Salad Bar Cooler

-

A salad bar cooler comprises a top chamber 695, pan chiller chamber 680, return air chamber 695 and is integrated with a convertible and compact refrigeration system 501 to cool food held in food pans 930.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a Continuation in Part utility application based upon U.S. patent application Ser. No. 13/284,862 filed on Oct. 28, 2011 which is a non-provisional application based upon provisional application 61/407,572 filed on Oct. 28, 2010. This is also a Continuation in Part utility application based upon U.S. patent application Ser. No. 13/541,665 filed on Jul. 4, 2012 which is a non-provisional application and a Continuation in Part utility application based upon non-provisional utility application Ser. No. 13/284,862 filed on Oct. 28, 2011 which is a non-provisional application based upon provisional application 61/407,572 filed on Oct. 28, 2010. These related applications are incorporated herein by reference and made a part of this application. If any conflict arises between the disclosure of the invention in this utility application and that in the related applications, the disclosure in this utility application shall govern. Moreover, the inventor(s) incorporate herein by reference any and all patents, patent applications, and other documents hard copy or electronic, cited or referred to in this application or the two related applications.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The invention generally relates to refrigeration systems. More particularly, the invention relates to means and methods of producing a salad bar cooling system.

(2) Description of the Related Art

Other salad bar cooling systems are known in the related art. For example, U.S. Pat. No. 6,442,962 by Gaetke et al issued on Sep. 3, 2002 discloses an inflatable chamber to define a planar surface for holding food. While Gaetke does provide a portable solution, Gaetke's flexible surfaces and lack of integrated refrigeration makes Gaetke poorly suited for permanent salad bars, such as those found in restaurants.

U.S. Pat. No. 3,308,633 by Kritzer issued on Mar. 14, 1967 discloses a cabinet with a center heating and cooling motor. Kritzer fails to disclose means of artfully configuring cooling units to efficiently cool a salad bar.

Other refrigeration systems are known in the related art. For example U.S. Pat. No. 6,997,005 by Haasis issued on Feb. 14, 2006, discloses a refrigeration system with a sliding sub-unit comprising a centrifugal fan, fan motor, additional fan for cooling the fan motor, a flange and track slider assembly and a collection of springy metal stripes used to secure the sub-unit into a housing unit. Unfortunately, the system disclosed by Haasis leads to added noise and motor vibration due to the use of springy metal strips to secure the sub-unit to the housing. In order to achieve a secure and vibration resistant fit of the sub-unit, silicone or other materials are commonly used within the flange and track slider assembly. When a fan motor needs replacement, the typical service technician will not have the necessary sealants, which results in a newly installed motor causing unacceptable noise and vibration.

Another shortfall in the Haasis system is the inefficiency of using one motor to turn a single traditional centrifugal fan. Moreover, the overall design of the Hassis system requires the use of a second motor cooling fan to cool the motor also turning the centrifugal fan. The added load to the motor from the second cooling fan often creates more heat than what is removed by the second fan. Furthermore, the coil configuration of the Haasis system fails to adapt to varying food storage containers or other applications with untraditional dimensions and access problems. Moreover, the overall configuration of the Haasis system leads to a heavy cooling system making installation difficult in overhead locations.

BRIEF SUMMARY OF THE INVENTION

The present invention overcomes shortfalls in the related art by presenting an unobvious and unique combination and configuration of coils, blowers, a blower motor and other components to provide a compact unit with means of easily redirecting cooled air flow to fit various applications.

One of the main advantages of this invention is the creation of a twin cross flow blower system comprising two air blower turbines placed on either side of a unique cross flow motor. The twin blower turbines are sometimes referred to herein as a “cross flow blower” and are sometimes named “cross flow blower 1” and cross flow blower 2. The placement of a cross flow motor between the two disclosed cross flow blowers has achieved unexpectedly favorable results in efficiently moving cooled air to a targeted area.

The cross flow blowers feature a new and efficient air blade configuration as well as a highly moveable air flow diverter. The moveable air flow diverter allows the disclosed cross flow system to be adapted to many configurations to fit most applications.

The disclosed configuration of a center cross flow motor flanked by two cross flow blowers placed over a compact coil system provides clear advantages over the related art in terms of weight and size.

The disclosed coil systems also provide unexpectedly favorable results as they have been configured to adapt to untraditional locations.

Another advantage of the disclosed embodiments, including a second embodiment is a new fan and motor unit used with a new motor housing, the new motor housing allowing the new fan and motor unit to be easily installed in either a top discharge or side discharge configuration. In the related art, separate units were constructed to accommodate either a top discharge or side discharge application. Workers in the field would need to bring the correct machine for a particular job, or carrier two machines. Thus, the present invention, including the second embodiment presents a significant departure from the prior art.

The second embodiment overcomes shortfalls in the art by presenting a new fan and motor unit having artful fastening clips allowing the fan and motor unit to efficiently attached either of two positions within in the motor housing. The motor housing includes a back plate, fastener voids, two sets of discharge vents and other features not found in the prior art.

The present invention overcomes shortfalls in the art by use of the above described compact and convertible cooling units to create a new salad bar cooling system. A frame assemble artfully integrates with cooling units to efficiently remove heat from a food holding area. The disclosed frame assembly is sometimes called a salad bar frame assembly and overcomes shortfalls in the art by use of air circulation and air return systems that have achieved excellent results in real world commercial applications.

Embodiments of the disclosed salad bar cooler configurations use a top cooling configuration of a disclosed cooling unit in an artful combination with a disclosed salad bar frame assembly. The salad bar frame assembly is sometimes used with air diverter plates, supply air diffusers and outlets, pan chambers, various pan guards and other components. The disclosed air return assemblies work seamlessly with the native air return inlets of the disclosed cooler units. In the best mode known to date, a disclosed salad bar frame assembly is integrated with a disclosed compact and convertible cooling unit.

These and other objects and advantages will be made apparent when considering the following detailed specification when taken in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a typical food storage container.

FIG. 2 is a sectional and elevation view of one embodiment of the disclosed invention.

FIG. 3 presents several views of a disclosed housing assembly.

FIG. 4 presents a sectional view of a disclosed cross flow blower.

FIG. 5 presents a bottom view of a disclosed cross flow blower.

FIG. 6 presents a side view of a disclosed cross flow blower and attachment point to a cross flow motor.

FIG. 7 is a perspective of one embodiment of the invention being held by the fingertips of a person.

FIG. 8 is an elevation view of one embodiment of the invention.

FIG. 9 is an expanded view of FIG. 8.

FIG. 10 is a perspective view of the output vents of one embodiment of the invention.

FIG. 11 depicts various parts of one embodiment of the invention.

FIG. 12 depicts various parts of one embodiment of the invention.

FIG. 13 depicts a front view of one embodiment of the invention.

FIG. 14 depicts various parts of one embodiment of the invention.

FIG. 15 depicts various parts of one embodiment of the invention.

FIG. 16 depicts various parts of one embodiment of the invention.

FIG. 17 depicts a second embodiment sometimes called a “Convertible and Compact Refrigeration System.”

FIG. 18 depicts various components of a second embodiment

FIG. 19 depicts a second embodiment and top discharge plate in the foreground

FIG. 20 depicts a lower housing unit of a second embodiment

FIG. 21 depicts a motor housing unit of a second embodiment

FIG. 22 depicts a fan and motor unit of a second embodiment

FIG. 23 depicts a front cover and a fan and motor unit of a second embodiment

FIG. 24 depicts a plan view of a top plate of motor housing

FIG. 25 depicts a plan view of a back plate

FIG. 26 depicts a salad bar frame assembly in general

FIG. 27 depicts several components within a salad bar cooler

FIG. 28 depicts a perspective view of a salad bar cooler

FIG. 29 depicts various interior components within a salad bar cooler

FIG. 30 depicts a top perspective view of a salad bar cooler

REFERENCE NUMERALS IN THE DRAWINGS

    • 10 a typical food storage structure
    • 18 front panel of a food storage structure
    • 12 top panel of a food storage structure
    • 20 void or door window used to access food within a food storage structure
    • 42 thermostat
    • 48 evaporation coils
    • 100 cross flow blower 1
    • 101 bottom of cross flow blower
    • 102 rotational plate on side of cross flow blower, used to attached to cross flow motor
    • 150 cross flow blower 2
    • 300 cross flow motor
    • 400 components of housing assembly of one embodiment of the invention
    • 401 side panel of housing assembly of one embodiment of the invention
    • 402 side sheet of housing assembly of one embodiment of the invention
    • 500 condensation pan
    • 501 a second embodiment sometimes called a “Convertible and Compact Refrigeration System”
    • 510 top plate
    • 515 motor
    • 520 liquid line u bend
    • 525 TXV valve
    • 530 a cross-flow blower wheel of a second embodiment
    • 535 coated evaporator coil
    • 540 sensing bulb
    • 544 lower housing
    • 545 front discharge plate cover
    • 546 side discharge vents
    • 548 fasteners securing fan and motor unit in a top discharge position
    • 550 top plate of motor housing
    • 551 motor housing
    • 552 fastener voids within top plate 550 of motor housing 551
    • 555 top discharge vents
    • 560 digital control stat
    • 565 power head
    • 570 back plate sometimes used to secure the motor unit in position for top discharge
    • 572 fastener voids of the back plate, shown with fasteners secured within the back plate to secure the motor unit in position for top discharge
    • 575 fan and motor unit
    • 580 fastening clips on fan and motor unit 575
    • 583 fan cover of fan and motor unit 575
    • 584 fan cover voids
    • 585 air flow void of fan cover
    • 600 salad bar cooler in general
    • 610 top air diverter plate
    • 615 side diverter plate
    • 620 supply air diffuser
    • 621 supply air outlets
    • 630 front bottom salad cooler base
    • 640 bottom salad cooler lined base or bottom clean out pan
    • 650 air pan chamber
    • 651 bottom air return inlets
    • 652 return air inlets
    • 660 a pan chiller chamber
    • 670 side panel pan guard
    • 680 an end pan chiller chamber
    • 690 bottom pan of chiller chamber
    • 693 drain
    • 694 top chamber
    • 695 return air chamber
    • 800 tray rail
    • 810 return air diverter guard
    • 900 upper flange of side guard coil rail
    • 910 side wall of side guard coil rail
    • 920 horizontal wall of side guard coil rail
    • 930 side guard coil rail
    • 940 food pan
    • 1000 top plate pan holder

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways as defined and covered by the claims and their equivalents. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout.

Unless otherwise noted in this specification or in the claims, all of the terms used in the specification and the claims will have the meanings normally ascribed to these terms by workers in the art.

Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application.

The above detailed description of embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while steps are presented in a given order, alternative embodiments may perform routines having steps in a different order. The teachings of the invention provided herein can be applied to other systems, not only the systems described herein. The various embodiments described herein can be combined to provide further embodiments. These and other changes can be made to the invention in light of the detailed description.

Any and all the above references and U.S. patents and applications are incorporated herein by reference. Aspects of the invention can be modified, if necessary, to employ the systems, functions and concepts of the various patents and applications described above to provide yet further embodiments of the invention.

These and other changes can be made to the invention in light of the above detailed description. In general, the terms used in the following claims, should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above detailed description explicitly defines such terms. Accordingly, the actual scope of the invention encompasses the disclosed embodiments and all equivalent ways of practicing or implementing the invention under the claims.

Referring to FIG. 1 a typical food storage container 10 is shown with a front panel 18, side panel 14, a top panel 12 and voids or doors 20 used to access the interior. Variations of the illustrated food storage container may be found in supermarkets, restaurants and other places requiring the refrigeration of food.

Typically cooling units are placed within the back section of a food storage container introduce evaporator coils carrying a coolant in expanding gas form. As gas expands, the gas cools and absorb heat from the coils, the coils in turn absorb heat from the surrounding air. After absorbing heat, the gas within the coils travels outside of the food storage container. In this outside area, a compressor and condenser transform the gas into liquid form. An outside fan may be used to blow ambient air over the outside coils. On the return route to the food storage container, the liquid within the coil system passes through an expansion value wherein the liquid expands to gas, travels within the food storage container, cools and then transfers heat to the outside of the food storage container.

Coils containing gas and found within the food storage container are sometimes called evaporation coils 48 and are shown in FIG. 2 on the bottom of the disclosed system. The disclosed system sits within a food storage container or other application and accepts coolant that is compressed, allows the fluid to expand to gas within the evaporation coils and then outputs the gas to an exterior system as described above.

A key advantage of the disclosed system is the efficient movement of air over the evaporation coils and into the food storage area. Found at the top of FIG. 2 is a disclosed cross flow motor 300 which powers two cross flow blowers 100 and 150. The components of FIG. 2 are arranged such that they fit into a housing that may be approximately 4.5 inches deep, 21.5 inches across and 10 to 12 inches high. But, other dimensions and configurations are contemplated. In the preferred embodiment, all of the components of FIG. 2 are bolted or otherwise firmly attached to the housing.

The use of an extra fan to cool the motor as disclosed in the Haasis system is not needed in the system presented herein. Moreover, in order to achieve a compact size and sturdy construction, the disclosed system does not adopt the configuration of a sub-unit or the use of tracks to install components. Such a cumbersome system of attachment would detract from the compact and lightweight feature of the disclosed system.

Referring to FIG. 3 the general shapes and contemplated dimensions of the housing assembly 400 are shown. Alternative configurations for the housing assembly are contemplated and do not detract from the benefits of the disclosed system.

Referring to FIG. 4 a section view of one embodiment of a cross flow blower 100 is shown as well as an attached cross flow motor 300. FIG. 5 presents a plan view of the bottom side of a cross blower. FIG. 6 presents a side view of a cross flow blower and rotational plate 102 ready for attachment to a cross flow motor 300.

FIG. 7 presents a top perspective view of one embodiment of the disclosed invention. The cool air exit vents are covered in mesh and the entire housing assembly is supported by the fingertips of person of average strength.

FIG. 8 illustrates a more detailed view of FIG. 2 and shows a working model of one embodiment of the disclosed invention. FIG. 8 shows a void area at the bottom to allow entry of ambient air that passes through the condenser coils and into the cross flow blowers.

FIG. 9 presents a close up view of the cross flow motor 300 while attached to both cross flow blowers. The disclosed configuration places the cross flow motor 300 in close proximity to the evaporation coils, thus the extra motor cooling fan of the Haasis system is not needed. Also the surface area and shape of the disclosed cross flow motor provides ample motor cooling with excellent motor performance.

FIG. 10 presents two cool air output vents adjacent to the two cross flow blowers.

FIGS. 11 to 16 depict various parts and aspects of a first embodiment.

FIG. 17 depicts a second embodiment comprising a top plate 510, a condensation pan 500, a motor 515, a liquid line u bend 520, a TXV valve 525 one or more cross-flow blower wheels 530, a coated evaporator coil 535 and a sensing bulb 540.

FIG. 18 depicts a lower housing 544, motor housing 551, the motor housing shown with a back plate 570, top plate 550 of motor housing and discharge vents 555 for top discharge. FIG. 18 also depicts a front discharge plate cover 545 having discharge vents 546 for side discharge. A digital control stat 560 is shown fastened to the front discharge plate cover 545.

FIG. 19 depicts a second embodiment in general 501. In the foreground a top plate 550 of the motor housing is shown with discharge vents 555 for top discharge of cooled air. The top plate 550 of the motor housing also has a plurality of fastener voids sometimes used to secure fastening clips on the fan and motor unit. In the background, FIG. 19 depicts a front discharge plate cover 545 comprising an attached digital control stat 560, a set of discharge vents 546 for side discharge and a plurality of fasteners securing a fan and motor unit in position for top discharge.

FIG. 20 depicts lower housing unit detached from the motor housing 551 of FIG. 21.

FIG. 21 depicts a motor housing 551 having a back plate 570 with the back plate 570 shown with fasteners 572 securing a fan and motor unit in position for top discharge.

FIG. 22 depicts a free standing fan and motor unit 575 comprising a plurality of fastening clips 580, a fan cover 583, with the fan cover comprising fan cover voids 584. The fan and motor unit also comprises a motor fitted in between the fan covers 583. The fan covers 583 cover a pair of cross-flow bower wheels.

FIG. 23 depicts a front discharge plate 545 in the foreground and a fan and motor unit in the background.

FIG. 24 depicts a plan view of a top plate of a motor housing.

FIG. 25 depicts a plan view of a back plate.

When a fan and motor unit is secured to a back plate 570, the fans will force cooled air out of the top discharge vents. When a fan and motor unit is secured to top plate 550 of the motor housing, the fans will force cooled air out of the side discharge vents.

The configuration of the fan and motor unit 575 having a plurality of fastening clips 575 compatible with fastening voids upon both the back plate and the top plate of the motor housing, allow the second embodiment to be converted in the field for either top or side discharge. The back plate 570 may be secured in a perpendicular position from the top plate 550 of the motor housing.

FIG. 26 depicts a front and side perspective view of a salad bar cooler assembly in general. The salad bar cooler 600 is shown with a top air diverter plate 610 having one or more side diverter plates 615, which may connect with one or more supply air diffusers 620.

An end pan chiller chamber 680 is shown near supply air outlets and return air inlets 652. A front bottom salad cooler base 630 contains a plurality of bottom air return inlets 651 and return air inlets 652.

A top chamber 694 receives cooled air from a convertible and compact refrigeration system 501 and chilled air circulates in one or more chiller chambers 660. Some chiller chambers may be end pan chiller chambers 680. A chiller chamber may be defined by a bottom pan 690. Below the bottom pan 690 of the chiller chamber, a return air chamber 695 receives air from the plurality of bottom air return inlets 651. Return air from the return air chamber 695 enters the bottom portion of the convertible and compact refrigeration system 501.

The return air chamber 695 is defined by the bottom clean out pan 640, sometimes also called the bottom salad cooler lined base. The return air chamber 695 is also defined by the front bottom plate 630 of the salad cooler base, and the bottom pan 690 of the chiller chamber.

FIG. 27 depicts several components within a salad bar cooler. A convertible and compact refrigeration system 501 is shown in attachment to an upper flange 900 of a side guard coil rail 930. The side guard coil rail 930 may be comprised of a horizontal wall 920 and a side wall 910. A bottom clean out pan 640 may be found below the side guard coil rail 930. A top plat pan holder 1000 is shown near the supply air diffuser 620.

FIG. 28 depicts a perspective view of a salad bar cooler in connection with a tray rail 800. Food pans are shown hanging from a number of top plate pan holders 1000. A return air diverter guard 810 is shown upon both the tray rail 800 and the pan holders 1000.

FIG. 29 depicts various interior components within a salad bar cooler, including a plurality of top plate pan holders 1000 and a bottom clean out pan 640.

FIG. 30 depicts a top perspective view of a salad bar cooler with food pans 940 in place.

Disclosed embodiments include the following items:

Item 1. A salad bar cooling system 600 comprising:

a) a bottom cleanout plate 640 attached to one or more front bottom salad cooler bases 630, the front bottom cooler base 630 defining a plurality of bottom air return inlets 651 and a plurality of return air inlets 652;

b) the front bottom cooler base attached to a plurality of top plate pan holders 1000, the top plate pan holders 1000 attached to a supply air diffuser 620, the supply air diffuser 620 defining a plurality of supply air outlets; and

c) the supply air diffuser 620 attached to a side diverter plate 615, the side diverter plate 615 attached to a top air diverter plate 610.

Item 2. The system of item 1 with a bottom pan 690 attached to the front bottom salad cooler base 630 and the bottom pan terminating at a cooler unit 501.

Item 3. The system of item 1 with a pan chiller chamber 660 defined by the bottom pan of chiller chamber 690 and the front bottom salad cooler base 630.

Item 4. The system of item 1 with a return air chamber 695 defined by a bottom clean out pan 640, the front bottom salad cooler base 630 and the bottom pan 690 of the chiller camber.

Item 5. The system of item 1 with a top chamber 694 defined by the top air diverter plate 610, side diverter plate 615, and the cooler unit 501.

Item 6. The system of item 1 with a side guard coil rail 930 attached to the cooler unit 501, the side guard coil rail 930 comprising an upper flange 900, a horizontal wall 920 and a side wall 910.

Item 7. The system of item 1 with a return air diverter guard 810 attached to one or more top plate pan holders 1000.

The system of item 1 with one or more food pans 930 set within top plate pan holders.

Item 8. The system of item 1 wherein the cooler unit 501 comprises a convertible and compact refrigeration system, the refrigeration system, convertible to top discharge or side discharge, the refrigeration system comprising:

a) a fan and motor unit 575 comprising:

i. two or more cross-flow blower wheels 530 attached to a motor 515, the cross-flow blower wheels attached to either side of the motor;

ii. a fan cover 583 for each cross-flow blower wheel, the fan cover partially covering each cross-flow blower wheel;

iii. a plurality of fastening clips 580

iii. an air flow void 585 defined by edges of the fan cover;

b) a motor housing 551 comprising:

i. a top plate 550 comprising top discharge vents 555 and a plurality of fastener voids complementary to the plurality of fastening clips;

ii. a back plate 570 attached to the top plate 550 at an angle between 75 and 115 degrees, the back plate comprising a plurality of fastener voids 572 complementary to the plurality of fastening clips; and

c) a front discharge plate cover 545 attached to the top plate 550, the front discharge plate cover comprising a plurality of side discharge vents 546.

Item. The refrigeration system of an item above further comprising: a) a lower housing 544 connected to the front discharge plate and the lower housing comprising a condensation pan 500, a liquid line u bend 520, a TXV valve 525, a coated evaporation coil, a sensing bulb 540, a digital control stat 560, and a power head 565.

Item. The refrigeration system of an item above wherein the plurality of fastening clips 580 of the fan and motor unit are attached to the fastener voids 552 within the top plate 550 of the motor housing 551.

Item. The refrigeration system of an item above wherein the plurality of fastening clips 580 of the fan and motor unit are attached to the fastener voids 572 of the back plate 570.

Item. The refrigeration system of an item above wherein the plurality of fastening clips 580 surround each cross-flow blower wheel.

Item. The refrigeration system of an item above wherein the digital control stat is attached to the front discharge plate cover.

Item. The refrigeration system of an item above with a rotational plate attached to the motor, the rotational plate having one or more air channels.

Claims

1. A salad bar cooling system comprising:

a) a bottom cleanout plate attached to one or more front bottom salad cooler bases, the front bottom cooler base defining a plurality of bottom air return inlets and a plurality of return air inlets;
b) the front bottom cooler base attached to a plurality of top plate pan holders, the top plate pan holders attached to a supply air diffuser, the supply air diffuser defining a plurality of supply air outlets; and
c) the supply air diffuser attached to a side diverter plate, the side diverter plate attached to a top air diverter plate.

2. The system of claim 1 with a bottom pan attached to the front bottom salad cooler base and the bottom pan terminating at a cooler unit.

3. The system of claim 1 with a pan chiller chamber defined by the bottom pan of chiller chamber and the front bottom salad cooler base.

4. The system of claim 1 with a return air chamber defined by a bottom clean out pan, the front bottom salad cooler base and the bottom pan of the chiller camber.

5. The system of claim 1 with a top chamber defined by the top air diverter plate, side diverter plate, and the cooler unit.

6. The system of claim 1 with a side guard coil rail attached to the cooler unit, the side guard coil rail comprising an upper flange, a horizontal wall and a side wall.

7. The system of claim 1 with a return air diverter guard attached to one or more top plate pan holders.

8. The system of claim 1 with one or more food pans set within top plate pan holders.

9. The system of claim 1 wherein the cooler unit comprises a convertible and compact refrigeration system, the refrigeration system, convertible to top discharge or side discharge, the refrigeration system comprising:

a) a fan and motor unit comprising: i. two or more cross-flow blower wheels attached to a motor, the cross-flow blower wheels attached to either side of the motor; ii. a fan cover for each cross-flow blower wheel, the fan cover partially covering each cross-flow blower wheel; iii. a plurality of fastening clips;
iii. an air flow void defined by edges of the fan cover;
b) a motor housing comprising: i. a top plate comprising top discharge vents and a plurality of fastener voids complementary to the plurality of fastening clips; ii. a back plate attached to the top plate at an angle between and degrees, the back plate comprising a plurality of fastener voids complementary to the plurality of fastening clips; and
c) a front discharge plate cover attached to the top plate, the front discharge plate cover comprising a plurality of side discharge vents.

10. The refrigeration system of claim 9 further comprising:

a) a lower housing connected to the front discharge plate and the lower housing comprising a condensation pan, a liquid line u bend, a TXV valve, a coated evaporation coil, a sensing bulb, a digital control stat, and a power head.

11. The refrigeration system of claim 10 wherein the plurality of fastening clips of the fan and motor unit are attached to the fastener voids within the top plate of the motor housing.

12. The refrigeration system of claim 11 wherein the plurality of fastening clips of the fan and motor unit are attached to the fastener voids of the back plate.

13. The refrigeration system of claim 12 wherein the plurality of fastening clips surrounds each cross-flow blower wheel.

14. The refrigeration system of claim 13 wherein the digital control stat is attached to the front discharge plate cover.

15. The refrigeration system of claim 14, with a rotational plate attached to the motor, the rotational plate having one or more air channels.

Patent History
Publication number: 20130167579
Type: Application
Filed: Feb 27, 2013
Publication Date: Jul 4, 2013
Applicant: (Pasadena, CA)
Inventor: Hector Delgadillo (Duarte, CA)
Application Number: 13/779,367
Classifications
Current U.S. Class: Gas Forcing Means, E.g., Cooler Unit (62/426); Having Both Inlet And Outlet Airways (454/237)
International Classification: F25D 13/00 (20060101);