power meter coupled to one or more ports of the coax controller apparatus.
In an alternative specific embodiment, the present invention provides a high speed network system for energy management. The system has a first shield configured to an analog front end coupled to a power line chip set configured for a data rate of at least 200 Megabits per second, and one or more interface ports. In a preferred embodiment, the first shield is configured to remove noise ranging from 1 MHz to 30 MHz derived from at least the analog front end. The system also has a second shield configured to the analog front end coupled to one or more inductive coupling elements. The one or more inductive coupling elements are configured to couple a power line signal from the analog front end to one or more coax connectors. The second shield is configured to block noise from being transmitted to and from at least the one or more inductive coupling elements. In a specific embodiment, the system has a third shield configured between the analog front end and the power line module. Preferably, the third shield is configured to isolate one or more powerline signals communicated between the analog front end and the power line module. A fourth shield is configured to one or more cables to form a shielded cable coupled to the one or more coax connectors. Of course, there can be other variations, modifications, and alternatives.
In one or more other embodiments, the present invention provides a way of using the system described herein to transfer energy consumption information using one or more power line signals over one or more powerline networks. Of course, there can be other variations, modifications, and alternatives.
Numerous benefits are achieved using the present invention over conventional techniques. The present invention maximizes the use of existing co-axial wiring of a facility, provides an easy and quick method to deploy a LAN and do away with new structure cabling which are attributable to global warming. In a preferred embodiment, the present system provides an improved shielding technique for power line communication of energy management applications, which tend to be noisy and have other disturbances. Depending upon the embodiment, one or more of these benefits may exist. These and other benefits have been described throughout the present specification and more particularly below.
Various additional objects, features and advantages of the present invention can be more fully appreciated with reference to the detailed description and accompanying drawings that follow.
According to the present invention, techniques for converting co-axial wiring of a facility into a communication network that can be isolated into sub-networks in order to maximize bandwidth and decrease interference are provided. Merely by way of example, the invention has been applied in a local area network environment, but it would be recognized that other applications exist. The invention can also be applied to building area network, home area network, office network, apartments, factories, industrial area network, any combination of these, and other networking applications.
Each Physical layer (PHY) chipset 205 is connected to an aluminum alloy tin shielded network module 213 through a 50-pin connector 209. The network switch chipset 201 is connect to the CPU 203 through a MII BUS 215 that is connected to a I/O-MII port 217, which converts the MII BUS 215 to an I/O BUS 219, and then to the CPU 203. The CPU 203 interfaces with various elements. Such elements include a Crystal 221, a Serial interface (“UART”) 223, a Debug port (“EJTAG”) 225, a USB port 227, a reset circuit 229, a parallel flash chip 231, and a DDR SDRAM chip 233. The network switch chipset 201 is also connected to an additional PHY chipset 205 that interfaces with two 1-Gigabit Ethernet ports 235.
As merely an example, the powerline chipset 300 can feature an integrated powerline chipset manufactured by INTELLON CORPORATION of Florida, according to an embodiment of the present invention, but it would be recognized that other chipsets could be utilized. Here, the chip can be a single-chip powerline networking controller with integrated MII/GPSI, USB. The chip interfaces with Ethernet interfaces, among others. Preferably, there is at least a 200 Mbps data rate on the co-axial wire, although others may be desirable, such as 7.5 Kbps, 1 Mbps, 14 Mbps, 85 Mbps, 400 Mbps and 1 Gbps. In alternative embodiments, the shielded network module 300 can include other chipset designs that are suitable for the present methods and systems such as other powerline chipsets from suitable companies such as DS2, Panasonic,
Coppergate, Sigma, Arkados, Yitran, Echelon, and others', as well as other networking technologies that are suitable for the present methods and systems such as HomePNA, MoCA, and UWB network chipsets from Coppergate, Entropic, and others. As noted, the chipsets and companies mentioned are merely an example and should not unduly limit the scope of the claims herein.
Zigbee modem apparatus includes a variety of elements. Such elements include a Central Processing Unit (CPU) 801 that connects to a Zigbee network module 803 thru an I/O BUS 805, a Powerline network module 807 thru a MII BUS 809, and an Ethernet network module 811 thru a MII BUS 809. The Zigbee network module 803 includes a variety of elements. Such elements include a Zigbee network chipset 813 that connects directly to an RF output 815 that broadcast the IP signal over 2.4 Ghz 817. The Powerline network module 807 includes a variety of elements. Such elements include a Powerline chipset 819 that connects to an analog front end 821 thru an I/O BUS 805 and is then connected to a co-axial wire 823 using a coupler 825. The Ethernet network module 811 includes a variety of elements. Such elements include a PHY chip 827 that connects to a LAN port 829. The CPU 801 also has other elements, including Parallel Flash 831, Memory 833, Crystal 835, Serial (“UART”) 837, a Debug port (“EJTAG”) 839, USB port 841, and a reset circuitry 843.
As merely an example, the Zigbee chipset can feature an integrated Zigbee chipset manufactured by EMBER CORPORATION of Massachusetts, according to an embodiment of the present invention, but it would be recognized that other chipsets could be utilized. In alternative embodiments, the Zigbee network module 803 can include other chipset designs that are suitable for the present methods and systems such as other Zigbee chipsets from suitable companies such as TI, Freescale, and others', as well as other wireless networking technologies that are suitable for the present methods and systems such as 61oWPAN, WiFi 802.11, Bluetooth, RFID, and UWB network chipsets from Archrock, Broadcom, Atheros, and others. As noted, the chipsets and companies mentioned are merely an example and should not unduly limit the scope of the claims herein.
As merely an example, the powerline chipset 300 can feature an integrated powerline chipset manufactured by INTELLON CORPORATION of Florida, according to an embodiment of the present invention, but it would be recognized that other chipsets could be utilized. Here, the chip can be a single-chip powerline networking controller with integrated MII/GPSI, USB. The chip interfaces with Ethernet interfaces, among others. Preferably, there is at least a 200 Mbps data rate on the co-axial wire, although others may be desirable, such as 7.5 Kbps, 1 Mbps, 14 Mbps, 85 Mbps, 400 Mbps and 1 Gbps. In alternative embodiments, the shielded network module 300 can include other chipset designs that are suitable for the present methods and systems such as other powerline chipsets from suitable companies such as DS2, Panasonic, Coppergate, Sigma, Arkados, Yitran, Echelon, and others', as well as other networking technologies that are suitable for the present methods and systems such as HomePNA, MoCA, and UWB network chipsets from Coppergate, Entropic, and others. As noted, the chipsets and companies mentioned are merely an example and should not unduly limit the scope of the claims herein.
An appliance module 1327 can connect to a variety of appliances and devices such as refrigerator, washer and dryer, range, stove, microwave, personal computer, television, or other appliance. An appliance module 1327 may be adapted to measure, store and or control energy usage of connected appliances or devices, bridge Zigbee wireless sensors and devices to the network, or receive and transmit information across network infrastructure. As merely an example, the appliance module 1327 may be a product manufactured by Jetlun Corporation of South San Francisco, California, under the part number RD75613.
A circuit meter 1331 may be connected to an electrical circuit breaker panel or distribution panel. A circuit meter 1331 may be adapted to measure and or store energy consumption information of up to sixteen (16) circuits in a distribution panel. As merely an example, the circuit meter 1331 may be a product manufactured by Jetlun Corporation of South San Francisco, California, under the part number RD75619.
A panel meter 1329 may be connected to an electrical circuit breaker panel or distribution panel. A circuit meter 1329 may be adapted to measure and or store energy consumption information of up to three (3) circuits in a distribution panel. As merely an example, the circuit meter 1329 may be a product manufactured by Jetlun Corporation of South San Francisco, California, under the part number RD75619.
Although the above has been described in terms of specific embodiments, other variations, modifications, and alternatives can exist. The specific embodiments are not intended to unduly limit the scope of the claims herein. Further examples can be found throughout the present specification and more particularly below.
While the above is a full description of the specific embodiments, various modifications, alternative constructions and equivalents may be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.
Claims
1. A method of configuring an energy management system comprising:
- providing a coax controller apparatus comprising an exterior housing and plurality of coax modules numbered from 2 through N, where N is an integer greater than 3, each of the coax modules comprising a powerline chip (PLC) module coupled to an analog front end, the analog front end being coupled to a coaxial connector;
- an electromagnetic shield configured to each of the coax modules, the electromagnetic shield being configured to substantially maintain the coax module substantially free from interference noise;
- coupling a power meter to one or more ports of the coax controller apparatus; and
- coupling a multiplexer between a plurality of power lines numbered from 1 through M and a television broadcasting line; wherein
- the multiplexer comprises a plurality of capacitor coupling circuits, the plurality of capacitor coupling circuits being coupled, respectively, to the plurality of power lines numbered from I through M, each of the plurality of coupling circuits being coupled to a filter configured to remove a frequency ranging from 0 to 30 MHz, the filter being coupled to the television broadcasting line.
2. The method of claim 1 wherein electromagnetic shield comprises metal material.
3. The method of claim 1 wherein each of the coaxial connects is substantially free from noise ranging from 1 MHz to 30 MHz.
4. The method of claim 1 wherein the power meter is configured to transfer at least rate information.
5. A high speed network system for energy management, the system comprising:
- an exterior housing;
- a first shield configured to an analog front end coupled to a power line chip set configured for a data rate of at least 200 Megabits per second, and one or more interface ports, the first shield configured to remove noise ranging from 1 MHz to 30 MHz derived from at least the analog front end;
- a second shield configured to the analog front end coupled to one or more inductive coupling elements, the one or more inductive coupling elements being configured to couple a power line signal from the analog front end to one or more coax connectors, the second shield configured to block noise from being transmitted to and from at least the one or more inductive coupling elements;
- a third shield configured between the analog front end and the power line module, the third shield being configured to isolate one or more powerline signals communicated between the analog front end and the power line module; and
- a fourth shield configured to one or more cables to form a shielded cable coupled to the one or more coax connectors,
- whereupon the first shield, the second shield, third shield, analog front end, powerline chip set, inductive coupling elements, and power line module are provided within the exterior housing;
- wherein the first shield comprises an aluminum allow material configured spatially around the power line chip.
6. The system of claim 5 wherein the aluminum alloy material further configured spatially around the analog front end, the inductive coupling element, and the one or more connectors.
7. The system of claim 6 wherein the second shield comprises an aluminum alloy or other metal configured to spatially isolate the one or more inductive coupling elements from the noise.
8. The system of claim 7 wherein the third shield comprises one or more metal jackets configured around one or more electrical members configured between the analog front end and the power line chip set.
9. The system of claim 8 wherein the first shield comprises a braded metal jacket configured around the one or more cables.
10. The system of claim 9 wherein one or more coax connectors is coupled to one or more coax cables.
11. A method for using a high speed network system for energy management, the method comprising:
- providing a high speed system for energy management, the system comprising: a first shield configured to an analog front end coupled to a power line chip set configured for a data rate of at least 200 Megabits per second, and one or more interface ports, the first shield configured to remove noise ranging from 1 MHz to 30 MHz derived from at least the analog front end; a second shield configured to the analog front end coupled to one or more inductive coupling elements, the one or more inductive coupling elements being configured to couple a power line signal from the analog front end to one or more coax connectors, the second shield configured to block noise from being transmitted to and from at least the one or more inductive coupling elements; a third shield configured between the analog front end and the power line module, the third shield being configured to isolate one or more powerline signals communicated between the analog front end and the power line module; and a fourth shield configured to one or more cables to form a shielded cable coupled to the one or more coax connectors; and
- using the system to transfer one or more power line signals having energy consumption information over the one or more powerline network,
- whereupon the first shield, the second shield, third shield, analog front end, powerline chip set, and inductive coupling elements are provided within an exterior housing;
- wherein the first shield comprises an aluminum alloy material configured spatially around the power line chip.
12. The method of claim 11 wherein the aluminum alloy material is further configured spatially around the analog front end, the inductive coupling element, and the one or more connectors.
13. The method of claim 12 wherein the second shield comprises an aluminum alloy or other metal configured to spatially isolate the one or more inductive coupling elements from the noise.
14. The method of claim 13 wherein the third shield comprises one or more metal jackets configured around one or more electrical members configured between the analog front end and the power line chip set.
15. The method of claim 14 wherein the first shield comprises a traded metal jacket configured around the one or more cables.
16. The method of claim 15 wherein one or more coax connectors is coupled 2 to one or more coax cables.
Type: Application
Filed: Dec 28, 2012
Publication Date: May 9, 2013
Applicant: Jetlun Corporation (South San Francisco, CA)
Inventor: Jetlun Corporation (South San Francisco, CA)
Application Number: 13/730,716
International Classification: G06F 1/26 (20060101);