Handwriting Systems and Operation Methods Thereof

- PIXART IMAGING INC.

A handwriting system includes a light source module, an image sensing apparatus and a processing circuit. The light source module is configured to provide a light source to illuminate an object on a plane. The image sensing apparatus is disposed on the plane and configured to capture an image of the object reflecting the light source. The processing circuit is electrically connected to the image sensing apparatus and configured to receive the image captured by the image sensing apparatus, analyze the shape of each of light spot(s) in the captured image and filter out the light spot(s) not qualified to the shape of the object. Another handwriting system and two handwriting system operation methods are also provided.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The present invention relates to the touch technique field, and more particularly to handwriting systems and operation methods thereof.

BACKGROUND OF THE INVENTION

In the sensing technique of a conventional handwriting system (e.g., a virtual handwriting pad), the sensed objects may not be recognized correctly due to the background light source interference resulted from the varying of operational environments. In other words, the conventional handwriting system may have a performance easily affected by the background light.

In addition, because the operational environment (e.g., a table's top surface) may vary, the predetermined operation zone (i.e., a virtual input zone) of the conventional handwriting system may not be always convenient for users. For example, users may feel inconvenient to operate the conventional handwriting system if the table's top surface (specifically, the predetermined operation zone) associated with the handwriting system is disorder.

SUMMARY OF THE INVENTION

The present invention provides a handwriting system with a performance not easily being affected by a background light source.

The present invention also provides an operation method of the aforementioned handwriting system with a performance not easily being affected by a background light source.

The present invention further provides a handwriting system with an adjustable operation zone, thus the handwriting system is not easily affected by an operation environment.

The present invention still further provides an operation method of the aforementioned handwriting system with an adjustable operation zone.

The present invention provides a handwriting system, which includes a light source module, an image sensing apparatus and a processing circuit. The light source module is configured to provide a light source to illuminate an object on a plane. The image sensing apparatus is disposed on the plane and configured to capture an image of the object reflecting the light source. The processing circuit is electrically connected to the image sensing apparatus and configured to receive the image captured by the image sensing apparatus, analyze the shape of each of light spot(s) in the captured image and filter out the light spot(s) not qualified to the shape of the object.

The present invention also provides an operation method of a handwriting system. The handwriting system includes a light source module, an image sensing apparatus and a processing circuit. The light source module is configured to provide a light source to illuminate an object on a plane. The image sensing apparatus is disposed on the plane and configured to capture an image of the object reflecting the light source. The operation method includes steps of: obtaining the image captured by image sensing apparatus; analyzing the shape of each of light spot(s) in the captured image; and filtering out the light spot(s) not qualified to the shape of the object.

In the embodiment of the handwriting system and the operation method thereof, the captured image is converted into a binary image and the binary image is determined, by using Hough Transform, whether or not having any light spot qualified to the shape of the object.

The present invention further provides a handwriting system includes a light source module, an image sensing apparatus and a processing circuit. The light source module is configured to provide a light source to illuminate at least one object on a plane. The image sensing apparatus is disposed on the plane and configured to capture an image of the object(s) reflecting the light source. The processing circuit, electrically connected to the image sensing apparatus, is configured to receive the image captured by the image sensing apparatus and calculate, if the captured image has a single light spot therein, the position of a single object relative to the plane according to image characteristics and imaging position of the single light spot in the captured image. The processing circuit, when operating in an operation zone converting mode, is further configured to define an indicated operation zone according to at least two positions sequentially inputted by an object and map a predetermined operation zone of the handwriting system into the indicated operation zone through performing a coordinate transform by using a matrix operation.

The present invention still further provides an operation method of a handwriting system. The handwriting system includes a light source module, an image sensing apparatus and a processing circuit. The light source module is configured to provide a light source to illuminate at least one object on a plane. The operation method includes steps of: obtaining the image captured by the image sensing apparatus; calculating, if the captured image has a single light spot therein, the position of a single object relative to the plane according to image characteristics and imaging position of the single light spot in the captured image; and defining, when the handwriting system operates in an operation zone converting mode, an indicated operation zone according to at least two positions sequentially inputted by one object and mapping a predetermined operation zone of the handwriting system into the indicated operation zone through performing a coordinate transform by using a matrix operation.

In the embodiment of the operation method, the operation method further includes steps of: calculating, if the captured image has a plurality of light spots therein, the positions of a plurality of objects relative to the plane according to image characteristics and imaging position of the light spots in the captured image; and defining, when the handwriting system operates in the operation zone converting mode, the indicated operation zone according to four positions sequentially inputted by two individual objects, wherein the two objects each are associated with two positions.

In the embodiment of the operation method, the operation method further includes steps of: calculating, if the captured image has a plurality of light spots therein, the positions of a plurality of objects relative to the plane according to image characteristics and imaging position of the light spots in the captured image; and defining, when the handwriting system operates in an operation zone converting mode, the indicated operation zone according to four positions inputted by four individual objects at a same time.

In the embodiment of the operation method, the matrix operation comprises a homogeneous matrix operation.

In summary, the processing circuit of the handwriting system according to the present invention first analyzes the shape of each of the light spot(s) in the image captured by the image sensing apparatus and filters out the light spot(s) not qualified to the shape of the object. Therefore, the handwriting system of the present invention can have a performance not easily affected by the background light source. In addition, the processing circuit further calculates, if the captured image has a single light spot therein, a position of a single object relative to the plane according to the image characteristics and imaging position of the single light spot; or, calculates, if the captured image has a plurality of light spots therein, the positions of a plurality of objects relative to the plane according to the image characteristics and imaging positions of the light spots. Specifically, the handwriting system operating in an operation zone converting mode defines an indicating operation zone according to four positions; wherein the four positions are sequentially inputted by one single object, or by two individual objects and each of the two objects is associated with two positions, or inputted at the same time by four individual objects. Then, a coordinate transform is performed on a predetermined operation zone by using a matrix operation so as to map the predetermined operation zone to the indicated operation zone. Therefore, the handwriting system of the present invention can have an adjustable operation zone without being affected by the operational environments.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:

FIG. 1 is a schematic view illustrating a handwriting system in accordance with an embodiment of the present invention;

FIG. 2 is a schematic view illustrating an exemplified image of an object captured by the image sensing apparatus shown in FIG. 1;

FIG. 3 is a schematic view illustrating another exemplified image of an object captured by the image sensing apparatus shown in FIG. 1;

FIG. 4 is a schematic flow chart illustrating an operation method of a handwriting system in accordance with another embodiment of the present invention;

FIG. 5 is schematic view illustrating a plane shown in FIG. 1 and an indicated operation zone defined therein;

FIG. 6 is a schematic flow chart illustrating an operation method of a handwriting system in accordance with another embodiment of the present invention; and

FIG. 7 is a schematic view illustrating the handwriting system of the present invention integrated into a notebook computer.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.

First Embodiment of the Present Invention

FIG. 1 is a schematic view illustrating a handwriting system in accordance with an embodiment of the present invention. As shown, the handwriting system in this embodiment includes a light source module 104, an image sensing apparatus 106 and a processing circuit 108; wherein the processing circuit 108 is electrically connected to the image sensing apparatus 106. The light source module 104 is configured to provide a light source for illuminating an object 102 on a plane 110. In this embodiment, the plane 110 has a parallelogram shape, and preferably has a rectangle shape. The plane 110 can be a virtual plane, which is defined by software installed in the processing circuit 108 or defined by specific objects (not shown) disposed at the four corners thereof. Specifically, the plane 110 is parallel to the optical axes of the image sensing apparatus 106.

In this embodiment, the image sensing apparatus 106 is disposed on the light source module 104; and the present invention is not limited thereto. Moreover, the light source module 104 includes a laser light source 140-1 and an optical element 104-2. The laser light source 104-1 is configured to generate a spot light source; and the optical element 104-2 is configured to convert the spot light source into a linear light source serving as the light source of the light source module 104 and emitting a plane light at a specific height above the plane 110. In this embodiment, the optical element 104-2 can be a cylindrical lens or a Micro Electro Mechanical System (MEMS) scanning mirror. The cylindrical lens is configured to convert the spot light source emitted from the laser light source 104-1 into the linear light source and thereby forming the plane light emitted to the plane 110. The MEMS scanning mirror is configured to change the emitting direction of the spot light source emitted from the laser light source 104-1 so that the light source of the light source module 104 can scan at a specific height above the plane 110. The light source of the light source module 104 is emitted toward and parallel to the plane 110 and all the plane 110 is within a range capable of being emitted by the light source. In addition, it is understood that the laser light source 104-1 can be replaced by an infrared light-emitting diode (IR LED).

The image sensing apparatus 106, disposed on the plane 110, is configured to capture the image of the object 102 reflecting the light source. Specifically, because the object 102 can reflect the light source while being illuminated by the light source, the processing circuit 108 can, after obtaining the image captured by the image sensing apparatus 106, determine the position of the object 102 relative to the plane 110 through the image characteristics and imaging positions of the light spots in the captured image; wherein the image characteristic herein includes the image brightness or image size of the object 102.

FIGS. 2, 3 are two schematic views each illustrating an exemplified image of the object 102 captured by the image sensing apparatus 106; wherein the object 102 herein is a user's right hand on the plane 110 and the direction of the fingertip of each finger is toward to the right of FIG. 1. As shown, the main difference between the two images shown in FIGS. 2, 3 is the height of the right hand relative to the plane 110. In FIG. 2, the image includes a sub-image 202 of an index finger's fingertip, which serves as an input indicator, and a sub-image 204 of a palm and thumb, which provide no function in this embodiment; wherein the sub-images 202, 204 are exemplified by being merged together at a position 206. In FIG. 3, the image includes a sub-image 302 of an index finger's fingertip, which serves as an input indicator, and sub-images 304, 306, which provide no function in this embodiment; wherein the sub-image 302 is not merged with any other sub-image.

Beside to receive the image captured by the image sensing apparatus 106, the processing circuit 108 is further configured to analyze the shape of each of the light spots in the captured image so as to filter out the light spots not qualified to the shape of the object 102. For example, the processing circuit 108 first converts the captured image into a binary image, determines the captured image whether or not having any light spot qualified to the shape of the object 102 by using Hough Transform, and filters out any light spot not qualified to the shape of the object 102.

As illustrated in FIG. 3, for example, the processing circuit 108 first analyzes the three light spots (or, the three sub-images 302, 304 and 306) each in the captured image whether or not having an aspect ratio located within a threshold value, and determines which one of the three spot lights is associated with an index finger's fingertip (or, an input indicator) according to the aforementioned analyzing result. It is understood that the object 102 can be any other specific object, and accordingly the processing circuit 108 is configured to determine the light spots of the image according to the shape feature of this new specific object. For example, the processing circuit 108 is configured to analyze the captured image whether or not having a light spot with a down point (that is, a down point toward the X-Y plane shown in FIG. 3), if the object 102 is a touch pen.

The processing circuit 108 can be configured to process the light spot filtering according to the light spot's size. For example, as illustrated in FIG. 3, the processing circuit 108 can analyze each of the light spots in the captured image whether or not having a size greater than a first threshold value on the y-axis or having a size less than a second threshold value on the x-axis. Specifically, any light spot will be determined as a non-input indicator if having a size greater than the first threshold value on the y-axis or having a size less than a second threshold value on the x-axis. It is understood that the processing circuit 108 can perform the light spot filtering on each of the light spots according to two individual threshold values on the y-axis and the x-axis; or, according to one same threshold value on the y-axis and the x-axis. In this embodiment, the threshold values each are, for example, a predetermined pixel number.

Moreover, to analyze the merged light spots more correctly, for example as illustrated in FIG. 2, the processing circuit 108 may be configured to determine whether or not existing a light spot with a width at a specific position on the y-axis less than a threshold value. Specifically, the processing circuit 108, if finding a merged light spot having a width at a position (e.g., position 206) less than a threshold, is configured to divide the merged light spot into two individual light spots by the position 206, and then determine each of the two individual light spots whether or not having image characteristics qualified to the shape of the first finger's fingertip (or, an input indicator). In addition, it is to be noted that the processing circuit 108 may directly determine the left light spot as the first finger's fingertip (or, an input indicator) and calculate the selected light spot's coordinate accordingly.

The light spot filtering illustrated in FIGS. 2, 3 is suitable for single touch; however, the present invention is not limited thereto. In other words, the handwriting system according to the present invention is also applicable to multi touch (as illustrated in FIG. 3) if the light spot light filtering is skipped. Therefore, according to the aforementioned description, it is understood that the handwriting system of the present invention can have a performance without being affected easily by the background light source.

It is to be noted that the light source module 104 can be replaced with a plurality of laser light sources without the employ of the optical element 104-2. Specifically, these laser light source are arranged in parallel thereby being capable of emitting a light source similar to a linear light source. In addition, the image sensing apparatus 106 and the light source module 104 can be disposed at any one corner of the plane 110, and the positions of the image sensing apparatus 106 and the light source module 104 illustrated in FIG. 2 is used for an exemplification only.

According to the aforementioned description, the handwriting system in this embodiment can be summarized to have some basic operation steps by those ordinarily skilled in the art as illustrated in FIG. 4, which is a schematic flow chart illustrating an operation method of a handwriting system in accordance with an embodiment of the present invention. The handwriting system includes a light source module and a light sensing apparatus. The light source module is configured to provide a light source to illuminate an object on a plane. The image sensing apparatus is disposed on the plane and is configured to capture an image of the object reflecting the light source. As illustrated in FIG. 4, the operating method of a handwriting system in this embodiment includes steps of: obtaining an image captured by the image sensing apparatus (step S402); analyzing the shape of each of the light spot(s) in the captured image (step S404); and filtering out the light spot(s) not qualified to the object's shape (step S406).

It is understood that the analysis of the light spots in step S404 can be realized by first converting the captured image into a binary image by using Hough Transform and then determining the binary image whether or not having any light spot qualified to the shape of the object.

The Second Embodiment of the Present Invention

The handwriting system in accordance with the second embodiment of the present invention will be described in the following still with a reference of FIG. 1, due to having a hardware structure similar to that of the handwriting system in accordance with the first embodiment.

Please refer to FIGS. 1, again. The main difference between the first and second embodiments of the present invention is the operation process of the processing circuit 108. Beside receiving the image captured by the image sensing apparatus 106, the processing circuit 108 in this embodiment is further configured to calculate, if the captured image has a single light spot therein, the position of a single object 102 respective to the plane 110 according to the image characteristics and imaging position of the single light spot in the captured image; or calculate, if the captured image has a plurality of light spots therein, the positions of a plurality of objects 102 respective to the plane 110 according to the image characteristics and imaging positions of the light spots in the captured image. In other word, compared with the handwriting system with single touch in the first embodiment, the handwriting system in this embodiment further supports multi touch.

Moreover, the processing circuit 108 in this embodiment can operate in an operation zone converting mode. Specifically, the processing circuit 108, when operating in an operation zone converting mode, defines an indicated operation zone according to four positions on the plane 110; wherein the four positions can be sequentially inputted by one single object 102, or sequentially inputted by two individual objects 102 and each of the two objects 102 is associated with two positions, or inputted at a same time by four individual objects 102.

FIG. 5 is schematic view illustrating the plane 110 shown in FIG. 1 and an indicated operation zone defined therein. As shown, the processing circuit 108 in the operation zone converting mode first determines the number of objects 102 according to the image captured by the image sensing apparatus 106. If there is one object 102 captured, the processing circuit 108 then defines an indicated operation zone 120 on the plane 110 according to four positions (for example, the four corners of a dotted frame) sequentially inputted by the single object 102. Or, if there are two individual objects 102 captured, the processing circuit 108 then defines an indicated operation zone 120 on the plane 110 according to four positions (for example, the four corners of a dotted frame) sequentially inputted by the two individual objects 102 and each of the two objects 102 is associated with two positions. Or, if there are four individual objects 102 captured, the processing circuit 108 then defines an indicated operation zone 120 on the plane 110 according to four positions (for example, the four corners of a dotted frame) inputted at the same time by the four individual objects 102.

The processing circuit 108, once obtaining the indicated operation zone 120, performs a coordinate transform by using a matrix operation (for example, a homogeneous matrix operation), so as to map a determined operation zone defined on the plane 110 to the indicated operation zone 120. In other word, the processing circuit 108, originally, is configured to calculate the position of any object 102 in the determined operation zone relative to the plane 110. Once the processing circuit 108 in this embodiment is in the operation zone converting mode and the operation zone is converted into the indicated operation zone 120, only the object(s) located in the indicated operation zone 120 will be calculated by the processing circuit 108 for the position thereof. Because the operation zone is adjustable, the handwriting system of the present invention can be prevented from being affected by the operational environment.

According to the aforementioned, the handwriting system in this embodiment can be summarized to have some basic operation steps to those ordinarily skilled in the art as illustrated in FIG. 6, which is a schematic flow chart illustrating an operation method of a handwriting system in accordance with another embodiment of the present invention. The handwriting system includes a light source module and a light sensing apparatus. The light source module is configured to provide a light source to illuminate at least one object on a plane. The image sensing apparatus is disposed on the plane and configured to capture the image of the object(s) reflecting the light source. The operation method includes steps of: obtaining the image captured by the image sensing apparatus (step S602); calculating, if the captured image has a single light spot therein, the position of a single object relative to the plane according to image characteristics and imaging position of the single light spot in the captured image (step S604); and defining, when the handwriting system operates in an operation zone converting mode, an indicated operation zone according to at least two positions sequentially inputted by one object and mapping a predetermined operation zone of the handwriting system into the indicated operation zone through performing a coordinate transform by using a matrix operation (step S606).

Specifically, the coordinate transform in step S606 can be realized by using a homogeneous matrix operation.

In particular, it is to be noted that the functions provided by the processing circuit 108 of both the first and second embodiments can be integrated into one single processing circuit, so that the associated handwriting system can have a full function and is more competent. Moreover, it is understood that the handwriting system of the present invention is applicable to be integrated into some specific electronic apparatuses (for example, notebook computers) or input devices (for example, keyboards). Preferably, the handwriting system of the present invention is integrated into one side of electronic apparatus or input device as illustrated in FIG. 7, which is a schematic view illustrating the handwriting system of the present invention integrated into a notebook computer. As shown, the handwriting system is disposed on one side of the notebook computer 702 and includes a processing circuit 712, an image sensing apparatus 714 and a light source module 716. To make the handwriting system operate more accurately, it is to be noted that the image sensing apparatus 714 and the light source supply 716 are arranged to have the sensing surface 714-1 and the emitting surface 716-1 exposed from the housing of the notebook computer 702, respectively; or, a portion of the housing of the notebook computer 702 corresponding to the sensing surface 714-1 and the emitting surface 716-1 is transparent.

In summary, the processing circuit of the handwriting system according to the present invention first analyzes the shape of each of the light spot(s) in the image captured by the image sensing apparatus and filters out the light spot(s) not qualified to the shape of the object. Therefore, the handwriting system of the present invention can have a performance not easily affected by the background light source. In addition, the processing circuit further calculates, if the captured image has a single light spot therein, a position of a single object relative to the plane according to the image characteristics and imaging position of the single light spot; or, calculates, if the captured image has a plurality of light spots therein, the positions of a plurality of objects relative to the plane according to the image characteristics and imaging positions of the light spots. Specifically, the handwriting system operating in an operation zone converting mode defines an indicating operation zone according to four positions; wherein the four positions are sequentially inputted by one single object, or by two individual objects and each of the two objects is associated with two positions, or inputted at the same time by four individual objects. Then, a coordinate transform is performed on a predetermined operation zone by using a matrix operation so as to map the predetermined operation zone to the indicated operation zone. Therefore, the handwriting system of the present invention can have an adjustable operation zone without being affected by the operational environments.

While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.

Claims

1. A handwriting system, comprising:

a light source module configured to provide a light source to illuminate an object on a plane;
an image sensing apparatus disposed on the plane and configured to capture an image of the object reflecting the light source; and
a processing circuit electrically connected to the image sensing apparatus and configured to receive the image captured by the image sensing apparatus, analyze the shape of each of light spot(s) in the captured image and filter out the light spot(s) not qualified to the shape of the object.

2. The handwriting system according to claim 1, wherein the processing circuit is further configured to convert the captured image into a binary image and determine the binary image whether or not having any light spot qualified to the shape of the object by using Hough Transform.

3. The handwriting system according to claim 1, wherein the light source module comprises:

a laser source configured to generate a spot light source; and
an optical element configured to convert the spot light source into a linear light source serving as the light source.

4. The handwriting system according to claim 3, wherein the optical element comprises a cylindrical lens or a Micro Electro Mechanical System scanning mirror, the cylindrical lens is configured to convert the spot light source into the linear light source serving as the light source, and the Micro Electro Mechanical System scanning mirror is configured to change the emitting direction of the spot light source and thereby forming the light source.

5. The handwriting system according to claim 1, wherein the light source module comprises:

a plurality of laser light sources arranged in parallel and configured to emit light and thereby forming the light source.

6. The handwriting system according to claim 1, wherein the plane is a parallelogram.

7. The handwriting system according to claim 1, wherein the plane comprises a virtual panel.

8. An operation method of a handwriting system, the handwriting system comprising a light source module and an image sensing apparatus, the light source module being configured to provide a light source to illuminate an object on a plane, the image sensing apparatus being disposed on the plane and configured to capture an image of the object reflecting the light source, the operation method comprising:

obtaining the image captured by image sensing apparatus;
analyzing the shape of each of light spot(s) in the captured image; and
filtering out the light spot(s) not qualified to the shape of the object.

9. The operation method according to claim 8, further comprising:

converting the captured image into a binary image and determining, by using Hough Transform, the binary image whether or not having any light spot qualified to the shape of the object.

10. A handwriting system, comprising:

a light source module configured to provide a light source to illuminate at least one object on a plane;
an image sensing apparatus disposed on the plane and configured to capture an image of the object(s) reflecting the light source; and
a processing circuit, electrically connected to the image sensing apparatus, configured to receive the image captured by the image sensing apparatus and calculate, if the captured image has a single light spot therein, the position of a single object relative to the plane according to image characteristics and imaging position of the single light spot in the captured image, wherein the processing circuit, when operating in an operation zone converting mode, is further configured to define an indicated operation zone according to at least two positions sequentially inputted by an object and map a predetermined operation zone of the handwriting system to the indicated operation zone through performing a coordinate transform by using a matrix operation.

11. The handwriting system according to claim 10, wherein the processing circuit is further configured to calculate, if the captured image has a plurality of light spots therein, the positions of a plurality of objects relative to the plane according to image characteristics and imaging position of the light spots in the captured image, wherein the processing circuit, when operating in the operation zone converting mode, is further configured to define the indicated operation zone according to four positions sequentially inputted by two individual objects, the two objects each are associated with two positions.

12. The handwriting system according to claim 10, wherein the processing circuit is further configured to calculate, if the captured image has a plurality of light spots therein, the positions of a plurality of objects relative to the plane according to image characteristics and imaging position of the light spots in the captured image, wherein the processing circuit, when operating in the operation zone converting mode, is further configured to define the indicated operation zone according to four positions inputted at the same time by four individual objects.

13. The handwriting system according to claim 10, wherein the matrix operation comprises a homogeneous matrix operation.

14. The handwriting system according to claim 10, wherein the light source module comprises:

a laser source configured to generate a spot light source; and
an optical element configured to convert the spot light source into a linear light source serving as the light source.

15. The handwriting system according to claim 14, wherein the optical element comprises a cylindrical lens or a Micro Electro Mechanical System scanning mirror, the cylindrical lens is configured to convert the spot light source into the linear light source serving as the light source, and the Micro Electro Mechanical System scanning mirror is configured to change the emitting direction of the spot light source and thereby forming the light source.

16. The handwriting system according to claim 10, wherein the light source module comprises:

a plurality of laser light sources arranged in parallel and configured to emit light and thereby forming the light source.

17. The handwriting system according to claim 10, wherein the plane is a parallelogram.

18. The handwriting system according to claim 10, wherein the plane comprises a virtual plane.

19. An operation method of a handwriting system, the handwriting system comprising a light source module and an image sensing apparatus, the light source module being configured to provide a light source to illuminate at least one object on a plane, the image sensing apparatus being disposed on the plane and configured to capture an image of the object(s) reflecting the light source, the operation method comprising:

obtaining the image captured by the image sensing apparatus;
calculating, if the captured image has a single light spot therein, the position of a single object relative to the plane according to image characteristics and imaging position of the single light spot in the captured image; and
defining, when the handwriting system operates in an operation zone converting mode, an indicated operation zone according to at least two positions sequentially inputted by one object and mapping a predetermined operation zone of the handwriting system into the indicated operation zone through performing a coordinate transform by using a matrix operation.

20. The operation method according to claim 19, further comprising:

calculating, if the captured image has a plurality of light spots therein, the positions of a plurality of objects relative to the plane according to image characteristics and imaging position of the light spots in the captured image; and
defining, when the handwriting system operates in the operation zone converting mode, the indicated operation zone according to four positions sequentially inputted by two individual objects, wherein the two objects each are associated with two positions.

21. The operation method according to claim 19, further comprising:

calculating, if the captured image has a plurality of light spots therein, the positions of a plurality of objects relative to the plane according to image characteristics and imaging position of the light spots in the captured image; and
defining, when the handwriting system operates in an operation zone converting mode, the indicated operation zone according to four positions inputted at the same time by four individual objects.

22. The operation method according to claim 19, wherein the matrix operation comprises a homogeneous matrix operation.

Patent History
Publication number: 20130162592
Type: Application
Filed: Oct 30, 2012
Publication Date: Jun 27, 2013
Applicant: PIXART IMAGING INC. (HSINCHU CITY)
Inventor: Pixart Imaging Inc. (Hsinchu City)
Application Number: 13/663,470
Classifications
Current U.S. Class: Including Impedance Detection (345/174)
International Classification: G06F 3/045 (20060101);