Green Glycine Betaine Derivative Compounds And Compositions Containing Same

Multifunctional green (eco-friendly) and antimicrobial compositions are described containing cationic glycine betaine esters and/or cationic glycine betaine amides. Particular glycine betaine esters and amides are alkyl(ene) betainate methane sulfonates and betainyl amino alkyl(ene) methane sulfonates. The glycine betaine components are cationic, have a hydrophobic group attached to a carboxylate group through an ester or amide linkage, and are derived from a natural source, such as sugar beets. The glycine betaine esters and amides serve as cationic surfactants which have effective antimicrobial activity. The surfactant compositions are effective as crude mixtures or semi-purified mixtures or purified surfactant compounds of glycine betaine components. The addition of sodium chloride or potassium chloride or magnesium chloride or natural gum or polysaccharide to compositions containing the cationic glycine betaine ester and/or glycine betaine amide derivatives serves to thicken or gel the composition.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF INVENTION

Green (eco-friendly) and multifunctional cationic glycine betaine derivative compounds having surfactant and antimicrobial properties, in particular ester and amide derivatives, including alkyl(ene) betainate methane sulfonates and betainyl amino alkyl(ene) methane sulfonates, in semi-pure and crude mixtures and pure form, are described. Such compounds are includable in various household compositions to optimize solubilization, wetting, cleaning, emulsification of various oils and soils, and to provide effective antimicrobial properties. Further modification of compositions containing such derivatives is also provided through combination of the glycine betaine derivative(s) and sodium chloride to obtain thickening or gelling of the composition.

BACKGROUND OF THE INVENTION

Glycine betaine (GB) (Formula 1 below) is a natural and inexpensive product derived from sugar beet molasses and constitutes a prime raw material for the preparation of biodegradable and biocompatible surfactants. Sugar beet molasses contains 0.2 to 0.3% betaine which constitutes 27% of the weight of the molasses. GB is extracted from sugar beet molasses through a chromatography process with water as the eluent. GB is made of a quaternary trimethyl alkyl ammonium moiety and a carboxylate functional group and is considered as GRAS (generally regarded as safe).

Formula 1: Chemical Structure of GB.

Alkylbetaines and alkylamido betaines are the most widely used betaines. They are often made by the quaternization of a tertiary amine with chloroacetic acid. Typical betaine surfactants are illustrated in Formulas 2 and 3. The hydrophobic groups are attached to the ammonium group to provide zwitterionic or amphoteric surfactants. These surfactants exhibit both positive and negative charges due to the presence of ammonium and carboxylate groups, respectively. It is noted that the betaine group in commercial zwitterionic or amphoteric surfactants can be based on natural glycine betaine or synthesized glycine betaine.

Formula 2: Chemical Structures of Typical Betaine Surfactants.

Formula 3: Cocamidopropyl Betaine or Lauramidopropyl Betaine or Cocamidopropyl Hydroxysultaine Derived from Coconut Oil and Glycine Betaine.

Betaine-type surfactants of the prior art are mostly amphoteric or zwitterionic betaines of the type shown in Formulas 2 and 3. These surfactants differ structurally and in their areas of use as compared to the GB derivative compounds of the invention which are cationic. Cationic betaine esters are known in the art, but such are synthesized and not based on natural sources.

For example, U.S. Pat. No. 6,384,266 B1 describes a method of synthesis of betaine esters. This patent does not disclose preparation of GB or derivatives of GB from natural sources. The method of synthesizing betaine esters is described therein as including (a) adding hydrochloric acid to a glycine betaine in a sufficient quantity to produce one mole of betaine hydrochloride for each mole of hydrochloric acid; (b) dissolving the betaine hydrochloride in water and adding concentrated hydrochloric acid to adjust the pH to 2; (c) chilling the solution for up to 24 hours, adding ethanol to facilitate formation of betaine hydrochloride crystals, filtering the betaine hydrochloride crystals, and drying the betaine hydrochloride crystals, (d) recycling the water-ethanol solution fraction for use in the next batch; (e) charging a reactor with a fatty acid derived alcohol and applying heat to liquefy the fatty acid derived alcohol, (f) adding the betaine hydrochloride crystals and an acid catalyst; (g) applying agitation and maintaining temperature; (h) reacting the mixture until esterification is complete, cooling the mixture, and adding a neutralization agent to neutralize the acid catalyst; (i) and purifying, crystallizing and drying the betaine ester product. The starting glycine betaine compound can be a by-product of sugar beet refining. The fatty acid derived alcohol is selected from a group containing 12 to 18 carbons and the esterification catalyst is sulfuric acid.

U.S. Pat. No. 7,662,225 B2 describes aqueous bitumen emulsions. The aqueous bitumen emulsions contain bitumen and a surfactant agent wherein the surfactant agent comprises at least one compound X(CH3)3N+—CH2—CO—Z—R, X being a sulphonate radical, R being a monovalent radical C2H2(2n-m)+1 containing 2n atoms of carbon and m double bonds, with 9≦n≦11, 0≦m≦3 if n=9 and 0≦m≦1 if n>9, and Z being selected from the group consisting of an atom of oxygen and a —NH— group.

U.S. Pat. No. 7,829,521 B2 describes cosmetic compositions comprising glycine betaine-type surfactants specifically for liquid soap, bath foam, shower gel or shampoo applications. The betaine surfactants comprise hydrocarbons chain length from C18 to C22.

FR 2 869 912 describes formulations based specifically on blends of pure ester or amide glycine betaine surfactants and commercial alkyl polyglycoside (APG) surfactants.

SUMMARY OF THE INVENTION

The invention relates to sustainable, multifunctional, green (biodegradable), antimicrobial and disinfectant compositions for liquids, gels, aerosols and wipes comprising a minimum number of ingredients derived from natural sources. The compositions deliver excellent performance for multiple functions. The natural and green compositions comprise actives which provide both antimicrobial and surfactant properties, wherein such actives are obtained from renewable sources rather than being synthesized.

These actives are particularly useful in compositions for cleaning which comprise multifunctional and naturally derived novel surfactant structures that allow the compositions to deliver excellent cleaning performance and strong antimicrobial efficacy against both gram positive and gram negative bacteria, and fungi. These are effective over a wide pH range. Low pH compositions can perform with or without a buffer solution. These multi-functional surfactants also can act as adjuvants for active ingredients in pesticide and herbicide applications and as solubilizers and emulsifiers for fragrance and essential oils in air care applications. In the latter, the surfactants help to control the delivery of fragrances, perfume actives and oils in the form of microemulsions of these organic materials.

More particularly, the invention is directed to glycine betaine components, in particular, glycine betaine esters and glycine betaine amides in which a hydrophobic group is attached to a carboxylate group through an ester or amide linkage respectively. Examples of the surfactants are illustrated in Formula 4 below. The glycine betaine derivatives of the invention are cationic and positively charged rather than being zwitterionic or amphoteric as with prior art betaine surfactants described above. The introduction of an ester or amide linkage between the hydrophilic moiety (polar head group) and the hydrophobic backbone (alkyl or alkylene chain) improves biodegradability and confers unique solution and interfacial properties to the surfactants. In addition, glycine betaine ester or amide surfactants, such as alkyl betainate methane sulfonates or betainyl amino alkyl methane sulfonates, exhibit antimicrobial activities similar to quaternary ammonium salts (QUATs) against a broad spectrum of microorganisms.

Formula 4: Structure of Alkyl Betaine Methane Sulfonates and Betainyl Amino Alkyl Methane Sulfonates.

When Y is O=Alkyl Betainate Methane Sulfonate When Y is NH=Betainyl Amino Alkyl Methane Sulfonate.

The cationic GB ester and amide derivatives not only provide excellent antimicrobial efficacy, they play multiple functions in compositions, reducing the need for additional cleaning or wetting agents, contrary to conventional QUATs. Additionally, due to their ability to solubilize or emulsify a variety of oils, these surfactants allow solubilization and controlled release of actives, such as fragrances, herbicides and insecticides. Surface and interfacial properties of these GB ester and GB amide derivatives are comparable or better than conventional synthetic cationic surfactants, such as QUATs. In fact, they can be very effective adjuvants in agricultural formulations due to their very low surface and interfacial tensions that enable the formation of very fine particles in spray and aerosol compositions and adequate wetting of the substrates.

The ability of the GB-based surfactants to emulsify vegetable oils is demonstrated using a vegetable oil (sunflower oil) at neutral pH, stored and analyzed at 25° C. and at 37° C. Oil droplets with mean diameter of 220 to 260 nm and with narrow size distribution result. The emulsion ageing was also followed by photodensitometry, using a flat scanner. GB solutions exhibited good emulsifying ability at acid, neutral and basic pH against different types of oil phases, ranging from essential oils, mineral, vegetables to animal oils and soils as well as insoluble fragrances and pesticide oils.

Since the glycine betaine components of the invention are particularly useful in cleaning compositions, the invention will be described basically in relation to household compositions for simplicity of discussion. The properties described and exhibited will be comparable for other applications. GB esters and GB amide derivatives of the invention are cationic and positively charged. The compositions including these compounds exhibit strong efficacy against both gram positive and gram negative bacteria, have minimum inhibition concentration (MIC) values which tend to be lower than those of amphoteric betaines of the prior art, and exhibit a much lower Critical Micelle Concentration (CMC) and thus have better surfactant properties than conventional amphoteric surfactants.

The production of alkyl(ene) betainate methane sulfonates and betainyl amino alkyl(ene) methane sulfonates is also described. The production of these compounds is environmentally friendly since the process does not require a solvent and does not result in waste. These glycine betaine components are especially useful in crude mixtures as obtained during preparation, as well as are useful in semi-purified and purified mixtures.

As used herein the following terms are understood to mean: (1) “crude” —reaction product as formed, i.e., as is, and used without further treatment; (2) “semi-pure” or “semi-purified” —the reaction product formed is partly purified, i.e., residual glycine betaine and alkyl amine are stripped off; and (3) “pure” or “purified” —the reaction product formed is treated so as to contain no residual raw materials, and is 100% surfactant rich.

The preparation of and purification of alkyl betainate methane sulfonates (GB ester derivatives) follows a pathway for the esterification reaction of GB as follows:

Acid-catalyzed esterification reaction between GB and fatty alcohols proceeds in one-step via the in situ protonation of the carboxylate function. Only environmentally friendly raw materials are used under solvent-free conditions, i.e., during reaction of compounds to form the GB ester derivatives of the invention, no compounds serving the function of a solvent are present.

The use of methane sulfonic acid (MSA), as acid for protonation of the carboxylate function is also beneficial in providing a green route to obtain GB esters. Being part of the natural sulfur cycle, MSA is considered natural and readily biodegradable. Indeed, MSA is an easy-to-handle liquid, often recyclable and less aggressive than common organic acids conventionally used such as hydrochloric, sulfuric or hydrofluoric acid. It is considered readily biodegradable, ultimately forming sulfates and carbon dioxide. MSA, in fact is considered to be a natural product and part of the natural sulfur cycle.

An example of the one-step process of preparing of GB esters, using MSA as the catalyst is illustrated for octadecyl betainate methane sulfonate (C18:0 stearic GB ester) and (Z)-octadec-9-enyl betainate methane sulfonate [GB oleic ester (C18:1)] as follows:

Esterification reactions of GB are carried out with saturated or unsaturated fatty alcohols (from capric to stearic and oleic alcohols) at 130° C., in the presence of methane sulfonic acid and under reduced pressure in order to eliminate water formed during the process.

In the case of the C18:0 stearic derivative, the optimal conditions correspond to one equivalent (0.213 mole, 25 g) of GB, 1.2 equivalent (0.256 mole, 69.3 g) of stearic alcohol and 2.6 equivalent (0.55 mole, 36 ml) of MSA. The reaction mixture is gradually heated for 7 hours to 130° C. under reduced pressure (50 mbar) to remove water formed during the reaction. It is noteworthy that treatment of the mixtures with diethyl ether (weight ratio: 1a/ROH/MSA/GB=70/15/5/10) or n-butanol (weight ratio: 1a/ROH/MSA=70/25/5) led to the total or nearly quantitative removal of residual GB and MSA. The corresponding yield of the ester after treatment is greater than 70%. Table 4 below sets forth the composition of GB stearic ester crude mixture obtained by NMR analysis. Direct flash chromatography of the crude mixture was used to obtain the surfactant with high purity, i.e., >95%.

In the case of the C18:1 oleic derivative, the optimal conditions correspond to a GB/ROH/MSA ratio of 1/1.4/2.5. These optimal conditions correspond to one equivalent (0.256 mole, 30 g) of GB, 1.4 equivalent (0.359 mole, 137.5 g) of oleic alcohol and 2.5 equivalent (0.64 mole, 41.54 ml) of MSA. The reaction mixture was stirred under reduced pressure (50 mbar) for 7 hours. The composition of the GB oleic ester crude mixture was obtained by NMR analysis and is set forth in Table 4 below. Direct flash chromatography of the crude mixture was used to isolate the surfactant with a high purity (>95%).

In the case of the myristic/lauric ester C14:0/C12:0, the optimal conditions for this synthesis correspond to one equivalent of GB, 1.2 equivalent of myristic/lauric alcohol, and 2.6 equivalent of MSA. The reaction mixture is gradually heated for 7 hours at 120° C. under a much lower pressure (30 mbar) to remove water formed during the reaction. The pressure is gradually reduced from 60 to 30 mbar. The composition of GB myristic/lauric ester crude mixture was obtained by NMR analysis and is set forth in Table 4 below.

While not required, the surfactant crude mixture can be purified by the following described procedure. Neutralization of MSA used in excess with an aqueous NaHCO3 solution followed by the addition of diethyl ether in which myristic/lauric alcohol in the last example, is soluble. The layers are separated and the aqueous layer was extracted with n-butanol/ethylacetate. After concentration to dryness and recrystallation, the pure ester is isolated as a white solid.

The preparation and purification of betainyl amino alkyl methane sulfonates (GB amide derivatives) is now described. GB amides were prepared following a “one-pot two step” procedure. First, one equivalent of GB is reacted with 2.6 equivalent of n-butanol in the presence of 1.1 equivalent of MSA as catalyst at 130° C. for 4 hours. The solvent was distilled out during heating (Dean-Stark apparatus). After cooling, the short butyl chain is replaced by a longer chain in a base-catalyzed aminolysis reaction of the butyl ester using fatty amines (C12 lauric amine, C14 myristic amine, C16 hexadecyl amine, C18:0) stearic amine, and C18:1 oleic amine). The reaction is then carried out under reduced pressure (50 mbar) at 130° C. in order to eliminate the butanol formed during the process.

The pathway for the one-pot two step GB amide preparation is as follows using for illustrative purposes the production of betainyl amino octadecane methane sulfonate (C18 stearic GB amide) and (Z)-betainyl amino octadec-9-ene methane sulfonate (C18:1 oleic GB amide):

This two-stage process includes the recycling of butanol used both as reagent and solvent in this reaction. The addition of an organic base triethanolamine (TEA) or dibutylamine (DBA) into the reaction mixture allows the neutralization of the excess MSA, thus inhibiting the partial protonation of the fatty amine. The crude mixture corresponds to the weight ratio of oleic amine salt/oleic amine/GB=59/34/<1/6. Compound 2b results from flash chromatography of the crude one.

For GB stearic amide (C18:0), optimal conditions correspond to a GB/MSA/octadecylamine ratio of 1/1.1/1.2. NMR analysis was used to obtain the crude mixture composition and is set forth in Table 3 below. The crude mixture was purified by precipitation in ethanol yielding to the GB stearic amide partly purified having a weight ratio of stearic amide/stearic amine salts of 60/40 as set forth in Table 3 below. Direct flash chromatography gave a pure stearic amide.

For GB oleic amide (C18:1), the optimal conditions correspond to a GB/MSA/oleylamine ratio of 1/1.1/1.2. The crude mixture composition was determined by NMR analysis and is set forth in Table 3 below. Pure oleic amide was provided by direct flash chromatography.

Other betainylaminoalkane methane sulfonates, e.g., GB lauric (C12:0, GB myristic (C14:0) and GB palmitic (C16:0), are synthesized using the same pathway as set for stearic amide. The crude mixture composition of these were also determined by NMR analysis and are set forth in Table 3 below.

DETAILED DESCRIPTION OF THE INVENTION

The production of alkyl(ene) betainate methane sulfonates and betainyl amino alkyl(ene) methane sulfonates is described.

The preparation of and purification of alkyl betainate methane sulfonates (GB ester derivatives) follows a pathway for the esterification reaction of GB as follows:

Acid-catalyzed esterification reaction between GB and fatty alcohols proceeds in one-step via the in situ protonation of the carboxylate function. This involves the use of only environmentally friendly raw materials under solvent-free conditions, wherein “solvent-free conditions” refers to the absence during reaction of any compound which functions as a solvent.

The use of methane sulfonic acid (MSA), as the acid for protonation of the carboxylate function is also beneficial in providing a green route to obtain GB esters. MSA is part of the natural sulfur cycle and, therefore, MSA is natural and readily biodegradable. MSA is an easy-to-handle liquid, usually recyclable and less aggressive than common organic acids which are typically used, such as hydrochloric, sulfuric or hydrofluoric acid.

An example of the one-step process of preparing of GB esters, using MSA as catalyst is as described in U.S. Pat. Nos. 7,981,856 and 7,829,521 (which are each incorporated herein by reference) and is illustrated for octadecyl betainate methane sulfonate (C18:0 stearic GB ester) and (Z)-octadec-9-enyl betainate methane sulfonate [GB Oleic ester (C18:1)] as follows:

Esterification reactions of GB are carried out with saturated or unsaturated fatty alcohols (from capric to stearic and oleic alcohols) at 130° C., in the presence of methane sulfonic acid and under reduced pressure, in order to eliminate water formed during the process.

In the case of the C18:0 stearic derivative, the optimal conditions correspond to one equivalent (0.213 mole, 25 g) of GB, 1.2 equivalent (0.256 mole, 69.3 g) of stearic alcohol and 2.6 equivalent (0.55 mole, 36 ml) of MSA. The reaction mixture is gradually heated for 7 hours to 130° C. under reduced pressure (50 mbar) to remove water formed during the reaction. Another advantage of the method of the invention is that treatment of the mixtures with diethyl ether (weight ratio: 1a/ROH/MSA/GB=70/15/5/10) or n-butanol (weight ratio: 1a/ROH/MSA=70/25/5) led to the total or nearly quantitative removal of residual GB and MSA. The corresponding yield of the ester after treatment is greater than 70%.

In the case of the C18:1 oleic derivative, the optimal conditions correspond to a GB/ROH/MSA ratio of 1/1.4/2.5. These optimal conditions correspond to one equivalent (0.256 mole, 30 g) of GB, 1.4 equivalent (0.359 mole, 137.5 g) of oleic alcohol and 2.5 equivalent (0.64 mole, 41.54 ml) of MSA. The reaction mixture was stirred under reduced pressure (50 mbar) for 7 hours. Direct flash chromatography of the crude mixture was used to isolate the surfactant with a high purity (>95%).

In the case of the myristic/lauric ester C14:0/C12:0, the optimal conditions for this synthesis correspond to one equivalent of GB, 1.2 equivalent of myristic/lauric alcohol, and 2.6 equivalent of MSA. The reaction mixture is gradually heated for 7 hours at 120° C. under a much lower pressure (30 mbar) to remove water formed during the reaction. The pressure is gradually reduced from 60 to 30 mbar. The composition of GB myristic/lauric ester crude mixture was obtained.

While not required, the surfactant crude mixture can be purified by the following described procedure. Neutralization of MSA used in excess with an aqueous NaHCO3 solution followed by the addition of diethyl ether in which myristic/lauric alcohol in the last example, is soluble. The layers are separated and the aqueous layer was extracted with n-butanol/ethylacetate. After concentration to dryness and recrystallation, the pure ester is isolated as a white solid.

The preparation and purification of betainyl amino alkyl methane sulfonates (GB amide derivatives) is now described. GB amides were prepared by a “one-pot two step” procedure. First, one equivalent GB is reacted with 2.6 equivalent n-butanol in the presence of 1.1 equivalent of MSA as catalyst at 130° C. for 4 hours. The solvent was distilled out during heating (Dean-Stark apparatus). After cooling, the short butyl chain is replaced by a longer chain in a base-catalyzed aminolysis reaction of the butyl ester using fatty amines (C12 lauric amine, C14 myristic amine, C16 hexadecyl amine, C18:0 stearic amine and C18:1 oleic amine). The reaction is then carried out under reduced pressure (50 mbar) at 130° C. in order to eliminate the butanol formed during the process.

The pathway for the one-pot two step amide preparation is as follows using for illustrative purposes the synthesis of betainyl amino octadecane methane sulfonate (C18 stearic GM amide) and (z)-betainyl amino octadec9-ene methane sulfonate (C18:1 oleic GB amide):

This two-stage process includes the recycling of butanol used both as reagent and solvent in this reaction. The addition of an organic base triethanolamine (TEA) or dibutylamine (DBA) into the reaction mixture allows the neutralization of the excess MSA, thus inhibiting the partial protonation of the fatty amine. The crude mixture corresponds to the weight ratio of oleic amine salt/oleic amine/GB=59/34/<1/6. Compound 2b results from flash chromatography of the crude one.

For GB stearic amide (C18:0), optimal conditions correspond to a GB/MSA/octadecylamine ratio of 1/1.1/1.2. NMR analysis was used to obtain the crude mixture composition and is set forth in Table 3 below. The crude mixture was purified by precipitation in ethanol yielding to the GB stearic amide partly purified having a weight ratio of stearic amide/stearic amine salts of 60/40.

For GB oleic amide (C18:1), the optimal conditions correspond to a GB/MSA/oleylamine ratio of 1/1.1/1.2.

Other betainylaminoalkane methane sulfonates, e.g., GB lauric (C12:0), GB myristic (C14:0 and GB palmitic (C16:0), are synthesized using the same pathway as set for stearic amide.

Table 1 below sets forth examples of alkyl betainate methane sulfonates obtainable from the above-described preparation process which are useful as surfactants as described herein.

TABLE 1 Chemical Compounds Acronyms As Used Herein Octadecyl betainate methane sulfonate, GB Stearic ester (C18:0) crude crude Octadecyl betainate methane sulfonate, GB Stearic ester (C18:0) pure pure (Z)-Octadec-9-enylbetainate methane GB Oleic ester (C18:1) crude sulfonate, crude (Z)-Octadec-9-enylbetainate methane GB Oleic ester (C18:1) pure sulfonate, pure Decyl betainate and dodecyl betainate GB Capric/Lauric (C10/C12) methane sulfonate, crude ester crude Dodecyl/tetradecyl betainate methane GB Lauric/Myristic ester sulfonate, crude (C12/C14) crude Dodecyl/tetradecyl betainate methane GB Lauric/Myristic ester sulfonate, pure (C12/C14) pure

Table 2 below sets forth examples of betainyl amino alkyl methane sulfonates obtainable from the above-described preparation process which are useful as surfactants as described herein.

TABLE 2 Chemical Compounds Acronyms As Used Herein Betainyl amino octadecane methane GB Stearic amide (C18:0) sulfonate, crude crude Betainyl amino octadecane methane GB Stearic amide (C18:0) sulfonate, semi-pure semi-pure Betainyl amino octadecane methane GB Stearic amide (C18:0) pure sulfonate, pure (Z)-betainyl amino octadec-9-ene methane GB Oleic amide (C18:1) crude sulfonate, crude (Z)-betainyl amino octadec-9-ene methane GB Oleic amide C18:1) pure sulfonate, pure Betainyl amino hexadecane methane GB Palmitic amide C16 crude sulfonate, crude Betainyl amino hexadecane methane GB Palmitic amide C16 pure sulfonate, pure Betainyl amino tetradecane methane GB Myristic amide C14 crude sulfonate, crude Betainyl amino tetradecane methane GB Myristic amide C14 pure sulfonate, pure Betainyl amino dodecane methane GB Lauric amide C12 pure sulfonate, pure Betainyl amino dodecane methane GB Lauric amide C12 crude sulfonate, crude

Table 3 below sets forth composition components for surfactants based on betainyl amino alkyl(ene) methane sulfonates as within the invention. The composition components were obtained by NMR analysis. Direct flash chromatography of the crude mixture was used to isolate the surfactant with a high purity (i.e., >95%).

TABLE 3 Semi- Crude Pure Pure Surfactants Composition Wt. % (Z)-betainyl amino Oleic amide 68 ≧99 octadec-9-ene Oleic ammonium 27 methane sulfonate salts [GB Oleic amide (C18:1)] Oleic amine 0 Glycine Betaine 5 Betainyl amino octadecane Stearic amide 59 62 ≧99 methane sulfonate Stearic ammonium 37 38 [GB Stearic amide (C18:0)] salts Stearic amine 0 0 Glycine Betaine 4 0 Betainyl amino hexadecane Palmitic amide 64 ≧99 methane sulfonate Palmitic ammonium 32 [GB Palmitic amide C16] salts Palmitic amine 0 Glycine Betaine 4 Betainyl amino tetradecane Myristic amide 67 ≧99 methane sulfonate Myristic ammonium 28 [GB Myristic amide C14] salts Myristic amine 0 Glycine Betaine 5 Betainyl amino dodecane Lauric amide 68 ≧99 methane sulfonate Lauric ammonium 29 [GB Lauric amide C12] salts Lauric amine 0 Glycine Betaine 3

Table 3 also provides the weight percentage of the components of the crude mixture as obtained and also as following purification.

Table 4 below sets forth the composition components for surfactants based on alkyl(ene) betaine methane sulfonates within the invention. The composition components were obtained by NMR analysis. Direct flash chromatography of the crude mixture was used to isolate the surfactant within a high purity (i.e., >95%).

TABLE 4 Crude Pure Surfactants Composition Wt. % Octadecyl Betainate Stearic ester 58 ≧99 methane sulfonate Stearic alcohol 13 [GB Stearic ester (C18:0] Methyl sulfonic acid 25 Glycine Betaine 4 (Z)-Octadec-9-enyl betainate Oleic ester 47 ≧99 methane sulfonate Oleic alcohol 33 [GB Oleic ester (C18:1)] Methyl sulfonic acid 17 Glycine Betaine 3 Tetradecyl/dodecyl Betainate Myristic/Lauric ester 69 ≧99 methane sulfonate Myristic/Lauric alcohol 3 [GB Myristic/Lauric ester Methyl sulfonic acid 28 C14/C12] Glycine Betaine 0

Table 4 also provides the weight percentage of the components of the crude mixture as obtained and also as following purification.

In traditional betaines, the alkyl chain length is on the nitrogen side structurally. In the compounds of the invention, the alkyl chain length is provided on the carboxylic side structurally. The compounds of the invention also are not synthetically prepared, but rather are prepared from a natural source. A “natural source” is understood to mean a renewable sustainable source, such as a plant source, e.g., sugar beets. Synthetically prepared betaines do not provide for the same crude mixture as obtained when preparing the betaine from a natural source such as sugar beets. Different properties are present based on the different compounds present in the crude mixture obtained from the sugar beets, such as surface properties, wetting, solubilization, spreading, emulsification, foaming ability, gelling, thickening, rheology modifier, adhesion and anti-microbial. It has also been found that different properties are different as between the crude mixture, such crude mixture semi-purified, and such crude mixture substantially or completely purified. These differences are generally ones of degree as to certain properties, and more particularly are wettability, water solubility, emulsifying ability, anti-microbial efficacy, gelling, and thickening.

The crude mixture is a cocktail of compounds. When starting from a natural source, such as sugar beets, one is starting with a different mixture as compared to a synthesis route. In preparation of the GB ester and GB derivatives of the invention, obtained compounds in the crude mixture are identified as well as the different properties associated therewith. By modifying the chain length of the GB ester or GB amide derivatives and manipulating the contents of the crude mixture or blending different chain lengths, the provision or enhancement of certain properties are obtained and, thus, improved surfactants suitable for certain particular product uses can be provided. The crude mixture has synergistic effects. More specifically, preferred chain lengths for the alkyl or alkylene substituent are from C8 to C22 carbon atoms. Short chain lengths, i.e., C8-16, provide better surfactants and wetting agents, as well as being more water soluble. Long chain lengths, i.e., C18-22, provide better emulsification, and so provide good oil cleaning properties. Longer chain lengths of C18-22 are even more preferred for forming gels and emulsification. Properties affected by the chain length of the alkyl(ene) substituent of the GB ester and GB amide derivatives of the invention are solubility, micellization, wettability, solubilization, emulsifying efficiency, viscosity, gelling, and thickening. A wide range of chain length is useful depending on the application of the compounds. Normally, surface properties vary when the hydrophobic chain length increases, since the HLB value changes due to less affinity for water. In such case, the change is not so dramatic because of the good solubility of the glycine betaine. The oleic is as good a wetter as the shorter chain. Although it may emulsify oil better, the stearic is less soluble than the oleic due to the saturation.

Another advantage of the structure of the GB ester and GB amide derivatives of the invention prepared from natural sources over synthesized betaine derivatives as known in the art are that the inventive derivatives are provided with an hydrocarbon chain length attached to the carboxylate group which makes the surfactant compound cleavable, i.e., the GB ester and GB amide structures can revert back to the original sugar and alcohol which results in the surfactants being 100% biodegradable.

Surface properties of betainyl amino alkyl(ene) methane sulfonates and alkyl(ene) betainate methane sulfonate surfactants are set forth below in Table 5. Table 5 shows the effects of the hydrocarbon chain length on the surface properties of crude and pure betainyl amino alkyl(ene) methane sulfonate and alkyl(ene) betainate methane sulfonate surfactants. Comparative examples are provided by the GLUCOPON surfactants (commercially available from BASF, formerly known as Cognis) which are alkyl polyglucosides having a carbon length as indicated.

TABLE 5 CMC* Surface Tension (mol/l) @ CMC Hydrocarbon chain and (T = 24° C.) (mN/m) Benchmarks Crude Pure Crude Pure GB Oleic amide 1.13 10−4 1.02 10−4 30 36 GB Stearic amide 2.48 10−4  2.4 10−4 35 39 GB Palmitic amide  2.5 10−4 3.39 10−4 33 37 GB Myristic amide 6.15 10−4 1.02 10−3 32 38 GB Lauric amide 1.94 10−3  1.2 10−4 25 38 GB Ester C12 27 38 GB Ester C12/C14  5.7 10−3   1 10−3 24 34 GB Ester C18 1.68 10−4 1.61 10−4 30 38 GLUCOPON 600, C12-C14 7.25 10−5 29 GLUCOPON 650, C8-C14 1.83 10−4 28 GLUCOPON 425N, C8-C16 29.7 GLUCOPON 215, C8-C10 6.17 10−4 35 GENAPOL LA 050 27 C12/C14 fatty alcohol w/ 5 EO GENAPOL LA 090 32 C12/C14 fatty alcohol w/ 9 EO GENAPOL UD 050 27 C11 oxoalcohol ethoxylate w/ 5 EO GENAPOL XO 080 27 C13 oxoalcohol w/ 8 EO CMC = Critical Micelle Concentration.

The efficiency of the GB ester and amide derivative surfactants of the invention to emulsify oils, is shown in Tables 6 and 7 and description below with regard to the hydrocarbon group present in the GB ester or GB amide.

TABLE 6 Effect of hydrocarbon groups on the ability of GB surfactants in emulsifying sunflower oil in water IFT (mN/m) Surfactants Crude Purified GB Stearic amide 1.3 5.2 GB Oleic amide 4.2 5.5 GB C12/C14 Ester 12.3 13.5 IFT = Interfacial Tension

TABLE 7 Dynamic Interfacial Tensions of GB Surfactants Against Sunflower Oil @ 0.1% w/w Surfactants IFT (mN/m) GB Lauric Amide, crude 0.84 GB Palmitic Amide, crude 0.18 GB Stearic C18:0 Amide, crude 0.65 GB Oleic C18:1 Amide, crude 0.66 GB C12/14 Ester, crude 4.64 GLUCOPON 215, C8-C10 6.62 GLUCOPON 650, C8-C14 3.06 GLUCOPON 650, C8-C14 1.05 BTC 2125M 0.92 (n-Alkyl Dimethyl Benzyl Ammonium Chloride (and) n- Alkyl Dimethyl Ethylbenzyl Ammonium Chloride)

In this testing sunflower oil was emulsified at a neutral pH, stored and analyzed at 25° C. and at 37° C. Oil droplets having a mean diameter of 220 to 260 mm and a narrow size distribution were observed. The emulsion ageing was also followed by photodensitometry, using a flat scanner. GB derivative solutions exhibited emulsifying efficiency at acid, neutral and basic pHs against different types of oil phases, from essential oils, mineral oil and vegetables oils to animal oils and soils, as well as insoluble fragrance and pesticide oils. Due to their ability to solubilize or emulsify a variety of oils, the GB ester and GB amide surfactants allow solubilization and control release of actives, e.g., fragrances, herbicides and pesticides. Surface and interfacial properties of the GB ester and amide derivatives of the invention are comparable to or better than conventional synthesized cationic surfactants, such as quaternary ammonium compounds (QUATs).

In addition to their ability to emulsify polar and non-polar oils, such also form microemulsions spontaneously with GB as emulsifying agents. Upon optimum solubilization of sunflower oil in water, with cetyl trimethyl ammonium bromide (CTAB) used as a reference point (control), a 2-phase system is obtained and not a microemulsion. This was tested using Winsor III microemulsions (i.e., a surfactant rich middle phase which coexists with both water (lower) and oil (upper) surfactant-poor phases) stabilized with GB stearic amide, GB oleic amide, and GB myristic/lauric ester. Each provided three distinct separate layers.

As low as 1 g of surfactants has been determined to lead to the formation of optimum solubilization, i.e., Winsor III microemulsions. GB surfactants produce oil droplets with a particle size smaller than 100 nm and narrow size distribution not exceeding 0.10.

Additionally, the GB derivatives are effective adjuvants in agricultural formulations due to their very low surface and interfacial tensions that enable the formation of very fine particles in spray and aerosol compositions, and excellent and fast wetting of leaf structures.

The surfactants of the invention also have foaming ability. This foaming ability is able to be effectively manipulated, i.e., foaming density increased, based on hydrocarbon chain length. Table 8 below shows the effects of hydrocarbon chain lengths on the foaming behavior of certain GB amide and GB ester derivatives.

TABLE 8 Foamibility of GB surfactants compared to alternative surfactants Concentration at CMC, Flow rate: 14 l/min Time t: the time to Density Surfactants fill 2 liters (g/l) Stearic amide, crude 29 min. 16 Stearic amide, semi- 9 min., 53 sec. 23 pure Oleic amide, crude 1 min. 22 sec. 17 Oleic amide, pure 85 sec. 18 Palmitic amide, crude 3 min., 57 sec. 18 Lauric amide, crude 3 min., 17 sec. 22 Ester C12/C14, crude 56 sec. 24 Ester C12/C14, pure 3 min., 59 sec. 21 BTC 2125M 1 min., 13 sec. 16 GLUCOPON 600, C12-C14 >33 min., the beaker is not filled GLUCOPON 650, C8-C14 >40 min., the beaker is not filled

The GB ester and GB amide derivative surfactants also provide good cleaning performance and have good wetting properties. Cleaning performance and wetting properties are set forth in Table 9 below with respect to certain GB ester and GB amide derivative surfactants of the invention and certain comparative examples, i.e., the conventional surfactants of an alkyl polyglucoside (APG) GLUCOPON 425N manufactured by BASF (formerly known as Cognis) and a quaternary ammonium BTC 2125M manufactured by Stepan Company.

TABLE 9 Cleaning erformance (time to Wetting Properties remove Contact Angles on soils) (sec) treated substrates (°) Conc. % Greasy Enamel Kitchen Soap Surfactants (w/w) Kitchen Interior Glass Tiles Soil Scum GB Oleic C18:1 Amide 1 15 10 22.6 27.6 46.4 31.1 GB Oleic C18:1 Amide 3 15 10 18.8 26.8 38.1 31.3 GB Stearic-C18:0 Amide 1 10 10 23.1 35.4 39.7 31.6 GB Stearic C18:0 Amide 3 10 10 19.4 27.1 34.6 34.3 GB Myristic/Lauric 1 20 10 16.9 25.9 43.1 22.1 C14/C12 ester GB Myristic/Lauric 3 20 10 13.4 24.1 39.6 26.1 C14/C12 ester GLUCOPON APG 425N 1 >120 10 8.1 21.9 51.5 19.8 (C8-C14 Alkylpolyglucoside) BTC2125M 1 >120 10 30.6 29.1 59.6 58.4

To further illustrate the efficiency of the GB ester and GB amide derivative surfactants of the invention in solubilizing kitchen soils, and the difference between crude and purified forms of the surfactants, additional cleaning performance data is set forth in Table 10 and is compared against conventional surfactants, i.e., various nonionic APG GLUCOPON surfactants, an amphoteric surfactant REWOCID WK30 manufactured by Evonik Industries, and a cationic quaternary ammonium surfactant BTC 2125.

TABLE 10 Percent of Soil Solubilized by GB surfactants and Benchmark Contact time (sec) 20 30 60 Inventive Surfactants crude purified crude purified crude purified Oleic amide 20.0 24.5 51.1 Stearic amide 12.0 12.3* 38.8 21.6* 54.2 49.5* Palmitic amide 44 47 55 Myristic amide 48 44 76 Lauric amide 22.0 46.0 77.0 Ester C12/C14 22.8 18.2 30.2 40.2 67.9 42.7 Comparative Surfactants GLUCOPON 600, C12-C14 APG 38.5 55.0 76.4 GLUCOPON 650, C8-C14 APG 18.6 17.4 45.1 GLUCOPON 215, C8-C10 APG 13.5 35.7 40.4 Rewocid WK30 16.2 39.2 40.9 (Amines, N-C10-16-Alkyl trimethylenedi,-reaction products with chloro acetic acid) BTC 2125 22.7 30.0 45.0 (Alkyl Dimethyl Benzyl & Benzyl/Ethyl Quaternary Ammonium Chlorides) *Semi-purified NOTE: Comparative surfactants were used as commercially purchased and were not in “crude” or “purified” state as with inventive surfactants.

Tables 11 and 12 below further show the cleaning performance of GB ester and GB amide derivative surfactants of the invention as compared to commercially available surfactants by the amount of soil solubilized by the respective surfactants.

TABLE 11 Cleaning Performance of Betainyl amino Alkyl (ene) Methane Sulfonate and Alkyl (ene) Betainate Methane Sulfonate Surfactants compared to commercially available quaternary ammonium salts (BTC 2125M) after 20 seconds contact time Bathroom Soap Scum Aqueous Solutions Solubilized (%) of Surfactants Crude Pure GB Oleic (C18:1) amide 94 GB Stearic (C18:0) amide 66 35 GB Lauric (C12) amide 55 GB Ester C12/C14 80 69 BTC 2125M 13

TABLE 12 Cleaning Performance (% Solubilized) of Betainyl amino Alkyl (ene) Methane Sulfonate and Alkyl (ene) Betainate Methane Sulfonate Surfactants compared to Benchmark surfactants Contact Time (sec) 30 60 120 Crude Pure Crude Pure Crude Pure Oleic amide 76 80 83 Stearic amide 80  78* 64  66* 86  85* Palmitic amide 75 76 84 Myristic amide 83 84 80 Ester C12/C14 70 80 74 84 82 84 Lauric amide 80 74 82 Benchmark GLUCOPON 600, 82 84 85 C12-C14 GLUCOPON 650, 82 84 86 C8-C14 GLUCOPON 215, 72 82 89 C8-C10 REWOCID WK30 80 65 80 BTC 2125M 70 68 89 *= Semi-pure NOTE: Benchmark surfactants were used as commercially purchased and were not in “crude” or “pure” form as with the inventive surfactants.

Cleaning compositions including surfactants of the invention are generally as follows:

Ingredient Concentration (% w/w) Water balance to 100 GB ester or GB amide 0.5 to 3   derivative(s) Chelator/pH adjuster 0 to 0.5 Adjuvant(s) (e.g. fragrance) 0 to 1.5

Compounds suitable for use as chelator(s) or pH adjuster(s) are as generally known in the art and include, for example, carboxylic acids or their salts, such as lactic acid, citric acid, itaconic acid, tartaric acid, gluconate, glucarate; alkali metal hydroxides such as sodium hydroxide, and the like.

Adjuvant(s) suitable for inclusion are as generally known in the art and include, for example, surfactants, wetting agents, solubilizing agents, thickening agents used in combination with pesticides, herbicides, sprayability and delivery systems to enhance the performance of the products. Conventional aesthetic-providing adjuvants can also be included, e.g., fragrances, colorants, etc.

Table 13 sets forth Examples I-VI cleaning compositions including surfactants of the invention. These composition are utilized in comparative cleaning tests as further described below.

TABLE 13 Concentration Ingredients Function (% w/w) Example I Deionized Water Diluent 93.85 Glycine Betaine C12/14 Ester Surfactant 3 Lactic Acid Chelator/pH adjuster 3 Fragrance Perfume 0.15 Example II Deionized Water Diluent 95.85 Glycine Betaine C12/14 Ester Surfactant 1 Lactic Acid Chelator/pH adjuster 3 Fragrance Perfume 0.15 Example III Deionized Water Diluent 93.85 Glycine Betaine Oleic Amide Surfactant 3 Lactic Acid Chelator/pH adjuster 3 Fragrance Perfume 0.15 Example IV Deionized Water Diluent 95.85 Glycine Betaine Oleic Amide Surfactant 1 Lactic Acid Chelator/pH adjuster 3 Fragrance Perfume 0.15 Example V Deionized Water Diluent 95.85 Glycine Betaine Stearic Amide Surfactant 1 Lactic Acid Chelator/pH adjuster 3 Fragrance Perfume 0.15 Example VI Deionized Water Diluent 95.85 Glycine Betaine Stearic Amide Surfactant 3 Lactic Acid Chelator/pH adjuster 3 Fragrance Perfume 0.15

Table 14 sets forth results of tests comparing the soil removed performance of the compositions of Example I-VI as set forth in Table 13 compared to various commercial products. The various properties of the Examples show that the compositions of the invention are better than or comparable to commercial products in cleaning performance. All inventive compositions, including those which are comparable in performance, provide the added advantage of being 100% biodegradable which is an advantage over the commercial products.

TABLE 14 Soil Removal Performance of prototype formulas comprising Betainyl amino Alkyl (ene) Methane Sulfonate and Alkyl (ene) Betainate Methane Sulfonate Surfactants compared to commercial Products Surfactant Conc. Surface Tension Contact Angle Contact Angle Contact Angle Kitchen Soil Interior Soil pH % (w/w) (mN/m) Enamel (°) GKS (°) Soap Scum (°) Removal (sec) Removal (sec) Glass Cleaner 3.5 26.31 8.3 16.7 21.1 >20 10 Natural Glass 11.09 28.46 25.4 25.3 24.9 >20 10 Cleaner Bathroom Cleaner 2.5 27.35 8.6 30.3 11.1 >20 10 Natural Bathroom 2.06 27.59 12.1 33.9 13.9 >20 10 Cleaner Natural All 11.46 28.76 21.2 36.3 19.6 20 10 Purpose Cleaner All Purpose 11.1 26.66 8.6 12.4 21.7 10 10 Cleaner All Purpose Anti- 10.51 27.44 6.1 13.6 26.1 10 10 Bacterial Cleaner Example I 3 19.8 38.1 17.6 20 10 Example II 1 20.2 41.3 19.1 20 10 Example III 3 26.5 36.4 26.9 15 10 Example IV 1 26.9 37.5 28.6 15 10 Example V 3 27.2 41.3 30.6 10 Example VI 1 27.9 41.6 30.9 10

The betainyl amino alkyl(ene) methane sulfonates and alkyl(ene) betainate methane sulfonates also provide unique gelling and thickening, in itself, including as a crude mixture, and also in combination with sodium chloride.

When used in itself to provide thickening, the GB ester and GB amide derivatives are provided with a long alkyl or alkylene chain length, i.e., from about 14 to 22 carbon atoms, and in a high concentration in order to achieve phase transition, i.e., at least about 30 wt. %. Contrary to conventional thickening agents, GB esters and GB amides of the present invention have the ability to provide thickening at room temperature. Processing that conventionally requires heating and cooling cycles can with the compounds of the invention be achieved without heating. If the process requires a heating step for any reason, the gelling on thickening provided is reversible.

Alternatively, and more beneficially, to provide thickening or gelling, any one of sodium chloride, potassium chloride, magnesium chloride, a natural gum, or a polysaccharide is added in an amount of greater than 0 to about 10 wt. %, preferably about 0.5 to about 8 wt. %, and most preferably about 6 wt. % in combination with the surfactant component which provides a gel without the necessity of heating and cooling steps. Examples of natural gum suitable for use include xanthan gum, and guar gum. Examples of polysaccharides suitable for use include starch, carrageenans (alpha, kappa, iota, etc.), cellulose derivatives, and the like. Based on the alkyl or alkylene chain length provided in the GB ester or GB amide derivatives and whether an ester or an amide derivative is used, different gels for different applications can be provided, e.g., cosmetic, home cleaning, etc. Chain lengths of from 14 to 22 carbon atoms are generally preferred for use in the GB ester or GB amide derivatives. The longer chain lengths provide for greater thickening. GB amide derivatives are preferred as providing for compositions having pH values from neutral to alkaline as compared to the ester derivatives.

Table 15 below illustrates the thickening of GB stearic amine aqueous solution as a function of concentration and time.

TABLE 15 Surfactant Concentration Initial Viscosity Viscosity after 15 (% w/w) (cP) days (cP) 1 120 160 2 160 639 3 160 807 4 2259 3626 5 3039 6079 6 5279 8851

The examples of Table 15 are compounds present in water alone and, thus, the viscosity continues to change. After a certain point, the viscosity will plateau and not change anymore. If the surfactant is provided at a predetermined concentration, the desired viscosity will be reached right away and not continue to increase due to the stability provided. Thus, generally, as the surfactant concentration increases, so does the initial viscosity. Also over a period of time, the viscosity increases. The viscosity can be controlled to terminate the viscosity increase, i.e., achieve a pre-determined viscosity, by adding salts to the composition. Preferred salts are sodium chloride, potassium chloride, magnesium, chloride, and lithium chloride. Another feature of the invention is the ability to combine GB surfactants with natural polysaccharides to form gel and pseudoplastic viscous liquids or gels. Examples of polysaccharides are agar, carregenan, natural gum, pectin, gelatin, starch, cellulose derivatives, cellulose derived from wood pulp fiber, lignin, etc.

Table 16 below illustrates the effect of sodium chloride on the gelling and thickening ability of betainyl amino alkyl(ene) methane sulfonate surfactants.

TABLE 16 NaCl GB Oleic GB Stearic Concentration amide crude amide crude (w/w)% pH Viscosity pH Viscosity 0.0 4.99 853.1 4.72 479.9 0.2 5.91 1120 6.7 4159 0.4 5.95 2080 6.85 3039 0.6 5.99 2240 6.86 5439 0.8 5.99 2240 6.61 5900 1.0 5.99 2240 6.66 6879

Once the pH plateaus, the viscosity increase no longer changes. The salt content and/or surfactant concentration determine the viscosity obtained. The results of Table 14 keep changing in viscosity based on being present only in water. Once present in a composition at a specific pH and concentration, stability is provided to control and maintain the viscosity obtained. Alternatively, the salt content can be used to control the viscosity level.

A major feature of the compositions of the invention is the ability of the compositions to kill or inhibit the growth of gram positive and gram negative bacteria and fungi. Both GB esters and GB amides of the invention exhibit extremely minimum inhibition concentration (MIC). Furthermore, the compositions that contain these surfactants exhibit high antimicrobial efficacy, requiring only a minimum concentration.

The efficacy of zwitterionic and amphoteric betaines, such as N-alkyl betaine and N-alkyl-N,N-dimethylamine oxide, against Salmonella and E. coli for pharmaceutical, chemotherapeutical, food applications and personal care applications is known in the art. Some examples are illustrated and shown in the following publications: (1) “Antimicrobial Evaluation of N-Alkyl Betaines and N-Alkyl-N,N-Dimethylamine Oxides with Variations in Chain Length”, Antimicrobial Agents Chemother., 2000 September, Vol. 44 (9): pages 2514-2517″, and (2) “Antimicrobial Composition And Methods Of Making And Using Same”, U.S. Patent Application Publication No. 2010/0086576 A1. The betaine and amine oxide surfactants described in these publications are amphoteric, comprising both quaternary amine and carboxylic groups.

The cationic glycine betaine with ester and amide linkages of the present invention also exhibit strong efficacy against both gram positive and gram negative bacteria. Their minimum inhibition concentration (MIC) values have been found to be lower than that of amphoteric betaines. Moreover, they exhibit a much lower Critical Micelle Concentration (CMC) and, therefore, have better surfactant properties than conventional amphoteric surfactants.

To illustrate the antimicrobial properties of the surfactants of the invention, the surfactants were tested against the following organisms: (1) Salmonella, (2) Staphylococcus Aureus and (3) E. coli (ATCC 11229).

First is described Minimum Inhibition Concentration (MIC) of green compositions and green surfactants of the invention against E. coli. Since all the products are liquid, the solid contents in all samples were measured prior to the determination of the MIC using E. coli (ATCC 11229) as a typical Gram-negative bacterium. The MIC method, also called broth dilution, is a popular conventional antimicrobial test used for investigating antimicrobial compounds. Fresh cultured E. coli was diluted with Luria-Bertani (LB) broth to 106 CFU/mL. Serial solutions of the test samples with the concentration from 500 to 1.75 ppm, were made by dilution with sterile LB broth. Then, 0.2 ml of E. coli (106 CFU/mL) was added to the product/broth solutions, and seeded tubes were incubated at 37° C. for 18 hours. The MIC was interpreted as the lowest concentration that could inhibit the visible growth of bacteria compared with that of the control samples. Accordingly, the original sample had a concentration of 100%. The dilution factor for seven diluted samples was ½, ¼, ⅛, 1/16, 1/32, 1/64 and 1/128. The effective MIC solid content times the dilution factor. Table 17 below shows the growth inhibition (%) of gram negative Esherichia coli of different surfactants and dosages using the shaking flask method.

TABLE 17 Growth Glycine Betaine Fatty Ester or Amide Surfactants Inhibition (%) Surfactant Concentration (ppm) 100 50 Betainylaminododecane methanesulfonate C12 Amide, 100 99 Crude Betainylaminododecane/tetradecanemethanesulfonate 100 96 C12/C14 Ester, Pure Betainylaminododecane methanesulfonate 90 76 C12/C14 Ester, Crude (Z)-Betainylaminooctadec-9-ene methanesulfonate (C18:1) 100 88 oleic Amide, Crude * MIC is as the lowest concentration that could inhibit the visible growth of bacteria compared with that of the control samples. The effective MIC value equals to the solid content times dilution factor.

Table 18 shows the minimum inhibition concentration (MIC)* for selected betainyl amino alkyl(ene) methane sulfonate and alkyl(ene) betaine methane sulfonate surfactants.

TABLE 18 Effective Glycine Betaine Fatty Ester or Amide Surfactants MIC (ppm) Betainylaminododecane methanesulfonate C12 Amide, 32 Crude Betainylaminododecane/tetradecanemethanesulfonate 32 C12/C14 Ester, Pure Betainylaminododecane methanesulfonate C12/C14 Ester, 32 Crude (Z)-Betainylaminooctadec-9-ene methanesulfonate (C18:1) 16 oleic Amide, Crude * MIC is as the lowest concentration that could inhibit the visible growth of bacteria compared with that of the control samples. The effective MIC value equals to the solid content times dilution factor.

Table 19 shows the antimicrobial efficacy of compositions comprising betainyl amino alkyl(ene) methane sulfonate and alkyl(ene) betaine methane sulfonate surfactants against gram positive staphylococcus aureus at 5 minutes contact time.

TABLE 19 Log Percent Examples Reduction Reduction Aqueous solution of Glycine Betaine C12/C14 5.25837 99.99944 Ester, Pure Aqueous Solution of Glycine Betaine C12/C14 2.917614 99.87911 Ester, Crude Aqueous Solution of Glycine Betaine C12 5.3732 99.99958 Amide, Crude Aqueous Solution of Glycine Betaine C18 5.104765 99.99921 Amide, Crude Example I Bath with C12/C14 pure GB Ester, Pure 4.692969 99.99797 Example II Bath with C12/C14 crude GB Este, 4.496774 99.99681 Crude Example III Bath with C18:1 Oleic GB Ester, 3.3368 99.95395 Crude Example IV Bath with C12 crude GB Amide, 3.311277 99.5117 Crude Example V Toilet liquid with C12/C14 Ester + 3.26794 99.94604 citric acid, Crude Example VI Toilet liquid with C12/C14 + lactic 4.807776 99.99844 acid, Crude Example VII current toilet liquid with APG + 3.71101 99.98055 lactic acid (control)

The following provides a definition of the surfactant compositions of Examples I-VII above.

Example I

Application Bath Dodecyl/Tetradecylbetainate methanesulfonate Ester C12/C14 Pure as surfactant and antimicrobial agent.

Example II

Application Bath Dodecyl/Tetradecylbetainate methanesulfonate Ester C12/C14 crude as surfactant and antimicrobial agent.

Example III

Application Bath (Z)-Betainylaminooctadec-9-ene methanesulfonate C18:1 as surfactant and antimicrobial agent.

Example IV

Application Bath Betainylaminododecane methanesulfonate (C12) Lauric amide Crude mixture as surfactant and antimicrobial agent.

Example V

Application Toilet liquid+citric acid+Dodecyl/Tetradecylbetainate methanesulfonate Ester C12/C14 crude, as surfactant and antimicrobial agent. This composition includes synergistic effects of surfactant and citric acid as chelator.

Example VI

Application Toilet Liquid+lactic acid+Dodecyl/Tetradecylbetainate methanesulfonate Ester C12/C14 crude as surfactant and antimicrobial agent. This composition provides synergistic effects of surfactant and lactic acid as chelator.

Example VII

Application Toilet liquid+lactic acid+APG: current technology as control.

The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. As will be apparent to one skilled in the art, various modifications can be made within the scope of the aforesaid description. Such modifications being within the ability of one skilled in the art form a part of the present invention and are embraced by the appended claims.

Claims

1. Composition including surfactant and antimicrobial properties comprising

(a) at least one cationic glycine betaine component derived from a natural source, wherein said glycine betaine component comprises at least one glycine betaine ester or glycine betaine amide and wherein said glycine betaine component has a hydrophobic group attached to a carboxylate group through an ester or an amide linkage;
(b) at least one chelating agent;
(c) water;
(d) at least one pH adjuster, except when said composition is acidic, then said at least one pH adjuster is optional; and
(e) optionally, one or more of a fragrance, a herbicide or a pesticide.

2. A thickened or gelled surfactant and antimicrobial composition comprising at least one glycine betaine component derived from sugar beets, wherein said glycine betaine component comprises at least one glycine betaine ester or glycine betaine amide and wherein said glycine betaine component has a hydrophobic group, wherein said glycine betaine component is derived from said sugar beets as a crude mixture of C10-C18 alkyl(ene) betainate methane sulfonates or a crude mixture of betainyl amino C10, C12, C14, C16 and/or C18 alkylmethane sulfonates.

3. The composition of claim 1, further comprising sodium chloride, wherein said composition is thickened or gelled based on combination of said sodium chloride and said glycine betaine component in the absence of heating and cooling.

4. The composition of claim 1, wherein said natural source is sugar beets.

5. The composition of claim 1, wherein said glycine betaine ester is one or more alkyl(ene) betainate methane sulfonates, and said glycine betaine amide is one or more of betainyl amino alkyl(ene) methane sulfonates.

6. The composition of claim 5, wherein said glycine betaine component is derived from sugar beets as a crude mixture of C8-C18 alkyl(ene) betainate methane sulfonates or a crude mixture of betainyl amino C8, C10, C12, C14, C16 and/or C18 alkyl methane sulfonates.

7. The composition of claim 2, wherein said crude mixture is semi-purified or purified.

8. The composition of claim 6, wherein said crude mixture is semi-purified or purified.

9. A cleaning and wetting composition comprising at least one cationic glycine betaine component derived from a natural source, wherein the glycine betaine component comprises at least one glycine betaine ester or glycine betaine amide; wherein said glycine betaine component is cleavable to provide an alcohol and a sugar which are biodegradable; and wherein said composition has a surface tension in a range of about 24 to about 35, a contact angle in a range of about 2 to 60 on treated or untreated surfaces, and a minimum inhibition concentration of about 16 to about 500 ppm.

10. The composition of claim 1, wherein a plurality of glycine betaine components are present and such are of different chain lengths.

11. The composition of claim 1, wherein ingredients present in the composition are present in amounts to provide a hard surface cleaning composition.

12. The composition of claim 2, wherein ingredients present in the composition are present in amounts to provide a hard surface cleaning composition.

13. The composition of claim 1, wherein said composition is combined with at least one additional surfactant different from that in (a), and at least one additional component selected from the group consisting of colorants, dispersants, sheeting agents, buffering agents, solvents, and diluents; wherein ingredients present in the composition are present in amounts in combination to provide a hard surface cleaning composition.

14. The composition of claim 2, wherein said composition is combined with at least one additional surfactant different from that in (a), and at least one additional component selected from the group consisting of colorants, dispersants, sheeting agents, buffering agents, solvents, and diluents; wherein ingredients present in the composition are present in amounts in combination to provide a hard surface cleaning composition.

15. Method for preparing a cationic glycine betaine ester compound comprising

(a) providing a raw material from a natural source;
(b) processing said raw material under solvent-free conditions to obtain a crude mixture of glycine betaine esters comprising alkyl(ene) betainate methane sulfonates, wherein said glycine betaine esters have a hydrophobic group attached to a carboxylate group through an ester linkage; and
(c) optionally, semi-purifying or purifying said crude mixture.

16. The method of claim 15, wherein said cationic compound is present in an amount sufficient to remove soil from a hard surface.

17. The method of claim 16, further comprising combining said cationic compound with one or more additional ingredients to provide a cleaning composition.

18. A composition comprising at least one alkyl or alkylene betainate methane sulfonate which has a hydrophobic group attached to a carboxylate group through an ester linkage, wherein the alkyl and the alkylene contain from 10 to 18 carbon atoms; and water as a carrier; wherein said at least one cationic alkyl or alkylene betainate methane sulfonate is cleavable to provide a biodegradable alcohol and biodegradable sugar.

19. A composition comprising at least one betainyl amino alkyl or alkylene methane sulfonate which has a hydrophobic group attached to a carboxylate group through an amide linkage, wherein the alkyl or the alkylene contain from 10 to 18 carbon atoms; and water as a carrier; and wherein said at least one betainyl amino alkyl or alkylene methane sulfonate is cleavable to provide a biodegradable alcohol and biodegradable sugar.

20. The composition of claim 18 wherein said at least one sulfonate is derived from a natural source.

21. The composition of claim 19, wherein said at least one sulfonate is derived from a natural source.

22. The composition of claim 9, further comprising sodium chloride or potassium chloride or magnesium chloride or a natural gum or a polysaccharide in an amount sufficient to thicken said composition.

23. The composition of claim 18, further comprising sodium chloride or potassium chloride or magnesium chloride or a natural gum or a polysaccharide in an amount sufficient to thicken said composition.

24. The composition of claim 19, further comprising sodium chloride or potassium chloride or magnesium chloride or a natural gum or a polysaccharide in an amount sufficient to thicken said composition.

25. The composition of claim 1, wherein said at least one chelating agent is a synergistic blend of sodium citrate and sodium gluconate.

26. The composition of claim 1, wherein the at least one chelating agent is itaconic acid or sodium itaconate.

27. The composition of claim 1, wherein said at least one chelating agent is sodium glutarate.

28. The composition of claim 1, wherein the at least one chelating agent is sodium citrate.

29. The composition of claim 1, wherein the at least one chelating agent is a synergistic blend of at least two chelators selected from the group consisting of sodium citrate, sodium gluconate, itaconic acid, sodium itaconate, and sodium glutarate.

30. The composition of claim 1, wherein said composition has a pH in a range of about 1.4 to about 11.5.

Patent History
Publication number: 20130338227
Type: Application
Filed: Jun 13, 2012
Publication Date: Dec 19, 2013
Inventors: Marie-Esther SAINT VICTOR (Glencoe, IL), Thierry Benvegnu (Rennes), Hakima-Fatima Azira (Le Perreux-sur-Marne)
Application Number: 13/495,431
Classifications
Current U.S. Class: Z Radical Contains Nitrogen (514/551); Nitrogen In R (514/626); Quaternary Ammonium Or Sulfonium Or Iodine Containing Antiseptic Or Biocidal Component (e.g., Elemental Iodine, Etc.) (510/391); Nitrogen In Acid Moiety Other Than As Nitroso Or Isocyanate (e.g., Amino Acid Esters, Etc.) (560/155)
International Classification: A01N 37/44 (20060101); C11D 3/60 (20060101); C07C 309/04 (20060101); C07C 303/32 (20060101); C07C 229/08 (20060101); A01P 1/00 (20060101); C07C 227/18 (20060101);