GUIDE FOR PLACEMENT OF CATHETER INTO BRAIN AND A METHOD OF UTILIZING THE SAME
The subject matter discloses an apparatus for detecting an environment within a body comprising: an apparatus comprising a stylet and a catheter capable of being inserted into the body; a bio-sensing module for detecting a predefined material within the body, upon insertion of the stylet and catheter with close proximity to the predefined material
The present invention relates to a catheter guiding apparatus and methods for accurately inserting or placing a catheter into a body organ, such as a chamber inside the brain.
BACKGROUND OF THE INVENTIONIn the central nervous system, the brain and spinal cord are surrounded by a clear to and colorless fluid termed cerebrospinal fluid (CSF). In addition, the CSF fills inside brain chambers called ventricles. Normally, CSF is produced by intra ventricular organelles, the choroids plexus, and flows through the ventricles and exits the brain through several foramina where its bathes the surfaces of the brain and spinal cord and finally absorbed into the bloodstream. The balance between production and absorption of CSF is critically important. Ideally, the fluid is almost completely absorbed into the bloodstream as it circulates; however, there are circumstances which, when present, will prevent or disturb the production or absorption of CSF, or which will inhibit its normal flow. When this balance is disturbed, hydrocephalus will result. Hydrocephalus is characterized by an abnormal dilation of the brain ventricles. This dilation can cause potentially harmful pressure on the tissues of the brain and can cause a wide variety of symptoms such as headache and may lead to death. To overcome the deleterious effect of the excess of CSF a divergence of fluids from the brain ventricle via a ventricular shunt is required.
The etiology for hydrocephalus may be congenital or acquired. Congenital hydrocephalus can result from genetic inheritance (aqueductal stenosis) or developmental disorders such as those associated with neural tube defects including spina bifida and encephalocele. Other acquired causes include, intraventricular hemorrhage (one of the complications of premature birth), infections, tumors, traumatic head injury and intra cranial bleeding. In addition, many people develop hydrocephalus even when none of these factors are present.
Hydrocephalus is most often treated with the surgical placement of a shunt system. A ventricular shunt-tube is placed to drain fluid from the ventricular system in the brain to an external reservoir (ventriculostomy) or to a cavity in the body, for instance a cavity of the abdomen (ventriculo-peritoneal shunt). The tubing may contain a valve to ensure the direction, flow or the pressure of the fluid being diverge.
Prior to a ventricular shunt procedure, diagnostic techniques, such as computed tomography scan (CT scan) or magnetic resonance imaging (MRI), are performed to confirm the diagnosis and for the purpose of planning the neurosurgical procedure. In the surgical procedure a ventricular catheter is inserted with the aim to be placed in the body of the ventricle usually, lateral ventricle. The ventricular catheter insertion point and trajectory rely on surface anatomy landmarks, on the preformed imaging data and the surgeon's sense of spatial orientation. However, such techniques are not accurate and may lead to mal-position of said catheter which may cause complications such as bleeding, damage to fundamental brain structure and the like. Misplacement of said catheter usually entails further diagnostic procedures such as CT and MRI as well as additional surgical manipulation with the purpose of re-adjusting catheter location.
Various imaging technologies and methods have been used for computing a trajectory for catheter insertion. For instance, a neuronavigation system provides a real-time trajectory for accurate insertion or placement of a ventricular shunt catheter. However, in many cases it is not used due to cost considerations or due to the long setup time required relative to the time of the ventricular shunt procedure. In some cases such setup time takes more than 45 minutes, and requires fixation of the patient head.
A drawback of prior art systems is the inability to provide accurate placement in a short time or low cost without a significant amount of setup time relatively to the surgical procedure itself. Therefore, there is the need for an apparatus and methods for fast, cheap and accurate placement of a catheter or shunt into brain ventricles. Such method and apparatus will reduce morbidity and mortality while enhance time needed for the procedure at lower costs.
SUMMARY OF THE INVENTIONIt is one object of the subject matter to disclose an apparatus for detecting an environment within a body comprising: an apparatus comprising a stylet and a catheter capable of being inserted into the body; a bio-sensing module for detecting a predefined material within the body, upon insertion of the stylet and catheter with close proximity to the predefined material.
- In some embodiments, the bio-sensing module further indicates the presence of the predefined material. In some embodiments, the indication is provided using electrical connecting element.
- In some embodiments, the predefined material is beta-transferrin. In some embodiments, the at least a portion of the bio-sensing module is located within the stylet. In some embodiments, the bio-sensing module comprises a biosensor, transmitter and an indication unit. In some embodiments, the bio-sensing module is located in a cavity within the stylet.
- In some embodiments, the stylet further comprises one or more apertures for allowing fluid containing the predefined material to enter the stylet cavity. In some embodiments, the predefined material contacts and activates the bio-sensing module. In some embodiments, at least a portion of the biosensor is located outside surface of the stylet.
- It is one object of the subject matter to disclose a method of inserting a catheter or trocar into a body comprising: inserting an apparatus comprising a stylet and catheter into the body; detecting a predefined material by a biosensor connected to the apparatus upon close proximity of the apparatus to the predefined material.
- In some embodiments, the method comprises a step of transmitting data related to the detection of the predefined material. In some embodiments, the further comprises a step of activating the biosensor by contact between the biosensor and the predefined material. In some embodiments, the forcing the biosensor to send electrical current through electrical connecting means to an indicator unit.
The present invention discloses an apparatus and method for accurately guiding a catheter into a chamber in the human or animal brain or into normal or abnormal brain tissue.
One non-limiting objective of the present invention is to provide accurate placement of a catheter into a chamber in the human or animal organ such as the brain, or into other parts of the organ or brain tissue, in a short time relative to the surgical procedure itself, or to related procedures associated with the surgical procedure.
One other non-limiting object of the present invention is to provide accurate placement of a catheter into a chamber in the human or animal organ such as the brain or into other parts of the organ or brain tissue, at relative low cost relative to the surgical procedure itself, or to related procedures associated with the surgical procedure.
One other non-limiting object of the present invention is to provide accurate placement of a catheter into a chamber in the human or animal brain or into other parts of the brain tissue, having a short setup time relative to the surgical procedure itself, or to related procedures associated with the surgical procedure.
There is thus provided in accordance with an exemplary embodiment of the invention an ultrasound probe adapted for guiding the placement of a catheter, comprising an ultrasound imaging probe; a catheter apparatus; and a catheter guiding and link apparatus guiding the catheter and joining the ultrasound probe and the catheter guiding apparatus.
There is thus provided a method of the present invention for the insertion of a specialized catheter into a brain ventricle or brain tissue using an ultrasound device coupled to the catheter.
-
- The subject matter discloses an ultrasound probe adapted for guiding the placement of a catheter, comprising: an ultrasound imaging probe; a catheter guiding apparatus; and, a guiding-connector joining the ultrasound probe and the guiding apparatus.
- The subject matter further discloses the ultrasound probe, wherein the guiding-catheter further comprising an at least one ultrasound probe holder or an at least one catheter holding member.
- The subject matter discloses an ultrasound probe adapted for guiding the placement of a catheter, comprising: an ultrasound imaging probe; a catheter guiding apparatus mounted on said probe, the guiding apparatus comprising a tubular apparatus and a device for mounting the guiding apparatus on said probe.
- The subject matter discloses a catheter guiding apparatus comprising a guiding-connector wherein the tubular apparatus having a curved cross-sectional area of a predetermined diameter; and having an opening of certain dimensions.
- The subject matter further discloses the connector of the guiding apparatus can be mounted on an ultrasound probe. The opening of the connector allows a catheter or trocar to move through it.
- The subject matter further discloses the guiding-connector is made of a rigid or semi-rigid plastic, and can be serialized.
- The subject matter further discloses the connector of the guiding apparatus includes a ring trip, the ring clip includes a pair of bendable arms to allow the apparatus to be mounted on an ultrasound probe.
- A catheter delivery system comprising:
- a. an ultrasound imaging probe;
- b. a catheter guiding apparatus mounted on said probe comprising a guiding-connector;
- c. a catheter or trocar that can be moved inside said guiding-connector.
- The subject matter further discloses a method of accurately inserting a catheter or trocar, the method comprising: mounting a catheter guiding apparatus on an ultrasound probe; inserting a catheter or a trocar through the mounted guiding apparatus; determining a trajectory using the ultrasound imaging probe; and, inserting the catheter or a trocar through the mounted guiding apparatus, using the trajectory found.
Non-limiting embodiments of the invention will be described with reference to the following description of exemplary embodiments, in conjunction with the figures. The figures are generally not shown to scale and any sizes are only meant to be exemplary and not necessarily limiting. In the figures, identical structures, elements or parts that appear in more than one figure are preferably labeled with a same or similar number in all the figures in which they appear, in which:
On the left hand side of
It should be clear to the person skilled in the art that other embodiments used to hold the catheter 310 and probe 320 for the accurate placement of said catheter 310 into a brain tissue are within the scope of the present invention. Such embodiments may include specific members that snugly accommodate different sized catheters as well as different holders to hold different ultrasound probes.
In
A major technical effect is provided in the disclosed subject matter by reaching better functionality with fewer elements. Further, it is more convenient for the user of the disclosed apparatus to use a kit in which the guiding catheter is mounted within the probe, since there is no offset between the probe and the catheter and guidance of the catheter is more intuitive and requires less consideration on the catheter apparatus.
In another exemplary embodiment of the disclosed apparatus, the apparatus further comprises a Doppler ultrasound transducer and a signal processing circuit, for ultrasonically sensing signals representative of blood flow within a patient. The signal processing unit may be mounted on a distal portion the guiding catheter,
Turning now to
The apparatus of the present invention described in
Stylet 804 is continuous with stylet tip 806 whereas they form one unit used for penetrating a brain tissue by virtue of stylet rigid material strength and via force delivered to it by surgeon hand. Stylet 804 can be fabricated from metal or strong polymer materials. Surgeon (not shown) inserts ventricular catheter apparatus 800 through brain tissue (not shown) to roughly calculated brain ventricle location (not shown). It could be realized by a person skilled in the art that a use of a bio-sensor at one end of a stylet and catheter assembly may be used to detect and display the presence of material other than beta-transferrin. The biosensor 810, specific for beta transferrin molecule is situated preferably in the stylet tip 806. Biosensor 810 communicates with environment outside stylet tip 806 via aperture 807. It should be clear to the person skilled in the art that the word opening, port or aperture will hereon be used interchangeably. At least one aperture 807 is fabricated in stylet tip 806. Multiple ports 807 of different size and shape may be fitted with stylet tip 806. Ports 807 are larger than beta transferrin molecule but are preferably situated as to limit entry of large parts of tissue. This can be done by providing the port with small shield in their forward section (not shown). Inside stylet tip 806 is biosensor 810. Biosensor 810 is firmly attached to inside cavity formed in stylet 806. This cavity extend from stylet tip 806 to stylet 804 such that bio sensing module 810,812,814 can be accommodated and fastened with means known in the art. When beta transferrin binds to biosensing elements in biosensor 810, biosensor 810 is activated. Biosensor 810 can be fitted with ELISA (Enzyme Linked Imunosorbent Assay) type detection kit or with other kits for detecting bio-transferrin. Biosensor 810 preferably operates via electrical charge modulation, where binding with bio-transferrin changes charge capacity on the biosensor 810 leading to indication sent along electrical connecting means 812, either wired or wireless. This indication is used to activate indicator unit 814 such as LEDs or other visual or audio or tactual indicators. Data related to the detection of the predefined material may be sent to a remote location, and preferably displayed on a monitor on a remote location. Activation of indicator unit 814 indicate to the operating surgeon (not shown) that stylet tip 806 is in contact with beta-transferrin, thus within the brain ventricles CSF fluid (not shown). It should be noted that in accordance with some exemplary embodiments of the subject matter, the biosensor 810 is at least partially located outside the stylet 804. The bio-sensing module may further comprise a transmitter (not shown) for transmitting data related to the detection of the predefined material by the biosensor 810 or to the indication of such material. The data may be transmitted via RF communication, via the internet, or any other protocol or communicating device known to the person skilled in the art.
In accordance with another embodiment, the biosensor 810 is located on the external surface of the stylet. In such embodiment, as well as in other embodiments, the detection of the predefined material generates a signal, preferably a wirelessly transmitted signal, to be sent to a remote location.
It should be clear to the person skilled in the art that the use of a biosensor at the end of a stylet and catheter apparatus can be used for the detection of other material in human tissue during the insertion of a stylet and catheter assembly in order to identify specific environment or molecules.
It will be obvious to those skilled in the art that the guiding-connector apparatus herein, while described in conjunction with brain surgery techniques, may also be used in other surgical environments where an accurate catheter insertion desired.
The present invention has been described using non-limiting detailed descriptions of embodiments thereof that are provided by way of example and are not intended to limit the scope of the invention. It should be understood that features described with respect to one embodiment may be used with other embodiments and that not all embodiments of the invention have all of the features shown in a particular figure or described with respect to one of the embodiments. It is noted that some of the above described embodiments may describe the best mode contemplated by the inventors and therefore include structure, acts or details of structures and acts that may not be essential to the invention and which are described as examples.
While the above description has focused on an apparatus, it is meant to also encompass methods for carrying out the invention.
When used herein, the terms “comprise”, “include”, “have” and their conjugates mean “including but not limited to”
Claims
1. An apparatus for detecting an environment within a body comprising:
- an apparatus comprising a stylet and a catheter capable of being inserted into the body;
- a bio-sensing module for detecting a predefined material within the body, upon insertion of the stylet and catheter with close proximity to the predefined material.
2. The apparatus of claim 1 wherein the bio-sensing module further indicates the presence of the predefined material.
3. The apparatus of claim 1 wherein the indication is provided using electrical connecting element.
4. The apparatus of claim 1 wherein the predefined material is beta-transferrin.
5. The apparatus of claim 1 wherein at least a portion of the bio-sensing module is located within the stylet.
6. The apparatus of claim 1 wherein the bio-sensing module comprises a biosensor, transmitter and an indication unit.
7. The apparatus of claim 1 wherein the bio-sensing module is located in a cavity within the stylet.
8. The apparatus of claim 7, wherein the stylet further comprises one or more apertures for allowing fluid containing the predefined material to enter the stylet cavity.
9. The apparatus of claim 1 wherein the predefined material contacts and activates the bio-sensing module.
10. The apparatus of claim 1 wherein at least a portion of the biosensor is located outside surface of the stylet.
11. A method of inserting a catheter or trocar into a body comprising:
- a. inserting an apparatus comprising a stylet and catheter into the body;
- b. detecting a predefined material by a biosensor connected to the apparatus upon close proximity of the apparatus to the predefined material.
12. The method according to claims 11, further comprises a step of transmitting data related to the detection of the predefined material.
13. The method according to claims 11, further comprises a step of activating the biosensor by contact between the biosensor and the predefined material.
14. The method according to claims 11, wherein forcing the biosensor to send electrical current through electrical connecting means to an indicator unit.
Type: Application
Filed: Apr 7, 2013
Publication Date: Sep 26, 2013
Inventor: Arnon Agmon (Givataim)
Application Number: 13/858,052
International Classification: A61B 5/145 (20060101); A61B 8/08 (20060101); A61B 5/00 (20060101);