ANTIGEN DELIVERY PLATFORMS

- Novartis AG

This disclosure provides platforms for delivery of herpes virus proteins to cells, particularly proteins that form complexes in vivo. In some embodiments these proteins and the complexes they form elicit potent neutralizing antibodies. Thus, presentation of herpes virus proteins using the disclosed platforms permits the generation of broad and potent immune responses useful for vaccine development.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 61/391,960, filed on Oct. 11, 2010, the entire teachings of which are incorporated herein by reference.

BACKGROUND

Herpes viruses are widespread and cause a wide range of diseases in humans that in the worst cases can lead to substantial morbidity and mortality, primarily in immunocompromised individuals (e.g., transplant recipients and HIV-infected individuals). Humans are susceptible to infection by at least eight herpes viruses. Herpes simplex virus-1 (HSV-1, HHV-1), Herpes simplex virus-2 (HSV-2, HHV-2) and Varicella zoster virus (VZV, HHV-3) are alpha-subfamily viruses, cytomegalovirus (CMV, HHV-5) and Roseoloviruses (HHV-6 and HHV-7) are beta-subfamily viruses, Epstein-Barr virus (EBV, HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) are gamma-subfamily viruses that infect humans.

CMV infection leads to substantial morbidity and mortality in immunocompromised individuals (e.g., transplant recipients and HIV-infected individuals) and congenital infection can result in devastating defects in neurological development in neonates. CMV envelope glycoproteins gB, gH, gL, gM and gN represent attractive vaccine candidates as they are expressed on the viral surface and can elicit protective virus-neutralizing humoral immune responses. Some CMV vaccine strategies have targeted the major surface glycoprotein B (gB), which can induce a dominant antibody response. (Go and Pollard, JID 197:1631-1633 (2008)). CMV glycoprotein gB can induce a neutralizing antibody response, and a large fraction of the antibodies that neutralize infection of fibroblasts in sera from CMV-positive patients is directed against gB (Britt 1990). Similarly, it has been reported that gH and gM/gN are targets of the immune response to natural infection (Urban et al (1996) J. Gen. Virol. 77(Pt. 7):1537-47; Mach et al (2000) J. Virol. 74(24):11881-92).

Complexes of CMV proteins are also attractive vaccine candidates because they appear to be involved in important processes in the viral life cycle. For example, the gH/gL/gO complex seems to have important roles in both fibroblast and epithelial/endothelial cell entry. The prevailing model suggests that the gH/gL/gO complex mediates infection of fibroblasts. hCMV gO-null mutants produce small plaques on fibroblasts and very low titer virus indicating a role in entry (Dunn (2003), Proc. Natl. Acad. Sci. USA 100:14223-28; Hobom (2000) J. Virol. 74:7720-29). Recent studies suggest that gO is not incorporated into virions with gH/gL, but may act as a molecular chaperone, increasing gH/gL export from the ER to the Golgi apparatus and incorporation into virions (Ryckman (2009) J. Virol 82:60-70). Through pulse-chase experiments, it was shown that small amounts of gO remain bound to gH/gL for long periods of time but most gO dissociates and or is degraded from the gH/gL/gO complex, as it is not found in extracellular virions or secreted from cells. When gO was deleted from a clinical strain of CMV (TR) those viral particles had significantly reduced amounts of gH/gL incorporated into the virion. Additionally, gO deleted from TR virus also inhibited entry into epithelial and endothelial cells, suggesting that gH/gL is also required for epithelial/endothelial cell entry (Wille (2010) J. Virol. 84(5):2585-96).

CMV gH/gL can also associate with UL128, UL130, and UL131A (referred to here as UL131) and form a pentameric complex that is required for entry into several cell types, including epithelial cells, endothelial cells, and dendritic cells (Hahn et al (2004) J. Virol. 78(18):10023-33; Wang and Shenk (2005) Proc. Natl. Acad. Sci. USA 102(50):18153-8; Gerna et al (2005). J. Gen. Virol. 84(Pt 6):1431-6; Ryckman et al (2008) J. Virol. 82:60-70). In contrast, this complex is not required for infection of fibroblasts. Laboratory hCMV isolates carry mutations in the UL128-UL131 locus, and mutations arise in clinical isolates after only a few passages in cultured fibroblasts (Akter et al (2003) J. Gen. Virol. 84(Pt 5):1117-22). During natural infection, the pentameric complex elicits antibodies that neutralize infection of epithelial cells, endothelial cells (and likely any other cell type where the pentameric complex mediates viral entry) with very high potency (Macagno et al (2010) J. Virol. 84(2):1005-13). It also appears that antibodies to this complex contribute significantly to the ability of human sera to neutralize infection of epithelial cells (Genini et al (2011) J. Clin. Virol. 52(2):113-8).

U.S. Pat. No. 5,767,250 discloses methods for making certain CMV protein complexes that contain gH and gL. The complexes are produced by introducing a DNA construct that encodes gH and a DNA construct that encodes gL into a cell so that the gH and gL are co-expressed.

WO 2004/076645 describes recombinant DNA molecules that encode CMV proteins. According to this document, combinations of distinct DNA molecules that encode different CMV proteins, can be introduced into cells to cause co-expression of the encoded CMV proteins. When gM and gN were co-expressed in this way, they formed a disulfide-linked complex. Rabbits immunized with DNA constructs that produced the gM/gN complex or with a DNA construct encoding gB produced equivalent neutralizing antibody responses.

A need exists for nucleic acids that encode two or more herpes virus proteins, for methods of expressing two or more herpes virus proteins in the same cell, and for immunization methods that produce better immune responses.

SUMMARY OF THE INVENTION

The invention relates to platforms for co-delivery of two or more herpesvirus proteins, such as cytomegalovirus (CMV) proteins, to cells, particularly proteins that form complexes in vivo. In one aspect, the invention is a recombinant polycistronic nucleic acid molecules that contain a first sequence encoding a first herpesvirus (e.g., CMV) protein or fragment thereof, and a second sequence encoding a second herpesvirus (e.g., CMV) protein or fragment thereof.

For example, the invention provides a self-replicating RNA molecule comprising a polynucleotide which comprises a) a first nucleotide sequence encoding a first protein or fragment thereof from a herpes virus; and b) a second nucleotide sequence encoding a second protein or fragment thereof from the herpes virus. The first nucleotide sequence and second nucleotide sequence are operably linked to one or more control elements so that when the self-replicating RNA molecule is introduced into a suitable cell, the first and second herpes virus proteins or fragments thereof are produced in an amount sufficient for the formation of a complex in the cell that contains the first and second proteins or fragments. Preferably, the first protein and the second protein are not the same protein or fragments of the same protein, the first protein is not a fragment of the second protein, and the second protein is not a fragment of the first protein. The first nucleotide sequence can be operably linked to a first control element and the second nucleotide sequence can be operably linked to a second control element.

The self-replicating RNA molecule can further comprise a third nucleotide sequence encoding a third protein or fragment thereof from said herpes virus, optionally a fourth nucleotide sequence encoding a fourth protein or fragment thereof from said herpes virus; and optionally a fifth nucleotide sequence encoding a fifth protein or fragment thereof from said herpes virus. When sequences encoding additional proteins or fragments from a herpes virus are present (i.e., the third, fourth and fifth nucleotide sequences) they are operably linked to one or more control elements. In one example of a pentacistronic construct, the first nucleotide sequence is operably linked to a first control element, the second nucleotide sequence is operably linked to a second control element, the third nucleotide sequence is operably linked to a third control element, the fourth nucleotide sequence is operably linked to a fourth control element, and the fifth nucleotide sequence is operably linked to a fifth control element. The control elements present in the construct (e.g., first, second, third, fourth and fifth control elements) can be independently selected from the group consisting of a subgenomic promoter, an IRES, and a viral (e.g., FMDV) 2A site.

The herpes virus can be HSV-1, 1, HSV-2, VZV, EBV type 1, EBV type 2, CMV, HHV-6 type A, HHV-6 type B, HHV-7 and HHV-8. In some embodiments, the recombinant polycistronic nucleic acid molecule (e.g., self replicating RNA) encodes gH or a fragment thereof and gL or a fragment thereof of any one of these herpes viruses. In more particular embodiments, the herpes virus is CMV or VZV.

When the recombinant polycistronic nucleic acid molecule (e.g., self replicating RNA) encodes two or more VZV proteins, the proteins can be selected from the group consisting of gB, gE, gH, gI, gL and a fragment (e.g., of at least 10 amino acids) thereof. In some embodiments, the recombinant polycistronic nucleic acid molecule (e.g., self replicating RNA) encodes VZV gH or a fragment thereof and VZV gL or a fragment thereof.

In a particular example, the invention provides a self-replicating RNA molecule comprising a polynucleotide which comprises a) a first sequence encoding a first cytomegalovirus (CMV) protein or fragment thereof; and b) a second sequence encoding a second CMV protein or fragment thereof. The first sequence and second sequence are operably linked to one or more control elements so that when the self-replicating RNA molecule is introduced into a suitable cell, the first and second CMV proteins are produced in an amount sufficient for the formation of a complex in the cell that contains the first and second CMV proteins or fragments.

The first CMV protein and the second CMV protein are independently selected from the group consisting of gB, gH, gL; gO; gM, gN; UL128, UL130, UL131, and a fragment of any one of the foregoing. Preferably, the first CMV protein and the second CMV protein are not the same protein or fragments of the same protein, the first CMV protein is not a fragment of the second CMV protein, and the second CMV protein is not a fragment of the first CMV protein. If desired, the self-replicating RNA molecule can further comprise a third sequence encoding a third CMV protein, wherein the third sequences is operably linked to a control element. Similarly, additional sequences encoding additional CMV proteins (e.g., a fourth sequence encoding a fourth CMV protein, a fifth sequence encoding a fifth CMV protein) can be included. The control elements can be independently selected from the group consisting of a subgenomic promoter, and IRES, and a viral 2A site.

In some embodiments, the self replicating nucleic acid molecule encodes the CMV proteins gH and gL. In other embodiments, the self-replicating RNA molecule encodes the CMV proteins gH, gL, and gO. In other embodiments, the self-replicating RNA molecule encodes the CMV proteins gH, gL, UL128, UL130 and UL131.

The self replicating RNA molecules can be an alphavirus replicon. In such instances, the alphavirus replicon can be delivered in the form of an alphavirus replicon particle (VRP). The self replicating RNA molecule can also be in the form of a “naked” RNA molecule.

The invention also relates to a recombinant DNA molecule that encodes a self replicating RNA molecule as described herein. In some embodiments, the recombinant DNA molecule is a plasmid. In some embodiments, the recombinant DNA molecule includes a mammalian promoter that drive transcription of the encoded self replicating RNA molecule.

The invention also relates to compositions that comprise a self-replicating RNA molecule as described herein and a pharmaceutically acceptable vehicle. The self-replicating RNA molecule can be “naked.” In some embodiments, the composition comprises a self-replicating RNA molecule that encodes the CMV proteins gH and gL. In other embodiments, the composition further comprises a self-replicating RNA molecule that encodes the CMV protein gB. The composition can also contain an RNA delivery system such as a liposome, a polymeric nanoparticle, an oil-in-water cationic nanoemulsion or combinations thereof. For example, the self-replicating RNA molecule can be encapsulated in a liposome.

In certain embodiments, the composition comprises a VRP that contains a alphavirus replicon that encodes two or more CMV proteins. In some embodiments, the VRP comprises a replicon that encodes CMV gH and gL. If desired, the composition can further comprising a second VRP containing a replicon that encodes CMV gB. The composition can also comprise an adjuvant.

The invention also relates to methods of forming a CMV protein complex. In some embodiments a self-replicating RNA encoding two or more CMV proteins is delivered to a cell, the cell is maintained under conditions suitable for expression of the CMV proteins, wherein a CMV protein complex is formed. In other embodiments, a VRP that contains a self-replicating RNA encoding two or more CMV proteins is delivered to a cell, the cell is maintained under conditions suitable for expression of the CMV proteins, wherein a CMV protein complex is formed. The method can be used to form a CMV protein complex in a cell in vivo.

The invention also relates to a method for inducing an immune response in an individual. In some embodiments, a self-replicating RNA encoding two or more CMV proteins is administered to the individual. The self-replicating RNA molecule can be administered as a composition that contains an RNA delivery system, such as a liposome. In other embodiments, a VRP that contains a self-replicating RNA encoding two or more CMV proteins is administered to the individual. In preferred embodiments, the self-replicating RNA molecule encodes CMV proteins gH and gL. Preferably, the induced immune response comprises the production of neutralizing anti-CMV antibodies. More preferably, the neutralizing antibodies are complement-independent.

The invention also relates to a method of inhibiting CMV entry into a cell comprising contacting the cell with a self-replicating RNA molecule that encodes two or more CMV proteins, such as gH and gL. The cell can be selected from the group consisting of an epithelial cell, an endothelial cell, a fibroblast and combinations thereof. In some embodiments, the cell is contacted with a VRP that contains a self-replicating RNA encoding two or more CMV proteins.

The invention also relates to the use of a self-replicating RNA molecule that encodes two or more CMV proteins (e.g., a VRP, a composition comprising the self-replicating RNA molecule and a liposome) form a CMV protein complex in a cell, to induce an immune response or to inhibit CMV entry into a cell.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic of CMV identifying known glycoprotein complexes involved in CMV entry into target cells. Envelope glycoproteins represent attractive vaccine candidates as they are expressed on the viral surface and can elicit protective and long lasting virus-neutralizing humoral immune responses. The structural glycoproteins mediating these processes can be divided into two classes; those that are conserved throughout the herpes virus family and those that are not. Among those that are conserved are gB, gH, gL, gM and gN. Many of these glycoproteins form complexes with one another (gH/gL/±gO; gH/gL/UL 128/UL 130/UL131; gM/gN) to facilitate localization to the viral surface and to carry out their functions in viral attachment, entry and cell fusion.

FIGS. 2A-2F are schematics of CMV constructs. FIG. 2A, Schematic of the gB constructs (“gB FL”, full-length gB; soluble gBs “gB sol 750” and “gB sol 692”) described in Example 1. Two different soluble versions of gB were constructed; gB sol 750 lacks the transmembrane spanning domain and cytoplasmic domain, gB sol 692 also lacks a hydrophobic region and is similar to the gB sol described in Reap et al. (2007) Clin. Vacc. Immunol. 14:748-55. FIG. 2B, Schematic of the gB replicon vectors used to produce viral replicaton particles (VRPs). FIG. 2C, Schematic of the gH constructs (“gH FL”, full-length gH; soluble gH “gH sol”) described in Example 1. A single soluble version of gH was constructed which lacked the transmembrane spanning domain. FIG. 2D, Schematic of the gH replicon vectors used to produce VRPs. FIG. 2E, Schematic of gL construct described in Example 1. FIG. 2F, Schematic of the gL replicon vector used to produce VRPs. In FIGS. 2B, 2D and 2F, “NSP1,” “NSP2,” “NSP3,” and “NSP4,” are alphavirus nonstructural proteins 1-4, respectively, required for replication of the virus.

FIGS. 3A and 3B show that mice immunized with gB (FL, sol 750, sol 692) or gH (FL, sol) VRPs induced antibody responses that were neutralizing in the presence of guinea pig complement. The neutralization assay was done by pre-incubating the CMV virus strain TB40UL32E-GFP (which encodes the enhanced green fluorescent protein-GFP, Sampaio et al (2005) J. Virol. 79(5):2754-67), with mouse sera and guinea pig complement before infection of ARPE-19 epithelial cells. Five days post-infection, the number of GFP positive cells was determined. FIG. 3A, Serum dilution curves for all sera analyzed in ARPE-19 cells in the presence of complement. FIG. 3B, 50% neutralization titers for the sera samples. Virus incubated with pre-immune sera yielded low neutralization at low dilutions (1:40-1:80). gB (FL, sol 750, sol 692) sera had very strong neutralizing activity with 50% neutralization titers between 1:1800-1:2100. All gB immunized mice yielded a similar neutralization profile. gH (FL, sol) sera had neutralizing activity with 50% neutralization titers around 1:160. See Example 1.

FIG. 4A is a schematic illustration of monocistronic replicons encoding green fluorescent protein (GFP) or red fluorescent protein (mCherry) and a bicistronic replicon encoding GFP and mCherry. “NSP1,” “NSP2,” “NSP3,” and “NSP4,” are alphavirus nonstructural proteins 1-4, respectively. The polycistronic alphavirus replicon system was designed by making modifications to the existing alphavirus replicon system to accommodate multiple subgenomic promoters driving genes of interest.

FIG. 4B are fluorescence plots showing FACS analysis of BHKV cells infected with VRPs containing mono- and bicistronic RNAs. Polycistronic alphavirus VRPs yield more cells expressing both genes of interest at approximately equal amounts (GFP and mCherry; 72.48%) than co-infection of GFP VRP+mCherry VRP (26.30%). See Example 2.

FIG. 5A is a schematic illustration of construction of polycistronic alphavirus replicon constructs encoding gH/gL and gH/gL/gO.

FIG. 5B show that gH/gL form a complex in vitro. VRPs containing replicons encoding gH, gL, gO, gH/gL or gH/gL/gO were produced in BHKV cells. The resulting VRPs were used to infect ARPE-19 cells to demonstrate complex formation in vitro. The alphavirus infected ARPE-19 cells were harvested and analyzed for the presence of gH and gL. ARPE-19 cells infected with VRPs encoding gH/gL produced disulfide linked complexes of gH/gL (see in the absence of DTT, heat). gO did not detectably alter the gH/gL association. The left hand blot shows expression of gH protein. The right hand blot shows expression of gL protein. Molecular weight markers are indicated between the blots. =monomeric gH, =monomeric gL, <=herodimer (gH+gL), *=dimer of heterodimers.

FIG. 5C shows immunoprecipitation of gH and gH/gL complexes from BHKV cells infected with VRPs. Immunoprecipitation was performed using mouse IgG antibodies as a control (Lanes 2, 4, 7, and 10) or mouse anti-gH antibodies (Genway) to immunoprecipitate gH (Lanes 3, 5, 8, and 11). Western blots were performed using pooled rabbit anti-gL antibody and rabbit anti-gH antibody. Lanes 1, 6, and 9 show gH protein (upper band ˜75 kDa) and gL protein (lower band ˜30 kDa) for reference. Lanes 2 and 3 are lysates infected with gH-VRP. Lane 2 shows that the control antibody did not immunoprecipitate gH. Lane 3 shows the anti-gH antibody immunoprecipitated gH. Lanes 4 and 5 are from lysates infected with gL-VRP only. No gH protein was immunoprecipitated. Lanes 7 and 8 are from lysates infected with bicistronic gH/gL-VRP. Lane 8 shows that gL was immunoprecipitated using the gH antibody. (See asterisk). Lanes 10 and 11 are from lysates infected with tricistronic gH/gL/gO-VRP. Lane 11 shows that gL was immunoprecipitated using the gH antibody. (See asterisk). Molecular Weight markers are also shown (MW). See Example 3.

FIG. 6 shows that VRPs that affect gH/gL complex formation in vitro induce potent immune response to CMV which is qualitatively and quantitatively superior to the response to gB VRPs. FIG. 6A and FIG. 6B show serum dilution curves for gH, gL, gO, gH+gL, gH+gL+gO, gH/gL and gH/gL/gO VRP-immunized mice in neutralization of TB40-UL32-EGFP infection of ARPE-19 cells in the presence (FIG. 6A) or absence (FIG. 6B) of complement. Various dilutions of sera were pre-incubated with TB40UL32E-GFP in the presence or absence of guinea pig complement and then added to ARPE-19 epithelial cells. After 5 day infection with the virus, GFP-positive cells were counted. FIG. 6C is a graph showing 50% neutralization titers obtained in the presence and absence of complement. “3wp3,” three weeks post-third immunization. VRPs expressing single CMV proteins (gH, gL, gO VRPs or co-administered gH, gL and gO VRPs) did not enhance neutralizing activity beyond that of gH alone. In contrast, sera from mice immunized with bicistronic gH/gL or tricistronic gH/gL/gO VRPs demonstrated potent neutralizing responses. Moreover, the potent neutralizing responses were similar in the presence and absence of guinea pig complement, showing that polycistronic VRPs successfully induced a complement-independent immune response. See Example 4.

FIG. 7 shows that VRPs that affect gH/gL complex formation in vitro induced antibodies that potently neutralized infection of MRC-5 fibroblast cells. FIG. 7A shows serum dilution curves for gH, gL, gO, gH+gL, gH+gL+gO, gH/gL and gH/gL/gO VRP-immunized mice in MRC-5 cells in the absence of complement. Various dilutions of sera were pre-incubated with TB40GFP in the presence or absence of guinea pig complement and then added to MRC-5 fibroblast cells. After 5 day infection with the virus, GFP-positive cells were counted. FIG. 7B is a graph showing 50% neutralization titers obtained in a MRC-5 fibroblast cell model in the absence of complement. “3wp3,” three weeks post-third immunization. VRPs expressing single CMV proteins (gH, gL, gO VRPs or co-administered gH, gL and gO VRPs) did not enhance neutralizing activity beyond that of gH alone. In contrast, sera from mice immunized with bicistronic gH/gL or tricistronic gH/gL/gO VRPs demonstrated extremely potent neutralizing responses. See Example 4.

FIGS. 8A and 8B are graphs showing that the neutralizing antibodies induced by delivery of the polycistronic VRPs were cross-neutralizing antibodies. The sera from mice immunized with gH/gL and gH/gL/gO VRPs were able to neutralize TB40UL32E-GFP and VR1814 clinical strains of CMV in both ARPE-19 epithelial cells (FIG. 8A) and MRC-5 fibroblast cells (FIG. 8B) in the absence of guinea pig complement in an IE-1 neutralization assay.

FIG. 9 is a graph showing that the neutralizing antibodies elicited against gH FL/gL are complement-independent and similar to natural immunity in titer. Mice were immunized with gB FL or gH FL/gL VRPs at 1×106 IU, 3 times, 3 weeks apart before the terminal bleed. Sera was analyzed for ability to neutralize TB40UL32E-EGFP CMV infection of ARPE-19 cells in the presence and absence of guinea pig complement in a neutralization assay. Unlike antibodies elicited by gB, antibodies elicited by gH FL/gL are complement-independent. Furthermore, gH FL/gL antibodies in these vaccinated mice were similar in titer to those found in naturally infected human subjects.

FIG. 10 shows a plasmid map for pVCR modified gH-SGPgL-SGPgO.

FIG. 11 show a plasmid map for pVCR modified gH-SGPgL.

FIG. 12 show a plasmid map for pVCR modified gH sol-SGPgL.

FIG. 13 show a plasmid map for pVCR modified gH sol-SGPgL-SGPgO.

FIG. 14A-14G show the nucleotide sequence (SEQ ID NO:______) of the plasmid encoding the A160 self-replicating RNA molecule which encodes CMV surface glycoprotein H (gH) and CMV surface glycoprotein L (gL). The nucleotide sequences encoding gH and gL are underlined.

FIG. 15A-15H show the nucleotide sequence (SEQ ID NO:______) of the plasmid encoding the A322 self-replicating RNA molecule which encodes the soluble form of CMV surface glycoprotein H (gHsol) and CMV surface glycoprotein L (gL). The nucleotide sequences encoding gHsol and gL are underlined.

FIG. 16A-16H show the nucleotide sequence (SEQ ID NO:______) of the plasmid encoding the A323 self-replicating RNA molecule which encodes CMV surface glycoprotein B (gB). The nucleotide sequence encoding gB is underlined.

FIGS. 17A and 17B are histograms showing 50% neutralizing titers of sera from mice that were immunized with VRP or self-replicating RNA. FIG. 17A shows 50% neutralizing titers against human CMV strain TB40UL32E-EGFP (“TB40) on ARPE-19 cells, and FIG. 17B shows 50% neutralizing titers against human CMV strain 8819 on ARPE-19 cells

FIG. 18 is a schematic of petacistronic RNA replicons, A526, A527, A554, A555 and A556, that encode five CMV proteins. Subgenomic promoters are shown by arrows, other control elements are labeled.

FIG. 19 is a fluorescence histogram showing that BHKV cells transfected with the A527 RNA replicon express the gH/gL/UL128/UL130/UL131 pentameric complex. Cell stain was performed using antibodies that bind a conformational epitope present on the pentameric complex (Macagno (2010) J. Virol. 84(2):1005-13).

FIG. 20 is a schematic and graph. The schematic shows bicistronic RNA replicons, A160 and A531-A537, that encode CMV gH and gL. The graph shows neutralizing activity of immune sera from mice immunized with VRPs that contained the replicons.

FIG. 21 is a graph showing anti-VZV protein antibody response in immune sera from mice immunized with monocistronic RNA replicons that encoded VZV proteins or bicistronic RNA replicons that encoded VZV gE and gI, or gH and gL. The mice were immunized with 7 μg RNA formulated with a CNE (see, Example 7).

FIG. 22 is a graph showing anti-VZV protein antibody response in immune sera from mice immunized with monocistronic RNA replicons that encoded VZV proteins or bicistronic RNA replicons that encoded VZV gE and gI, or gH and gL. The mice were immunized with 1 μg RNA formulated with a CNE (see, Example 7).

DETAILED DESCRIPTION

The invention provides platforms for co-delivery of herpesvirus proteins, such as cytomegalovirus (CMV) proteins, to cells, particularly proteins that form complexes in vivo. In some embodiments, these proteins and the complexes they form elicit potent neutralizing antibodies. The immune response produced by co-delivery of herpesvirus (e.g., CMV) proteins, particularly those that form complexes in vivo (e.g., gH/gL), can be superior to the immune response produced using other approaches. For example, an RNA molecule (e.g., a replicon) that encodes both gH and gL of CMV can induce better neutralizing titers and/or protective immunity in comparison to an RNA molecule that encodes gB, an RNA molecule that encodes gH, an RNA molecule that encodes gL, or even a mixture of RNA molecules that individually encode gH or gL. Further, a replicon encoding gH/gL/UL128/UL130/UL131 can provide responses superior to those encoding only gH/gL.

In a general aspect, the invention relates to platforms for delivery of two or more herpesvirus (e.g., CMV) proteins to cells. The platforms comprise recombinant polycistronic nucleic acid molecules that contain a first sequence encoding a first herpesvirus (e.g., CMV) protein or fragment thereof, and a second sequence encoding a second herpesvirus (e.g., CMV) protein or fragment thereof. If desired, one or more additional sequences encoding additional proteins, for example, a third herpesvirus (e.g., CMV) protein or fragment thereof, a fourth herpesvirus (e.g., CMV) protein or fragment thereof, a fifth herpesvirus (e.g., CMV) protein or fragment thereof etc. can be present in the recombinant polycistronic nucleic acid molecule. The sequences encoding herpesvirus (e.g., CMV) proteins or fragments thereof are operably linked to one or more suitable control elements so that the herpesvirus (e.g., CMV) proteins or fragments are produced by a cell that contains the recombinant polycistronic nucleic acid.

In the polycistronic nucleic acids described herein, the encoded first and second herpesvirus proteins or fragments, and the encoded third, forth and fifth herpes virus proteins or fragments, if present, generally and preferably are from the same herpes virus. In certain examples, all herpes virus proteins or fragments encoded by a polycistronic vector are CMV proteins or VZV proteins.

The recombinant polycistronic nucleic acid molecules described herein provide the advantage of delivering sequences that encode two or more herpesvirus (e.g., CMV) proteins to a cell, and driving the expression of the herpesvirus (e.g., CMV) proteins at sufficient levels to result in the formation of a protein complex containing the two or more herpesvirus (e.g., CMV) proteins in vivo. Using this approach, the two or more encoded herpesvirus (e.g., CMV) proteins can be expressed at sufficient intracellular levels for the formation of herpesvirus (e.g., CMV) protein complexes (e.g., gH/gL). For example, the encoded herpesvirus (e.g., CMV) proteins or fragments thereof can be expressed at substantially the same level, or if desired, at different levels by selecting appropriate expression control sequences (e.g., promoters, IRES, 2A site etc.). This is significantly more efficient way to produce protein complexes in vivo than by co-delivering two or more individual DNA molecules that encode different herpesvirus (e.g., CMV) to the same cell, which can be inefficient and highly variable. See, e.g., WO 2004/076645.

The recombinant polycistronic nucleic acid molecule can be based on any desired nucleic acid such as DNA (e.g., plasmid or viral DNA) or RNA. Any suitable DNA or RNA can be used as the nucleic acid vector that carries the open reading frames that encode herpesvirus (e.g., CMV) proteins or fragments thereof. Suitable nucleic acid vectors have the capacity to carry and drive expression of more than one protein gene. Such nucleic acid vectors are known in the art and include, for example, plasmids, DNA obtained from DNA viruses such as vaccinia virus vectors (e.g., NYVAC, see U.S. Pat. No. 5,494,807), and poxvirus vectors (e.g., ALVAC canarypox vector, Sanofi Pasteur), and RNA obtained from suitable RNA viruses such as an alphavirus. If desired, the recombinant polycistronic nucleic acid molecule can be modified, e.g., contain modified nucleobases and or linkages as described further herein. Preferably, the polycistronic nucleic acid molecule is an RNA molecule.

In some aspects, the recombinant polycistronic nucleic acid molecule is a DNA molecule such as plasmid DNA. Such DNA molecules can, for example, encode a polycistronic replicon and contain a mammalian promoter that drives transcription of the replicon. Recombinant polycistronic nucleic acid molecules or this type can be administered to a mammal and then be transcribed in situ to produce a polycistronic replicon that expresses herpesvirus proteins.

In some aspects, the invention is a polycistronic nucleic acid molecule that contains a sequence encoding a herpesvirus gH or fragment thereof, and a herpesvirus gL or a fragment thereof. The gH and gL proteins, or fragments thereof, can be from any desired herpes virus such as HSV-1, HSV-2, VZV, EBV type 1, EBV type 2, CMV, HHV-6 type A, HHV-6 type B, HHV-7, KSHV, and the like. Preferably, the herpesvirus is VZV, HSV-2, HSV-1, EBV (type 1 or type 2) or CMV. More preferably, the herpesvirus is VZV, HSV-2 or CMV. Even more preferably, the herpesvirus is CMV. The sequences of gH and gL proteins and of nucleic acids that encode the proteins from these viruses are well known in the art. Exemplary sequences are identified in Table 1. The polycistronic nucleic acid molecule can contain a first sequence encoding a gH protein disclosed in Table 1, or a fragment thereof, or a sequence that is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical thereto. The polycistronic nucleic acid molecule can also contain a second sequence encoding a gL protein disclosed in Table 1, or a fragment thereof, or a sequence that is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical thereto.

TABLE 1 Virus gH accession number gL accession number HSV-1 (HHV-1) NP_044623.1 NP_044602.1 HSV-2 (HHV-2) NP_044491.1 NP_044470.1 VZV (HHV-3) NP_040160.1 NP_040182.1 EBV type 1 (HHV-4) YP_401700.1 YP_401678.1 EBV type 2 (HHV-4) YP_001129496.1 YP_001129472.1 CMV (HHV-5) YP_081523.1 YP_081555.1 HHV-6 type A NP_042941.1 NP_042975.1 HHV-6 type B NP_050229.1 NP_050261.1 HHV-7 YP_073788.1 YP_073820.1 KSHV (HHV-8) YP_001129375.1 YP_001129399.1

In this description of the invention, to facilitate a clear description of the nucleic acids, particular sequence components are referred to as a “first sequence,” a “second sequence,” etc. It is to be understood that the first and second sequences can appear in any desired order or orientation, and that no particular order or orientation is intended by the words “first”, “second” etc. Similarly, protein complexes are referred to by listing the proteins that are present in the complex, e.g., gH/gL. This is intended to describe the complex by the proteins that are present in the complex and does not indicate relative amounts of the proteins or the order or orientation of sequences that encode the proteins on a recombinant nucleic acid.

Certain preferred embodiments, such as alphavirus VRP and self-replicating RNA that contain sequences encoding CMV proteins, are further described herein. It is intended that the sequences encoding CMV proteins in such preferred embodiments, can be replaced with sequences encoding proteins, such as gH and gL from other herpesviruses.

Alphavirus VRP Platforms

In some embodiments, CMV proteins are delivered to a cell using alphavirus replicon particles (VRP) which employ polycistronic replicons (or vectors) as described below. As used herein, “polycistronic” includes bicistronic vectors as well as vectors comprising three or more cistrons. Cistrons in a polycistronic vector can encode CMV proteins from the same CMV strains or from different CMV strains. The cistrons can be oriented in any 5′-3′ order. Any nucleotide sequence encoding a CMV protein can be used to produce the protein. Exemplary sequences useful for preparing the polycistronic nucleic acids that encode two or more CMV proteins or fragments thereof are described herein.

As used herein, the term “alphavirus” has its conventional meaning in the art and includes various species such as Venezuelan equine encephalitis virus (VEE; e.g., Trinidad donkey, TC83CR, etc.), Semliki Forest virus (SFV), Sindbis virus, Ross River virus, Western equine encephalitis virus, Eastern equine encephalitis virus, Chikungunya virus, S.A. AR86 virus, Everglades virus, Mucambo virus, Barmah Forest virus, Middelburg virus, Pixuna virus, O′ nyong-nyong virus, Getah virus, Sagiyama virus, Bebaru virus, Mayaro virus, Una virus, Aura virus, Whataroa virus, Banbanki virus, Kyzylagach virus, Highlands J virus, Fort Morgan virus, Ndumu virus, and Buggy Creek virus. The term alphavirus may also include chimeric alphaviruses (e.g., as described by Perri et al., (2003) J. Virol. 77(19):10394-403) that contain genome sequences from more than one alphavirus.

An “alphavirus replicon particle” (VRP) or “replicon particle” is an alphavirus replicon packaged with alphavirus structural proteins.

An “alphavirus replicon” (or “replicon”) is an RNA molecule which can direct its own amplification in vivo in a target cell. The replicon encodes the polymerase(s) which catalyze RNA amplification (nsP1, nsP2, nsP3, nsP4) and contains cis RNA sequences required for replication which are recognized and utilized by the encoded polymerase(s). An alphavirus replicon typically contains the following ordered elements: 5′ viral sequences required in cis for replication, sequences which encode biologically active alphavirus nonstructural proteins (nsP1, nsP2, nsP3, nsP4), 3′ viral sequences required in cis for replication, and a polyadenylate tract. An alphavirus replicon also may contain one or more viral subgenomic “junction region” promoters directing the expression of heterologous nucleotide sequences, which may, in certain embodiments, be modified in order to increase or reduce viral transcription of the subgenomic fragment and heterologous sequence(s) to be expressed. Other control elements can be used, as described below.

Alphavirus replicons encoding CMV proteins are used to produce VRPs. Such alphavirus replicons comprise sequences encoding at least two CMV proteins or fragments thereof. These sequences are operably linked to one or more suitable control elements, such as a subgenomic promoter, an IRES (e.g., EMCV, EV71), and a viral 2A site, which can be the same or different. Delivery of components of these complexes using the polycistronic vectors disclosed herein is an efficient way of providing nucleic acid sequences that encode two or more CMV proteins in desired relative amounts; whereas if multiple alphavirus constructs were used to deliver individual CMV proteins for complex formation, efficient co-delivery of VRPs would be required.

Any combination of suitable control elements can be used in any order. In one example, a single subgenomic promoter is operable linked to two sequences encoding two different CMV proteins, and an IRES is positioned between the two coding sequences. In another example, two sequences that encode two different CMV proteins are operably linked to separate promoters. In still another example, the two sequences that encode two different CMV proteins are operably linked to a single promoter. The two sequences that encode two different CMV proteins are linked to each other through a nucleotide sequence encoding a viral 2A site, and thus encode a single amino acid chain that contain the amino acid sequences of both CMV proteins. The viral 2A site in this context is used to generate two CMV proteins from encoded polyprotein.

Subgenomic Promoters

Subgenomic promoters, also known as junction region promoters can be used to regulate protein expression. Alphaviral subgenomic promoters regulate expression of alphaviral structural proteins. See Strauss and Strauss, “The alphaviruses: gene expression, replication, and evolution,” Microbiol Rev. 1994 September; 58(3):491-562. A polycistronic polynucleotide can comprise a subgenomic promoter from any alphavirus. When two or more subgenomic promoters are present in a polycistronic polynucleotide, the promoters can be the same or different. For example, the subgenomic promoter can have the sequence CTCTCTACGGCTAACCTGAATGGA (SEQ ID NO:______). In certain embodiments, subgenomic promoters can be modified in order to increase or reduce viral transcription of the proteins. See U.S. Pat. No. 6,592,874.

Internal Ribosomal Entry Site (IRES)

In some embodiments, one or more control elements is an internal ribosomal entry site (IRES). An IRES allows multiple proteins to be made from a single mRNA transcript as ribosomes bind to each IRES and initiate translation in the absence of a 5″-cap, which is normally required to initiate translation of protein in eukaryotic cells. For example, the IRES can be EV71 or EMCV.

Viral 2A Site

The FMDV 2A protein is a short peptide that serves to separate the structural proteins of FMDV from a nonstructural protein (FMDV 2B). Early work on this peptide suggested that it acts as an autocatalytic protease, but other work (e.g., Donnelly et al., (2001), J. Gen. Virol. 82, 1013-1025) suggest that this short sequence and the following single amino acid of FMDV 2B (Gly) acts as a translational stop-start. Regardless of the precise mode of action, the sequence can be inserted between two polypeptides, and effect the production of multiple individual polypeptides from a single open reading frame. In the context of this invention, FMDV 2A sequences can be inserted between the sequences encoding at least two CMV proteins, allowing for their synthesis as part of a single open reading frame. For example, the open reading frame may encode a gH protein and a gL protein separated by a sequence encoding a viral 2A site. A single mRNA is transcribed then, during the translation step, the gH and gL peptides are produced separately due to the activity of the viral 2A site. Any suitable viral 2A sequence may be used. Often, a viral 2A site comprises the consensus sequence Asp-Val/Ile-Glu-X-Asn-Pro-Gly-Pro, where X is any amino acid (SEQ ID NO:______). For example, the Foot and Mouth Disease Virus 2A peptide sequence is DVESNPGP (SEQ ID NO:______). See Trichas et al., “Use of the viral 2A peptide for bicistronic expression in transgenic mice,” BMC Biol. 2008 Sep. 15; 6:40, and Halpin et al., “Self-processing 2A-polyproteins—a system for co-ordinate expression of multiple proteins in transgenic plants,” Plant J. 1999 February; 17(4):453-9.

In some embodiments an alphavirus replicon is a chimeric replicon, such as a VEE-Sindbis chimeric replicon (VCR) or a VEE strain TC83 replicon (TC83R) or a TC83-Sindbis chimeric replicon (TC83CR). In some embodiments a VCR contains the packaging signal and 3′ UTR from a Sindbis replicon in place of sequences in nsP3 and at the 3′ end of the VEE replicon; see Perri et al., J. Virol. 77, 10394-403, 2003. In some embodiments, a TC83CR contains the packaging signal and 3′ UTR from a Sindbis replicon in place of sequences in nsP3 and at the 3′ end of aVEE strain TC83replicon.

Producing VRPs

Methods of preparing VRPs are well known in the art. In some embodiments an alphavirus is assembled into a VRP using a packaging cell. An “alphavirus packaging cell” (or “packaging cell”) is a cell that contains one or more alphavirus structural protein expression cassettes and that produces recombinant alphavirus particles after introduction of an alphavirus replicon, eukaryotic layered vector initiation system (e.g., U.S. Pat. No. 5,814,482), or recombinant alphavirus particle. The one or more different alphavirus structural protein cassettes serve as “helpers” by providing the alphavirus structural proteins. An “alphavirus structural protein cassette” is an expression cassette that encodes one or more alphavirus structural proteins and comprises at least one and up to five copies (i.e., 1, 2, 3, 4, or 5) of an alphavirus replicase recognition sequence. Structural protein expression cassettes typically comprise, from 5′ to 3′, a 5′ sequence which initiates transcription of alphavirus RNA, an optional alphavirus subgenomic region promoter, a nucleotide sequence encoding the alphavirus structural protein, a 3′ untranslated region (which also directs RNA transcription), and a polyA tract. See, e.g., WO 2010/019437.

In preferred embodiments two different alphavirus structural protein cassettes (“split” defective helpers) are used in a packaging cell to minimize recombination events which could produce a replication-competent virus. In some embodiments an alphavirus structural protein cassette encodes the capsid protein (C) but not either of the glycoproteins (E2 and E1). In some embodiments an alphavirus structural protein cassette encodes the capsid protein and either the E1 or E2 glycoproteins (but not both). In some embodiments an alphavirus structural protein cassette encodes the E2 and E1 glycoproteins but not the capsid protein. In some embodiments an alphavirus structural protein cassette encodes the E1 or E2 glycoprotein (but not both) and not the capsid protein.

In some embodiments, VRPs are produced by the simultaneous introduction of replicons and helper RNAs into cells of various sources. Under these conditions, for example, BHKV cells (1×107) are electroporated at, for example, 220 volts, 1000 μF, 2 manually pulses with 10 μg replicon RNA:6 μg defective helper Cap RNA:10 μg defective helper Gly RNA, alphavirus containing supernatant is collected ˜24 hours later. Replicons and/or helpers can also be introduced in DNA forms which launch suitable RNAs within the transfected cells.

A packaging cell may be a mammalian cell or a non-mammalian cell, such as an insect (e.g., SF9) or avian cell (e.g., a primary chick or duck fibroblast or fibroblast cell line). See U.S. Pat. No. 7,445,924. Avian sources of cells include, but are not limited to, avian embryonic stem cells such as EB66® (VIVALIS); chicken cells, including chicken embryonic stem cells such as EBx® cells, chicken embryonic fibroblasts, and chicken embryonic germ cells; duck cells such as the AGE1.CR and AGE1.CR.pIX cell lines (ProBioGen) which are described, for example, in Vaccine 27:4975-4982 (2009) and WO2005/042728); and geese cells. In some embodiments, a packaging cell is a primary duck fibroblast or duck retinal cell line, such as AGE.CR (PROBIOGEN).

Mammalian sources of cells for simultaneous nucleic acid introduction and/or packaging cells include, but are not limited to, human or non-human primate cells, including PerC6 (PER.C6) cells (CRUCELL N.V.), which are described, for example, in WO 01/38362 and WO 02/40665, as well as deposited under ECACC deposit number 96022940); MRC-5 (ATCC CCL-171); WI-38 (ATCC CCL-75); fetal rhesus lung cells (ATCC CL-160); human embryonic kidney cells (e.g., 293 cells, typically transformed by sheared adenovirus type 5 DNA); VERO cells from monkey kidneys); cells of horse, cow (e.g., MDBK cells), sheep, dog (e.g., MDCK cells from dog kidneys, ATCC CCL34 MDCK (NBL2) or MDCK 33016, deposit number DSM ACC 2219 as described in WO 97/37001); cat, and rodent (e.g., hamster cells such as BHK21-F, HKCC cells, or Chinese hamster ovary (CHO) cells), and may be obtained from a wide variety of developmental stages, including for example, adult, neonatal, fetal, and embryo.

In some embodiments a packaging cell is stably transformed with one or more structural protein expression cassette(s). Structural protein expression cassettes can be introduced into cells using standard recombinant DNA techniques, including transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, “gene gun” methods, and DEAE- or calcium phosphate-mediated transfection. Structural protein expression cassettes typically are introduced into a host cell as DNA molecules, but can also be introduced as in vitro-transcribed RNA. Each expression cassette can be introduced separately or substantially simultaneously.

In some embodiments, stable alphavirus packaging cell lines are used to produce recombinant alphavirus particles. These are alphavirus-permissive cells comprising DNA cassettes expressing the defective helper RNA stably integrated into their genomes. See Polo et al., Proc. Natl. Acad. Sci. USA 96, 4598-603, 1999. The helper RNAs are constitutively expressed but the alphavirus structural proteins are not, because the genes are under the control of an alphavirus subgenomic promoter (Polo et al., 1999). Upon introduction of an alphavirus replicon into the genome of a packaging cell by transfection or VRP infection, replicase enzymes are produced and trigger expression of the capsid and glycoprotein genes on the helper RNAs, and output VRPs are produced. Introduction of the replicon can be accomplished by a variety of methods, including both transfection and infection with a seed stock of alphavirus replicon particles. The packaging cell is then incubated under conditions and for a time sufficient to produce packaged alphavirus replicon particles in the culture supernatant.

Thus, packaging cells allow VRPs to act as self-propagating viruses. This technology allows VRPs to be produced in much the same manner, and using the same equipment, as that used for live attenuated vaccines or other viral vectors that have producer cell lines available, such as replication-incompetent adenovirus vectors grown in cells expressing the adenovirus E1A and E1B genes.

In some embodiments, a two-step process is used: the first step comprises producing a seed stock of alphavirus replicon particles by transfecting a packaging cell with a replicon RNA or plasmid DNA-based replicon. A much larger stock of replicon particles is then produced in a second step, by infecting a fresh culture of packaging cells with the seed stock. This infection can be performed using various multiplicities of infection (MOI), including a MOI=0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 3, 5, 10 or 20. In some embodiments infection is performed at a low MOI (e.g., less than 1). Over time, replicon particles can be harvested from packaging cells infected with the seed stock. In some embodiments, replicon particles can then be passaged in yet larger cultures of naive packaging cells by repeated low-multiplicity infection, resulting in commercial scale preparations with the same high titer.

Self-Replicating RNA Platforms

Two or more CMV proteins can be produced by expression of recombinant nucleic acids that encode the proteins in the cells of a subject. Preferably, the recombinant nucleic acid molecules encode two or more CMV proteins, e.g., are polycistronic. As defined above, “polycistronic” includes bicistronic. Preferred nucleic acids that can be administered to a subject to cause the production of CMV proteins are self-replicating RNA molecules. The self-replicating RNA molecules of the invention are based on the genomic RNA of RNA viruses, but lack the genes encoding one or more structural proteins. The self-replicating RNA molecules are capable of being translated to produce non-structural proteins of the RNA virus and CMV proteins encoded by the self-replicating RNA.

The self-replicating RNA generally contains at least one or more genes selected from the group consisting of viral replicase, viral proteases, viral helicases and other nonstructural viral proteins, and also comprise 5′- and 3′-end cis-active replication sequences, and a heterologous sequences that encodes two or more desired CMV proteins. A subgenomic promoter that directs expression of the heterologous sequence(s) can be included in the self-replicating RNA. If desired, a heterologous sequence may be fused in frame to other coding regions in the self-replicating RNA and/or may be under the control of an internal ribosome entry site (IRES).

Self-replicating RNA molecules of the invention can be designed so that the self-replicating RNA molecule cannot induce production of infectious viral particles. This can be achieved, for example, by omitting one or more viral genes encoding structural proteins that are necessary for the production of viral particles in the self-replicating RNA. For example, when the self-replicating RNA molecule is based on an alpha virus, such as Sindbis virus (SIN), Semliki forest virus and Venezuelan equine encephalitis virus (VEE), one or more genes encoding viral structural proteins, such as capsid and/or envelope glycoproteins, can be omitted. If desired, self-replicating RNA molecules of the invention can be designed to induce production of infectious viral particles that are attenuated or virulent, or to produce viral particles that are capable of a single round of subsequent infection.

A self-replicating RNA molecule can, when delivered to a vertebrate cell even without any proteins, lead to the production of multiple daughter RNAs by transcription from itself (or from an antisense copy of itself). The self-replicating RNA can be directly translated after delivery to a cell, and this translation provides a RNA-dependent RNA polymerase which then produces transcripts from the delivered RNA. Thus the delivered RNA leads to the production of multiple daughter RNAs. These transcripts are antisense relative to the delivered RNA and may be translated themselves to provide in situ expression of encoded CMV protein, or may be transcribed to provide further transcripts with the same sense as the delivered RNA which are translated to provide in situ expression of the encoded CMV protein(s).

One suitable system for achieving self-replication is to use an alphavirus-based RNA replicon, such as an alphavirus replicon as described herein. These + stranded replicons are translated after delivery to a cell to produce a replicase (or replicase-transcriptase). The replicase is translated as a polyprotein which auto cleaves to provide a replication complex which creates genomic − strand copies of the + strand delivered RNA. These − strand transcripts can themselves be transcribed to give further copies of the + stranded parent RNA and also to give rise to one or more subgenomic transcript which encodes two or more CMV proteins. Translation of the subgenomic transcript thus leads to in situ expression of the CMV protein(s) by the infected cell. Suitable alphavirus replicons can use a replicase from a Sindbis virus, a Semliki forest virus, an eastern equine encephalitis virus, a Venezuelan equine encephalitis virus, etc.

A preferred self-replicating RNA molecule thus encodes (i) a RNA-dependent RNA polymerase which can transcribe RNA from the self-replicating RNA molecule and (ii) two or more CMV proteins or fragments thereof. The polymerase can be an alphavirus replicase e.g. comprising alphavirus protein nsP4. Protein nsP4 is the key catalytic component of the replicase.

Whereas natural alphavirus genomes encode structural virion proteins in addition to the non-structural replicase polyprotein, it is preferred that an alphavirus based self-replicating RNA molecule of the invention does not encode all alphavirus structural proteins. Thus the self replicating RNA can lead to the production of genomic RNA copies of itself in a cell, but not to the production of RNA-containing alphavirus virions. The inability to produce these virions means that, unlike a wild-type alphavirus, the self-replicating RNA molecule cannot perpetuate itself in infectious form. The alphavirus structural proteins which are necessary for perpetuation in wild-type viruses are absent from self replicating RNAs of the invention and their place is taken by gene(s) encoding the desired gene product (CMV protein or fragment thereof), such that the subgenomic transcript encodes the desired gene product rather than the structural alphavirus virion proteins.

Thus a self-replicating RNA molecule useful with the invention have two sequences that encode different CMV proteins or fragments thereof. The sequences encoding the CMV proteins or fragments can be in any desired orientation, and can be operably linked to the same or separate promoters. If desired, the sequences encoding the CMV proteins or fragments can be part of a single open reading frame. In some embodiments the RNA may have one or more additional (downstream) sequences or open reading frames e.g. that encode other additional CMV proteins or fragments thereof. A self-replicating RNA molecule can have a 5′ sequence which is compatible with the encoded replicase.

In one aspect, the self-replicating RNA molecule is derived from or based on an alphavirus, such as an alphavirus replicon as defined herein. In other aspects, the self-replicating RNA molecule is derived from or based on a virus other than an alphavirus, preferably, a positive-stranded RNA viruses, and more preferably a picornavirus, flavivirus, rubivirus, pestivirus, hepacivirus, calicivirus, or coronavirus. Suitable wild-type alphavirus sequences are well-known and are available from sequence depositories, such as the American Type Culture Collection, Rockville, Md. Representative examples of suitable alphaviruses include Aura (ATCC VR-368), Bebaru virus (ATCC VR-600, ATCC VR-1240), Cabassou (ATCC VR-922), Chikungunya virus (ATCC VR-64, ATCC VR-1241), Eastern equine encephalomyelitis virus (ATCC VR-65, ATCC VR-1242), Fort Morgan (ATCC VR-924), Getah virus (ATCC VR-369, ATCC VR-1243), Kyzylagach (ATCC VR-927), Mayaro virus (ATCC VR-66; ATCC VR-1277), Middleburg (ATCC VR-370), Mucambo virus (ATCC VR-580, ATCC VR-1244), Ndumu (ATCC VR-371), Pixuna virus (ATCC VR-372, ATCC VR-1245), Ross River virus (ATCC VR-373, ATCC VR-1246), Semliki Forest (ATCC VR-67, ATCC VR-1247), Sindbis virus (ATCC VR-68, ATCC VR-1248), Tonate (ATCC VR-925), Triniti (ATCC VR-469), Una (ATCC VR-374), Venezuelan equine encephalomyelitis (ATCC VR-69, ATCC VR-923, ATCC VR-1250 ATCC VR-1249, ATCC VR-532), Western equine encephalomyelitis (ATCC VR-70, ATCC VR-1251, ATCC VR-622, ATCC VR-1252), Whataroa (ATCC VR-926), and Y-62-33 (ATCC VR-375).

The self-replicating RNA molecules of the invention can contain one or more modified nucleotides and therefore have improved stability and be resistant to degradation and clearance in vivo, and other advantages. Without wishing to be bound by any particular theory, it is believed that self-replicating RNA molecules that contain modified nucleotides avoid or reduce stimulation of endosomal and cytoplasmic immune receptors when the self-replicating RNA is delivered into a cell. This permits self-replication, amplification and expression of protein to occur. This also reduces safety concerns relative to self-replicating RNA that does not contain modified nucleotides, because the self-replicating RNA that contains modified nucleotides reduce activation of the innate immune system and subsequent undesired consequences (e.g., inflammation at injection site, irritation at injection site, pain, and the like). It is also believed that the RNA molecules produced as a result of self-replication are recognized as foreign nucleic acids by the cytoplasmic immune receptors. Thus, self-replicating RNA molecules that contain modified nucleotides provide for efficient amplification of the RNA in a host cell and expression of CMV proteins, as well as adjuvant effects.

The RNA sequence can be modified with respect to its codon usage, for example, to increase translation efficacy and half-life of the RNA. A poly A tail (e.g., of about 30 adenosine residues or more) may be attached to the 3′ end of the RNA to increase its half-life. The 5′ end of the RNA may be capped with a modified ribonucleotide with the structure m7G (5′) ppp (5′) N (cap 0 structure) or a derivative thereof, which can be incorporated during RNA synthesis or can be enzymatically engineered after RNA transcription (e.g., by using Vaccinia Virus Capping Enzyme (VCE) consisting of mRNA triphosphatase, guanylyl-transferase and guanine-7-methylransferase, which catalyzes the construction of N7-monomethylated cap 0 structures). Cap 0 structure can provide stability and translational efficacy to the RNA molecule. The 5′ cap of the RNA molecule may be further modified by a 2′-O-Methyltransferase which results in the generation of a cap 1 structure (m7 Gppp [m2′-O] N), which may further increases translation efficacy. A cap 1 structure may also increase in vivo potency.

As used herein, “modified nucleotide” refers to a nucleotide that contains one or more chemical modifications (e.g., substitutions) in or on the nitrogenous base of the nucleoside (e.g., cytosine (C), thymine (T) or uracil (U), adenine (A) or guanine (G)). If desired, a self replicating RNA molecule can contain chemical modifications in or on the sugar moiety of the nucleoside (e.g., ribose, deoxyribose, modified ribose, modified deoxyribose, six-membered sugar analog, or open-chain sugar analog), or the phosphate.

The self-replicating RNA molecules can contain at least one modified nucleotide, that preferably is not part of the 5′ cap (e.g., in addition to the modification that are part of the 5″ cap). Accordingly, the self-replicating RNA molecule can contain a modified nucleotide at a single position, can contain a particular modified nucleotide (e.g., pseudouridine, N6-methyladenosine, 5-methylcytidine, 5-methyluridine) at two or more positions, or can contain two, three, four, five, six, seven, eight, nine, ten or more modified nucleotides (e.g., each at one or more positions). Preferably, the self-replicating RNA molecules comprise modified nucleotides that contain a modification on or in the nitrogenous base, but do not contain modified sugar or phosphate moieties.

In some examples, between 0.001% and 99% or 100% of the nucleotides in a self-replicating RNA molecule are modified nucleotides. For example, 0.001%-25%, 0.01%-25%, 0.1%-25%, or 1%-25% of the nucleotides in a self-replicating RNA molecule are modified nucleotides.

In other examples, between 0.001% and 99% or 100% of a particular unmodified nucleotide in a self-replicating RNA molecule is replaced with a modified nucleotide. For example, about 1% of the nucleotides in the self-replicating RNA molecule that contain uridine can be modified, such as by replacement of uridine with pseudouridine. In other examples, the desired amount (percentage) of two, three, or four particular nucleotides (nucleotides that contain uridine, cytidine, guanosine, or adenine) in a self-replicating RNA molecule are modified nucleotides. For example, 0.001%-25%, 0.01%-25%, 0.1%-25, or 1%-25% of a particular nucleotide in a self-replicating RNA molecule are modified nucleotides. In other examples, 0.001%-20%, 0.001%-15%, 0.001%-10%, 0.01%-20%, 0.01%-15%, 0.1%-25, 0.01%-10%, 1%-20%, 1%-15%, 1%-10%, or about 5%, about 10%, about 15%, about 20% of a particular nucleotide in a self-replicating RNA molecule are modified nucleotides.

It is preferred that less than 100% of the nucleotides in a self-replicating RNA molecule are modified nucleotides. It is also preferred that less than 100% of a particular nucleotide in a self-replicating RNA molecule are modified nucleotides. Thus, preferred self-replicating RNA molecules comprise at least some unmodified nucleotides.

There are more than 96 naturally occurring nucleoside modifications found on mammalian RNA. See, e.g., Limbach et al., Nucleic Acids Research, 22(12):2183-2196 (1994). The preparation of nucleotides and modified nucleotides and nucleosides are well-known in the art, e.g. from U.S. Pat. Nos. 4,373,071, 4,458,066, 4,500,707, 4,668,777, 4,973,679, 5,047,524, 5,132,418, 5,153,319, 5,262,530, 5,700,642 all of which are incorporated herein by reference in their entirety, and many modified nucleosides and modified nucleotides are commercially available.

Modified nucleobases which can be incorporated into modified nucleosides and nucleotides and be present in the RNA molecules include: m5C (5-methylcytidine), m5U (5-methyluridine), m6A (N6-methyladenosine), s2U (2-thiouridine), Um (2′-O-methyluridine), m1A (1-methyladenosine); m2A (2-methyladenosine); Am (2-1-O-methyladenosine); ms2m6A (2-methylthio-N6-methyladenosine); i6A (N6-isopentenyladenosine); ms2i6A (2-methylthio-N6 isopentenyladenosine); io6A (N6-(cis-hydroxyisopentenyl)adenosine); ms2io6A (2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine); g6A (N6-glycinylcarbamoyladenosine); t6A (N6-threonyl carbamoyladenosine); ms2t6A (2-methylthio-N6-threonyl carbamoyladenosine); m6t6A (N6-methyl-N6-threonylcarbamoyladenosine); hn6A (N6-hydroxynorvalylcarbamoyl adenosine); ms2hn6A (2-methylthio-N6-hydroxynorvalyl carbamoyladenosine); Ar(p) (2′-O-ribosyladenosine (phosphate)); I (inosine); m1I (1-methylinosine); m′Im (1,2′-O-dimethylinosine); m3C (3-methylcytidine); Cm (2T-O-methylcytidine); s2C (2-thiocytidine); ac4C(N4-acetylcytidine); f5C (5-formylcytidine); m5Cm (5,2-O-dimethylcytidine); ac4Cm (N4acetyl2TOmethylcytidine); k2C (lysidine); m1G (1-methylguanosine); m2G (N2-methylguanosine); m7G (7-methylguanosine); Gm (2′-O-methylguanosine); m22G (N2,N2-dimethylguanosine); m2Gm (N2,2′-O-dimethylguanosine); m22Gm (N2,N2,2′-O-trimethylguanosine); Gr(p) (2′-O-ribosylguanosine (phosphate)); yW (wybutosine); o2yW (peroxywybutosine); OHyW (hydroxywybutosine); OHyW* (undermodified hydroxywybutosine); imG (wyosine); mimG (methylguanosine); Q (queuosine); oQ (epoxyqueuosine); galQ (galtactosyl-queuosine); manQ (mannosylqueuosine); preQo (7-cyano-7-deazaguanosine); preQi (7-aminomethyl-7-deazaguanosine); G* (archaeosine); D (dihydrouridine); m5Um (5,2′-O-dimethyluridine); s4U (4-thiouridine); m5s2U (5-methyl-2-thiouridine); s2Um (2-thio-2′-O-methyluridine); acp3U (3-(3-amino-3-carboxypropyl)uridine); ho5U (5-hydroxyuridine); mo5U (5-methoxyuridine); cmo5U (uridine 5-oxyacetic acid); mcmo5U (uridine 5-oxyacetic acid methyl ester); chm5U (5-(carboxyhydroxymethyl)uridine)); mchm5U (5-(carboxyhydroxymethyl)uridine methyl ester); mcm5U (5-methoxycarbonyl methyluridine); mcm5Um (S-methoxycarbonylmethyl-2-O-methyluridine); mcm5s2U (5-methoxycarbonylmethyl-2-thiouridine); nm5s2U (5-aminomethyl-2-thiouridine); mnm5U (5-methylaminomethyluridine); mnm5s2U (5-methylaminomethyl-2-thiouridine); mnm5se2U (5-methylaminomethyl-2-selenouridine); ncm5U (5-carbamoylmethyl uridine); ncm5Um (5-carbamoylmethyl-2′-O-methyluridine); cmnm5U (5-carboxymethylaminomethyluridine); cnmm5Um (5-carboxymethylaminomethyl-2-L-O-methyluridine); cmnm5s2U (5-carboxymethylaminomethyl-2-thiouridine); m62A (N6,N6-dimethyladenosine); Tm (2′-O-methylinosine); m4C(N4-methylcytidine); m4Cm (N4,2-O-dimethylcytidine); hm5C (5-hydroxymethylcytidine); m3U (3-methyluridine); cm5U (5-carboxymethyluridine); m6 Am (N6,T-O-dimethyladenosine); rn62 Am (N6,N6,O-2-trimethyladenosine); m2′7G (N2,7-dimethylguanosine); m2′2′7G (N2,N2,7-trimethylguanosine); m3Um (3,2T-O-dimethyluridine); m5D (5-methyldihydrouridine); f5Cm (5-formyl-2′-O-methylcytidine); m1Gm (1,2′-O-dimethylguanosine); m′Am (1,2-O-dimethyl adenosine) irinomethyluridine); tm5s2U (S-taurinomethyl-2-thiouridine)); imG-14 (4-demethyl guanosine); imG2 (isoguanosine); ac6A (N6-acetyladenosine), hypoxanthine, inosine, 8-oxo-adenine, 7-substituted derivatives thereof, dihydrouracil, pseudouracil, 2-thiouracil, 4-thiouracil, 5-aminouracil, 5-(C1-C6)-alkyluracil, 5-methyluracil, 5-(C2-C6)-alkenyluracil, 5-(C2-C6)-alkynyluracil, 5-(hydroxymethyl)uracil, 5-chlorouracil, 5-fluorouracil, 5-bromouracil, 5-hydroxycytosine, 5-(C1-C6)-alkylcytosine, 5-methylcytosine, 5-(C2-C6)-alkenylcytosine, 5-(C2-C6)-alkynylcytosine, 5-chlorocytosine, 5-fluorocytosine, 5-bromocytosine, N2-dimethylguanine, 7-deazaguanine, 8-azaguanine, 7-deaza-7-substituted guanine, 7-deaza-7-(C2-C6)alkynylguanine, 7-deaza-8-substituted guanine, 8-hydroxyguanine, 6-thioguanine, 8-oxoguanine, 2-aminopurine, 2-amino-6-chloropurine, 2,4-diaminopurine, 2,6-diaminopurine, 8-azapurine, substituted 7-deazapurine, 7-deaza-7-substituted purine, 7-deaza-8-substituted purine, hydrogen (abasic residue), m5C, m5U, m6A, s2U, W, or 2′-O-methyl-U. Any one or any combination of these modified nucleobases may be included in the self-replicating RNA of the invention. Many of these modified nucleobases and their corresponding ribonucleosides are available from commercial suppliers.

If desired, the self-replicating RNA molecule can contain phosphoramidate, phosphorothioate, and/or methylphosphonate linkages.

Self-replicating RNA molecules that comprise at least one modified nucleotide can be prepared using any suitable method. Several suitable methods are known in the art for producing RNA molecules that contain modified nucleotides. For example, a self-replicating RNA molecule that contains modified nucleotides can be prepared by transcribing (e.g., in vitro transcription) a DNA that encodes the self-replicating RNA molecule using a suitable DNA-dependent RNA polymerase, such as T7 phage RNA polymerase, SP6 phage RNA polymerase, T3 phage RNA polymerase, and the like, or mutants of these polymerases which allow efficient incorporation of modified nucleotides into RNA molecules. The transcription reaction will contain nucleotides and modified nucleotides, and other components that support the activity of the selected polymerase, such as a suitable buffer, and suitable salts. The incorporation of nucleotide analogs into a self-replicating RNA may be engineered, for example, to alter the stability of such RNA molecules, to increase resistance against RNases, to establish replication after introduction into appropriate host cells (“infectivity” of the RNA), and/or to induce or reduce innate and adaptive immune responses.

Suitable synthetic methods can be used alone, or in combination with one or more other methods (e.g., recombinant DNA or RNA technology), to produce a self-replicating RNA molecule that contain one or more modified nucleotides. Suitable methods for de novo synthesis are well-known in the art and can be adapted for particular applications. Exemplary methods include, for example, chemical synthesis using suitable protecting groups such as CEM (Masuda et al., (2007) Nucleic Acids Symposium Series 51:3-4), the β-cyanoethyl phosphoramidite method (Beaucage S L et al. (1981) Tetrahedron Lett 22:1859); nucleoside H-phosphonate method (Garegg P et al. (1986) Tetrahedron Lett 27:4051-4; Froehler B C et al. (1986) Nucl Acid Res 14:5399-407; Garegg P et al. (1986) Tetrahedron Lett 27:4055-8; Gaffney B L et al. (1988) Tetrahedron Lett 29:2619-22). These chemistries can be performed or adapted for use with automated nucleic acid synthesizers that are commercially available. Additional suitable synthetic methods are disclosed in Uhlmann et al. (1990) Chem Rev 90:544-84, and Goodchild J (1990) Bioconjugate Chem 1: 165. Nucleic acid synthesis can also be performed using suitable recombinant methods that are well-known and conventional in the art, including cloning, processing, and/or expression of polynucleotides and gene products encoded by such polynucleotides. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic polynucleotides are examples of known techniques that can be used to design and engineer polynucleotide sequences. Site-directed mutagenesis can be used to alter nucleic acids and the encoded proteins, for example, to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations and the like. Suitable methods for transcription, translation and expression of nucleic acid sequences are known and conventional in the art. (See generally, Current Protocols in Molecular Biology, Vol. 2, Ed. Ausubel, et al., Greene Publish. Assoc. & Wiley Interscience, Ch. 13, 1988; Glover, DNA Cloning, Vol. II, IRL Press, Wash., D.C., Ch. 3, 1986; Bitter, et al., in Methods in Enzymology 153:516-544 (1987); The Molecular Biology of the Yeast Saccharomyces, Eds. Strathern et al., Cold Spring Harbor Press, Vols. I and II, 1982; and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, 1989.)

The presence and/or quantity of one or more modified nucleotides in a self-replicating RNA molecule can be determined using any suitable method. For example, a self-replicating RNA can be digested to monophosphates (e.g., using nuclease P1) and dephosphorylated (e.g., using a suitable phosphatase such as CIAP), and the resulting nucleosides analyzed by reversed phase HPLC (e.g., usings a YMC Pack ODS-AQ column (5 micron, 4.6×250 mm) and elute using a gradient, 30% B (0-5 min) to 100% B (5-13 min) and at 100% B (13-40) min, flow Rate (0.7 ml/min), UV detection (wavelength: 260 nm), column temperature (30° C.). Buffer A (20 mM acetic acid−ammonium acetate pH 3.5), buffer B (20 mM acetic acid−ammonium acetate pH 3.5/methanol [90/10])).

The self-replicating RNA may be associated with a delivery system. The self-replicating RNA may be administered with or without an adjuvant.

RNA Delivery Systems

The self-replicating RNA described herein are suitable for delivery in a variety of modalities, such as naked RNA delivery or in combination with lipids, polymers or other compounds that facilitate entry into the cells. Self-replicating RNA molecules can be introduced into target cells or subjects using any suitable technique, e.g., by direct injection, microinjection, electroporation, lipofection, biolystics, and the like. The self-replicating RNA molecule may also be introduced into cells by way of receptor-mediated endocytosis. See e.g., U.S. Pat. No. 6,090,619; Wu and Wu, J. Biol. Chem., 263:14621 (1988); and Curiel et al., Proc. Natl. Acad. Sci. USA, 88:8850 (1991). For example, U.S. Pat. No. 6,083,741 discloses introducing an exogenous nucleic acid into mammalian cells by associating the nucleic acid to a polycation moiety (e.g., poly-L-lysine having 3-100 lysine residues), which is itself coupled to an integrin receptor-binding moiety (e.g., a cyclic peptide having the sequence Arg-Gly-Asp (SEQ ID NO:______).

The self-replicating RNA molecules can be delivered into cells via amphiphiles. See e.g., U.S. Pat. No. 6,071,890. Typically, a nucleic acid molecule may form a complex with the cationic amphiphile. Mammalian cells contacted with the complex can readily take it up.

The self-replicating RNA can be delivered as naked RNA (e.g. merely as an aqueous solution of RNA) but, to enhance entry into cells and also subsequent intercellular effects, the self-replicating RNA is preferably administered in combination with a delivery system, such as a particulate or emulsion delivery system. A large number of delivery systems are well known to those of skill in the art. Such delivery systems include, for example liposome-based delivery (Debs and Zhu (1993) WO 93/24640; Mannino and Gould-Fogerite (1988) BioTechniques 6(7): 682-691; Rose U.S. Pat. No. 5,279,833; Brigham (1991) WO 91/06309; and Felgner et al. (1987) Proc. Natl. Acad. Sci. USA 84: 7413-7414), as well as use of viral vectors (e.g., adenoviral (see, e.g., Berns et al. (1995) Ann. NY Acad. Sci. 772: 95-104; Ali et al. (1994) Gene Ther. 1: 367-384; and Haddada et al. (1995) Curr. Top. Microbiol. Immunol. 199 (Pt 3): 297-306 for review), papillomaviral, retroviral (see, e.g., Buchscher et al. (1992) J. Virol. 66(5) 2731-2739; Johann et al. (1992) J. Virol. 66 (5): 1635-1640 (1992); Sommerfelt et al., (1990) Virol. 176:58-59; Wilson et al. (1989) J. Virol. 63:2374-2378; Miller et al., J. Virol. 65:2220-2224 (1991); Wong-Staal et al., PCT/US94/05700, and Rosenburg and Fauci (1993) in Fundamental Immunology, Third Edition Paul (ed) Raven Press, Ltd., New York and the references therein, and Yu et al., Gene Therapy (1994) supra.), and adeno-associated viral vectors (see, West et al. (1987) Virology 160:38-47; Carter et al. (1989) U.S. Pat. No. 4,797,368; Carter et al. WO 93/24641 (1993); Kotin (1994) Human Gene Therapy 5:793-801; Muzyczka (1994) J. Clin. Invst. 94:1351 and Samulski (supra) for an overview of AAV vectors; see also, Lebkowski, U.S. Pat. No. 5,173,414; Tratschin et al. (1985) Mol. Cell. Biol. 5(11):3251-3260; Tratschin, et al. (1984) Mol. Cell. Biol., 4:2072-2081; Hermonat and Muzyczka (1984) Proc. Natl. Acad. Sci. USA, 81:6466-6470; McLaughlin et al. (1988) and Samulski et al. (1989) J. Virol., 63:03822-3828), and the like.

Three particularly useful delivery systems are (i) liposomes, (ii) non-toxic and biodegradable polymer microparticles, and (iii) cationic submicron oil-in-water emulsions.

Liposomes

Various amphiphilic lipids can form bilayers in an aqueous environment to encapsulate a RNA-containing aqueous core as a liposome. These lipids can have an anionic, cationic or zwitterionic hydrophilic head group. Formation of liposomes from anionic phospholipids dates back to the 1960s, and cationic liposome-forming lipids have been studied since the 1990s. Some phospholipids are anionic whereas other are zwitterionic. Suitable classes of phospholipid include, but are not limited to, phosphatidylethanolamines, phosphatidylcholines, phosphatidylserines, and phosphatidylglycerols, and some useful phospholipids are listed in Table 2. Useful cationic lipids include, but are not limited to, dioleoyl trimethylammonium propane (DOTAP), 1,2-distearyloxy-N,N-dimethyl-3-aminopropane (DSDMA), 1,2-dioleyloxy-N,Ndimethyl-3-aminopropane (DODMA), 1,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane (DLinDMA), 1,2-dilinolenyloxy-N,N-dimethyl-3-aminopropane (DLenDMA). Zwitterionic lipids include, but are not limited to, acyl zwitterionic lipids and ether zwitterionic lipids. Examples of useful zwitterionic lipids are DPPC, DOPC and dodecylphosphocholine. The lipids can be saturated or unsaturated.

Liposomes can be formed from a single lipid or from a mixture of lipids. A mixture may comprise (i) a mixture of anionic lipids (ii) a mixture of cationic lipids (iii) a mixture of zwitterionic lipids (iv) a mixture of anionic lipids and cationic lipids (v) a mixture of anionic lipids and zwitterionic lipids (vi) a mixture of zwitterionic lipids and cationic lipids or (vii) a mixture of anionic lipids, cationic lipids and zwitterionic lipids. Similarly, a mixture may comprise both saturated and unsaturated lipids. For example, a mixture may comprise DSPC (zwitterionic, saturated), DlinDMA (cationic, unsaturated), and/or DMPG (anionic, saturated). Where a mixture of lipids is used, not all of the component lipids in the mixture need to be amphiphilic e.g. one or more amphiphilic lipids can be mixed with cholesterol.

The hydrophilic portion of a lipid can be PEGylated (i.e. modified by covalent attachment of a polyethylene glycol). This modification can increase stability and prevent non-specific adsorption of the liposomes. For instance, lipids can be conjugated to PEG using techniques such as those disclosed in Heyes et al. (2005) J Controlled Release 107:276-87.

A mixture of DSPC, DlinDMA, PEG-DMPG and cholesterol can be used to form liposomes. A separate aspect of the invention is a liposome comprising DSPC, DlinDMA, PEG-DMG and cholesterol. This liposome preferably encapsulates RNA, such as a self-replicating RNA e.g. encoding an immunogen.

Liposomes are usually divided into three groups: multilamellar vesicles (MLV); small unilamellar vesicles (SUV); and large unilamellar vesicles (LUV). MLVs have multiple bilayers in each vesicle, forming several separate aqueous compartments. SUVs and LUVs have a single bilayer encapsulating an aqueous core; SUVs typically have a diameter ≦50 nm, and LUVs have a diameter >50 nm. Liposomes useful with of the invention are ideally LUVs with a diameter in the range of 50-220 nm. For a composition comprising a population of LUVs with different diameters: (i) at least 80% by number should have diameters in the range of 20-220 nm, (ii) the average diameter (Zav, by intensity) of the population is ideally in the range of 40-200 nm, and/or (iii) the diameters should have a polydispersity index <0.2.

Techniques for preparing suitable liposomes are well known in the art e.g. see Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers: Methods and Protocols. (ed. Weissig). Humana Press, 2009. ISBN 160327359X; Liposome Technology, volumes I, II & III. (ed. Gregoriadis). Informa Healthcare, 2006; and Functional Polymer Colloids and Microparticles volume 4 (Microspheres, microcapsules & liposomes). (eds. Arshady & Guyot). Citus Books, 2002. One useful method involves mixing (i) an ethanolic solution of the lipids (ii) an aqueous solution of the nucleic acid and (iii) buffer, followed by mixing, equilibration, dilution and purification (Heyes et al. (2005) J Controlled Release 107:276-87.).

RNA is preferably encapsulated within the liposomes, and so the liposome forms a outer layer around an aqueous RNA-containing core. This encapsulation has been found to protect RNA from RNase digestion. The liposomes can include some external RNA (e.g. on the surface of the liposomes), but preferably, at least half of the RNA (and ideally substantially all of it) is encapsulated.

Polymeric Microparticles

Various polymers can form microparticles to encapsulate or adsorb RNA. The use of a substantially non-toxic polymer means that a recipient can safely receive the particles, and the use of a biodegradable polymer means that the particles can be metabolised after delivery to avoid long-term persistence. Useful polymers are also sterilisable, to assist in preparing pharmaceutical grade formulations.

Suitable non-toxic and biodegradable polymers include, but are not limited to, poly(α-hydroxy acids), polyhydroxy butyric acids, polylactones (including polycaprolactones), polydioxanones, polyvalerolactone, polyorthoesters, polyanhydrides, polycyanoacrylates, tyrosine-derived polycarbonates, polyvinyl-pyrrolidinones or polyester-amides, and combinations thereof.

In some embodiments, the microparticles are formed from poly(α-hydroxy acids), such as a poly(lactides) (“PLA”), copolymers of lactide and glycolide such as a poly(D,L-lactide-co-glycolide) (“PLG”), and copolymers of D,L-lactide and caprolactone. Useful PLG polymers include those having a lactide/glycolide molar ratio ranging, for example, from 20:80 to 80:20 e.g. 25:75, 40:60, 45:55, 55:45, 60:40, 75:25. Useful PLG polymers include those having a molecular weight between, for example, 5,000-200,000 Da e.g. between 10,000-100,000, 20,000-70,000, 40,000-50,000 Da.

The microparticles ideally have a diameter in the range of 0.02 μm to 8 μm. For a composition comprising a population of microparticles with different diameters at least 80% by number should have diameters in the range of 0.03-7 μm.

Techniques for preparing suitable microparticles are well known in the art e.g. see Functional Polymer Colloids and Microparticles volume 4 (Microspheres, microcapsules & liposomes). (eds. Arshady & Guyot). Citus Books, 2002; Polymers in Drug Delivery. (eds. Uchegbu & Schatzlein). CRC Press, 2006. (in particular chapter 7) and Microparticulate Systems for the Delivery of Proteins and Vaccines. (eds. Cohen & Bernstein). CRC Press, 1996. To facilitate adsorption of RNA, a microparticle may include a cationic surfactant and/or lipid e.g. as disclosed in O'Hagan et al. (2001) J Virology 75:9037-9043; and Singh et al. (2003) Pharmaceutical Research 20: 247-251. An alternative way of making polymeric microparticles is by molding and curing e.g. as disclosed in WO2009/132206.

Microparticles of the invention can have a zeta potential of between 40-100 mV. RNA can be adsorbed to the microparticles, and adsorption is facilitated by including cationic materials (e.g. cationic lipids) in the microparticle.

Oil-in-Water Cationic Emulsions

Oil-in-water emulsions are known for adjuvanting influenza vaccines e.g. the MF59™ adjuvant in the FLUAD™ product, and the AS03 adjuvant in the PREPANDRIX™ product. RNA delivery can be accomplished with the use of an oil-in-water emulsion, provided that the emulsion includes one or more cationic molecules. For instance, a cationic lipid can be included in the emulsion to provide a positively charged droplet surface to which negatively-charged RNA can attach.

The emulsion comprises one or more oils. Suitable oil(s) include those from, for example, an animal (such as fish) or a vegetable source. The oil is ideally biodegradable (metabolizable) and biocompatible. Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils. Jojoba oil can be used e.g. obtained from the jojoba bean. Seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like. In the grain group, corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used. 6-10 carbon fatty acid esters of glycerol and 1,2-propanediol, while not occurring naturally in seed oils, may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils. Fats and oils from mammalian milk are metabolizable and so may be used. The procedures for separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art.

Most fish contain metabolizable oils which may be readily recovered. For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein. A number of branched chain oils are synthesized biochemically in 5-carbon isoprene units and are generally referred to as terpenoids. Squalane, the saturated analog to squalene, can also be used. Fish oils, including squalene and squalane, are readily available from commercial sources or may be obtained by methods known in the art.

Other useful oils are the tocopherols, particularly in combination with squalene. Where the oil phase of an emulsion includes a tocopherol, any of the α, β, γ, δ, ε or ξ tocopherols can be used, but α-tocopherols are preferred. D-α-tocopherol and DL-α-tocopherol can both be used. A preferred α-tocopherol is DL-α-tocopherol. An oil combination comprising squalene and a tocopherol (e.g. DL-α-tocopherol) can be used.

Preferred emulsions comprise squalene, a shark liver oil which is a branched, unsaturated terpenoid (C30H50; [(CH3)2C[═CHCH2CH2C(CH3)]2═CHCH2—]2; 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene; CAS RN 7683-64-9).

The oil in the emulsion may comprise a combination of oils e.g. squalene and at least one further oil.

The aqueous component of the emulsion can be plain water (e.g. w.f.i.) or can include further components e.g. solutes. For instance, it may include salts to form a buffer e.g. citrate or phosphate salts, such as sodium salts. Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer; or a citrate buffer. A buffered aqueous phase is preferred, and buffers will typically be included in the 5-20 mM range.

The emulsion also includes a cationic lipid. Preferably this lipid is a surfactant so that it can facilitate formation and stabilization of the emulsion. Useful cationic lipids generally contains a nitrogen atom that is positively charged under physiological conditions e.g. as a tertiary or quaternary amine. This nitrogen can be in the hydrophilic head group of an amphiphilic surfactant. Useful cationic lipids include, but are not limited to: 1,2-dioleoyloxy-3-(trimethylammonio)propane (DOTAP), 3′-[N—(N′,N′-Dimethylaminoethane)-carbamoyl]Cholesterol (DC Cholesterol), dimethyldioctadecyl-ammonium (DDA e.g. the bromide), 1,2-Dimyristoyl-3-Trimethyl-AmmoniumPropane (DMTAP), dipalmitoyl(C16:0)trimethyl ammonium propane (DPTAP), distearoyltrimethylammonium propane (DSTAP). Other useful cationic lipids are: benzalkonium chloride (BAK), benzethonium chloride, cetramide (which contains tetradecyltrimethylammonium bromide and possibly small amounts of dedecyltrimethylammonium bromide and hexadecyltrimethyl ammonium bromide), cetylpyridinium chloride (CPC), cetyl trimethylammonium chloride (CTAC), N,N′,N′-polyoxyethylene (10)-N-tallow-1,3-diaminopropane, dodecyltrimethylammonium bromide, hexadecyltrimethyl-ammonium bromide, mixed alkyl-trimethyl-ammonium bromide, benzyldimethyldodecylammonium chloride, benzyldimethylhexadecyl-ammonium chloride, benzyltrimethylammonium methoxide, cetyldimethylethylammonium bromide, dimethyldioctadecyl ammonium bromide (DDAB), methylbenzethonium chloride, decamethonium chloride, methyl mixed trialkyl ammonium chloride, methyl trioctylammonium chloride), N,N-dimethyl-N-[2 (2-methyl-4-(1,1,3,3tetramethylbutyl)-phenoxy]-ethoxy)ethyl]-benzenemetha-naminium chloride (DEBDA), dialkyldimethylammonium salts, [1-(2,3-dioleyloxy)-propyl]-N,N,N,trimethylammonium chloride, 1,2-diacyl-3-(trimethylammonio) propane (acyl group=dimyristoyl, dipalmitoyl, distearoyl, dioleoyl), 1,2-diacyl-3 (dimethylammonio)propane (acyl group=dimyristoyl, dipalmitoyl, distearoyl, dioleoyl), 1,2-dioleoyl-3-(4′-trimethyl-ammonio)butanoyl-sn-glycerol, 1,2-dioleoyl 3-succinyl-sn-glycerol choline ester, cholesteryl (4′-trimethylammonio) butanoate), N-alkyl pyridinium salts (e.g. cetylpyridinium bromide and cetylpyridinium chloride), N-alkylpiperidinium salts, dicationic bolaform electrolytes (C12Me6; C12BU6), dialkylglycetylphosphorylcholine, lysolecithin, L-αdioleoylphosphatidylethanolamine, cholesterol hemisuccinate choline ester, lipopolyamines, including but not limited to dioctadecylamidoglycylspermine (DOGS), dipalmitoyl phosphatidylethanol-amidospermine (DPPES), lipopoly-L (or D)-lysine (LPLL, LPDL), poly(L (or D)-lysine conjugated to N-glutarylphosphatidylethanolamine, didodecyl glutamate ester with pendant amino group (ĈGluPhCnN), ditetradecyl glutamate ester with pendant amino group (C14GluCnN+), cationic derivatives of cholesterol, including but not limited to cholesteryl-3β-oxysuccinamidoethylenetrimethylammonium salt, cholesteryl-3β-oxysuccinamidoethylene-dimethylamine, cholesteryl-3β-carboxyamidoethylenetrimethylammonium salt, and cholesteryl-3β-carboxyamidoethylenedimethylamine. Other useful cationic lipids are described in US 2008/0085870 and US 2008/0057080, which are incorporated herein by reference. The cationic lipid is preferably biodegradable (metabolizable) and biocompatible.

In addition to the oil and cationic lipid, an emulsion can include a non-ionic surfactant and/or a zwitterionic surfactant. Such surfactants include, but are not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (EO), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWFAX™ tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups, with octoxynol-9 (Triton X-100, or t-octylphenoxypolyethoxyethanol) being of particular interest; (octylphenoxy)polyethoxyethanol (IGEPAL CA-630/NP-40); phospholipids such as phosphatidylcholine (lecithin); polyoxyethylene fatty ethers derived from lauryl, cetyl, stearyl and oleyl alcohols (known as Brij surfactants), such as triethyleneglycol monolauryl ether (Brij 30); polyoxyethylene-9-lauryl ether; and sorbitan esters (commonly known as the Spans), such as sorbitan trioleate (Span 85) and sorbitan monolaurate. Preferred surfactants for including in the emulsion are polysorbate 80 (Tween 80; polyoxyethylene sorbitan monooleate), Span 85 (sorbitan trioleate), lecithin and Triton X-100.

Mixtures of these surfactants can be included in the emulsion e.g. Tween 80/Span 85 mixtures, or Tween 80/Triton-X100 mixtures. A combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxy-polyethoxyethanol (Triton X-100) is also suitable. Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol. Useful mixtures can comprise a surfactant with a HLB value in the range of 10-20 (e.g. polysorbate 80, with a HLB of 15.0) and a surfactant with a HLB value in the range of 1-10 (e.g. sorbitan trioleate, with a HLB of 1.8).

Preferred amounts of oil (% by volume) in the final emulsion are between 2-20% e.g. 5-15%, 6-14%, 7-13%, 8-12%. A squalene content of about 4-6% or about 9-11% is particularly useful.

Preferred amounts of surfactants (% by weight) in the final emulsion are between 0.001% and 8%. For example: polyoxyethylene sorbitan esters (such as polysorbate 80) 0.2 to 4%, in particular between 0.4-0.6%, between 0.45-0.55%, about 0.5% or between 1.5-2%, between 1.8-2.2%, between 1.9-2.1%, about 2%, or 0.85-0.95%, or about 1%; sorbitan esters (such as sorbitan trioleate) 0.02 to 2%, in particular about 0.5% or about 1%; octyl- or nonylphenoxy polyoxyethanols (such as Triton X-100) 0.001 to 0.1%, in particular 0.005 to 0.02%; polyoxyethylene ethers (such as laureth 9) 0.1 to 8%, preferably 0.1 to 10% and in particular 0.1 to 1% or about 0.5%.

The absolute amounts of oil and surfactant, and their ratio, can be varied within wide limits while still forming an emulsion. A skilled person can easily vary the relative proportions of the components to obtain a desired emulsion, but a weight ratio of between 4:1 and 5:1 for oil and surfactant is typical (excess oil).

An important parameter for ensuring immunostimulatory activity of an emulsion, particularly in large animals, is the oil droplet size (diameter). The most effective emulsions have a droplet size in the submicron range. Suitably the droplet sizes will be in the range 50-750 nm. Most usefully the average droplet size is less than 250 nm e.g. less than 200 nm, less than 150 nm. The average droplet size is usefully in the range of 80-180 nm. Ideally, at least 80% (by number) of the emulsion's oil droplets are less than 250 nm in diameter, and preferably at least 90%. Apparatuses for determining the average droplet size in an emulsion, and the size distribution, are commercially available. These typically use the techniques of dynamic light scattering and/or single-particle optical sensing e.g. the Accusizer™ and Nicomp™ series of instruments available from Particle Sizing Systems (Santa Barbara, USA), or the Zetasizer™ instruments from Malvern Instruments (UK), or the Particle Size Distribution Analyzer instruments from Horiba (Kyoto, Japan).

Ideally, the distribution of droplet sizes (by number) has only one maximum i.e. there is a single population of droplets distributed around an average (mode), rather than having two maxima. Preferred emulsions have a polydispersity of <0.4 e.g. 0.3, 0.2, or less.

Suitable emulsions with submicron droplets and a narrow size distribution can be obtained by the use of microfluidization. This technique reduces average oil droplet size by propelling streams of input components through geometrically fixed channels at high pressure and high velocity. These streams contact channel walls, chamber walls and each other. The results shear, impact and cavitation forces cause a reduction in droplet size. Repeated steps of microfluidization can be performed until an emulsion with a desired droplet size average and distribution are achieved.

As an alternative to microfluidization, thermal methods can be used to cause phase inversion. These methods can also provide a submicron emulsion with a tight particle size distribution.

Preferred emulsions can be filter sterilized i.e. their droplets can pass through a 220 nm filter. As well as providing a sterilization, this procedure also removes any large droplets in the emulsion.

In certain embodiments, the cationic lipid in the emulsion is DOTAP. The cationic oil-in-water emulsion may comprise from about 0.5 mg/ml to about 25 mg/ml DOTAP. For example, the cationic oil-in-water emulsion may comprise DOTAP at from about 0.5 mg/ml to about 25 mg/ml, from about 0.6 mg/ml to about 25 mg/ml, from about 0.7 mg/ml to about 25 mg/ml, from about 0.8 mg/ml to about 25 mg/ml, from about 0.9 mg/ml to about 25 mg/ml, from about 1.0 mg/ml to about 25 mg/ml, from about 1.1 mg/ml to about 25 mg/ml, from about 1.2 mg/ml to about 25 mg/ml, from about 1.3 mg/ml to about 25 mg/ml, from about 1.4 mg/ml to about 25 mg/ml, from about 1.5 mg/ml to about 25 mg/ml, from about 1.6 mg/ml to about 25 mg/ml, from about 1.7 mg/ml to about 25 mg/ml, from about 0.5 mg/ml to about 24 mg/ml, from about 0.5 mg/ml to about 22 mg/ml, from about 0.5 mg/ml to about 20 mg/ml, from about 0.5 mg/ml to about 18 mg/ml, from about 0.5 mg/ml to about 15 mg/ml, from about 0.5 mg/ml to about 12 mg/ml, from about 0.5 mg/ml to about 10 mg/ml, from about 0.5 mg/ml to about 5 mg/ml, from about 0.5 mg/ml to about 2 mg/ml, from about 0.5 mg/ml to about 1.9 mg/ml, from about 0.5 mg/ml to about 1.8 mg/ml, from about 0.5 mg/ml to about 1.7 mg/ml, from about 0.5 mg/ml to about 1.6 mg/ml, from about 0.6 mg/ml to about 1.6 mg/ml, from about 0.7 mg/ml to about 1.6 mg/ml, from about 0.8 mg/ml to about 1.6 mg/ml, about 0.5 mg/ml, about 0.6 mg/ml, about 0.7 mg/ml, about 0.8 mg/ml, about 0.9 mg/ml, about 1.0 mg/ml, about 1.1 mg/ml, about 1.2 mg/ml, about 1.3 mg/ml, about 1.4 mg/ml, about 1.5 mg/ml, about 1.6 mg/ml, about 12 mg/ml, about 18 mg/ml, about 20 mg/ml, about 21.8 mg/ml, about 24 mg/ml, etc. In an exemplary embodiment, the cationic oil-in-water emulsion comprises from about 0.8 mg/ml to about 1.6 mg/ml DOTAP, such as 0.8 mg/ml, 1.2 mg/ml, 1.4 mg/ml or 1.6 mg/ml.

In certain embodiments, the cationic lipid is DC Cholesterol. The cationic oil-in-water emulsion may comprise DC Cholesterol at from about 0.1 mg/ml to about 5 mg/ml DC Cholesterol. For example, the cationic oil-in-water emulsion may comprise DC Cholesterol from about 0.1 mg/ml to about 5 mg/ml, from about 0.2 mg/ml to about 5 mg/ml, from about 0.3 mg/ml to about 5 mg/ml, from about 0.4 mg/ml to about 5 mg/ml, from about 0.5 mg/ml to about 5 mg/ml, from about 0.62 mg/ml to about 5 mg/ml, from about 1 mg/ml to about 5 mg/ml, from about 1.5 mg/ml to about 5 mg/ml, from about 2 mg/ml to about 5 mg/ml, from about 2.46 mg/ml to about 5 mg/ml, from about 3 mg/ml to about 5 mg/ml, from about 3.5 mg/ml to about 5 mg/ml, from about 4 mg/ml to about 5 mg/ml, from about 4.5 mg/ml to about 5 mg/ml, from about 0.1 mg/ml to about 4.92 mg/ml, from about 0.1 mg/ml to about 4.5 mg/ml, from about 0.1 mg/ml to about 4 mg/ml, from about 0.1 mg/ml to about 3.5 mg/ml, from about 0.1 mg/ml to about 3 mg/ml, from about 0.1 mg/ml to about 2.46 mg/ml, from about 0.1 mg/ml to about 2 mg/ml, from about 0.1 mg/ml to about 1.5 mg/ml, from about 0.1 mg/ml to about 1 mg/ml, from about 0.1 mg/ml to about 0.62 mg/ml, about 0.15 mg/ml, about 0.3 mg/ml, about 0.6 mg/ml, about 0.62 mg/ml, about 0.9 mg/ml, about 1.2 mg/ml, about 2.46 mg/ml, about 4.92 mg/ml, etc. In an exemplary embodiment, the cationic oil-in-water emulsion comprises from about 0.62 mg/ml to about 4.92 mg/ml DC Cholesterol, such as 2.46 mg/ml.

In certain embodiments, the cationic lipid is DDA. The cationic oil-in-water emulsion may comprise from about 0.1 mg/ml to about 5 mg/ml DDA. For example, the cationic oil-in-water emulsion may comprise DDA at from about 0.1 mg/ml to about 5 mg/ml, from about 0.1 mg/ml to about 4.5 mg/ml, from about 0.1 mg/ml to about 4 mg/ml, from about 0.1 mg/ml to about 3.5 mg/ml, from about 0.1 mg/ml to about 3 mg/ml, from about 0.1 mg/ml to about 2.5 mg/ml, from about 0.1 mg/ml to about 2 mg/ml, from about 0.1 mg/ml to about 1.5 mg/ml, from about 0.1 mg/ml to about 1.45 mg/ml, from about 0.2 mg/ml to about 5 mg/ml, from about 0.3 mg/ml to about 5 mg/ml, from about 0.4 mg/ml to about 5 mg/ml, from about 0.5 mg/ml to about 5 mg/ml, from about 0.6 mg/ml to about 5 mg/ml, from about 0.73 mg/ml to about 5 mg/ml, from about 0.8 mg/ml to about 5 mg/ml, from about 0.9 mg/ml to about 5 mg/ml, from about 1.0 mg/ml to about 5 mg/ml, from about 1.2 mg/ml to about 5 mg/ml, from about 1.45 mg/ml to about 5 mg/ml, from about 2 mg/ml to about 5 mg/ml, from about 2.5 mg/ml to about 5 mg/ml, from about 3 mg/ml to about 5 mg/ml, from about 3.5 mg/ml to about 5 mg/ml, from about 4 mg/ml to about 5 mg/ml, from about 4.5 mg/ml to about 5 mg/ml, about 1.2 mg/ml, about 1.45 mg/ml, etc. Alternatively, the cationic oil-in-water emulsion may comprise DDA at about 20 mg/ml, about 21 mg/ml, about 21.5 mg/ml, about 21.6 mg/ml, about 25 mg/ml. In an exemplary embodiment, the cationic oil-in-water emulsion comprises from about 0.73 mg/ml to about 1.45 mg/ml DDA, such as 1.45 mg/ml.

Catheters or like devices may be used to deliver the self-replicating RNA molecules of the invention, as naked RNA or in combination with a delivery system, into a target organ or tissue. Suitable catheters are disclosed in, e.g., U.S. Pat. Nos. 4,186,745; 5,397,307; 5,547,472; 5,674,192; and 6,129,705, all of which are incorporated herein by reference.

The present invention includes the use of suitable delivery systems, such as liposomes, polymer microparticles or submicron emulsion microparticles with encapsulated or adsorbed self-replicating RNA, to deliver a self-replicating RNA molecule that encodes two or more CMV proteins, for example, to elicit an immune response alone, or in combination with another macromolecule. The invention includes liposomes, microparticles and submicron emulsions with adsorbed and/or encapsulated self-replicating RNA molecules, and combinations thereof.

The self-replicating RNA molecules associated with liposomes and submicron emulsion microparticles can be effectively delivered to a host cell, and can induce an immune response to the protein encoded by the self-replicating RNA.

Polycistronic self replicating RNA molecules that encode CMV proteins, and VRPs produced using polycistronic alphavirus replicons, can be used to form CMV protein complexes in a cell. Complexes include, but are not limited to, gB/gH/gL; gH/gL; gH/gL/gO; gM/gN; gH/gL/UL128/UL130/UL131; and UL128/UL130/UL131.

In some embodiments combinations of VRPs are delivered to a cell. Combinations include, but are not limited to:

    • 1. a gH/gL VRP and another VRP;
    • 2. a gH/gL VRP and a gB VRP;
    • 3. a gH/gL/gO VRP and a gB VRP;
    • 4. a gB VRP and a gH/gL/UL128/UL130/UL131 VRP;
    • 5. a gB VRP and UL128/UL130/UL131 VRP;
    • 6. a gB VRP and a gM/gN VRP;
    • 7. a gB VRP, a gH/gL VRP, and a UL128/UL130/UL131 VRP;
    • 8. a gB VRP, a gH/gLgO VRP, and a UL128/UL130/UL131 VRP;
    • 9. a gB VRP, a gM/gN VRP, a gH/gL VRP, and a UL128/UL130/UL131 VRP;
    • 10. a gB VRP, a gM/gN VRP, a gH/gL/0 VRP, and a UL128/UL130/UL131 VRP;
    • 11. a gH/gL VRP and a UL128/UL130/UL131 VRP; and

In some embodiments combinations of self-replicating RNA molecules are delivered to a cell. Combinations include, but are not limited to:

    • 1. a self-replicating RNA molecule encoding gH/gL and a self-replicating RNA molecule encoding another protein;
    • 2. a self-replicating RNA molecule encoding gH and gL and a self-replicating RNA molecule encoding gB;
    • 3. a self-replicating RNA molecule encoding gH, gL and gO and a self-replicating RNA molecule encoding gB;
    • 4. a self-replicating RNA molecule encoding gB and a self-replicating RNA molecule encoding gH, gL, UL128, UL130 and UL131;
    • 5. a self-replicating RNA molecule encoding gB and a self-replicating RNA molecule encoding UL128, UL130 and UL131;
    • 6. a self-replicating RNA molecule encoding gB and a self-replicating RNA molecule encoding gM and gN;
    • 7. a self-replicating RNA molecule encoding gB, a self-replicating RNA molecule encoding gH and gL, and a self-replicating RNA molecule encoding UL128, UL130 and UL131;
    • 8. a self-replicating RNA molecule encoding gB, a self-replicating RNA molecule encoding gH, gL, and gO, and a self-replicating RNA molecule encoding UL128, UL130 and UL131;
    • 9. a self-replicating RNA molecule encoding gB, a self-replicating RNA molecule encoding gM and gN, a self-replicating RNA molecule encoding gH and gL, and a self-replicating RNA molecule encoding UL128, UL130 and UL131;
    • 10. a self-replicating RNA molecule encoding gB, a self-replicating RNA molecule encoding gM and gN, a self-replicating RNA molecule encoding gH, gL and gO, and a self-replicating RNA molecule encoding UL128, UL130 and UL131;
    • 11. a self-replicating RNA molecule encoding gH and gL, and a self-replicating RNA molecule encoding UL128, UL130 and UL131; and

CMV Proteins

Suitable CMV proteins include gB, gH, gL, gO, and can be from any CMV strain. Other suitable CMV proteins include UL128, UL130 and UL131, and can be from any CMV strain. For example, CMV proteins can be from Merlin, AD169, VR1814, Towne, Toledo, TR, PH, TB40, or Fix strains of CMV. Exemplary CMV proteins and fragments are described herein. These proteins and fragments can be encoded by any suitable nucleotide sequence, including sequences that are codon optimized or deoptimized for expression in a desired host, such as a human cell. Exemplary sequences of CMV proteins and nucleic acids encoding the proteins are provided in Table 2

TABLE 2 Full length gH polynucleotide (CMV gH FL) SEQ ID NO:    Full length gH polypeptide (CMV gH FL) SEQ ID NO:    Full length gL polynucleotide (CMV gL FL) SEQ ID NO:    Full length gL polypeptide (CMV gL FL) SEQ ID NO:    Full length gO polynucleotide (CMV gO FL) SEQ ID NO:    Full length gO polypeptide (CMV gO FL) SEQ ID NO:    gH sol polynucleotide (CMV gH sol) SEQ ID NO:    gH sol polypeptide (CMV gH sol) SEQ ID NO:    Full length UL128 polynucleotide (CMV UL128 FL) SEQ ID NO:    Full length UL128 polypeptide (CMV UL128 FL) SEQ ID NO:    Full length UL130 polynucleotide (CMV UL130 FL) SEQ ID NO:    Full length UL130 polypeptide (CMV UL130 FL) SEQ ID NO:    Full length UL131 polynucleotide (CMV UL131 FL) SEQ ID NO:    Full length UL131 polypeptide (CMV UL131 FL) SEQ ID NO:    Full length gB polynucleotide (CMV gB FL) SEQ ID NO:    Full length gB polypeptide (CMV gB FL) SEQ ID NO:    gB sol 750 polynucleotide (CMV gB 750) SEQ ID NO:    gB sol 750 polypeptide (CMV gB 750) SEQ ID NO:    gB sol 692 polynucleotide (CMV gB 692) SEQ ID NO:    gB sol 692 polypeptide (CMV gB 692) SEQ ID NO:    Full length gM polynucleotide (CMV gM FL) SEQ ID NO:    Full length gM polynucleotide (CMV gM FL) SEQ ID NO:    Full length gN polynucleotide (CMV gN FL) SEQ ID NO:    Full length gN polynucleotide (CMV gN FL) SEQ ID NO:

CMV gB Proteins

A gB protein can be full length or can omit one or more regions of the protein. Alternatively, fragments of a gB protein can be used. gB amino acids are numbered according to the full-length gB amino acid sequence (CMV gB FL) shown in SEQ ID NO:______, which is 907 amino acids long. Suitable regions of a gB protein, which can be excluded from the full-length protein or included as fragments include: the signal sequence (amino acids 1-24), a gB-DLD disintegrin-like domain (amino acids 57-146), a furin cleavage site (amino acids 459-460), a heptad repeat region (679-693), a membrane spanning domain (amino acids 751-771), and a cytoplasmic domain from amino acids 771-906. In some embodiments a gB protein includes amino acids 67-86 (Neutralizing Epitope AD2) and/or amino acids 532-635 (Immunodominant Epitope AD1). Specific examples of gB fragments, include “gB sol 692,” which includes the first 692 amino acids of gB, and “gB sol 750,” which includes the first 750 amino acids of gB. The signal sequence, amino acids 1-24, can be present or absent from gB sol 692 and gB sol 750 as desired. Optionally, the gB protein can be a gB fragment of 10 amino acids or longer. For example, the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, or 875 amino acids. A gB fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, or 897.

Optionally, a gB fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment. Optionally, a gB fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.

CMV gH Proteins

In some embodiments, a gH protein is a full-length gH protein (CMV gH FL, SEQ ID NO:______, for example, which is a 743 amino acid protein). gH has a membrane spanning domain and a cytoplasmic domain starting at position 716 to position 743. Removing amino acids from 717 to 743 provides a soluble gH (e.g., CMV gH sol, SEQ ID NO:______). In some embodiments the gH protein can be a gH fragment of 10 amino acids or longer. For example, the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, or 725 amino acids. Optionally, the gH protein can be a gH fragment of 10 amino acids or longer. For example, the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, or 725 amino acids. A gH fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, or 732.

gH residues are numbered according to the full-length gH amino acid sequence (CMV gH FL) shown in SEQ ID NO:______. Optionally, a gH fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment. Optionally, a gH fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.

CMV gL Proteins

In some embodiments a gL protein is a full-length gL protein (CMV gL FL, SEQ ID NO:______, for example, which is a 278 amino acid protein). In some embodiments a gL fragment can be used. For example, the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, or 250 amino acids. A gL fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, or 268.

gL residues are numbered according to the full-length gL amino acid sequence (CMV gL FL) shown in SEQ ID NO:______. Optionally, a gL fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment. Optionally, a gL fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.

CMV gO Proteins

In some embodiments, a gO protein is a full-length gO protein (CMV gO FL, SEQ ID NO:______, for example, which is a 472 amino acid protein). In some embodiments the gO protein can be a gO fragment of 10 amino acids or longer. For example, the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, or 450 amino acids. A gO fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, or 462.

gO residues are numbered according to the full-length gO amino acid sequence (CMV gO FL) shown in SEQ ID NO:______. Optionally, a gO fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment. Optionally, a gO fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.

CMV gM Proteins

In some embodiments, a gM protein is a full-length gM protein (CMV gM FL, SEQ ID NO:______, for example, which is a 371 amino acid protein). In some embodiments the gM protein can be a gM fragment of 10 amino acids or longer. For example, the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, or 350 amino acids. A gM fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, or 361.

gM residues are numbered according to the full-length gM amino acid sequence (CMV gM FL) shown in SEQ ID NO:______. Optionally, a gM fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment. Optionally, a gM fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.

CMv gN Proteins

In some embodiments, a gN protein is a full-length gN protein (CMV gN FL, SEQ ID NO:______, for example, which is a 135 amino acid protein). In some embodiments the gN protein can be a gN fragment of 10 amino acids or longer. For example, the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, or 125 amino acids. A gN fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, or 125.

gN residues are numbered according to the full-length gN amino acid sequence (CMV gN FL) shown in SEQ ID NO:______. Optionally, a gN fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment. Optionally, a gN fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.

CMV UL128 Proteins

In some embodiments, a UL128 protein is a full-length UL128 protein (CMV UL128 FL, SEQ ID NO:______, for example, which is a 171 amino acid protein). In some embodiments the UL128 protein can be a UL128 fragment of 10 amino acids or longer. For example, the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, or 150 amino acids. A UL128 fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, or 161.

UL128 residues are numbered according to the full-length UL128 amino acid sequence (CMV UL128 FL) shown in SEQ ID NO:______. Optionally, a UL128 fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment. Optionally, a UL128 fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.

CMV UL130 Proteins

In some embodiments, a UL130 protein is a full-length UL130 protein (CMV UL130 FL, SEQ ID NO:______, for example, which is a 214 amino acid protein). In some embodiments the UL130 protein can be a UL130 fragment of 10 amino acids or longer. For example, the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, or 200 amino acids. A UL130 fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, or 204.

UL130 residues are numbered according to the full-length UL130 amino acid sequence (CMV UL130 FL) shown in SEQ ID NO:______. Optionally, a UL130 fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment. Optionally, a UL130 fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.

CMV UL131 Proteins

In some embodiments, a UL131 protein is a full-length UL131 protein (CMV UL131, SEQ ID NO:______, for example, which is a 129 amino acid protein). In some embodiments the UL131 protein can be a UL131 fragment of 10 amino acids or longer. For example, the number of amino acids in the fragment can comprise 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, or 200 amino acids. A UL131 fragment can begin at any of residue number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119.

UL131 residues are numbered according to the full-length UL131 amino acid sequence (CMV UL131 FL) shown in SEQ ID NO:______. Optionally, a UL131 fragment can extend further into the N-terminus by 5, 10, 20, or 30 amino acids from the starting residue of the fragment. Optionally, a UL 131 fragment can extend further into the C-terminus by 5, 10, 20, or 30 amino acids from the last residue of the fragment.

As stated above, the invention relates to recombinant polycistronic nucleic acid molecules that contain a first sequence encoding a first herpesvirus protein or fragment thereof, and a second sequence encoding a second herpesvirus protein or fragment thereof. Accordingly, the foregoing description of certain preferred embodiments, such as alphavirus VRPs and self-replicating RNAs that contain sequences encoding two or more CMV proteins or fragments thereof, is illustrative of the invention but does not limit the scope of the invention. It will be appreciated that the sequences encoding CMV proteins in such preferred embodiments, can be replaced with sequences encoding proteins, such as gH and gL, or fragments thereof that are 10 amino acids long or longer, from other herpesviruses such as HHV-1, HHV-2, HHV-3, HHV-4, HHV-6, HHV-7 and HHV-8. For example, suitable VZV (HHV-3) proteins include gB, gE, gH, gI, and gL, and fragments thereof that are 10 amino acids long or longer, and can be from any VZV strain. For example, VZV proteins or fragments thereof can be from pOka, Dumas, HJO, CA123, or DR strains of VZV. These exemplary VZV proteins and fragments thereof can be encoded by any suitable nucleotide sequence, including sequences that are codon optimized or deoptimized for expression in a desired host, such as a human cell. Exemplary sequences of VZV proteins are provided herein.

For example, in one embodiment, the polycistronic nucleic acid molecule contains a first sequence encoding a VZV gH protein or fragment thereof, and a second sequence encoding a VZV gL protein or fragment thereof.

In some embodiments, each of the sequences encoding a herpes virus protein or fragment that are present in the polycistronic nucleic acid molecule is operably linked to its own control elements. For example, each sequences encoding a herpes virus protein or fragment is operably linked to its own subgenomic promoter. Thus the polycistronic nucleic acid molecule, such as an alphavirus replicon, can contain two, three, four or five subgenomic promoters, each of which controls expression of a herpes virus protein or fragment. When this type of polycistronic nucleic acid molecule is a self replicating RNA, such as an alphavirus replicon, it can be packaged as a VRP, or associate or formulated with an RNA delivery system.

Methods and Uses

In some embodiments, self-replicating RNA molecules or VRPs are administered to an individual to stimulate an immune response. In such embodiments, self-replicating RNA molecules or VRPs typically are present in a composition which may comprise a pharmaceutically acceptable carrier and, optionally, an adjuvant. See, e.g., U.S. Pat. No. 6,299,884; U.S. Pat. No. 7,641,911; U.S. Pat. No. 7,306,805; and US 2007/0207090.

The immune response can comprise a humoral immune response, a cell-mediated immune response, or both. In some embodiments an immune response is induced against each delivered CMV protein. A cell-mediated immune response can comprise a Helper T-cell (Th) response, a CD8+ cytotoxic T-cell (CTL) response, or both. In some embodiments the immune response comprises a humoral immune response, and the antibodies are neutralizing antibodies. Neutralizing antibodies block viral infection of cells. CMV infects epithelial cells and also fibroblast cells. In some embodiments the immune response reduces or prevents infection of both cell types. Neutralizing antibody responses can be complement-dependent or complement-independent. In some embodiments the neutralizing antibody response is complement-independent. In some embodiments the neutralizing antibody response is cross-neutralizing; i.e., an antibody generated against an administered composition neutralizes a CMV virus of a strain other than the strain used in the composition.

A useful measure of antibody potency in the art is “50% neutralization titer.” To determine 50% neutralizing titer, serum from immunized animals is diluted to assess how dilute serum can be yet retain the ability to block entry of 50% of viruses into cells. For example, a titer of 700 means that serum retained the ability to neutralize 50% of virus after being diluted 700-fold. Thus, higher titers indicate more potent neutralizing antibody responses. In some embodiments, this titer is in a range having a lower limit of about 200, about 400, about 600, about 800, about 1000, about 1500, about 2000, about 2500, about 3000, about 3500, about 4000, about 4500, about 5000, about 5500, about 6000, about 6500, or about 7000. The 50% neutralization titer range can have an upper limit of about 400, about 600, about 800, about 1000, about 1500, about 200, about 2500, about 3000, about 3500, about 4000, about 4500, about 5000, about 5500, about 6000, about 6500, about 7000, about 8000, about 9000, about 10000, about 11000, about 12000, about 13000, about 14000, about 15000, about 16000, about 17000, about 18000, about 19000, about 20000, about 21000, about 22000, about 23000, about 24000, about 25000, about 26000, about 27000, about 28000, about 29000, or about 30000. For example, the 50% neutralization titer can be about 3000 to about 6500. “About” means plus or minus 10% of the recited value. Neutralization titer can be measured as described in the specific examples, below.

An immune response can be stimulated by administering VRPs or self-replicating RNA to an individual, typically a mammal, including a human. In some embodiments the immune response induced is a protective immune response, i.e., the response reduces the risk or severity of CMV infection. Stimulating a protective immune response is particularly desirable in some populations particularly at risk from CMV infection and disease. For example, at-risk populations include solid organ transplant (SOT) patients, bone marrow transplant patients, and hematopoietic stem cell transplant (HSCT) patients. VRPs can be administered to a transplant donor pre-transplant, or a transplant recipient pre- and/or post-transplant. Because vertical transmission from mother to child is a common source of infecting infants, administering VRPs or self-replicating RNA to a woman who can become pregnant is particularly useful.

Any suitable route of administration can be used. For example, a composition can be administered intra-muscularly, intra-peritoneally, sub-cutaneously, or trans-dermally. Some embodiments will be administered through an intra-mucosal route such as intra-orally, intra-nasally, intra-vaginally, and intra-rectally. Compositions can be administered according to any suitable schedule.

All patents, patent applications, and references cited in this disclosure, including nucleotide and amino acid sequences referred to by accession number, are expressly incorporated herein by reference. The above disclosure is a general description. A more complete understanding can be obtained by reference to the following specific examples, which are provided for purposes of illustration only.

Example 1 Delivery of Individual CMV Antigens Using a VRP Platform

Each of CMV glycoproteins gB and gH induce neutralizing responses, and gB is the dominant antigen among antibodies in human sera that neutralize infection of fibroblasts (Britt et al. (1990) J. Virol. 64(3):1079-85). The following experiments demonstrate in mice a neutralizing response against these antigens delivered using a VRP platform.

Each CMV antigen was cloned into a pcDNA-6H is vector (Invitrogen) and tested for protein expression before cloning into an alphavirus replicon vector, pVCR 2.1 SalI/XbaI derived from the plasmid described by Perri et al. (J. Virol 77(19)10394-10403 (2003)) producing the constructs shown in FIG. 2. pVCR 2.1 SalI/XbaI is a self-replicating RNA vector that, when electroporated with defective helper capsid and glycoprotein RNA, forms an infectious alphavirus particle.

pVCR vectors were used to make RNA which was electroporated into baby hamster kidney (BHKV) cells in the presence of defective helper capsid and glycoprotein RNAs derived from Venezuelan equine encephalitis virus (VEE). After electroporation, the supernatant containing secreted alphavirus vector particles (VRPs) was collected, purified, titered, and used for mouse immunization studies. Mice were immunized with 1×106 infectious units (IU)/mouse in a series of two immunizations, three weeks apart. The terminal bleed was three weeks after the second immunization.

Monocistronic gB, gH and gL VRPs

Two different versions of soluble gB were constructed: “gB sol 750” lacks the transmembrane spanning domain and cytoplasmic domain; and “gB sol 692” also lacks a hydrophobic region (FIG. 2A) and is similar to the Reap et al. construct. A soluble gH which lacks the transmembrane spanning domain and cytoplasmic domain (“gH sol 716”) was also constructed (FIG. 2C). Sera from immunized mice were screened in several assays. Immunoblot (data not shown) and immunofluorescence assays were used to confirm specific antibody responses to the antigens. Neutralization assays were used to demonstrate that the elicited antibody responses were able to neutralize CMV infection.

Sera from immunized mice were examined by immunofluorescence for recognition of gB in 293T cells transfected with constructs expressing gB-6H is. Cells were probed with either anti-His antibodies (“anti-6H is”), a monoclonal gB antibody (“anti-gB 27-156”), or collected pooled mouse sera. Pre-immune serum was negative in all cases. In cells transfected with constructs expressing gB FL-6H is, fixed, and permeabilized, anti-6H is staining revealed an expression pattern of surface expression with a punctate cytoplasmic pattern most likely corresponding to the endocytic/exocytic trafficking pathway. Both anti-gB 27-156 and the pooled mouse sera showed a similar expression pattern. Sera from mice immunized with each of gB FL VRPs, gB sol 750 VRPs, and gB sol 692 VRPs showed the same expression pattern.

Mice immunized with gH FL VRPs and gH sol 716 VRPs produced antibodies specific to gH. Immunofluorescence analysis of 293T cells transfected with constructs expressing gH FL-6H is detected strong recognition of gH by anti-6H is, anti-gH, and pooled mouse sera. Sera collected from mice immunized with gL VRPs produced a specific antibody response as determined by immunoblot analysis and immunofluorescence. gL VRPs failed to elicit a neutralizing response.

Sera from mice immunized with gB VRPs or gH VRPs were analyzed for the presence of neutralizing antibodies using a CMV neutralization assay. Sera at various dilutions were pre-incubated with CMV virus TB40UL32EGFP (“TB40-GFP,” a clinical isolate engineered to express GFP and then added to ARPE-19 epithelial cells and incubated for 5 days. At 5 days post-infection, the GFP-positive cells were counted. In this assay, cells incubated with serum containing neutralizing antibodies have fewer GFP-positive cells compared to cells incubated with virus alone or with virus incubated with pre-immune sera. Sera from mice immunized with gB VRPs, gB FL VRPs, gB sol 750 VRPs, or gB sol 692 VRPs had strong neutralizing activity in the presence of guinea pig complement (50% neutralization titer at a serum dilution of 1:1280-1:2560; FIG. 3). Sera from mice immunized with gH FL VRPs or gH sol VRPs had some neutralizing activity that was independent of guinea pig complement (FIG. 3).

Example 2 Construction of Polycistronic Alphavirus Vectors

CMV produces several multi-protein complexes during infection. To determine whether a single replicon expressing all components of a desired complex can be used to produce the CMV complex in a subject, or whether components of the complex could be co-delivered from multiple replicon vectors, we designed a platform that allows controlled expression of multiple CMV proteins.

An alphavirus vector (pVCR 2.1 SalI/XbaI) was modified to allow assembly of multiple subgenomic promoters (SGP) and genes of interest (GOI). pVCR 2.1SalI/XbaI ApaI site at 11026-31 bp was changed from GGGCCC (SEQ ID NO:______) to GGCGCC (SEQ ID NO:______). ClaI and PmlI restriction sites added in the region immediately downstream of the first subgenomic promoter and SalI-XbaI insert sites. The sequence at 7727-7754 bp was changed from ctcgatgtacttccgaggaactgatgtg (SEQ ID NO:______) to ATCGATGTACTTCCGAGGAACTCACGTG (SEQ ID NO:______).

A shuttling vector system was designed to allow insertion of a GOI directly downstream of a SGP using the SalI-XbaI sites. pcDNA 3.1 (−) C was modified as follows. Three SalI sites were deleted: positions 1046-1051 bp, 3332-3337 bp and 5519-21, 1-3 bp from GTCGAC (SEQ ID NO:______) to GTCTAC (SEQ ID NO:______). pcDNA 3.1 (−) C was modified to mutate an XbaI site at position 916-921 bp from TCTAGA (SEQ ID NO:______) to TCAAGA (SEQ ID NO:______). pcDNA 3.1 (−) C was modified to add a ClaI site and SacII site at positions 942-947 (ClaI) and 950-955 (SacII) by from ctggatatctgcag (SEQ ID NO:______) to ATCGATATCCGCGG (SEQ ID NO:______).

Once the restriction sites were added and the resulting sequence was verified, the region from by 7611-7689 (ctataactctctacggctaacctgaatggactacgacatagtctagtcgaccaagcctctagacggc gcgcccaccca) (SEQ ID NO:______) was amplified from the modified pVCR 2.1 alphavirus vector using the following primers

Forward SGP S-X Not F: (SEQ ID NO:   ) 5′ATAAGAATGCGGCCGCCTATAACTCTCTACGGCTAACC3′ Reverse SGP S-X Cla R: (SEQ ID NO:   ) 5′CCATCGATTGGGTGGGCGCGCCGTCTAG3′ or Forward SGP S-X Cla F: (SEQ ID NO:   ) 5′CCATCGATCTATAACTCTCTACGGCTAACC3′ and Reverse SGP S-X Sac R: (S SEQ ID NO: _) 5′TCCCCGCGGTGGGTGGGCGCGCCGTCTAG 3′.

The amplified regions were added into the modified pcDNA 3.1(−)C vector to make shuttling vectors (pcDNA SV) between appropriate sites (NotI-ClaI or ClaI-SacII). Insertion of the NotI-SGP Sal-Xba-ClaI forms pcDNA SV cassette 2, insertion of the ClaI-SGP Sal-Xba-SacII forms pcDNA SV cassette 3. These SV cassettes were sequenced. The pcDNA SV cassette 2 contains an additional 12 bp between the XbaI site and the ClaI site (CCACTGTGATCG) (SEQ ID NO:______) because the ClaI site was not cut in the pcDNA SV cassette 2 vector. A PmlI site was therefore added. For pcDNA SV cassette 2, the PmlI site was inserted at by 1012 (CACGTG) (SEQ ID NO:______). For cassette 3, PmlI site was added at by 935-940 (ACTGTG (SEQ ID NO:______) was changed to CACGTG (SEQ ID NO:______).

For each polycistronic vector the first gene was inserted directly into the pVCR 2.1 modified vector using the SalI-XbaI sites. The second gene was ligated into pcDNA SV cassette 2 using SalI-XbaI and excised using NotI-PmlI, NotI-SacII or PCRed using primers for NotI-ClaI and digested using NotI and ClaI. The resulting insert SGP-SalI-GOI-Xba was ligated into the modified pVCR 2.1 vector using NotI-PmlI, NotI-SacII, or NotI-ClaI sites. The NotI-ClaI insert was used only when a desired gene in the construct contained a PmlI site.

In some cases a third gene was ligated into pcDNA SV cassette 3 using SalI-XbaI and excised using PmlI-SacII or PCRed using primers for ClaI-SacII and digested using ClaI and SacII. The resulting insert SGP-SalI-GOI-XbaI was ligated into the modified pVCR 2.1 using PmlI-SacII or ClaI-SacII.

SalI-XbaI digestion was used to validate construction of the polycistronic vector DNA. After digestion with SalI-XbaI, agarose gel electrophoresis was performed to confirm the presence of the GOIs. The polycistronic vector DNA was then linearized with PmeI overnight, purified using Qiagen's PCR purification kit, and used as template to make RNA using the Ambion mMessage mMachine kit. RNA quality was checked by running a sample aliquot on an RNA agarose gel.

Expression from a Polycistronic Vector

Fluorescent proteins GFP (green fluorescent protein) and mCherry (red fluorescent protein) were used as the GOIs to assess the ability of the polycistronic vector to express two proteins. We prepared a bicistronic vector in which GFP would be expressed using a first subgenomic promoter and mCherry would be expressed from a second subgenomic promoter (FIG. 4A). Polynucleotides containing coding sequences for these proteins were inserted using SalI-XbaI sites. The first polynucleotide (GFP) was inserted directly into the modified alphavirus replicon vector. The second polynucleotide (mCherry) was inserted first into a shuttling vector that contains a subgenomic promoter directly upstream of the coding sequence. A fragment containing both the second subgenomic promoter and the second polynucleotide was isolated and ligated into the modified alphavirus replicon vector containing the first polynucleotide, providing an alphavirus replicon with multiple subgenomic promoters.

VRPs were produced in BHKV cells by electroporating replicon RNAs with defective helper RNAs for Cap and Gly. The VRPs were harvested 24 hours after electroporation and used to infect BHKV cells at a multiplicity of infection (MOI) of 20 infectious units (IU) per cell.

The experiment tested four sets of VRPs: one VRP expressing only GFP; one VRP expressing mCherry; one VRP expressing only GFP and one VRP expressing only mCherry, both at MOI of 20 IU/cell; and one VRP containing the bicistronic vector GFP(1)−SGPmCherry(2). VRP-infected BHKV cells were examined 24 hours post-infection to determine percent of colocalization. Nearly all the cells were positive for GFP or mCherry when singly infected. Cells infected with two separate VRPs appeared either green or red. Very few cells were yellow, indicating that few cells expressed GFP and mCherry at equal levels and that there was a low level of co-infection. These data were confirmed using FACS analysis (FIG. 4B).

In contrast, cells infected with alphavirus containing the bicistronic vector GFP(1)−SGPmCherry(2) were all yellow, which indicates approximately equal expression of GFP and mCherry. This study demonstrates that multiple proteins can be expressed successfully from a single polycistronic alphavirus replicon vector.

Example 3 Production of CMV Complexes

This example demonstrates that CMV protein complexes can be formed in a cell after delivery of the complex components from a polycistronic alphavirus replicon vector.

gH/gL and gH/gL/gO Complexes

Polycistronic gH/gL and gH/gL/gO alphavirus replicons were constructed as described above (shown schematically in FIG. 5A). VRPs containing gH, gL, gO, gH/gL and gH/gL/gO encoding replicons were produced in BHKV cells as described above and used to infect BHKV cells to demonstrate complex formation in vitro. VRP infected ARPE-19 cells produced disulfide linked complexes of gH/gL. gO did not detectably alter gH/gL association (FIG. 5B).

Immunofluorescence studies were conducted to evaluate the localization of gH and gL delivered alone and when delivered using a polycistronic alphavirus to look at relocalization of the proteins when co-expressed. gH localization did not appear to change in the presence or absence of gL, or gL/gO. gL localization did change when in the presence of gH and gH/gO.

Finally, gH/gL association was examined via immunoprecipitation. A commercial gH antibody (Genway) was used to investigate the association of gH and gL. In all cases, the gH antibody efficiently immunoprecipitated gH (FIG. 5C). When no gH was present, gL was not immunoprecipitated. When gL was expressed in the presence of gH or gH/gO, there was association of gL with gH (FIG. 5C).

The relocalization of gL in the presence of gH and the association of gH/gL (with or without gO) indicates that all components of the polycistronic alphavirus replicons were expressed and associated to form a complex.

Example 4 VRPs that Effect gH/gL Complex Formation In Vitro Induce Potent Immune Response to CMV which is Qualitatively and Quantitatively Superior to the Immune Response Elicited to gB VRPs

This example demonstrates the induction of robust immune responses to complexes formed by delivering polycistronic gH/gL VRPs or gH/gL/gO VRPs compared with immune responses obtained using VRPs delivering single components or single-component VRPs administered in combination or to responses elicited by gB VRPs.

Mice were infected three times with VRPs administered 3 weeks apart (106 IU per mouse; 5 BalbC mice/group). Sera collected from immunizations with single and polycistronic VRPs were screened for neutralizing antibodies using a CMV neutralization assay as described above. Neutralization titer was measured as follows. Various dilutions of sera were pre-incubated with TB40-UL32-EGFP in the presence or absence of guinea pig complement and then added to ARPE-19 epithelial cells or MRC-5 fibroblast cells and incubated for 5 days. After 5 days infection with the virus, GFP-positive cells were counted. Results for the ARPE-19 cells are shown in FIG. 6A, FIG. 6B, and FIG. 6C. Results for the MRC-5 cells are shown in FIG. 7A and FIG. 7B.

Sera from mice immunized with gH FL VRPs had low complement-independent neutralizing activity (FIG. 6A and FIG. 6B). No neutralizing activity was observed using sera from mice immunized with only gL or gO in the presence or absence of guinea pig complement. (FIG. 6C) Pooled sera from immunization with several CMV gB proteins (gB FL, gB sol 750, and gB sol 692) demonstrated strong neutralizing activity in the presence of guinea pig complement, with a 50% neutralization titer at 1:1280 sera dilution. However, there was no neutralizing activity in the absence of guinea pig complement in ARPE-19 cells for the pooled gB sera. VRPs expressing single CMV proteins (gH- or gL-VRPs or co-administering gH-, gL-, and gO-VRPs at 106 IU/mouse/VRP) did not enhance neutralizing activity beyond that of gH alone.

In contrast, sera from mice immunized with bicistronic gH/gL or tricistronic gH/gL/gO VRPs (1×106 IU/mouse) demonstrated robust neutralizing responses. Moreover, the responses were similar in the presence and absence of guinea pig complement, showing that polycistronic VRPs successfully induced a complement-independent immune response. (FIG. 6C.) The 50% neutralization titer was 1:3500-6400+ sera dilution in ARPE-19 cells with TB40-GFP CMV virus. This titer is approximately 3-4 fold higher titer than the 50% complement-dependent neutralization titer for gB pooled sera.

Results in the MRC-5 fibroblast cells were similar to those in ARPE-19 cells (FIGS. 7A and 7B). Sera from mice immunized with bicistronic gH/gL or tricistronic gH/gL/gO VRPs demonstrated strong neutralizing activity compared to sera from mice immunized with VRPs encoding gH alone, gL alone, or gO alone and to sera from mice immunized by coadministration of gH VRPs and gL VRPs, or coadministration of gH VRPs, gL VRPs, and gO VRPs. These results demonstrate that administration of the polycistronic VRPs induced an immune response that provides good complement-independent neutralization of CMV infection of fibroblast cells. To assess the breadth and potency of the gH/gL immune sera against different strains of CMV, we compared the ability of the sera to block infection of fibroblasts and epithelial cells with six different strains of CMV. FIG. 8 shows that the gH/gL sera potently neutralize infection of both cell types with a broad range of strains.

These data also demonstrate strong neutralizing activity for sera from mice immunized with the polycistronic VRPs but not with mixed pools of VRPs expressing only one protein. This shows that polycistronic replicons that encode the components of a protein complex on a single replicon result in efficient production of the complex in situ. Moreover, because Merlin strain CMV proteins were used to stimulate these responses, the in vitro data obtained using TB40 strain CMV virus demonstrates that the neutralizing antibodies induced by delivery of the polycistronic VRPs are cross-neutralizing antibodies.

Example 5 RNA Synthesis

Plasmid DNA encoding alphavirus replicons (see FIGS. 14-16) served as a template for synthesis of RNA in vitro. Alphavirus replicons contain the genetic elements required for RNA replication but lack those encoding gene products necessary for particle assembly; the structural genes of the alphavirus genome are replaced by sequences encoding a heterologous protein. Upon delivery of the replicons to eukaryotic cells, the positive-stranded RNA is translated to produce four non-structural proteins, which together replicate the genomic RNA and transcribe abundant subgenomic mRNAs encoding the heterologous gene product or gene of interest (GOI). Due to the lack of expression of the alphavirus structural proteins, replicons are incapable of inducing the generation of infectious particles. A bacteriophage (T7 or SP6) promoter upstream of the alphavirus cDNA facilitates the synthesis of the replicon RNA in vitro and the hepatitis delta virus (HDV) ribozyme immediately downstream of the poly(A)-tail generates the correct 3′-end through its self-cleaving activity.

In order to allow the formation of an antigenic protein complex, the expression of the individual components of said complex in the same cell is of paramount importance. In theory, this can be accomplished by co-transfecting cells with the genes encoding the individual components. However, in case of non-virally or VRP delivered alphavirus replicon RNAs, this strategy is hampered by inefficient co-delivery of multiple RNAs to the same cell or, alternatively, by inefficient launch of multiple self-replicating RNAs in an individual cell. A potentially more efficient way to facilitate co-expression of components of a protein complex is to deliver the respective genes as part of the same self-replicating RNA molecule. To this end, we engineered alphavirus replicon constructs encoding multiple genes of interest. Every GOI is preceded by its own subgenomic promoter which is recognized by the alphavirus transcription machinery. Thereby, multiple subgenomic messenger RNA species are synthesized in an individual cell allowing the assembly of multi-component protein complexes.

Following linearization of the plasmid DNA downstream of the HDV ribozyme with a suitable restriction endonuclease, run-off transcripts were synthesized in vitro using T7 bacteriophage derived DNA-dependent RNA polymerase. Transcriptions were performed for 2 hours at 37° C. in the presence of 7.5 mM of each of the nucleoside triphosphates (ATP, CTP, GTP and UTP) following the instructions provided by the manufacturer (Ambion, Austin, Tex.). Following transcription, the template DNA was digested with TURBO DNase (Ambion, Austin, Tex.). The replicon RNA was precipitated with LiCl and reconstituted in nuclease-free water. Uncapped RNA was capped post-transcripionally with Vaccinia Capping Enzyme (VCE) using the ScriptCap m7G Capping System (Epicentre Biotechnologies, Madison, Wis.) as outlined in the user manual. Post-transcriptionally capped RNA was precipitated with LiCl and reconstituted in nuclease-free water. The concentration of the RNA samples was determined by measuring the optical density at 260 nm. Integrity of the in vitro transcripts was confirmed by denaturing agarose gel electrophoresis.

Lipid Nanoparticle (LNP) Formulation

1,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane (DlinDMA) was synthesized using a previously published procedure [Heyes, J., Palmer, L., Bremner, K., MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. Journal of Controlled Release, 107: 276-287 (2005)]. 1,2-Diastearoyl-sn-glycero-3-phosphocholine (DSPC) was purchased from Genzyme. Cholesterol was obtained from Sigma-Aldrich (St. Lois, Mo.). 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (PEG DMG 2000), was obtained from Avanti Polar Lipids.

LNPs (RV01(14)) were formulated using the following method. 150 μg batch, (PES hollow fibers and no mustang): Fresh lipid stock solutions in ethanol were prepared. 37 mg of DlinDMA, 11.8 mg of DSPC, 27.8 mg of Cholesterol and 8.07 mg of PEG DMG 2000 were weighed and dissolved in 7.55 mL of ethanol. The freshly prepared lipid stock solution was gently rocked at 37° C. for about 15 min to form a homogenous mixture. Then, 453 μl of the stock was added to 1.547 mL ethanol to make a working lipid stock solution of 2 mL. This amount of lipids was used to form LNPs with 150 μg RNA at a 8:1 N:P (Nitrogen to Phosphate) ratio. The protonatable nitrogen on DlinDMA (the cationic lipid) and phosphates on the RNA are used for this calculation. Each μg of self-replicating RNA molecule was assumed to contain 3 nmoles of anionic phosphate, each μg of DlinDMA was assumed to contains 1.6 nmoles of cationic nitrogen. A 2 mL working solution of RNA was also prepared from a stock solution of ˜1 μg/μL in 100 mM citrate buffer (pH 6) (Teknova). Three 20 mL glass vials (with stir bars) were rinsed with RNase Away solution (Molecular BioProducts) and washed with plenty of MilliQ water before use to decontaminate the vials of RNAses. One of the vials was used for the RNA working solution and the others for collecting the lipid and RNA mixes (as described later). The working lipid and RNA solutions were heated at 37° C. for 10 min before being loaded into 3 cc luer-lok syringes (BD Medical). 2 mL of citrate buffer (pH 6) was loaded in another 3 cc syringe. Syringes containing RNA and the lipids were connected to a T mixer (PEEK™ 500 μm ID junction) using FEP tubing ([fluorinated ethylene-propylene] 2 mm ID×3 mm OD, Idex Health Science, Oak Harbor, Wash.). The outlet from the T mixer was also FEP tubing (2 mm ID×3 mm). The third syringe containing the citrate buffer was connected to a separate piece of tubing (2 mm ID×3 mm OD). All syringes were then driven at a flow rate of 7 mL/min using a syringe pump (from kdScientific, model no. KDS-220). The tube outlets were positioned to collect the mixtures in a 20 mL glass vial (while stirring). The stir bar was taken out and the ethanol/aqueous solution was allowed to equilibrate to room temperature for 1 h. Then the mixture was loaded in a 5 cc syringe (BD Medical), which was fitted to a piece of FEP tubing (2 mm ID×3 mm OD) and in another 5 cc syringe with equal length of FEP tubing, an equal volume of 100 mM citrate buffer (pH 6) was loaded. The two syringes were driven at 7 mL/min flow rate using a syringe pump and the final mixture collected in a 20 mL glass vial (while stirring). Next, LNPs were concentrated to 2 mL and dialyzed against 10-15 volumes of 1×PBS (from Teknova) using the Tangential Flow Filtration (TFF) system before recovering the final product. The TFF system and hollow fiber filtration membranes were purchased from Spectrum Labs and were used according to the manufacturer's guidelines. Polyethersulfone (PES) hollow fiber filtration membranes (part number P-C1-100E-100-01N) with a 100 kD pore size cutoff and 20 cm2 surface area were used. For in vitro and in vivo experiments, formulations were diluted to the required RNA concentration with 1×PBS (from Teknova).

Particle Size

Particle size was measured using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK) according to the manufacturer's instructions. Particle sizes are reported as the Z average with the polydispersity index (pdi). Liposomes were diluted in 1×PBS before measurement.

Encapsulation Efficiency and RNA Concentration

The percentage of encapsulated RNA and RNA concentration were determined by

Quant-iT RiboGreen RNA reagent kit (Invitrogen). Manufacturer's instructions were followed in the assay. The ribosomal RNA standard provided in the kit was used to generate a standard curve. LNPs either obtained from method 1 or methods 2-5 were diluted ten fold or one hundred fold respectively in lx TE buffer (from kit), before addition of the dye. Separately, LNPs were diluted ten or 100 fold in 1×TE buffer containing 0.5% Triton X (Sigma-Aldrich), before addition of the dye. Thereafter an equal amount of dye was added to each solution and then ˜180 μL of each solution after dye addition was loaded in duplicate into a 96 well tissue culture plate (obtained from VWR, catalog #353072). The fluorescence (Ex 485 nm, Em 528 nm) was read on a microplate reader (from BioTek Instruments, Inc.).

Triton X was used to disrupt the LNPs, providing a fluorescence reading corresponding to the total RNA amount and the sample without Triton X provided fluorescence corresponding to the unencapsulated RNA. % RNA encapsulation was determined as follows: LNP RNA Encapsulation (%)=[(Ft−Fi)/Ft]×100, where Ft is the fluorescence intensity of LNPs with triton X addition and Fi is the fluorescence intensity of the LNP solution without detergent addition. These values (Ft and Fi) were obtained after subtraction from blank (1×TE buffer) fluorescence intensity. The concentration of encapsulated RNA was obtained by comparing Ft—Fi with the standard curve generated. All LNP formulations were dosed in vivo based on the encapsulated dose.

Viral Replicon Particles (VRP)

To compare RNA vaccines to traditional RNA-vectored approaches for achieving in vivo expression of reporter genes or antigens, we utilized viral replicon particles (VRPs), produced in BHK cells by the methods described by Perri et al. (J. Virol 77(19):10394-10403 (2003)), coding for expression of the same antigens as the corresponding RNA constructs. In this system, the antigen consisted of alphavirus chimeric replicons (VCR) derived from the genome of Venezuelan equine encephalitis virus (VEEV) engineered to contain the 3′ terminal sequences (3′ UTR) of Sindbis virus and a Sindbis virus packaging signal (PS) (see FIG. 2 of Perri et al). The replicons were packaged into VRPs by co-electroporating them into baby hamster kidney (BHK) cells along with defective helper RNAs encoding the Sindbis virus capsid and glycoprotein genes (see FIG. 2 of Perri et al). The VRPs were then harvested and partially purified by ultracentrifugation on a sucrose cushion and concentrated on an Amicon concentrator. The resulting VRP stock was titrated by standard methods and inoculated into animals in culture fluid or other isotonic buffers. An alphavirus replicon particle chimera derived from venezuelan equine encephalitis and sindbis viruses is a potent gene-based vaccine delivery vector. J. Virol. 77, 10394-10403.

Murine Immunogenicity Studies

Groups of 10 female BALB/c mice aged 8-10 weeks and weighing about 20 g were immunized with 1×106 IU (VRP) or 1.0 μg (RNA) at day 0, 21 and 42 with bleeds taken 3 weeks after the 2nd and 3 weeks after the 3rd vaccinations. All animals were injected in the quadriceps in the two hind legs each getting an equivalent volume (50 μl per site).

Micro Neutralization Assay

Serum samples were tested for the presence of neutralizing antibodies by an infection reduction neutralization test. Two-fold serial dilutions of HI-serum (in DMEM with 10% HI FBS) were added to an equal volume of CMV (strain TB40 or clinical isolate 8819) previously titered to give approximately 200 IU/50 μl. The VR1814, Towne, AD169 strains and the clinical isolate 8822 were also used. Serum/virus mixtures were incubated for 2 hours at 37° C. and 5% CO2, to allow virus neutralization to occur, and then 50 μl of this mixture (containing approximately 200 IU) was inoculated on duplicate wells of ARPE-19 cells in 96 half well plates. Plates were incubated for 40-44 hours. Unless otherwise noted, the number of positive infected foci was determined by immunostaining with an AlexaFluor 488 conjugated IE1 CMV monoclonal antibody followed by automated counting. The neutralization titer is defined as the reciprocal of the serum dilution producing a 50% reduction in number of positive virus foci per well, relative to controls (no serum).

Immunogenicity of gH/gL VRPs and LNP Formulated RNA

The A323 replicon that expresses the surface glycoprotein B (gB) of CMV, the A160 replicon that expresses the membrane complex of the full-length glycoprotein H and L (gH/gL) and the A322 replicon that expresses the membrane complex of the soluble form of glycoprotein H and L (gHsol/gL) were used for this experiment. BALB/c mice, 10 animals per group, were given bilateral intramuscular vaccinations (50 μL per leg) on days 0, 21 and 42 with VRPs expressing gB (1×106 IU), VRPs expressing gH/gL (1×106 IU), VRP's expressing gHsol/gL (1×106 IU) and PBS as the controls. The three test groups received self-replicating RNA (A160, A322 or A323) formulated in LNP (RV01(14). Serum was collected for immunological analysis on days 39 (3wp2) and 63 (3wp3).

Results

The sive and percentage of encapsulated RNA in the RV01(14) formulations made for the experiment are shown in Table 3.

TABLE 3 pKa of Particle Lipid Composition (% cationic Size Zav Percent RNA RV# moles of total) RNA lipid (nm) pdI Encapsulation RV01 (14) DlinDMA 40%, DSPC- gB FL 5.8 170 0.098 88.3 10%, Chol- 48%, PEG DMG 2k-2% RV01 (14) DlinDMA 40%, DSPC- gH FL/gL 5.8 168.8 0.144 87.4 10%, Chol- 48%, PEG DMG 2k-2% RV01 (14) DlinDMA 40%, DSPC- gHsol/gL 5.8 162 0.131 90 10%, Chol- 48%, PEG DMG 2k-2%

The 50% neutralizing titers for the terminal sera (day 63, three weeks after final vaccination) are shown in Table 4.

TABLE 4 ARPE-19, ARPE-19, HCMV TB40 HCMV 8819 pool pool aver- pool pool aver- #1 #2 age #1 #2 age Preimmune serum 126 212 169 50 50 50 gB FL VRP 106 IU 1332 295 814 5085 1031 3058 gB FL RNA- 1 μg 686 179 433 1261 557 909 RV01(14) gH FL/gL VRP 106 IU 1425 1624 1525 2496 1374 1935 gH FL/gL RNA- 1 μg 6196 6390 6293 5800 10267 8034 RV01(14) gH sol/gL VRP 106 IU 2375 2254 2315 1733 1924 1829 gH sol/gL RNA- 1 μg 4600 2062 3331 2912 1533 2223 RV01(14)

RNA expressing either a full-length or a presumed soluble form of the HCMV gH/gL complex elicit high titers of neutralizing antibody, as assayed on epithelial cells using two different HCMV strains. The average titers elicited by the gH/gL RNAs are at least as high as the average titer for the corresponding gH/gL VRPs (see FIG. 17).

Example 6 Bicistronic and Pentacistronic Nucleic Acids Encoding CMV Proteins

Additional bicistronic and pentacistronic alphavirus replicons that express glycoprotein complexes from human cytomegalovirus (HCMV) were prepared, and are shown schematically in FIGS. 18 and 20. The alphavirus replicons were based on venezuelan equine encephalitis virus (VEE). The replicons were packaged into viral replicon particles (VRPs), encapsulated in lipid nanoparticles (LNP), or formulated with a cationic nanoemulsion (CNE). Expression of the encoded HCMV proteins and protein complexes from each of the replicons was confirmed by immunoblot, co-immunoprecipitation, and flow cytometry. Flow cytometry was used to verify expression of the pentameric gH/gL/UL128/UL130/UL131 complex from pentameric replicons encoding the protein components of the complex, using human monoclonal antibodies specific to conformational epitopes present on the pentameric complex (Macagno et al (2010), J. Virol. 84(2):1005-13). FIG. 19 shows that these antibodies bind to BHKV cells transfected with replicon RNA expressing the HCMV gH/gL/UL128/UL130/UL131 pentameric complex (A527). Similar results were obtained when cells were infected with VRPs made from the same replicon construct. This shows that replicons designed to express the pentameric complex do indeed express the desired antigen and not the potential byproduct gH/gL.

The VRPs, RNA encaspulated in LNPs, and RNA formulated with CNE were used to immunize Balb/c mice by intramuscular injections in the rear quadriceps. The mice were immunized three times, three weeks apart, and serum samples were collected prior to each immunization as well as three weeks after the third and final immunization. The sera were evaluated in microneutralization assays to measure the potency of the neutralizing antibody response that was elicited by the vaccinations. The titers are expressed as 50% neutralizing titer.

The immunogenicity of a number of different configurations of a bicistronic expression cassette for a soluble HCMV gH/gL complex in VRPs was assessed. FIG. 20 shows that VRPs expressing the membrane-anchored, full-length gH/gL complex elicited potent neutralizing antibodies at slightly higher titers than the soluble complex (gHsol/gL) expressed from a similar bicistronic expression cassette. Changing the order of the genes encoding gHsol and gL or replacing one of the subgenomic promoters with an IRES or an FMDV 2A site did not substantially improve immunogenicity.

The breadth and potency of HCMV neutralizing activity in sera from mice immunized with VEE/SIN VRPs expressing gH/gL was assessed by using the sera to block infection of fibroblasts and epithelial cells with different strains of HCMV. Table 5 shows that gH/gL immune sera were broadly and potently neutralizing against six different strains of HCMV on both cell types in the absence of complement. Addition of complement had a slight negative effect on the neutralizing potency of the sera.

TABLE 5 Neutralizing antibody titers in sera from mice immunized with pVCR-derived VRPs expressing gH/gL. Serum from mice immunized with pVCR-derived VRPs expressing gH/gL Without With HCMV Strain Cell complement complement Towne Fibroblasts 5244 4081 AD169 (MRC-5) 2126 2208 TB40-UL32-EGFP 678 505 VR1814 4764 2126 TB40-UL32-EGFP Epithelial cells 5602 3247 VR1814 (ARPE-19) 6510 2420 8819 (clinical isolate) 8706 5242 8822 (clinical isolate) 3427 2684

The immunogenicity of LNP-encapsulated RNAs encoding the pentameric complex

(A526 and A527) compared to LNP-encapsulated RNA (A160) and VRPs (pVCR modified gH-SGPgL) expressing gH/gL was assessed. Table 6 shows that replicons expressing the pentameric complex elicited more potently neutralizing antibodies than replicons expressing gH/gL.

TABLE 6 Neutralizing antibody titers. Titer Titer Replicon Titer post 1st post 2nd post 3rd C313 pVCR modified gH-SGP-gL 126 6,296 26,525 VRP 106 IU A160 gH FL/gL 1 μg LNP 347 9,848 42,319 A526 Pentameric 2A 1 μg LNP 179 12,210 80,000 A527 Pentameric IRES 1 μg LNP 1,510 51,200 130,000

The pentacistronic VEE-based RNA replicon that elicited the highest titers of neutralizing antibodies (A527) was packaged as VRPs and the immunogenicity of the VRPs were compared to gH/gL-expressing VRPs and LNP-encapsulated replicons expressing gH/gL and pentameric complex. Table 7 shows that VRPs expressing the pentameric complex elicited higher titers of neutralizing antibodies than VRPs expressing gH/gL. Moreover, 106 infectious units of VRPs are at least as potent as 1 μg of LNP-encapsulated RNA when the VRPs and the RNA encoded the same protein complexes.

TABLE 7 Neutralizing antibody titers. Sera were collected three weeks after the second immunization. Replicon 50% Neutralizing Titer A160 gH FL/gL VRP 106 IU 14,833 A527 Pentameric IRES VRP 106 IU 51,200 A160 gH FL/gL LNP 0.01 μg 4,570 A160 gH FL/gL LNP 0.1 μg 9,415 A160 gH FL/gL LNP 1 μg 14,427 A527 Pentameric IRES 0.01 μg LNP 12,693 A527 Pentameric IRES 0.1 μg LNP 10,309 A527 Pentameric IRES 1 μg LNP 43,157

The breadth and potency of HCMV neutralizing activity in sera from mice immunized with VEE-based RNA encoding the pentameric complex (A527) was assessed by using the sera to block infection of fibroblasts and epithelial cells with different strains of HCMV. Table 8 shows that anti-gH/gL/UL128/UL130/UL131 immune sera broadly and potently neutralized infection of epithelial cells. This effect was complement independent. In contrast, the sera had a reduced or not detectable effect on infection of fibroblasts. These results are what is expected for immune sera that contains mostly antibodies specific for the gH/gL/UL128/UL130/UL131 pentameric complex, because the pentameric complex is not required for infection of fibroblasts and, consequently, antibodies to UL128, UL130, and UL131 do not block infection of fibroblasts (Adler et al (2006), J. Gen. Virol. 87(Pt. 9):2451-60; Wang and Shenk (2005), Proc. Natl. Acad. Sci. USA 102(50):18153-8). Thus, these data demonstrate that the pentameric replicons encoding the gH/gL/UL128/UL130/UL131 pentameric complex specifically elicit antibodies to the complex in vivo.

TABLE 8 Neutralizing antibody titers in sera from mice immunized with the A527 RNA replicon encapsulated in LNPs. The replicon expresses the HCMV pentameric complex using subgenomic promoters and IRESes. Serum from mice immunized with A527 pentameric IRES RNA in LNPs Without With HCMV Strain Cell complement complement Towne Fibroblasts 3433 1574 AD169 (MRC-5) 2292 <1000 TB40-UL32-EGFP <1000 <1000 VR1814 4683 1324 TB40-UL32-EGFP Epithelial cells 86991 59778 VR1814 (ARPE-19) 82714 37293 8819 (clinical isolate) 94418 43269 8822 (clinical isolate) 85219 49742

To see if bicistronic and pentacistronic replicons expressing the gH/gL and pentameric complexes would elicit neutralizing antibodies in different formulations, cotton rats were immunized with bicistronic or pentacistronic replicons mixed with a cationic nanoemulsion (CNE). Table 9 shows that replicons in CNE elicited comparable neutralizing antibody titers to the same replicons encapsulated in LNPs.

TABLE 9 Neutralizing antibody titers. The sera were collected three weeks after the second immunization. Replicon 50% Neutralizing Titer A160 gH FL/gL VRP 106 IU 594 A160 gH FL/gL 1 μg LNP 141 A527 Pentameric IRES 1 μg LNP 4,416 A160 gH FL/gL 1 μg CNE 413 A527 Pentameric IRES 1 μg CNE 4,411

Example 7 Replicons Encoding VZV Proteins

Nucleic acids encoding VZV proteins were cloned into a VEE replicon vector to produce monocystronic replicons that encode gB, gH, gL, gE, and gI, and to produce bicistronic replicons that encode gH/gL or gE/gI. In the bicistronic replicons, expression of each VZV open reading frame was driven by a separate subgenomic promoter.

To prepare replicon RNA, plasmid encoding the replicon was linearized by digestion with PmeI, and the linearized plasmid was extracted with phenol/chloroform/isoamylalchohol, precipitated in sodium acetate/ethanol and resuspended in 20 μl of RNase-free water.

RNA was prepared by In vitro transcription of 1 μg of linearized DNA using the MEGAscript T7 kit (AMBION# AM1333). A 20 μl reaction was set up according to the manufacturer's instruction without cap analog and incubated for 2 hours at 32° C. TURBO DNase (1 μl) was added and the mixture was incubate for 30 min. at 32° C. RNase-free water (30 μl) and ammonium acetate solution (30 μl) were added. The solution was mixed and chilled for at least 30 min at −20° C. Then the solution was centrifuged at maximum speed for 25 min. at 4° C. The supernatant was discarded, and the pellet was rinsed with 70% ethanol, and again centrifuged at maximum speed for 10 min. at 4° C. The pellet was air dried and resuspended in 50 μl of RNase-free water. The concentration of RNA was measured and quality was check on a denaturing gel.

The RNA was capped using the ScriptCap m7G Capping System (Epicentre #SCCE0625). The reaction was scaled by combining the RNA and RNase-free water. The RNA was then denatured for 5-10 min. at 65° C. The denatured RNA was transferred quickly to ice and the following reagents were added in the following order: ScriptCap Capping Buffer, 10 mM GTP, 2 mM SAM fresh prepared, ScriptGuard RNase inhibitor, and ScriptCap Capping Enzyme. The mixture was incubated for 60 min. at 37° C. The reaction was stopped by adding RNase-free water and 7.5 M LiCl, mixing well and storing the mixture for at least 30 min at −20° C. Then, the mixture was centrifuged at maximum speed for 25 min. at 4° C., the pellet was rinsed with 70% ethanol, again centrifuged at maximum speed for 10 min. at 4° C. and the pellet was air dried. The pellet was resuspended in RNase-free water. The concentration of RNA was measured and quality was checked on a denaturing gel.

RNA Transfection

Cells (BHK-V cells) were seeded on 6-well plates brought to 90-95% confluence at the time of transfection. For each transfection 3 μg of RNA was diluted in 50 mL OPTIMEM media in a first tube. Lipofectamine 2000 was added to a second tube contained 50 mL OPTIMEM media. The first and second tubes were combined and kept for 20 min. at room temperature. The culture media in the 6-well plates were replaced with fresh media, and the RNA-Lipofectamine complex was placed onto the cells, and mixed by gently rocking the plate. The plates were incubated for 24 hours at 37° C. in a CO2 incubator.

Expression of the VZV proteins in transfected cells was assessed by western blot and immunofluorescence. For western blots, lysates of transfected cells were separated by electrophoresis (5 μg total proteins/lane) and blotted. A cleared viral suspension (7 μg total protein/lane) derived from the OKA/Merck vaccine strain was used as a positive control. Blots were probed using commercially available antibodies (1:1000 dilution) that bind VZV proteins.

For immunofluorescence, transfected cells were harvested and seeded in 96 well plate, and intracellular staining was performed using commercially available mouse mAbs (dilution range 1:100 1:400). Cell pellets were fixed and permeabilized with Citofix-Citoperm solutions. A secondary reagent, Alexa488 labelled goat anti-mouse F(ab′)2 (1:400 final dilution), was used.

Expression of VZV proteins gE and gI was detected in cells transfected with monocistronic constructs (gE or gI), and expression of both gE and gI was detected in cells transfected with a bicistronic gE/gI construct in western blots using commercially available mouse antibodies, 13B1 for gE and 8C4 for gI. Expression of VZV protein gB was detected in cells transfected with a monocistronic construct encoding gB, by immunofluorescence using commercially available antibody 10G6. Expression of the VZV protein complex gH/gL, was detected by immunofluorescence in cells transfected with monocistronic gH and monocistronic gL, or with a bicistronic gH/gL construct. The gH/gL complex was detected using commercially available antibody SG3.

Murine Immunogenicity Studies

Groups of 8 female BALB/c mice aged 6-8 weeks and weighing about 20 g were immunized intramuscularly with 7.0 or 1.0 μg of replicon RNA formulated with a CNE or LNP(RV01) at day 0, 21 and 42. Blood samples were taken from the immunized animals 3 weeks after the 2nd immunization and 3 weeks after the 3rd immunization. The groups are shown in Table 10.

TABLE 10 Dose Group Antigen (micrograms) Formulation Study 1 1 YFP 7 CNE 2 YFP 1 CNE 3 gB 7 CNE 4 gB 1 CNE 5 gE 7 CNE 6 gE 1 CNE 7 gH 7 CNE 8 gH 1 CNE 9 gI 7 CNE 10 gI 1 CNE 11 gL 7 CNE 12 gL 1 CNE 13 gE/gI 7 CNE 14 gE/gI 1 CNE 15 gH/gL 7 CNE 16 gH/gL 1 CNE Study 2 1 gB 1 RV01 2 gE 1 RV01 3 gH 1 RV01 4 gI 1 RV01 5 gL 1 RV01 6 gE/gI 1 RV01 7 gH/gL 1 RV01

Immune Response to VZV Antigens

Serum samples were tested for the presence of antibodies to gB, by intracellular staining of VZV-replicon transfected MRC-5 cells. MRC-5 cells were maintained in Dulbecco Modified Eagle's Medium with 10% fetal bovine serum. VZV Oka strain inoculum (obtained from ATCC) was used to infect MRC-5 cell culture and infected whole cells were used for subpassage of virus. The ratio between infected and un-infected cells was 1:10. 30 hrs post infection cells were trypsin-dispersed for seeding in a 96 well plate to perform an intracellular staining with pools of mice sera (dilution range 1:200 to 1:800) obtained after immunization. Commercial mAbs were used as controls to quantify the infection level. Cell pellets ware fixed and permeabilized with Citofix-Citoperm solutions. A secondary reagent, Alexa488 labelled goat anti-mouse F(ab′)2 was used (1:400 final dilution).

Commercial antibodies to gB (10G6), gH(SG3), and gE (13B1 (SBA) and 8612 (Millipore)) were used as positive controls, and each intracellularly stained infected MRC-5 cells. Immune sera obtained 3 weeks after the third immunization with either 1 or 7 μg of RNA formulated with CNE or LNP were diluted 1/200, 1/400 and 1/800 and used to intracellulary stain infected MRC-5 cells. The results are shown in FIG. 21 (Study 1, groups 1, 5, 7, 9, 11, 13 and 15, CNE formulation) and FIG. 22 (Study 2, groups 1-7, LNP formulation).

Neutralizing Assay

Each immunized mouse serum was serially diluted by two fold increments starting at 1:20 in standard culture medium, and added to the equal volume of VZV suspension in the presence of guinea pig complement. After incubation for 1 hour at 37° C., the human epithelial cell line A549, was added. Infected cells can be measured after one week of culture by counting plaques formed in the culture under microscope. From the plaque number the % inhibition at each serum dilution was calculated. A chart for each serum sample was made by plotting the value of % inhibition against the logarithmic scale the dilution factor. Subsequently an approximate line of relationship between dilution factor and % inhibition was drawn. Then the 50% neutralization titer was determined as the dilution factor where the line crossed at the value of 50% inhibition.

Table 11 shows that sera obtained from mice immunized with monocistronic gE, bicistrnic gE/gl, and bicistronic gH/gL contained robust neutralizing antibody titers.

TABLE 11 Neutralization titers of pooled sera from mice immunized with 7 μg RNA Control (YFP) gB gE gI gE/gI gH gL gH/gL <20 <20 1111 <20 440 <20 <20  1070 <20 <20  413  51 >2560  <20 <20 >2560 <20 <20 >2560  <20 1031 <20 <20 >2560 <20  20 2128 <20 1538 <20 <20 >2560 <20  20  861 <20  636  20 <20 >2560 <20 <20 1390 <20 2339 <20 <20 >2560 <20 <20  969 <20 1903 <20 <20  900 <20 <20 1011  20 1969  20 <20 >2560  <20*  <20*  <20*  <20*  <20*  <20*  <20*   <20* *pre-immune pooled sera

REFERENCES

  • Britt W J, Alford C A. Cytomegalovirus. In Fields B N, Knipe D M, Howley P M (ed.). Fields Virology, 3rd edition, Philadelphia, Pa.: Lippincott/Raven; 1996. p. 2493-523.
  • Chee M S, Bankier A T, Beck S, Bohni R, Brown C M, Cerny R, Horsnell T, Hutchinson C A, Kouzarides T, Martignetti J A, Preddie E, Satchwell S C, Tomlinson P, Weston K M and Barrell B G. 1990. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol. 154:125-70.
  • Davison A J, Dolan A, Akter P, Addison C, Dargan D J, Alcendor D J, McGeoch D J and Hayward G S. 2003. The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J. Gen. Virol. 84:17-28. (Erratum, 84:1053).
  • Crumpacker C S and Wadhwa S. 2005. Cytomegalovirus, p 1786-1800. In G. L. Mandell, J. E. Bennett, and R. Dolin (ed.), Principles and practice of infectious diseases, vol 2. Elsevier, Philadelphia, Pa.
  • Pomeroy C and Englund J A. 1987. Cyotmegalovirus: epidemiology and infection control. Am J Infect Control 15: 107-119.
  • Murphy E, Yu D, Grimwood J, Schmutz J, Dickson M, Jarvis M A, Nelson J A, Myers R M and Shenk T E. 2003. Coding potential of laboratory and clinical strains of cytomegalovirus. Proc. Natl. Acad. Sci. USA 100:14976-81.
  • Mocarski E S and Tan Courcelle C. 2001. Cytomegalovirus and their replication, p. 2629-73. In D M Knipe and P M Howley (ed.) Fields Virology, 4th edition, vol. 2. Lippincott Williams and Wilkins, Philadelphia, Pa.
  • Compton T. 2004. Receptors and immune sensors: the complex entry path of human cytomegalovirus. Trends Cell. Bio. 14(1): 5-8.
  • Britt W J and Alford C A. 2004. Human cytomegalovirus virion proteins. Hum. Immunol. 65:395-402.
  • Varnum S M, Streblow D N, Monroe M E, Smith P, Auberry K J, Pasa-Tolic L, Wang D, Camp II DG, Rodland K, Wiley, Britt W, Shenk T, Smith R D and Nelson J A. 2004. Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J. Virol. 78:10960-66. (Erratum, 78:13395).
  • Ljungman P, Griffiths P and Paya C. 2002. Definitions of cytomegalovirus infection and disease in transplant recipients. Clin. Infect. Dis. 34:1094-97.
  • Rubin R. 2002. Clinical approach to infection in the compromised host, p. 573-679. In R. Rubin and LS Young (ed), Infection in the organ transplant recipient. Kluwer Academic Press, New York, N.Y.
  • Stagno S and Britt W J. 2005. Cytomegalovirus, p. 389-424. In J S Remington and J O Klein (ed), Infectious diseases of the fetus and newborn infant, 6htt edition. WB Saunders, Phliadelphia, Pa.
  • Britt W J, Vugler L, Butfiloski E J and Stephens E B. 1990. Cell surface expression of human cytomegalovirus (HCMV) gp55-116 (gB): use of HCMV-vaccinia recombinant virus infected cells in analysis of the human neutralizing antibody response. J. Virol. 64:1079-85.
  • Reap E A, Dryga S A, Morris J, Rivers B, Norberg P K, Olmsted R A and Chulay J D. 2007. Cellular and Humoral Immune Responses to Alphavirus Replicon Vaccines expressing Cytomegalovirus pp 65, ILl and gB proteins. Clin. Vacc. Immunol. 14:748-55.
  • Balasuriya U B R, Heidner H W, Hedges J F, Williams J C, Davis N L, Johnston R E and MacLachlan N J. 2000. Expression of the two major envelope proteins of equine arteritis virus as a heterodimer is necessary for induction of neutralizing antibodies in mice immunized with recombinant Venezuelan equine encephalitis virus replicon particles. J. Virol. 74:10623-30.
  • Dunn W, Chou C, Li H, Hai R, Patterson D, Stoic V, Zhu H and Liu F. 2003. Functional profiling of a human cytomegalovirus genome. Proc. Natl. Acad. Sci. USA 100:14223-28.
  • Hobom U, Brune W, Messerle M, Hahn G and Kosinowski U H. 2000. Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J. Virol. 74:7720-29.
  • Ryckman B J, Chase M C and Johnson D C. 2009. HCMV TR strain glycoprotein O acts as a chaperone promoting gH/gL incorporation into virions, but is not present in virions. J. Virol.
  • Wille P T, Knoche A J, Nelson J A, Jarvis M A and Johnson J C. 2009. An HCMV gO-null mutant fails to incorporate gH/gL into the virion envelope and is unable to enter fibroblasts, epithelial, and endothelial cells. J. Virol.
  • Shimamura M, Mach M and Britt W J. 2006. Human Cytomegalovirus infection elicits a glycoprotein M (gM)/gN-specific virus-neutralizing antibody response. J. Virol. 80:4591-4600.
  • Cha T A, Tom E, Kemble G W, Duke G M, Mocarski E S and Spaete R R. 1996. Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol. 70:78-83.
  • Wang D and Shenk T. 2005. Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc. Natl. Acad. Sci. USA 102:18153-58.
  • Adler B, Scrivano L, Ruzcics Z, Rupp B, Sinzger C and Kosinowski U. 2006. Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J. Gen. Virol. 87:2451-60.
  • Ryckman B J, Rainish B L, Chase M C, Borton J A, Nelson J A, Jarvis J A and Johnson D C. 2008. Characterization of the human cytomegalovirus gH/gL/UL128-UL131 complex that mediates entry into epithelial and endothelial cells. J. Virol. 82: 60-70.

SEQUENCES

CMV gB FL: 1 - atggaaagccggatctggtgcctggtcgtgtgcgtgaacctgtgcatcgtgtgcctgggagc cgccgtgagcagcagcagcaccagaggcaccagcgccacacacagccaccacagcagccaca ccacctctgccgcccacagcagatccggcagcgtgtcccagagagtgaccagcagccagacc gtgtcccacggcgtgaacgagacaatctacaacaccaccctgaagtacggcgacgtcgtggg cgtgaataccaccaagtacccctacagagtgtgcagcatggcccagggcaccgacctgatca gattcgagcggaacatcgtgtgcaccagcatgaagcccatcaacgaggacctggacgagggc atcatggtggtgtacaagagaaacatcgtggcccacaccttcaaagtgcgggtgtaccagaa ggtgctgaccttccggcggagctacgcctacatccacaccacatacctgctgggcagcaaca ccgagtacgtggcccctcccatgtgggagatccaccacatcaacagccacagccagtgctac agcagctacagccgcgtgatcgccggcacagtgttcgtggcctaccaccgggacagctacga gaacaagaccatgcagctgatgcccgacgactacagcaacacccacagcaccagatacgtga ccgtgaaggaccagtggcacagcagaggcagcacctggctgtaccgggagacatgcaacctg aactgcatggtcaccatcaccaccgccagaagcaagtacccttaccacttcttcgccacctc caccggcgacgtggtggacatcagccccttctacaacggcaccaaccggaacgccagctact tcggcgagaacgccgacaagttcttcatcttccccaactacaccatcgtgtccgacttcggc agacccaacagcgctctggaaacccacagactggtggcctttctggaacgggccgacagcgt gatcagctgggacatccaggacgagaagaacgtgacctgccagctgaccttctgggaggcct ctgagagaaccatcagaagcgaggccgaggacagctaccacttcagcagcgccaagatgacc gccaccttcctgagcaagaaacaggaagtgaacatgagcgactccgccctggactgcgtgag ggacgaggccatcaacaagctgcagcagatcttcaacaccagctacaaccagacctacgaga agtatggcaatgtgtccgtgttcgagacaacaggcggcctggtggtgttctggcagggcatc aagcagaaaagcctggtggagctggaacggctcgccaaccggtccagcctgaacctgaccca caaccggaccaagcggagcaccgacggcaacaacgcaacccacctgtccaacatggaaagcg tgcacaacctggtgtacgcacagctgcagttcacctacgacaccctgcggggctacatcaac agagccctggcccagatcgccgaggcttggtgcgtggaccagcggcggaccctggaagtgtt caaagagctgtccaagatcaaccccagcgccatcctgagcgccatctacaacaagcctatcg ccgccagattcatgggcgacgtgctgggcctggccagctgcgtgaccatcaaccagaccagc gtgaaggtgctgcgggacatgaacgtgaaagagagcccaggccgctgctactccagacccgt ggtcatcttcaacttcgccaacagctcctacgtgcagtacggccagctgggcgaggacaacg agatcctgctggggaaccaccggaccgaggaatgccagctgcccagcctgaagatctttatc gccggcaacagcgcctacgagtatgtggactacctgttcaagcggatgatcgacctgagcag catctccaccgtggacagcatgatcgccctggacatcgaccccctggaaaacaccgacttcc gggtgctggaactgtacagccagaaagagctgcggagcagcaacgtgttcgacctggaagag atcatgcgggagttcaacagctacaagcagcgcgtgaaatacgtggaggacaaggtggtgga ccccctgcctccttacctgaagggcctggacgacctgatgagcggactgggcgctgccggaa aagccgtgggagtggccattggagctgtgggcggagctgtggcctctgtcgtggaaggcgtc gccacctttctgaagaaccccttcggcgccttcaccatcatcctggtggccattgccgtcgt gatcatcacctacctgatctacacccggcagcggagactgtgtacccagcccctgcagaacc tgttcccctacctggtgtccgccgatggcaccacagtgaccagcggctccaccaaggatacc agcctgcaggccccacccagctacgaagagagcgtgtacaacagcggcagaaagggccctgg ccctcccagctctgatgccagcacagccgcccctccctacaccaacgagcaggcctaccaga tgctgctggccctggctagactggatgccgagcagagggcccagcagaacggcaccgacagc ctggatggcagaaccggcacccaggacaagggccagaagcccaacctgctggaccggctgcg gcaccggaagaacggctaccggcacctgaaggacagcgacgaggaagagaacgtctgataa - 2727 CMV gB FL MESRIWCLWCVNLCIVCLGAAVSSSSTRGTSATHSHHSSHTTSAAHSRSGSVSQRVTSSQT VSHGVNETIYNTTLKYGDWGVNTTKYPYRVCSMAQGTDLIRFERNIVCTSMKPINEDLDEG IMWYKRNIVAHTFKVRVYQKVLTFRRSYAYIHTTYLLGSNTEYVAPPMWEIHHINSHSQCY SSYSRVIAGTVFVAYHRDSYENKTMQLMPDDYSNTHSTRYVTVKDQWHSRGSTWLYRETCNL NCMVTITTARSKYPYHFFATSTGDWDISPFYNGTNRNASYFGENADKFFIFPNYTIVSDFG RPNSALETHRLVAFLERADSVISWDIQDEKNVTCQLTFWEASERTIRSEAEDSYHFSSAKMT ATFLSKKQEVNMSDSALDCVRDEAINKLQQIFNTSYNQTYEKYGNVSVFETTGGLWFWQGI KQKSLVELERLANRSSLNLTHNRTKRSTDGNNATHLSNMESVHNLVYAQLQFTYDTLRGYIN RALAQIAEAWCVDQRRTLEVFKELSKINPSAILSAIYNKPIAARFMGDVLGLASCVTINQTS VKVLRDMNVKESPGRCYSRPWIFNFANSSYVQYGQLGEDNEILLGNHRTEECQLPSLKIFI AGNSAYEYVDYLFKRMIDLSSISTVDSMIALDIDPLENTDFRVLELYSQKELRSSNVFDLEE IMREFNSYKQRVKYVEDKWDPLPPYLKGLDDLMSGLGAAGKAVGVAIGAVGGAVASWEGV ATFLKNPFGAFTIILVAIAWIITYLIYTRQRRLCTQPLQNLFPYLVSADGTTVTSGSTKDT SLQAPPSYEESVYNSGRKGPGPPSSDASTAAPPYTNEQAYQMLLALARLDAEQRAQQNGTDS LDGRTGTQDKGQKPNLLDRLRHRKNGYRHLKDSDEEENV--

CMV gB sol 750: 1- atggaaagccggatctggtgcctggtcgtgtgcgtgaacctgtgcatcgtgtgcctgggagc cgccgtgagcagcagcagcaccagaggcaccagcgccacacacagccaccacagcagccaca ccacctctgccgcccacagcagatccggcagcgtgtcccagagagtgaccagcagccagacc gtgtcccacggcgtgaacgagacaatctacaacaccaccctgaagtacggcgacgtcgtggg cgtgaataccaccaagtacccctacagagtgtgcagcatggcccagggcaccgacctgatca gattcgagcggaacatcgtgtgcaccagcatgaagcccatcaacgaggacctggacgagggc atcatggtggtgtacaagagaaacatcgtggcccacaccttcaaagtgcgggtgtaccagaa ggtgctgaccttccggcggagctacgcctacatccacaccacatacctgctgggcagcaaca ccgagtacgtggcccctcccatgtgggagatccaccacatcaacagccacagccagtgctac agcagctacagccgcgtgatcgccggcacagtgttcgtggcctaccaccgggacagctacga gaacaagaccatgcagctgatgcccgacgactacagcaacacccacagcaccagatacgtga ccgtgaaggaccagtggcacagcagaggcagcacctggctgtaccgggagacatgcaacctg aactgcatggtcaccatcaccaccgccagaagcaagtacccttaccacttcttcgccacctc caccggcgacgtggtggacatcagccccttctacaacggcaccaaccggaacgccagctact tcggcgagaacgccgacaagttcttcatcttccccaactacaccatcgtgtccgacttcggc agacccaacagcgctctggaaacccacagactggtggcctttctggaacgggccgacagcgt gatcagctgggacatccaggacgagaagaacgtgacctgccagctgaccttctgggaggcct ctgagagaaccatcagaagcgaggccgaggacagctaccacttcagcagcgccaagatgacc gccaccttcctgagcaagaaacaggaagtgaacatgagcgactccgccctggactgcgtgag ggacgaggccatcaacaagctgcagcagatcttcaacaccagctacaaccagacctacgaga agtatggcaatgtgtccgtgttcgagacaacaggcggcctggtggtgttctggcagggcatc aagcagaaaagcctggtggagctggaacggctcgccaaccggtccagcctgaacctgaccca caaccggaccaagcggagcaccgacggcaacaacgcaacccacctgtccaacatggaaagcg tgcacaacctggtgtacgcacagctgcagttcacctacgacaccctgcggggctacatcaac agagccctggcccagatcgccgaggcttggtgcgtggaccagcggcggaccctggaagtgtt caaagagctgtccaagatcaaccccagcgccatcctgagcgccatctacaacaagcctatcg ccgccagattcatgggcgacgtgctgggcctggccagctgcgtgaccatcaaccagaccagc gtgaaggtgctgcgggacatgaacgtgaaagagagcccaggccgctgctactccagacccgt ggtcatcttcaacttcgccaacagctcctacgtgcagtacggccagctgggcgaggacaacg agatcctgctggggaaccaccggaccgaggaatgccagctgcccagcctgaagatctttatc gccggcaacagcgcctacgagtatgtggactacctgttcaagcggatgatcgacctgagcag catctccaccgtggacagcatgatcgccctggacatcgaccccctggaaaacaccgacttcc gggtgctggaactgtacagccagaaagagctgcggagcagcaacgtgttcgacctggaagag atcatgcgggagttcaacagctacaagcagcgcgtgaaatacgtggaggacaaggtggtgga ccccctgcctccttacctgaagggcctggacgacctgatgagcggactgggcgctgccggaa aagccgtgggagtggccattggagctgtgggcggagctgtggcctctgtcgtggaaggcgtc gccacctttctgaagaactgataa - 2256 Cmv gB sol 750 MESRIWCLWCVNLCIVCLGAAVSSSSTRGTSATHSHHSSHTTSAAHSRSGSVSQRVTSSQT VSHGVNETIYNTTLKYGDWGVNTTKYPYRVCSMAQGTDLIRFERNIVCTSMKPINEDLDEG IMWYKRNIVAHTFKVRVYQKVLTFRRSYAYIHTTYLLGSNTEYVAPPMWEIHHINSHSQCY SSYSRVIAGTVFVAYHRDSYENKTMQLMPDDYSNTHSTRYVTVKDQWHSRGSTWLYRETCNL NCMVTITTARSKYPYHFFATSTGDWDISPFYNGTNRNASYFGENADKFFIFPNYTIVSDFG RPNSALETHRLVAFLERADSVISWDIQDEKNVTCQLTFWEASERTIRSEAEDSYHFSSAKMT ATFLSKKQEVNMSDSALDCVRDEAINKLQQIFNTSYNQTYEKYGNVSVFETTGGLWFWQGI KQKSLVELERLANRSSLNLTHNRTKRSTDGNNATHLSNMESVHNLVYAQLQFTYDTLRGYIN RALAQIAEAWCVDQRRTLEVFKELSKINPSAILSAIYNKPIAARFMGDVLGLASCVTINQTS VKVLRDMNVKESPGRCYSRPWIFNFANSSYVQYGQLGEDNEILLGNHRTEECQLPSLKIFI AGNSAYEYVDYLFKRMIDLSSISTVDSMIALDIDPLENTDFRVLELYSQKELRSSNVFDLEE IMREFNSYKQRVKYVEDKWDPLPPYLKGLDDLMSGLGAAGKAVGVAIGAVGGAVASWEGV ATFLKN--

CMV gB sol 692: 1- atggaaagccggatctggtgcctggtcgtgtgcgtgaacctgtgcatcgtgtgcctgggagc cgccgtgagcagcagcagcaccagaggcaccagcgccacacacagccaccacagcagccaca ccacctctgccgcccacagcagatccggcagcgtgtcccagagagtgaccagcagccagacc gtgtcccacggcgtgaacgagacaatctacaacaccaccctgaagtacggcgacgtcgtggg cgtgaataccaccaagtacccctacagagtgtgcagcatggcccagggcaccgacctgatca gattcgagcggaacatcgtgtgcaccagcatgaagcccatcaacgaggacctggacgagggc atcatggtggtgtacaagagaaacatcgtggcccacaccttcaaagtgcgggtgtaccagaa ggtgctgaccttccggcggagctacgcctacatccacaccacatacctgctgggcagcaaca ccgagtacgtggcccctcccatgtgggagatccaccacatcaacagccacagccagtgctac agcagctacagccgcgtgatcgccggcacagtgttcgtggcctaccaccgggacagctacga gaacaagaccatgcagctgatgcccgacgactacagcaacacccacagcaccagatacgtga ccgtgaaggaccagtggcacagcagaggcagcacctggctgtaccgggagacatgcaacctg aactgcatggtcaccatcaccaccgccagaagcaagtacccttaccacttcttcgccacctc caccggcgacgtggtggacatcagccccttctacaacggcaccaaccggaacgccagctact tcggcgagaacgccgacaagttcttcatcttccccaactacaccatcgtgtccgacttcggc agacccaacagcgctctggaaacccacagactggtggcctttctggaacgggccgacagcgt gatcagctgggacatccaggacgagaagaacgtgacctgccagctgaccttctgggaggcct ctgagagaaccatcagaagcgaggccgaggacagctaccacttcagcagcgccaagatgacc gccaccttcctgagcaagaaacaggaagtgaacatgagcgactccgccctggactgcgtgag ggacgaggccatcaacaagctgcagcagatcttcaacaccagctacaaccagacctacgaga agtatggcaatgtgtccgtgttcgagacaacaggcggcctggtggtgttctggcagggcatc aagcagaaaagcctggtggagctggaacggctcgccaaccggtccagcctgaacctgaccca caaccggaccaagcggagcaccgacggcaacaacgcaacccacctgtccaacatggaaagcg tgcacaacctggtgtacgcacagctgcagttcacctacgacaccctgcggggctacatcaac agagccctggcccagatcgccgaggcttggtgcgtggaccagcggcggaccctggaagtgtt caaagagctgtccaagatcaaccccagcgccatcctgagcgccatctacaacaagcctatcg ccgccagattcatgggcgacgtgctgggcctggccagctgcgtgaccatcaaccagaccagc gtgaaggtgctgcgggacatgaacgtgaaagagagcccaggccgctgctactccagacccgt ggtcatcttcaacttcgccaacagctcctacgtgcagtacggccagctgggcgaggacaacg agatcctgctggggaaccaccggaccgaggaatgccagctgcccagcctgaagatctttatc gccggcaacagcgcctacgagtatgtggactacctgttcaagcggatgatcgacctgagcag catctccaccgtggacagcatgatcgccctggacatcgaccccctggaaaacaccgacttcc gggtgctggaactgtacagccagaaagagctgcggagcagcaacgtgttcgacctggaagag atcatgcgggagttcaacagctacaagcagtgataa - 2082 Cmv gB sol 692; MESRIWCLVVCVNLCIVCLGAAVSSSSTRGTSATHSHHSSHTTSAAHSRSGSVSQRVTSSQTVSHGVNETIYNTT LKYGDVVGVNTTKYPYRVCSMAQGTDLIRFERNIVCTSMKPINEDLDEGIMVVYKRNIVAHTFKVRVYQKVLTFR RSYAYIHTTYLLGSNTEYVAPPMWEIHHINSHSQCYSSYSRVIAGTVFVAYHRDSYENKTMQLMPDDYSNTHSTR YVTVKDQWHSRGSTWLYRETCNLNCMVTITTARSKYPYHFFATSTGDVVDISPFYNGTNRNASYFGENADKFFIF PNYTIVSDFGRPNSALETHRLVAFLERADSVISWDIQDEKNVTCQLTFWEASERTIRSEAEDSYHFSSAKMTATF LSKKQEVNMSDSALDCVRDEAINKLQQIFNTSYNQTYEKYGNVSVFETTGGLVVFWQGIKQKSLVELERLANRSS LNLTHNRTKRSTDGNNATHLSNMESVHNLVYAQLQFTYDTLRGYINRALAQIAEAWCVDQRRTLEVFKELSKINP SAILSAIYNKPIAARFMGDVLGLASCVTINQTSVKVLRDMNVKESPGRCYSRPVVIFNFANSSYVQYGQLGEDNE ILLGNHRTEECQLPSLKIFIAGNSAYEYVDYLFKRMIDLSSISTVDSMIALDIDPLENTDFRVLELYSQKELRSS NVFDLEEIMREFNSYKQ-

CMV gH FL: 1- atgaggcctggcctgccctcctacctgatcatcctggccgtgtgcctgttcagccacctgctgtccagcagatac ggcgccgaggccgtgagcgagcccctggacaaggctttccacctgctgctgaacacctacggcagacccatccgg tttctgcgggagaacaccacccagtgcacctacaacagcagcctgcggaacagcaccgtcgtgagagagaacgcc atcagcttcaactttttccagagctacaaccagtactacgtgttccacatgcccagatgcctgtttgccggccct ctggccgagcagttcctgaaccaggtggacctgaccgagacactggaaagataccagcagcggctgaatacctac gccctggtgtccaaggacctggccagctaccggtcctttagccagcagctcaaggctcaggatagcctcggcgag cagcctaccaccgtgccccctcccatcgacctgagcatcccccacgtgtggatgcctccccagaccacccctcac ggctggaccgagagccacaccacctccggcctgcacagaccccacttcaaccagacctgcatcctgttcgacggc cacgacctgctgtttagcaccgtgaccccctgcctgcaccagggcttctacctgatcgacgagctgagatacgtg aagatcaccctgaccgaggatttcttcgtggtcaccgtgtccatcgacgacgacacccccatgctgctgatcttc ggccacctgcccagagtgctgttcaaggccccctaccagcgggacaacttcatcctgcggcagaccgagaagcac gagctgctggtgctggtcaagaaggaccagctgaaccggcactcctacctgaaggaccccgacttcctggacgcc gccctggacttcaactacctggacctgagcgccctgctgagaaacagcttccacagatacgccgtggacgtgctg aagtccggacggtgccagatgctcgatcggcggaccgtggagatggccttcgcctatgccctcgccctgttcgcc gctgccagacaggaagaggctggcgcccaggtgtcagtgcccagagccctggatagacaggccgccctgctgcag atccaggaattcatgatcacctgcctgagccagaccccccctagaaccaccctgctgctgtaccccacagccgtg gatctggccaagagggccctgtggacccccaaccagatcaccgacatcacaagcctcgtgcggctcgtgtacatc ctgagcaagcagaaccagcagcacctgatcccccagtgggccctgagacagatcgccgacttcgccctgaagctg cacaagacccatctggccagctttctgagcgccttcgccaggcaggaactgtacctgatgggcagcctggtccac agcatgctggtgcataccaccgagcggcgggagatcttcatcgtggagacaggcctgtgtagcctggccgagctg tcccactttacccagctgctggcccaccctcaccacgagtacctgagcgacctgtacaccccctgcagcagcagc ggcagacgggaccacagcctggaacggctgaccagactgttccccgatgccaccgtgcctgctacagtgcctgcc gccctgtccatcctgtccaccatgcagcccagcaccctggaaaccttccccgacctgttctgcctgcccctgggc gagagctttagcgccctgaccgtgtccgagcacgtgtcctacatcgtgaccaatcagtacctgatcaagggcatc agctaccccgtgtccaccacagtcgtgggccagagcctgatcatcacccagaccgacagccagaccaagtgcgag ctgacccggaacatgcacaccacacacagcatcaccgtggccctgaacatcagcctggaaaactgcgctttctgt cagtctgccctgctggaatacgacgatacccagggcgtgatcaacatcatgtacatgcacgacagcgacgacgtg ctgttcgccctggacccctacaacgaggtggtggtgtccagcccccggacccactacctgatgctgctgaagaac ggcaccgtgctggaagtgaccgacgtggtggtggacgccaccgacagcagactgctgatgatgagcgtgtacgcc ctgagcgccatcatcggcatctacctgctgtaccggatgctgaaaacctgctgataa - 2232

Cmv gH FL; MRPGLPSYLIILAVCLFSHLLSSRYGAEAVSEPLDKAFHLLLNTYGRPIR FLRENTTQCTYNSSLRNSTWRENAISFNFFQSYNQYYVFHMPRCLFAG PLAEQFLNQVDLTETLERYQQRLNTYALVSKDLASYRSFSQQLKAQD SLGEQPTTVPPPIDLSIPHVWMPPQTTPHGWTESHTTSGLHRPHFNQ TCILFDGHDLLFSTVTPCLHQGFYLIDELRYVKITLTEDFFWTVSIDDD TPMLLIFGHLPRVLFKAPYQRDNFILRQTEKHELLVLVKKDQLNRHSY LKDPDFLDAALDFNYLDLSALLRNSFHRYAVDVLKSGRCQMLDRRT VEMAFAYALALFAAARQEEAGAQVSVPRALDRQAALLQIQEFMITCL SQTPPRTTLLLYPTAVDLAKRALWTPNQITDITSLVRLVYILSKQNQQHL IPQWALRQIADFALKLHKTHLASFLSAFARQELYLMGSLVHSMLVHTT ERREIFIVETGLCSLAELSHFTQLLAHPHHEYLSDLYTPCSSSGRRDH SLERLTRLFPDATVPATVPAALSILSTMQPSTLETFPDLFCLPLGESF SALTVSEHVSYIVTNQYLIKGISYPVSTTWGQSLIITQTDSQTKCELTRN MHTTHSITVALNISLENCAFCQSALLEYDDTQGVINIMYMHDSDDVLF ALDPYNEVVVSSPRTHYLMLLKNGTVLEVTDVVVDATDSRLLMMSV YALSAIIGIYLLYRMLKTC--

CMV gH sol: 1- atgaggcctggcctgccctcctacctgatcatcctggccgtgtgcctgttcagccacctgct gtccagcagatacggcgccgaggccgtgagcgagcccctggacaaggctttccacctgctgc tgaacacctacggcagacccatccggtttctgcgggagaacaccacccagtgcacctacaac agcagcctgcggaacagcaccgtcgtgagagagaacgccatcagcttcaactttttccagag ctacaaccagtactacgtgttccacatgcccagatgcctgtttgccggccctctggccgagc agttcctgaaccaggtggacctgaccgagacactggaaagataccagcagcggctgaatacc tacgccctggtgtccaaggacctggccagctaccggtcctttagccagcagctcaaggctca ggatagcctcggcgagcagcctaccaccgtgccccctcccatcgacctgagcatcccccacg tgtggatgcctccccagaccacccctcacggctggaccgagagccacaccacctccggcctg cacagaccccacttcaaccagacctgcatcctgttcgacggccacgacctgctgtttagcac cgtgaccccctgcctgcaccagggcttctacctgatcgacgagctgagatacgtgaagatca ccctgaccgaggatttcttcgtggtcaccgtgtccatcgacgacgacacccccatgctgctg atcttcggccacctgcccagagtgctgttcaaggccccctaccagcgggacaacttcatcct gcggcagaccgagaagcacgagctgctggtgctggtcaagaaggaccagctgaaccggcact cctacctgaaggaccccgacttcctggacgccgccctggacttcaactacctggacctgagc gccctgctgagaaacagcttccacagatacgccgtggacgtgctgaagtccggacggtgcca gatgctcgatcggcggaccgtggagatggccttcgcctatgccctcgccctgttcgccgctg ccagacaggaagaggctggcgcccaggtgtcagtgcccagagccctggatagacaggccgcc ctgctgcagatccaggaattcatgatcacctgcctgagccagaccccccctagaaccaccct gctgctgtaccccacagccgtggatctggccaagagggccctgtggacccccaaccagatca ccgacatcacaagcctcgtgcggctcgtgtacatcctgagcaagcagaaccagcagcacctg atcccccagtgggccctgagacagatcgccgacttcgccctgaagctgcacaagacccatct ggccagctttctgagcgccttcgccaggcaggaactgtacctgatgggcagcctggtccaca gcatgctggtgcataccaccgagcggcgggagatcttcatcgtggagacaggcctgtgtagc ctggccgagctgtcccactttacccagctgctggcccaccctcaccacgagtacctgagcga cctgtacaccccctgcagcagcagcggcagacgggaccacagcctggaacggctgaccagac tgttccccgatgccaccgtgcctgctacagtgcctgccgccctgtccatcctgtccaccatg cagcccagcaccctggaaaccttccccgacctgttctgcctgcccctgggcgagagctttag cgccctgaccgtgtccgagcacgtgtcctacatcgtgaccaatcagtacctgatcaagggca tcagetaccccgtgtccaccacagtcgtgggccagagcctgatcatcacccagaccgacagc cagaccaagtgcgagctgacccggaacatgcacaccacacacagcatcaccgtggccctgaa catcagcctggaaaactgcgctttctgtcagtctgccctgctggaatacgacgatacccagg gcgtgatcaacatcatgtacatgcacgacagcgacgacgtgctgttcgccctggacccctac aacgaggtggtggtgtccagcccccggacccactacctgatgctgctgaagaacggcaccgt gctggaagtgaccgacgtggtggtggacgccaccgactgataa - 2151

MV gH sol; MRPGLPSYLIILAVCLFSHLLSSRYGAEAVSEPLDKAFHLLLNTYGR PIRFLRENTTQCTYNSSLRNSTWRENAISFNFFQSYNQYYVFHMPRC LFAGPLAEQFLNQVDLTETLERYQQRLNTYALVSKDLASYRSFSQQ LKAQDSLGEQPTTVPPPIDLSIPHVWMPPQTTPHGWTESHTTSGL HRPHFNQTCILFDGHDLLFSTVTPCLHQGFYLIDELRYVKITLTEDFFW TVSIDDDTPMLLIFGHLPRVLFKAPYQRDNFILRQTEKHELLVLVKKD QLNRHSYLKDPDFLDAALDFNYLDLSALLRNSFHRYAVDVLKSGRC QMLDRRTVEMAFAYALALFAAARQEEAGAQVSVPRALDRQAA LLQIQEFMITCLSQTPPRTTLLLYPTAVDLAKRALWTPNQITDITSLVR LVYILSKQNQQHLIPQWALRQIADFALKLHKTHLASFLSAFARQELYL MGSLVHSMLVHTTERREIFIVETGLCSLAELSHFTQLLAHPHHEYLS DLYTPCSSSGRRDHSLERLTRLFPDATVPATVPAALSILSTM QPSTLETFPDLFCLPLGESFSALTVSEHVSYIVTNQYLIKGISYPVST TWGQSLIITQTDSQTKCELTRNMHTTHSITVALNISLENCAFCQSALL EYDDTQGVINIMYMHDSDDVLFALDPYNEVVVSSPRTHYLMLLKNG TVLEVTDVVVDATD--

CMV gL fl: 1- atgtgcagaaggcccgactgcggcttcagcttcagccctggacccgtgatcctgctgtggtg ctgcctgctgctgcctatcgtgtcctctgccgccgtgtctgtggcccctacagccgccgaga aggtgccagccgagtgccccgagctgaccagaagatgcctgctgggcgaggtgttcgagggc gacaagtacgagagctggctgcggcccctggtcaacgtgaccggcagagatggccccctgag ccagctgatccggtacagacccgtgacccccgaggccgccaatagcgtgctgctggacgagg ccttcctggataccctggccctgctgtacaacaaccccgaccagctgagagccctgctgacc ctgctgtccagcgacaccgcccccagatggatgaccgtgatgcggggctacagcgagtgtgg agatggcagccctgccgtgtacacctgcgtggacgacctgtgcagaggctacgacctgacca gactgagctacggccggtccatcttcacagagcacgtgctgggcttcgagctggtgcccccc agcctgttcaacgtggtggtggccatccggaacgaggccaccagaaccaacagagccgtgcg gctgcctgtgtctacagccgctgcacctgagggcatcacactgttctacggcctgtacaacg ccgtgaaagagttctgcctccggcaccagctggatccccccctgctgagacacctggacaag tactacgccggcctgcccccagagctgaagcagaccagagtgaacctgcccgcccacagcag atatggccctcaggccgtggacgccagatgataa - 840

CMV gL FL; MCRRPDCGFSFSPGPVILLWCCLLLPIVSSAAVSVAPTAAEKVPA ECPELTRRCLLGEVFEGDKYESWLRPLVNVTGRDGPLSQLIRYRPVT PEAANSVLLDEAFLDTLALLYNNPDQLRALLTLLSSDTAPRWMTVMR GYSECGDGSPAVYTCVDDLCRGYDLTRLSYGRSIFTEHVLGFELVPP SLFNVVVAIRNEATRTNRAVRLPVSTAAAPEGITLFYGLYNAVKEFCLR HQLDPPLLRHLDKYYAGLPPELKQTRVNLPAHSRYGPQAVDAR--

CMV gM FL: 1- atggcccccagccacgtggacaaagtgaacacccggacttggagcgccagcatcgtgttcat ggtgctgaccttcgtgaacgtgtccgtgcacctggtgctgtccaacttcccccacctgggct acccctgcgtgtactaccacgtggtggacttcgagcggctgaacatgagcgcctacaacgtg atgcacctgcacacccccatgctgtttctggacagcgtgcagctcgtgtgctacgccgtgtt catgcagctggtgtttctggccgtgaccatctactacctcgtgtgctggatcaagatcagca tgcggaaggacaagggcatgagcctgaaccagagcacccgggacatcagctacatgggcgac agcctgaccgccttcctgttcatcctgagcatggacaccttccagctgttcaccctgaccat gagcttccggctgcccagcatgatcgccttcatggccgccgtgcactttttctgtctgacca tcttcaacgtgtccatggtcacccagtaccggtcctacaagcggagcctgttcttcttctcc cggctgcaccccaagctgaagggcaccgtgcagttccggaccctgatcgtgaacctggtgga ggtggccctgggcttcaataccaccgtggtggctatggccctgtgctacggcttcggcaaca acttcttcgtgcggaccggccatatggtgctggccgtgttcgtggtgtacgccatcatcagc atcatctactttctgctgatcgaggccgtgttcttccagtacgtgaaggtgcagttcggcta ccatctgggcgcctttttcggcctgtgcggcctgatctaccccatcgtgcagtacgacacct tcctgagcaacgagtaccggaccggcatcagctggtccttcggaatgctgttcttcatctgg gccatgttcaccacctgcagagccgtgcggtacttcagaggcagaggcagcggctccgtgaa gtaccaggccctggccacagcctctggcgaagaggtggccgccctgagccaccacgacagcc tggaaagcagacggctgcgggaggaagaggacgacgacgacgaggacttcgaggacgcctga taa - 1119

CMV gM FL; MAPSHVDKVNTRTWSASIVFMVLTFVNVSVHLVLSNFPHLGYPCVY YHWDFERLNMSAYNVMHLHTPMLFLDSVQLVCYAVFMQLVFLAVTIY YLVCWIKISMRKDKGMSLNQSTRDISYMGDSLTAFLFILSMDTFQLFT LTMSFRLPSMIAFMAAVHFFCLTIFNVSMVTQYRSYKRSLFFFSRLHP KLKGTVQFRTLIVNLVEVALGFNTTWAMALCYGFGNNFFVRTGHMVLA VFWYAIISIIYFLLIEAVFFQYVKVQFGYHLGAFFGLCGLIYPIVQYDTF LSNEYRTGISWSFGMLFFIWAMFTTCRAVRYFRGRGSGSVKYQALATA SGEEVAALSHHDSLESRRLREEEDDDDEDFEDA--

CMV gN FL: 1- atggaatggaacaccctggtcctgggcctgctggtgctgtctgtcgtggc cagcagcaacaacacatccacagccagcacccctagacctagca gcagcacccacgccagcactaccgtgaaggctaccaccgtggcca ccacaagcaccaccactgctaccagcaccagctccaccacctctgcc aagcctggctctaccacacacgaccccaacgtgatgaggccccacg cccacaacgacttctacaacgctcactgcaccagccacatgtacgag ctgtccctgagcagctttgccgcctggtggaccatgctgaacgccctga tcctgatgggcgccttctgcatcgtgctgcggcactgctgcttc cagaacttcaccgccaccaccaccaagggctactgataa - 411

CMV gN FL; MEWNTLVLGLLVLSWASSNNTSTASTPRPSSSTHASTTVKATTVATTSTTTATSTSSTTSA KPGSTTHDPNVMRPHAHNDFYNAHCTSHMYELSLSSFAAWWTMLNALILMGAFCIVLRHCCF QNFTATTTKGY--

CMV gO FL: 1- atgggcaagaaagaaatgatcatggtcaagggcatccccaagatcatgctgctgattagcat cacctttctgctgctgtccctgatcaactgcaacgtgctggtcaacagccggggcaccagaa gatcctggccctacaccgtgctgtcctaccggggcaaagagatcctgaagaagcagaaagag gacatcctgaagcggctgatgagcaccagcagcgacggctaccggttcctgatgtaccccag ccagcagaaattccacgccatcgtgatcagcatggacaagttcccccaggactacatcctgg ccggacccatccggaacgacagcatcacccacatgtggttcgacttctacagcacccagctg cggaagcccgccaaatacgtgtacagcgagtacaaccacaccgcccacaagatcaccctgag gcctcccccttgtggcaccgtgcccagcatgaactgcctgagcgagatgctgaacgtgtcca agcggaacgacaccggcgagaagggctgcggcaacttcaccaccttcaaccccatgttcttc aacgtgccccggtggaacaccaagctgtacatcggcagcaacaaagtgaacgtggacagcca gaccatctactttctgggcctgaccgccctgctgctgagatacgcccagcggaactgcaccc ggtccttctacctggtcaacgccatgagccggaacctgttccgggtgcccaagtacatcaac ggcaccaagctgaagaacaccatgcggaagctgaagcggaagcaggccctggtcaaagagca gccccagaagaagaacaagaagtcccagagcaccaccaccccctacctgagctacaccacct ccaccgccttcaacgtgaccaccaacgtgacctacagcgccacagccgccgtgaccagagtg gccacaagcaccaccggctaccggcccgacagcaactttatgaagtccatcatggccaccca gctgagagatctggccacctgggtgtacaccaccctgcggtacagaaacgagcccttctgca agcccgaccggaacagaaccgccgtgagcgagttcatgaagaatacccacgtgctgatcaga aacgagacaccctacaccatctacggcaccctggacatgagcagcctgtactacaacgagac aatgagcgtggagaacgagacagccagcgacaacaacgaaaccacccccacctcccccagca cccggttccagcggaccttcatcgaccccctgtgggactacctggacagcctgctgttcctg gacaagatccggaacttcagcctgcagctgcccgcctacggcaatctgaccccccctgagca cagaagggccgccaacctgagcaccctgaacagcctgtggtggtggagccagtgataa- 1422

CMV gO FL; MGKKEMIMVKGIPKIMLLISITFLLLSLINCNVLVNSRGTRRSWPYTVLSYRGKEILKKQKE DILKRLMSTSSDGYRFLMYPSQQKFHAIVISMDKFPQDYILAGPIRNDSITHMWFDFYSTQL RKPAKYVYSEYNHTAHKITLRPPPCGTVPSMNCLSEMLNVSKRNDTGEKGCGNFTTFNPMFF NVPRWNTKLYIGSNKVNVDSQTIYFLGLTALLLRYAQRNCTRSFYLVNAMSRNLFRVPKYIN GTKLKNTMRKLKRKQALVKEQPQKKNKKSQSTTTPYLSYTTSTAFNVTTNVTYSATAAVTRV ATSTTGYRPDSNFMKSIMATQLRDLATWVYTTLRYRNEPFCKPDRNRTAVSEFMKNTHVLIR NETPYTIYGTLDMSSLYYNETMSVENETASDNNETTPTSPSTRFQRTFIDPLWDYLDSLLFL DKIRNFSLQLPAYGNLTPPEHRRAANLSTLNSLWWWSQ--

CMV UL128 FL: 1- atgagccccaaggacctgacccccttcctgacaaccctgtggctgctcctgggccatagcag agtgcctagagtgcgggccgaggaatgctgcgagttcatcaacgtgaaccacccccccgagc ggtgctacgacttcaagatgtgcaaccggttcaccgtggccctgagatgccccgacggcgaa gtgtgctacagccccgagaaaaccgccgagatccggggcatcgtgaccaccatgacccacag cctgacccggcaggtggtgcacaacaagctgaccagctgcaactacaaccccctgtacctgg aagccgacggccggatcagatgcggcaaagtgaacgacaaggcccagtacctgctgggagcc gccggaagcgtgccctaccggtggatcaacctggaatacgacaagatcacccggatcgtggg cctggaccagtacctggaaagcgtgaagaagcacaagcggctggacgtgtgcagagccaaga tgggctacatgctgcagtgataa-519

CMV UL128 FL; MSPKDLTPFLTTLWLLLGHSRVPRVRAEECCEFINVNHPPERCYDFKMCNRFTVALRCPDGE VCYSPEKTAEIRGIVTTMTHSLTRQWHNKLTSCNYNPLYLEADGRIRCGKVNDKAQYLLGA AGSVPYRWINLEYDKITRIVGLDQYLESVKKHKRLDVCRAKMGYMLQ--

CMV UL130 FL: 1- atgctgcggctgctgctgagacaccacttccactgcctgctgctgtgtgccgtgtgggccac cccttgtctggccagcccttggagcaccctgaccgccaaccagaaccctagccccccttggt ccaagctgacctacagcaagccccacgacgccgccaccttctactgcccctttctgtacccc agccctcccagaagccccctgcagttcagcggcttccagagagtgtccaccggccctgagtg ccggaacgagacactgtacctgctgtacaaccgggagggccagacactggtggagcggagca gcacctgggtgaaaaaagtgatctggtatctgagcggccggaaccagaccatcctgcagcgg atgcccagaaccgccagcaagcccagcgacggcaacgtgcagatcagcgtggaggacgccaa aatcttcggcgcccacatggtgcccaagcagaccaagctgctgagattcgtggtcaacgacg gcaccagatatcagatgtgcgtgatgaagctggaaagctgggcccacgtgttccgggactac tccgtgagcttccaggtccggctgaccttcaccgaggccaacaaccagacctacaccttctg cacccaccccaacctgatcgtgtgataa-648

CMV UL130 FL; MLRLLLRHHFHCLLLCAVWATPCLASPWSTLTANQNPSPPWSKLTYSKPHDAATFYCPFLYP SPPRSPLQFSGFQRVSTGPECRNETLYLLYNREGQTLVERSSTWVKKVIWYLSGRNQTILQR MPRTASKPSDGNVQISVEDAKIFGAHMVPKQTKLLRFWNDGTRYQMCVMKLESWAHVFRDY SVSFQVRLTFTEANNQTYTFCTHPNLIV--

CMV UL131 FL: 1- atgcggctgtgcagagtgtggctgtccgtgtgcctgtgtgccgtggtgctgggccagtgcca gagagagacagccgagaagaacgactactaccgggtgccccactactgggatgcctgcagca gagccctgcccgaccagacccggtacaaatacgtggagcagctcgtggacctgaccctgaac taccactacgacgccagccacggcctggacaacttcgacgtgctgaagcggatcaacgtgac cgaggtgtccctgctgatcagcgacttccggcggcagaacagaagaggcggcaccaacaagc ggaccaccttcaacgccgctggctctctggcccctcacgccagatccctggaattcagcgtg cggctgttcgccaactgataa-393

CMV UL131 FL; MRLCRVWLSVCLCAWLGQCQRETAEKNDYYRVPHYWDACSRALPDQTRYKYVEQLVDLTLN YHYDASHGLDNFDVLKRINVTEVSLLISDFRRQNRRGGTNKRTTFNAAGSLAPHARSLEFSV RLFAN--

EMCV IRES nucleotide sequence; aacgttactggccgaagccgcttggaataaggccggtgtgcgtttgtctatatgttattttc caccatattgccgtcttttggcaatgtgagggcccggaaacctggccctgtcttcttgacga gcattcctaggggtctttcccctctcgccaaaggaatgcaaggtctgttgaatgtcgtgaag gaagcagttcctctggaagcttcttgaagacaaacaacgtctgtagcgaccctttgcaggca gcggaaccccccacctggcgacaggtgcctctgcggccaaaagccacgtgtataagatacac ctgcaaaggcggcacaaccccagtgccacgttgtgagttggatagttgtggaaagagtcaaa tggctctcctcaagcgtattcaacaaggggctgaaggatgcccagaaggtaccccattgtat gggatctgatctggggcctcggtgcacatgctttacatgtgtttagtcgaggttaaaaaaac gtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgataat

EV71 IRES nucleotide sequence; gtacctttgtacgcctgttttataccccctccctgatttgcaacttagaagcaacgc aaaccagatcaatagtaggtgtgacataccagtcgcatcttgatcaagcacttctgtatccc cggaccgagtatcaatagactgtgcacacggttgaaggagaaaacgtccgttacccggctaa ctacttcgagaagcctagtaacgccattgaagttgcagagtgtttcgctcagcactcccccc gtgtagatcaggtcgatgagtcaccgcattccccacgggcgaccgtggcggtggctgcgttg gcggcctgcctatggggtaacccataggacgctctaatacggacatggcgtgaagagtctat tgagctagttagtagtcctccggcccctgaatgcggctaatcctaactgcggagcacatacc cttaatccaaagggcagtgtgtcgtaacgggcaactctgcagcggaaccgactactttgggt gtccgtgtttctttttattcttgtattggctgcttatggtgacaattaaagaattgttacca tatagctattggattggccatccagtgtcaaacagagctattgtatatctctttgttggatt cacacctctcactcttgaaacgttacacaccctcaattacattatactgctgaacacgaagc g

VEE Subgenomic Promoter 5′-CTCTCTACGGCTAACCTGAATGGA-3′

pVCR modified vector gH sol-SGP gL cgcgtcggctacaattaatacataaccttatgtatcatacacatacgatttaggtgacacta tagatgggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcac gttgacatcgaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttga ggtagaagccaagcaggtcactgataatgaccatgctaatgccagagcgttttcgcatctgg cttcaaaactgatcgaaacggaggtggacccatccgacacgatccttgacattggaagtgcg cccgcccgcagaatgtattctaagcacaagtatcattgtatctgtccgatgagatgtgcgga agatccggacagattgtataagtatgcaactaagctgaagaaaaactgtaaggaaataactg ataaggaattggacaagaaaatgaaggagctcgccgccgtcatgagcgaccctgacctggaa actgagactatgtgcctccacgacgacgagtcgtgtcgctacgaagggcaagtcgctgttta ccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaataagggagtta gagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctggagca tatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggcct atgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatt tgaaaccatccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggac ttactgaggagctggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatg tcggtgtgagactatagttagttgcgacgggtacgtcgttaaaagaatagctatcagtccag gcctgtatgggaagccttcaggctatgctgctacgatgcaccgcgagggattcttgtgctgc aaagtgacagacacattgaacggggagagggtctcttttcccgtgtgcacgtatgtgccagc tacattgtgtgaccaaatgactggcatactggcaacagatgtcagtgcggacgacgcgcaaa aactgctggttgggctcaaccagcgtatagtcgtcaacggtcgcacccagagaaacaccaat accatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggtgggcaaaggaata taaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtcatggggt gttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaacc atcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacatt ggagatcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctc tcattaccgccgaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgt gaagccgaggagttgcgcgcagctctaccacctttggcagctgatgttgaggagcccactct ggaagccgatgtagacttgatgttacaagaggctggggccggctcagtggagacacctcgtg gcttgataaaggttaccagctacgctggcgaggacaagatcggctcttacgctgtgctttct ccgcaggctgtactcaagagtgaaaaattatcttgcatccaccctctcgctgaacaagtcat agtgataacacactctggccgaaaagggcgttatgccgtggaaccataccatggtaaagtag tggtgccagagggacatgcaatacccgtccaggactttcaagctctgagtgaaagtgccacc attgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccacacatggagg agcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcgaat acctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctc acaggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgacc agccgctccttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctg gcatcattaaaagcgcagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgt gcagaaattataagggacgtcaagaaaatgaaagggctggacgtcaatgccagaactgtgga ctcagtgctcttgaatggatgcaaacaccccgtagagaccctgtatattgacgaagcttttg cttgtcatgcaggtactctcagagcgctcatagccattataagacctaaaaaggcagtgctc tgcggggatcccaaacagtgcggtttttttaacatgatgtgcctgaaagtgcattttaacca cgagatttgcacacaagtcttccacaaaagcatctctcgccgttgcactaaatctgtgactt cggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccgaaagagactaag attgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcacttgttt cagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctg cctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcct ctgtacgcacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgt gtggaaaacactagccggcgacccatggataaaaacactgactgccaagtaccctgggaatt tcactgccacgatagaggagtggcaagcagagcatgatgccatcatgaggcacatcttggag agaccggaccctaccgacgtcttccagaataaggcaaacgtgtgttgggccaaggctttagt gccggtgctgaagaccgctggcatagacatgaccactgaacaatggaacactgtggattatt ttgaaacggacaaagctcactcagcagagatagtattgaaccaactatgcgtgaggttcttt ggactcgatctggactccggtctattttctgcacccactgttccgttatccattaggaataa tcactgggataactccccgtcgcctaacatgtacgggctgaataaagaagtggtccgtcagc tctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatgacatgaac actggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgcc tcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagca aattgaagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggtt gactggttgtcagaccggcctgaggctaccttcagagctcggctggatttaggcatcccagg tgatgtgcccaaatatgacataatatttgttaatgtgaggaccccatataaataccatcact atcagcagtgtgaagaccatgccattaagcttagcatgttgaccaagaaagcttgtctgcat ctgaatcccggcggaacctgtgtcagcataggttatggttacgctgacagggccagcgaaag catcattggtgctatagcgcggcagttcaagttttcccgggtatgcaaaccgaaatcctcac ttgaagagacggaagttctgtttgtattcattgggtacgatcgcaaggcccgtacgcacaat ccttacaagctttcatcaaccttgaccaacatttatacaggttccagactccacgaagccgg atgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaaggagtgatta taaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataagaaa ttcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgc agctaaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtg acaaacagttggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaag tcagtagcgattccactgttgtccaccggcatcttttccgggaacaaagatcgactaaccca atcattgaaccatttgctgacagctttagacaccactgatgcagatgtagccatatactgca gggacaagaaatgggaaatgactctcaaggaagcagtggctaggagagaagcagtggaggag atatgcatatccgacgactcttcagtgacagaacctgatgcagagctggtgagggtgcatcc gaagagttctttggctggaaggaagggctacagcacaagcgatggcaaaactttctcatatt tggaagggaccaagtttcaccaggcggccaaggatatagcagaaattaatgccatgtggccc gttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagcatgagcagtat taggtcgaaatgccccgtcgaagagtcggaagcctcctcaccacctagcacgctgccttgct tgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaa attactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatcca atgctcccagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatc tcgtggaaacaccaccggtagacgagactccggagccatcggcagagaaccaatccacagag gggacacctgaacaaccaccacttataaccgaggatgagaccaggactagaacgcctgagcc gatcatcatcgaagaggaagaagaggatagcataagtttgctgtcagatggcccgacccacc aggtgctgcaagtcgaggcagacattcacgggccgccctctgtatctagctcatcctggtcc attcctcatgcatccgactttgatgtggacagtttatccatacttgacaccctggagggagc tagcgtgaccagcggggcaacgtcagccgagactaactcttacttcgcaaagagtatggagt ttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctccacatcccgctccg cgcacaagaacaccgtcacttgcacccagcagggcctgctcgagagggatcacgggagaaac cgtgggatacgcggttacacacaatagcgagggcttcttgctatgcaaagttactgacacag taaaaggagaacgggtatcgttccctgtgtgcacgtacatcccggccaccataaactcgaga accagcctggtctccaacccgccaggcgtaaatagggtgattacaagagaggagtttgaggc gttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatcttttcctccgacaccg gtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtgttggag aggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtgg agaacatgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggca gaaggaaaagtggagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaa ccgtgccttttcaagccccaaggtcgcagtggaagcctgtaacgccatgttgaaagagaact ttccgactgtggcttcttactgtattattccagagtacgatgcctatttggacatggttgac ggagcttcatgctgcttagacactgccagtttttgccctgcaaagctgcgcagctttccaaa gaaacactcctatttggaacccacaatacgatcggcagtgccttcagcgatccagaacacgc tccagaacgtcctggcagctgccacaaaaagaaattgcaatgtcacgcaaatgagagaattg cccgtattggattcggcggcctttaatgtggaatgcttcaagaaatatgcgtgtaataatga atattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggtaaattaca ttaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaatatg ttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactcc aggaacaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctag caacagcgtatctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgctt ccgaacattcatacactgtttgatatgtcggctgaagactttgacgctattatagccgagca cttccagcctggggattgtgttctggaaactgacatcgcgtcgtttgataaaagtgaggacg acgccatggctctgaccgcgttaatgattctggaagacttaggtgtggacgcagagctgttg acgctgattgaggcggctttcggcgaaatttcatcaatacatttgcccactaaaactaaatt taaattcggagccatgatgaaatctggaatgttcctcacactgtttgtgaacacagtcatta acattgtaatcgcaagcagagtgttgagagaacggctaaccggatcaccatgtgcagcattc attggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcagacaggtgcgc cacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgccttatt tctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagacccc ctaaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacag gagaagggcattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgt gcaaggcagtagaatcaaggtatgaaaccgtaggaacttccatcatagttatggccatgact actctagctagcagtgttaaatcattcagctacctgagaggggcccctataactctctacgg ctaacctgaatggactacgacatagtctagtcgacgccaccatgaggcctggcctgccctcc tacctgatcatcctggccgtgtgcctgttcagccacctgctgtccagcagatacggcgccga ggccgtgagcgagcccctggacaaggctttccacctgctgctgaacacctacggcagaccca tccggtttctgcgggagaacaccacccagtgcacctacaacagcagcctgcggaacagcacc gtcgtgagagagaacgccatcagcttcaactttttccagagctacaaccagtactacgtgtt ccacatgcccagatgcctgtttgccggccctctggccgagcagttcctgaaccaggtggacc tgaccgagacactggaaagataccagcagcggctgaatacctacgccctggtgtccaaggac ctggccagctaccggtcctttagccagcagctcaaggctcaggatagcctcggcgagcagcc taccaccgtgccccctcccatcgacctgagcatcccccacgtgtggatgcctccccagacca cccctcacggctggaccgagagccacaccacctccggcctgcacagaccccacttcaaccag acctgcatcctgttcgacggccacgacctgctgtttagcaccgtgaccccctgcctgcacca gggcttctacctgatcgacgagctgagatacgtgaagatcaccctgaccgaggatttcttcg tggtcaccgtgtccatcgacgacgacacccccatgctgctgatcttcggccacctgcccaga gtgctgttcaaggccccctaccagcgggacaacttcatcctgcggcagaccgagaagcacga gctgctggtgctggtcaagaaggaccagctgaaccggcactcctacctgaaggaccccgact tcctggacgccgccctggacttcaactacctggacctgagcgccctgctgagaaacagcttc cacagatacgccgtggacgtgctgaagtccggacggtgccagatgctcgatcggcggaccgt ggagatggccttcgcctatgccctcgccctgttcgccgctgccagacaggaagaggctggcg cccaggtgtcagtgcccagagccctggatagacaggccgccctgctgcagatccaggaattc atgatcacctgcctgagccagaccccccctagaaccaccctgctgctgtaccccacagccgt ggatctggccaagagggccctgtggacccccaaccagatcaccgacatcacaagcctcgtgc ggctcgtgtacatcctgagcaagcagaaccagcagcacctgatcccccagtgggccctgaga cagatcgccgacttcgccctgaagctgcacaagacccatctggccagctttctgagcgcctt cgccaggcaggaactgtacctgatgggcagcctggtccacagcatgctggtgcataccaccg agcggcgggagatcttcatcgtggagacaggcctgtgtagcctggccgagctgtcccacttt acccagctgctggcccaccctcaccacgagtacctgagcgacctgtacaccccctgcagcag cagcggcagacgggaccacagcctggaacggctgaccagactgttccccgatgccaccgtgc ctgctacagtgcctgccgccctgtccatcctgtccaccatgcagcccagcaccctggaaacc ttccccgacctgttctgcctgcccctgggcgagagctttagcgccctgaccgtgtccgagca cgtgtcctacatcgtgaccaatcagtacctgatcaagggcatcagctaccccgtgtccacca cagtcgtgggccagagcctgatcatcacccagaccgacagccagaccaagtgcgagctgacc cggaacatgcacaccacacacagcatcaccgtggccctgaacatcagcctggaaaactgcgc tttctgtcagtctgccctgctggaatacgacgatacccagggcgtgatcaacatcatgtaca tgcacgacagcgacgacgtgctgttcgccctggacccctacaacgaggtggtggtgtccagc ccccggacccactacctgatgctgctgaagaacggcaccgtgctggaagtgaccgacgtggt ggtggacgccaccgactgataatctagacggcgcgcccacccagcggccgcctataactctc tacggctaacctgaatggactacgacatagtctagtcgacgccaccatgtgcagaaggcccg actgcggcttcagcttcagccctggacccgtgatcctgctgtggtgctgcctgctgctgcct atcgtgtcctctgccgccgtgtctgtggcccctacagccgccgagaaggtgccagccgagtg ccccgagctgaccagaagatgcctgctgggcgaggtgttcgagggcgacaagtacgagagct ggctgcggcccctggtcaacgtgaccggcagagatggccccctgagccagctgatccggtac agacccgtgacccccgaggccgccaatagcgtgctgctggacgaggccttcctggataccct ggccctgctgtacaacaaccccgaccagctgagagccctgctgaccctgctgtccagcgaca ccgcccccagatggatgaccgtgatgcggggctacagcgagtgtggagatggcagccctgcc gtgtacacctgcgtggacgacctgtgcagaggctacgacctgaccagactgagctacggccg gtccatcttcacagagcacgtgctgggcttcgagctggtgccccccagcctgttcaacgtgg tggtggccatccggaacgaggccaccagaaccaacagagccgtgcggctgcctgtgtctaca gccgctgcacctgagggcatcacactgttctacggcctgtacaacgccgtgaaagagttctg cctccggcaccagctggatccccccctgctgagacacctggacaagtactacgccggcctgc ccccagagctgaagcagaccagagtgaacctgcccgcccacagcagatatggccctcaggcc gtggacgccagatgataatctagacggcgcgcccacccaatcgatgtacttccgaggaactc acgtgcataatgcatcaggctggtacattagatccccgcttaccgcgggcaatatagcaaca ctaaaaactcgatgtacttccgaggaagcgcagtgcataatgctgcgcagtgttgccacata accactatattaaccatttatctagcggacgccaaaaactcaatgtatttctgaggaagcgt ggtgcataatgccacgcagcgtctgcataacttttattatttcttttattaatcaacaaaat tttgtttttaacatttcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagggtc ggcatggcatctccacctcctcgcggtccgacctgggcatccgaaggaggacgcacgtccac tcggatggctaagggagagccacgagctcctgtttaaaccagctccaattcgccctatagtg agtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggc gttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaaga ggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccct gtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgcc agcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctt tccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacc tcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacg gtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactgg aacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcgg cctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatatta acgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttattt ttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaata atattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttg cggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaa gatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttga gagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcg cggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcag aatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaag agaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaa cgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgc cttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgat gcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagctt cccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcg gcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcgg tatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacgg ggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgatt aagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttca tttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatccctt aacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttga gatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggt ggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagag cgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaagaactct gtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcga taagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgg gctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgaga tacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggta tccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcct ggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgc tcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggc cttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataacc gtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgag tcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggcc gattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacg caattaatgtgagttagctcactcattaggcaccccaggctttacactttatgctcccggct cgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatga ttacgccaagcgcgcaattaaccctcactaaagggaacaaaagctgggtaccggcgcca

pVCR modified vector gH FL-SGP gL cgcgtcggctacaattaatacataaccttatgtatcatacacatacgatttaggtgacacta tagatgggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcac gttgacatcgaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttga ggtagaagccaagcaggtcactgataatgaccatgctaatgccagagcgttttcgcatctgg cttcaaaactgatcgaaacggaggtggacccatccgacacgatccttgacattggaagtgcg cccgcccgcagaatgtattctaagcacaagtatcattgtatctgtccgatgagatgtgcgga agatccggacagattgtataagtatgcaactaagctgaagaaaaactgtaaggaaataactg ataaggaattggacaagaaaatgaaggagctcgccgccgtcatgagcgaccctgacctggaa actgagactatgtgcctccacgacgacgagtcgtgtcgctacgaagggcaagtcgctgttta ccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaataagggagtta gagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctggagca tatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggcct atgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatt tgaaaccatccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggac ttactgaggagctggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatg tcggtgtgagactatagttagttgcgacgggtacgtcgttaaaagaatagctatcagtccag gcctgtatgggaagccttcaggctatgctgctacgatgcaccgcgagggattcttgtgctgc aaagtgacagacacattgaacggggagagggtctcttttcccgtgtgcacgtatgtgccagc tacattgtgtgaccaaatgactggcatactggcaacagatgtcagtgcggacgacgcgcaaa aactgctggttgggctcaaccagcgtatagtcgtcaacggtcgcacccagagaaacaccaat accatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggtgggcaaaggaata taaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtcatggggt gttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaacc atcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacatt ggagatcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctc tcattaccgccgaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgt gaagccgaggagttgcgcgcagctctaccacctttggcagctgatgttgaggagcccactct ggaagccgatgtagacttgatgttacaagaggctggggccggctcagtggagacacctcgtg gcttgataaaggttaccagctacgctggcgaggacaagatcggctcttacgctgtgctttct ccgcaggctgtactcaagagtgaaaaattatcttgcatccaccctctcgctgaacaagtcat agtgataacacactctggccgaaaagggcgttatgccgtggaaccataccatggtaaagtag tggtgccagagggacatgcaatacccgtccaggactttcaagctctgagtgaaagtgccacc attgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccacacatggagg agcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcgaat acctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctc acaggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgacc agccgctccttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctg gcatcattaaaagcgcagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgt gcagaaattataagggacgtcaagaaaatgaaagggctggacgtcaatgccagaactgtgga ctcagtgctcttgaatggatgcaaacaccccgtagagaccctgtatattgacgaagcttttg cttgtcatgcaggtactctcagagcgctcatagccattataagacctaaaaaggcagtgctc tgcggggatcccaaacagtgcggtttttttaacatgatgtgcctgaaagtgcattttaacca cgagatttgcacacaagtcttccacaaaagcatctctcgccgttgcactaaatctgtgactt cggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccgaaagagactaag attgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcacttgttt cagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctg cctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcct ctgtacgcacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgt gtggaaaacactagccggcgacccatggataaaaacactgactgccaagtaccctgggaatt tcactgccacgatagaggagtggcaagcagagcatgatgccatcatgaggcacatcttggag agaccggaccctaccgacgtcttccagaataaggcaaacgtgtgttgggccaaggctttagt gccggtgctgaagaccgctggcatagacatgaccactgaacaatggaacactgtggattatt ttgaaacggacaaagctcactcagcagagatagtattgaaccaactatgcgtgaggttcttt ggactcgatctggactccggtctattttctgcacccactgttccgttatccattaggaataa tcactgggataactccccgtcgcctaacatgtacgggctgaataaagaagtggtccgtcagc tctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatgacatgaac actggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgcc tcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagca aattgaagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggtt gactggttgtcagaccggcctgaggctaccttcagagctcggctggatttaggcatcccagg tgatgtgcccaaatatgacataatatttgttaatgtgaggaccccatataaataccatcact atcagcagtgtgaagaccatgccattaagcttagcatgttgaccaagaaagcttgtctgcat ctgaatcccggcggaacctgtgtcagcataggttatggttacgctgacagggccagcgaaag catcattggtgctatagcgcggcagttcaagttttcccgggtatgcaaaccgaaatcctcac ttgaagagacggaagttctgtttgtattcattgggtacgatcgcaaggcccgtacgcacaat ccttacaagctttcatcaaccttgaccaacatttatacaggttccagactccacgaagccgg atgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaaggagtgatta taaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataagaaa ttcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgc agctaaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtg acaaacagttggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaag tcagtagcgattccactgttgtccaccggcatcttttccgggaacaaagatcgactaaccca atcattgaaccatttgctgacagctttagacaccactgatgcagatgtagccatatactgca gggacaagaaatgggaaatgactctcaaggaagcagtggctaggagagaagcagtggaggag atatgcatatccgacgactcttcagtgacagaacctgatgcagagctggtgagggtgcatcc gaagagttctttggctggaaggaagggctacagcacaagcgatggcaaaactttctcatatt tggaagggaccaagtttcaccaggcggccaaggatatagcagaaattaatgccatgtggccc gttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagcatgagcagtat taggtcgaaatgccccgtcgaagagtcggaagcctcctcaccacctagcacgctgccttgct tgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaa attactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatcca atgctcccagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatc tcgtggaaacaccaccggtagacgagactccggagccatcggcagagaaccaatccacagag gggacacctgaacaaccaccacttataaccgaggatgagaccaggactagaacgcctgagcc gatcatcatcgaagaggaagaagaggatagcataagtttgctgtcagatggcccgacccacc aggtgctgcaagtcgaggcagacattcacgggccgccctctgtatctagctcatcctggtcc attcctcatgcatccgactttgatgtggacagtttatccatacttgacaccctggagggagc tagcgtgaccagcggggcaacgtcagccgagactaactcttacttcgcaaagagtatggagt ttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctccacatcccgctccg cgcacaagaacaccgtcacttgcacccagcagggcctgctcgagagggatcacgggagaaac cgtgggatacgcggttacacacaatagcgagggcttcttgctatgcaaagttactgacacag taaaaggagaacgggtatcgttccctgtgtgcacgtacatcccggccaccataaactcgaga accagcctggtctccaacccgccaggcgtaaatagggtgattacaagagaggagtttgaggc gttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatcttttcctccgacaccg gtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtgttggag aggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtgg agaacatgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggca gaaggaaaagtggagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaa ccgtgccttttcaagccccaaggtcgcagtggaagcctgtaacgccatgttgaaagagaact ttccgactgtggcttcttactgtattattccagagtacgatgcctatttggacatggttgac ggagcttcatgctgcttagacactgccagtttttgccctgcaaagctgcgcagctttccaaa gaaacactcctatttggaacccacaatacgatcggcagtgccttcagcgatccagaacacgc tccagaacgtcctggcagctgccacaaaaagaaattgcaatgtcacgcaaatgagagaattg cccgtattggattcggcggcctttaatgtggaatgcttcaagaaatatgcgtgtaataatga atattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggtaaattaca ttaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaatatg ttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactcc aggaacaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctag caacagcgtatctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgctt ccgaacattcatacactgtttgatatgtcggctgaagactttgacgctattatagccgagca cttccagcctggggattgtgttctggaaactgacatcgcgtcgtttgataaaagtgaggacg acgccatggctctgaccgcgttaatgattctggaagacttaggtgtggacgcagagctgttg acgctgattgaggcggctttcggcgaaatttcatcaatacatttgcccactaaaactaaatt taaattcggagccatgatgaaatctggaatgttcctcacactgtttgtgaacacagtcatta acattgtaatcgcaagcagagtgttgagagaacggctaaccggatcaccatgtgcagcattc attggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcagacaggtgcgc cacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgccttatt tctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagacccc ctaaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacag gagaagggcattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgt gcaaggcagtagaatcaaggtatgaaaccgtaggaacttccatcatagttatggccatgact actctagctagcagtgttaaatcattcagctacctgagaggggcccctataactctctacgg ctaacctgaatggactacgacatagtctagtcgacgccaccatgaggcctggcctgccctcc tacctgatcatcctggccgtgtgcctgttcagccacctgctgtccagcagatacggcgccga ggccgtgagcgagcccctggacaaggctttccacctgctgctgaacacctacggcagaccca tccggtttctgcgggagaacaccacccagtgcacctacaacagcagcctgcggaacagcacc gtcgtgagagagaacgccatcagcttcaactttttccagagctacaaccagtactacgtgtt ccacatgcccagatgcctgtttgccggccctctggccgagcagttcctgaaccaggtggacc tgaccgagacactggaaagataccagcagcggctgaatacctacgccctggtgtccaaggac ctggccagctaccggtcctttagccagcagctcaaggctcaggatagcctcggcgagcagcc taccaccgtgccccctcccatcgacctgagcatcccccacgtgtggatgcctccccagacca cccctcacggctggaccgagagccacaccacctccggcctgcacagaccccacttcaaccag acctgcatcctgttcgacggccacgacctgctgtttagcaccgtgaccccctgcctgcacca gggcttctacctgatcgacgagctgagatacgtgaagatcaccctgaccgaggatttcttcg tggtcaccgtgtccatcgacgacgacacccccatgctgctgatcttcggccacctgcccaga gtgctgttcaaggccccctaccagcgggacaacttcatcctgcggcagaccgagaagcacga gctgctggtgctggtcaagaaggaccagctgaaccggcactcctacctgaaggaccccgact tcctggacgccgccctggacttcaactacctggacctgagcgccctgctgagaaacagcttc cacagatacgccgtggacgtgctgaagtccggacggtgccagatgctcgatcggcggaccgt ggagatggccttcgcctatgccctcgccctgttcgccgctgccagacaggaagaggctggcg cccaggtgtcagtgcccagagccctggatagacaggccgccctgctgcagatccaggaattc atgatcacctgcctgagccagaccccccctagaaccaccctgctgctgtaccccacagccgt ggatctggccaagagggccctgtggacccccaaccagatcaccgacatcacaagcctcgtgc ggctcgtgtacatcctgagcaagcagaaccagcagcacctgatcccccagtgggccctgaga cagatcgccgacttcgccctgaagctgcacaagacccatctggccagctttctgagcgcctt cgccaggcaggaactgtacctgatgggcagcctggtccacagcatgctggtgcataccaccg agcggcgggagatcttcatcgtggagacaggcctgtgtagcctggccgagctgtcccacttt acccagctgctggcccaccctcaccacgagtacctgagcgacctgtacaccccctgcagcag cagcggcagacgggaccacagcctggaacggctgaccagactgttccccgatgccaccgtgc ctgctacagtgcctgccgccctgtccatcctgtccaccatgcagcccagcaccctggaaacc ttccccgacctgttctgcctgcccctgggcgagagctttagcgccctgaccgtgtccgagca cgtgtcctacatcgtgaccaatcagtacctgatcaagggcatcagctaccccgtgtccacca cagtcgtgggccagagcctgatcatcacccagaccgacagccagaccaagtgcgagctgacc cggaacatgcacaccacacacagcatcaccgtggccctgaacatcagcctggaaaactgcgc tttctgtcagtctgccctgctggaatacgacgatacccagggcgtgatcaacatcatgtaca tgcacgacagcgacgacgtgctgttcgccctggacccctacaacgaggtggtggtgtccagc ccccggacccactacctgatgctgctgaagaacggcaccgtgctggaagtgaccgacgtggt ggtggacgccaccgacagcagactgctgatgatgagcgtgtacgccctgagcgccatcatcg gcatctacctgctgtaccggatgctgaaaacctgctgataatctagacggcgcgcccaccca gcggccgcctataactctctacggctaacctgaatggactacgacatagtctagtcgacgcc accatgtgcagaaggcccgactgcggcttcagcttcagccctggacccgtgatcctgctgtg gtgctgcctgctgctgcctatcgtgtcctctgccgccgtgtctgtggcccctacagccgccg agaaggtgccagccgagtgccccgagctgaccagaagatgcctgctgggcgaggtgttcgag ggcgacaagtacgagagctggctgcggcccctggtcaacgtgaccggcagagatggccccct gagccagctgatccggtacagacccgtgacccccgaggccgccaatagcgtgctgctggacg aggccttcctggataccctggccctgctgtacaacaaccccgaccagctgagagccctgctg accctgctgtccagcgacaccgcccccagatggatgaccgtgatgcggggctacagcgagtg tggagatggcagccctgccgtgtacacctgcgtggacgacctgtgcagaggctacgacctga ccagactgagctacggccggtccatcttcacagagcacgtgctgggcttcgagctggtgccc cccagcctgttcaacgtggtggtggccatccggaacgaggccaccagaaccaacagagccgt gcggctgcctgtgtctacagccgctgcacctgagggcatcacactgttctacggcctgtaca acgccgtgaaagagttctgcctccggcaccagctggatccccccctgctgagacacctggac aagtactacgccggcctgcccccagagctgaagcagaccagagtgaacctgcccgcccacag cagatatggccctcaggccgtggacgccagatgataatctagacggcgcgcccacccaatcg atgtacttccgaggaactcacgtgcataatgcatcaggctggtacattagatccccgcttac cgcgggcaatatagcaacactaaaaactcgatgtacttccgaggaagcgcagtgcataatgc tgcgcagtgttgccacataaccactatattaaccatttatctagcggacgccaaaaactcaa tgtatttctgaggaagcgtggtgcataatgccacgcagcgtctgcataacttttattatttc ttttattaatcaacaaaattttgtttttaacatttcaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaagggtcggcatggcatctccacctcctcgcggtccgacctgggcatccg aaggaggacgcacgtccactcggatggctaagggagagccacgagctcctgtttaaaccagc tccaattcgccctatagtgagtcgtattacgcgcgctcactggccgtcgttttacaacgtcg tgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgcca gctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaat ggcgaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcag cgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttc tcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccga tttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgg gccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtg gactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataa gggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgc gaattttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcgg aacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataac cctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtc gcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggt gaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctca acagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcactttt aaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcg ccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatctta cggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcg gccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacat gggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacg acgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggc gaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgc aggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccg gtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatc gtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctga gataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatacttt agattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataat ctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaa gatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaa aaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaag gtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttagg ccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccag tggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccg gataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaac gacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaag ggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggag cttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttga gcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcgg cctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcc cctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccg aacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgc ctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaa gcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggcttt acactttatgctcccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacag gaaacagctatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaag ctgggtaccggcgcca

pVCR modified vector gH sol-SGP gL-SGP gO cgcgtcggctacaattaatacataaccttatgtatcatacacatacgatttaggtgacacta tagatgggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcac gttgacatcgaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttga ggtagaagccaagcaggtcactgataatgaccatgctaatgccagagcgttttcgcatctgg cttcaaaactgatcgaaacggaggtggacccatccgacacgatccttgacattggaagtgcg cccgcccgcagaatgtattctaagcacaagtatcattgtatctgtccgatgagatgtgcgga agatccggacagattgtataagtatgcaactaagctgaagaaaaactgtaaggaaataactg ataaggaattggacaagaaaatgaaggagctcgccgccgtcatgagcgaccctgacctggaa actgagactatgtgcctccacgacgacgagtcgtgtcgctacgaagggcaagtcgctgttta ccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaataagggagtta gagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctggagca tatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggcct atgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatt tgaaaccatccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggac ttactgaggagctggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatg tcggtgtgagactatagttagttgcgacgggtacgtcgttaaaagaatagctatcagtccag gcctgtatgggaagccttcaggctatgctgctacgatgcaccgcgagggattcttgtgctgc aaagtgacagacacattgaacggggagagggtctcttttcccgtgtgcacgtatgtgccagc tacattgtgtgaccaaatgactggcatactggcaacagatgtcagtgcggacgacgcgcaaa aactgctggttgggctcaaccagcgtatagtcgtcaacggtcgcacccagagaaacaccaat accatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggtgggcaaaggaata taaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtcatggggt gttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaacc atcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacatt ggagatcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctc tcattaccgccgaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgt gaagccgaggagttgcgcgcagctctaccacctttggcagctgatgttgaggagcccactct ggaagccgatgtagacttgatgttacaagaggctggggccggctcagtggagacacctcgtg gcttgataaaggttaccagctacgctggcgaggacaagatcggctcttacgctgtgctttct ccgcaggctgtactcaagagtgaaaaattatcttgcatccaccctctcgctgaacaagtcat agtgataacacactctggccgaaaagggcgttatgccgtggaaccataccatggtaaagtag tggtgccagagggacatgcaatacccgtccaggactttcaagctctgagtgaaagtgccacc attgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccacacatggagg agcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcgaat acctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctc acaggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgacc agccgctccttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctg gcatcattaaaagcgcagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgt gcagaaattataagggacgtcaagaaaatgaaagggctggacgtcaatgccagaactgtgga ctcagtgctcttgaatggatgcaaacaccccgtagagaccctgtatattgacgaagcttttg cttgtcatgcaggtactctcagagcgctcatagccattataagacctaaaaaggcagtgctc tgcggggatcccaaacagtgcggtttttttaacatgatgtgcctgaaagtgcattttaacca cgagatttgcacacaagtcttccacaaaagcatctctcgccgttgcactaaatctgtgactt cggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccgaaagagactaag attgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcacttgttt cagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctg cctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcct ctgtacgcacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgt gtggaaaacactagccggcgacccatggataaaaacactgactgccaagtaccctgggaatt tcactgccacgatagaggagtggcaagcagagcatgatgccatcatgaggcacatcttggag agaccggaccctaccgacgtcttccagaataaggcaaacgtgtgttgggccaaggctttagt gccggtgctgaagaccgctggcatagacatgaccactgaacaatggaacactgtggattatt ttgaaacggacaaagctcactcagcagagatagtattgaaccaactatgcgtgaggttcttt ggactcgatctggactccggtctattttctgcacccactgttccgttatccattaggaataa tcactgggataactccccgtcgcctaacatgtacgggctgaataaagaagtggtccgtcagc tctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatgacatgaac actggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgcc tcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagca aattgaagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggtt gactggttgtcagaccggcctgaggctaccttcagagctcggctggatttaggcatcccagg tgatgtgcccaaatatgacataatatttgttaatgtgaggaccccatataaataccatcact atcagcagtgtgaagaccatgccattaagcttagcatgttgaccaagaaagcttgtctgcat ctgaatcccggcggaacctgtgtcagcataggttatggttacgctgacagggccagcgaaag catcattggtgctatagcgcggcagttcaagttttcccgggtatgcaaaccgaaatcctcac ttgaagagacggaagttctgtttgtattcattgggtacgatcgcaaggcccgtacgcacaat ccttacaagctttcatcaaccttgaccaacatttatacaggttccagactccacgaagccgg atgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaaggagtgatta taaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataagaaa ttcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgc agctaaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtg acaaacagttggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaag tcagtagcgattccactgttgtccaccggcatcttttccgggaacaaagatcgactaaccca atcattgaaccatttgctgacagctttagacaccactgatgcagatgtagccatatactgca gggacaagaaatgggaaatgactctcaaggaagcagtggctaggagagaagcagtggaggag atatgcatatccgacgactcttcagtgacagaacctgatgcagagctggtgagggtgcatcc gaagagttctttggctggaaggaagggctacagcacaagcgatggcaaaactttctcatatt tggaagggaccaagtttcaccaggcggccaaggatatagcagaaattaatgccatgtggccc gttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagcatgagcagtat taggtcgaaatgccccgtcgaagagtcggaagcctcctcaccacctagcacgctgccttgct tgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaa attactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatcca atgctcccagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatc tcgtggaaacaccaccggtagacgagactccggagccatcggcagagaaccaatccacagag gggacacctgaacaaccaccacttataaccgaggatgagaccaggactagaacgcctgagcc gatcatcatcgaagaggaagaagaggatagcataagtttgctgtcagatggcccgacccacc aggtgctgcaagtcgaggcagacattcacgggccgccctctgtatctagctcatcctggtcc attcctcatgcatccgactttgatgtggacagtttatccatacttgacaccctggagggagc tagcgtgaccagcggggcaacgtcagccgagactaactcttacttcgcaaagagtatggagt ttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctccacatcccgctccg cgcacaagaacaccgtcacttgcacccagcagggcctgctcgagagggatcacgggagaaac cgtgggatacgcggttacacacaatagcgagggcttcttgctatgcaaagttactgacacag taaaaggagaacgggtatcgttccctgtgtgcacgtacatcccggccaccataaactcgaga accagcctggtctccaacccgccaggcgtaaatagggtgattacaagagaggagtttgaggc gttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatcttttcctccgacaccg gtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtgttggag aggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtgg agaacatgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggca gaaggaaaagtggagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaa ccgtgccttttcaagccccaaggtcgcagtggaagcctgtaacgccatgttgaaagagaact ttccgactgtggcttcttactgtattattccagagtacgatgcctatttggacatggttgac ggagcttcatgctgcttagacactgccagtttttgccctgcaaagctgcgcagctttccaaa gaaacactcctatttggaacccacaatacgatcggcagtgccttcagcgatccagaacacgc tccagaacgtcctggcagctgccacaaaaagaaattgcaatgtcacgcaaatgagagaattg cccgtattggattcggcggcctttaatgtggaatgcttcaagaaatatgcgtgtaataatga atattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggtaaattaca ttaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaatatg ttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactcc aggaacaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctag caacagcgtatctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgctt ccgaacattcatacactgtttgatatgtcggctgaagactttgacgctattatagccgagca cttccagcctggggattgtgttctggaaactgacatcgcgtcgtttgataaaagtgaggacg acgccatggctctgaccgcgttaatgattctggaagacttaggtgtggacgcagagctgttg acgctgattgaggcggctttcggcgaaatttcatcaatacatttgcccactaaaactaaatt taaattcggagccatgatgaaatctggaatgttcctcacactgtttgtgaacacagtcatta acattgtaatcgcaagcagagtgttgagagaacggctaaccggatcaccatgtgcagcattc attggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcagacaggtgcgc cacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgccttatt tctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagacccc ctaaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacag gagaagggcattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgt gcaaggcagtagaatcaaggtatgaaaccgtaggaacttccatcatagttatggccatgact actctagctagcagtgttaaatcattcagctacctgagaggggcccctataactctctacgg ctaacctgaatggactacgacatagtctagtcgacgccaccatgaggcctggcctgccctcc tacctgatcatcctggccgtgtgcctgttcagccacctgctgtccagcagatacggcgccga ggccgtgagcgagcccctggacaaggctttccacctgctgctgaacacctacggcagaccca tccggtttctgcgggagaacaccacccagtgcacctacaacagcagcctgcggaacagcacc gtcgtgagagagaacgccatcagcttcaactttttccagagctacaaccagtactacgtgtt ccacatgcccagatgcctgtttgccggccctctggccgagcagttcctgaaccaggtggacc tgaccgagacactggaaagataccagcagcggctgaatacctacgccctggtgtccaaggac ctggccagctaccggtcctttagccagcagctcaaggctcaggatagcctcggcgagcagcc taccaccgtgccccctcccatcgacctgagcatcccccacgtgtggatgcctccccagacca cccctcacggctggaccgagagccacaccacctccggcctgcacagaccccacttcaaccag acctgcatcctgttcgacggccacgacctgctgtttagcaccgtgaccccctgcctgcacca gggcttctacctgatcgacgagctgagatacgtgaagatcaccctgaccgaggatttcttcg tggtcaccgtgtccatcgacgacgacacccccatgctgctgatcttcggccacctgcccaga gtgctgttcaaggccccctaccagcgggacaacttcatcctgcggcagaccgagaagcacga gctgctggtgctggtcaagaaggaccagctgaaccggcactcctacctgaaggaccccgact tcctggacgccgccctggacttcaactacctggacctgagcgccctgctgagaaacagcttc cacagatacgccgtggacgtgctgaagtccggacggtgccagatgctcgatcggcggaccgt ggagatggccttcgcctatgccctcgccctgttcgccgctgccagacaggaagaggctggcg cccaggtgtcagtgcccagagccctggatagacaggccgccctgctgcagatccaggaattc atgatcacctgcctgagccagaccccccctagaaccaccctgctgctgtaccccacagccgt ggatctggccaagagggccctgtggacccccaaccagatcaccgacatcacaagcctcgtgc ggctcgtgtacatcctgagcaagcagaaccagcagcacctgatcccccagtgggccctgaga cagatcgccgacttcgccctgaagctgcacaagacccatctggccagctttctgagcgcctt cgccaggcaggaactgtacctgatgggcagcctggtccacagcatgctggtgcataccaccg agcggcgggagatcttcatcgtggagacaggcctgtgtagcctggccgagctgtcccacttt acccagctgctggcccaccctcaccacgagtacctgagcgacctgtacaccccctgcagcag cagcggcagacgggaccacagcctggaacggctgaccagactgttccccgatgccaccgtgc ctgctacagtgcctgccgccctgtccatcctgtccaccatgcagcccagcaccctggaaacc ttccccgacctgttctgcctgcccctgggcgagagctttagcgccctgaccgtgtccgagca cgtgtcctacatcgtgaccaatcagtacctgatcaagggcatcagctaccccgtgtccacca cagtcgtgggccagagcctgatcatcacccagaccgacagccagaccaagtgcgagctgacc cggaacatgcacaccacacacagcatcaccgtggccctgaacatcagcctggaaaactgcgc tttctgtcagtctgccctgctggaatacgacgatacccagggcgtgatcaacatcatgtaca tgcacgacagcgacgacgtgctgttcgccctggacccctacaacgaggtggtggtgtccagc ccccggacccactacctgatgctgctgaagaacggcaccgtgctggaagtgaccgacgtggt ggtggacgccaccgactgataatctagacggcgcgcccacccagcggccgcctataactctc tacggctaacctgaatggactacgacatagtctagtcgacgccaccatgtgcagaaggcccg actgcggcttcagcttcagccctggacccgtgatcctgctgtggtgctgcctgctgctgcct atcgtgtcctctgccgccgtgtctgtggcccctacagccgccgagaaggtgccagccgagtg ccccgagctgaccagaagatgcctgctgggcgaggtgttcgagggcgacaagtacgagagct ggctgcggcccctggtcaacgtgaccggcagagatggccccctgagccagctgatccggtac agacccgtgacccccgaggccgccaatagcgtgctgctggacgaggccttcctggataccct ggccctgctgtacaacaaccccgaccagctgagagccctgctgaccctgctgtccagcgaca ccgcccccagatggatgaccgtgatgcggggctacagcgagtgtggagatggcagccctgcc gtgtacacctgcgtggacgacctgtgcagaggctacgacctgaccagactgagctacggccg gtccatcttcacagagcacgtgctgggcttcgagctggtgccccccagcctgttcaacgtgg tggtggccatccggaacgaggccaccagaaccaacagagccgtgcggctgcctgtgtctaca gccgctgcacctgagggcatcacactgttctacggcctgtacaacgccgtgaaagagttctg cctccggcaccagctggatccccccctgctgagacacctggacaagtactacgccggcctgc ccccagagctgaagcagaccagagtgaacctgcccgcccacagcagatatggccctcaggcc gtggacgccagatgataatctagacggcgcgcccacccaatcgatctataactctctacggc taacctgaatggactacgacatagtctagtcgacgccaccatgggcaagaaagaaatgatca tggtcaagggcatccccaagatcatgctgctgattagcatcacctttctgctgctgtccctg atcaactgcaacgtgctggtcaacagccggggcaccagaagatcctggccctacaccgtgct gtcctaccggggcaaagagatcctgaagaagcagaaagaggacatcctgaagcggctgatga gcaccagcagcgacggctaccggttcctgatgtaccccagccagcagaaattccacgccatc gtgatcagcatggacaagttcccccaggactacatcctggccggacccatccggaacgacag catcacccacatgtggttcgacttctacagcacccagctgcggaagcccgccaaatacgtgt acagcgagtacaaccacaccgcccacaagatcaccctgaggcctcccccttgtggcaccgtg cccagcatgaactgcctgagcgagatgctgaacgtgtccaagcggaacgacaccggcgagaa gggctgcggcaacttcaccaccttcaaccccatgttcttcaacgtgccccggtggaacacca agctgtacatcggcagcaacaaagtgaacgtggacagccagaccatctactttctgggcctg accgccctgctgctgagatacgcccagcggaactgcacccggtccttctacctggtcaacgc catgagccggaacctgttccgggtgcccaagtacatcaacggcaccaagctgaagaacacca tgcggaagctgaagcggaagcaggccctggtcaaagagcagccccagaagaagaacaagaag tcccagagcaccaccaccccctacctgagctacaccacctccaccgccttcaacgtgaccac caacgtgacctacagcgccacagccgccgtgaccagagtggccacaagcaccaccggctacc ggcccgacagcaactttatgaagtccatcatggccacccagctgagagatctggccacctgg gtgtacaccaccctgcggtacagaaacgagcccttctgcaagcccgaccggaacagaaccgc cgtgagcgagttcatgaagaatacccacgtgctgatcagaaacgagacaccctacaccatct acggcaccctggacatgagcagcctgtactacaacgagacaatgagcgtggagaacgagaca gccagcgacaacaacgaaaccacccccacctcccccagcacccggttccagcggaccttcat cgaccccctgtgggactacctggacagcctgctgttcctggacaagatccggaacttcagcc tgcagctgcccgcctacggcaatctgaccccccctgagcacagaagggccgccaacctgagc accctgaacagcctgtggtggtggagccagtgataatctagacggcgcgcccacccaccgcg ggcaatatagcaacactaaaaactcgatgtacttccgaggaagcgcagtgcataatgctgcg cagtgttgccacataaccactatattaaccatttatctagcggacgccaaaaactcaatgta tttctgaggaagcgtggtgcataatgccacgcagcgtctgcataacttttattatttctttt attaatcaacaaaattttgtttttaacatttcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaagggtcggcatggcatctccacctcctcgcggtccgacctgggcatccgaagg aggacgcacgtccactcggatggctaagggagagccacgagctcctgtttaaaccagctcca attcgccctatagtgagtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgac tgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctg gcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcg aatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtg accgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgc cacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgattta gtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggcca tcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggact cttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataaggga ttttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaat tttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacc cctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctg ataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgccc ttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaa gtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacag cggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaag ttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgc atacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacgga tggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggcca acttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggg gatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacga gcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaac tacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcagga ccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtga gcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtag ttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagata ggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagat tgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctca tgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatc aaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaacc accgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaa ctggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccac cacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggc tgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggata aggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacc tacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggag aaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttc cagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgt cgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctt tttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctg attctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacg accgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctct ccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgg gcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacac tttatgctcccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaa cagctatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctgg gtaccggcgcca

pVCR modified vector gH FL-SGP gL-SGP gO cgcgtcggctacaattaatacataaccttatgtatcatacacatacgatttaggtgacacta tagatgggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcac gttgacatcgaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttga ggtagaagccaagcaggtcactgataatgaccatgctaatgccagagcgttttcgcatctgg cttcaaaactgatcgaaacggaggtggacccatccgacacgatccttgacattggaagtgcg cccgcccgcagaatgtattctaagcacaagtatcattgtatctgtccgatgagatgtgcgga agatccggacagattgtataagtatgcaactaagctgaagaaaaactgtaaggaaataactg ataaggaattggacaagaaaatgaaggagctcgccgccgtcatgagcgaccctgacctggaa actgagactatgtgcctccacgacgacgagtcgtgtcgctacgaagggcaagtcgctgttta ccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaataagggagtta gagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctggagca tatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggcct atgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatt tgaaaccatccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggac ttactgaggagctggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatg tcggtgtgagactatagttagttgcgacgggtacgtcgttaaaagaatagctatcagtccag gcctgtatgggaagccttcaggctatgctgctacgatgcaccgcgagggattcttgtgctgc aaagtgacagacacattgaacggggagagggtctcttttcccgtgtgcacgtatgtgccagc tacattgtgtgaccaaatgactggcatactggcaacagatgtcagtgcggacgacgcgcaaa aactgctggttgggctcaaccagcgtatagtcgtcaacggtcgcacccagagaaacaccaat accatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggtgggcaaaggaata taaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtcatggggt gttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaacc atcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacatt ggagatcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctc tcattaccgccgaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgt gaagccgaggagttgcgcgcagctctaccacctttggcagctgatgttgaggagcccactct ggaagccgatgtagacttgatgttacaagaggctggggccggctcagtggagacacctcgtg gcttgataaaggttaccagctacgctggcgaggacaagatcggctcttacgctgtgctttct ccgcaggctgtactcaagagtgaaaaattatcttgcatccaccctctcgctgaacaagtcat agtgataacacactctggccgaaaagggcgttatgccgtggaaccataccatggtaaagtag tggtgccagagggacatgcaatacccgtccaggactttcaagctctgagtgaaagtgccacc attgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccacacatggagg agcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcgaat acctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctc acaggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgacc agccgctccttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctg gcatcattaaaagcgcagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgt gcagaaattataagggacgtcaagaaaatgaaagggctggacgtcaatgccagaactgtgga ctcagtgctcttgaatggatgcaaacaccccgtagagaccctgtatattgacgaagcttttg cttgtcatgcaggtactctcagagcgctcatagccattataagacctaaaaaggcagtgctc tgcggggatcccaaacagtgcggtttttttaacatgatgtgcctgaaagtgcattttaacca cgagatttgcacacaagtcttccacaaaagcatctctcgccgttgcactaaatctgtgactt cggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccgaaagagactaag attgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcacttgttt cagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctg cctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcct ctgtacgcacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgt gtggaaaacactagccggcgacccatggataaaaacactgactgccaagtaccctgggaatt tcactgccacgatagaggagtggcaagcagagcatgatgccatcatgaggcacatcttggag agaccggaccctaccgacgtcttccagaataaggcaaacgtgtgttgggccaaggctttagt gccggtgctgaagaccgctggcatagacatgaccactgaacaatggaacactgtggattatt ttgaaacggacaaagctcactcagcagagatagtattgaaccaactatgcgtgaggttcttt ggactcgatctggactccggtctattttctgcacccactgttccgttatccattaggaataa tcactgggataactccccgtcgcctaacatgtacgggctgaataaagaagtggtccgtcagc tctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatgacatgaac actggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgcc tcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagca aattgaagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggtt gactggttgtcagaccggcctgaggctaccttcagagctcggctggatttaggcatcccagg tgatgtgcccaaatatgacataatatttgttaatgtgaggaccccatataaataccatcact atcagcagtgtgaagaccatgccattaagcttagcatgttgaccaagaaagcttgtctgcat ctgaatcccggcggaacctgtgtcagcataggttatggttacgctgacagggccagcgaaag catcattggtgctatagcgcggcagttcaagttttcccgggtatgcaaaccgaaatcctcac ttgaagagacggaagttctgtttgtattcattgggtacgatcgcaaggcccgtacgcacaat ccttacaagctttcatcaaccttgaccaacatttatacaggttccagactccacgaagccgg atgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaaggagtgatta taaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataagaaa ttcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgc agctaaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtg acaaacagttggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaag tcagtagcgattccactgttgtccaccggcatcttttccgggaacaaagatcgactaaccca atcattgaaccatttgctgacagctttagacaccactgatgcagatgtagccatatactgca gggacaagaaatgggaaatgactctcaaggaagcagtggctaggagagaagcagtggaggag atatgcatatccgacgactcttcagtgacagaacctgatgcagagctggtgagggtgcatcc gaagagttctttggctggaaggaagggctacagcacaagcgatggcaaaactttctcatatt tggaagggaccaagtttcaccaggcggccaaggatatagcagaaattaatgccatgtggccc gttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagcatgagcagtat taggtcgaaatgccccgtcgaagagtcggaagcctcctcaccacctagcacgctgccttgct tgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaa attactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatcca atgctcccagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatc tcgtggaaacaccaccggtagacgagactccggagccatcggcagagaaccaatccacagag gggacacctgaacaaccaccacttataaccgaggatgagaccaggactagaacgcctgagcc gatcatcatcgaagaggaagaagaggatagcataagtttgctgtcagatggcccgacccacc aggtgctgcaagtcgaggcagacattcacgggccgccctctgtatctagctcatcctggtcc attcctcatgcatccgactttgatgtggacagtttatccatacttgacaccctggagggagc tagcgtgaccagcggggcaacgtcagccgagactaactcttacttcgcaaagagtatggagt ttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctccacatcccgctccg cgcacaagaacaccgtcacttgcacccagcagggcctgctcgagagggatcacgggagaaac cgtgggatacgcggttacacacaatagcgagggcttcttgctatgcaaagttactgacacag taaaaggagaacgggtatcgttccctgtgtgcacgtacatcccggccaccataaactcgaga accagcctggtctccaacccgccaggcgtaaatagggtgattacaagagaggagtttgaggc gttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatcttttcctccgacaccg gtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtgttggag aggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtgg agaacatgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggca gaaggaaaagtggagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaa ccgtgccttttcaagccccaaggtcgcagtggaagcctgtaacgccatgttgaaagagaact ttccgactgtggcttcttactgtattattccagagtacgatgcctatttggacatggttgac ggagcttcatgctgcttagacactgccagtttttgccctgcaaagctgcgcagctttccaaa gaaacactcctatttggaacccacaatacgatcggcagtgccttcagcgatccagaacacgc tccagaacgtcctggcagctgccacaaaaagaaattgcaatgtcacgcaaatgagagaattg cccgtattggattcggcggcctttaatgtggaatgcttcaagaaatatgcgtgtaataatga atattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggtaaattaca ttaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaatatg ttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactcc aggaacaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctag caacagcgtatctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgctt ccgaacattcatacactgtttgatatgtcggctgaagactttgacgctattatagccgagca cttccagcctggggattgtgttctggaaactgacatcgcgtcgtttgataaaagtgaggacg acgccatggctctgaccgcgttaatgattctggaagacttaggtgtggacgcagagctgttg acgctgattgaggcggctttcggcgaaatttcatcaatacatttgcccactaaaactaaatt taaattcggagccatgatgaaatctggaatgttcctcacactgtttgtgaacacagtcatta acattgtaatcgcaagcagagtgttgagagaacggctaaccggatcaccatgtgcagcattc attggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcagacaggtgcgc cacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgccttatt tctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagacccc ctaaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacag gagaagggcattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgt gcaaggcagtagaatcaaggtatgaaaccgtaggaacttccatcatagttatggccatgact actctagctagcagtgttaaatcattcagctacctgagaggggcccctataactctctacgg ctaacctgaatggactacgacatagtctagtcgacgccaccatgaggcctggcctgccctcc tacctgatcatcctggccgtgtgcctgttcagccacctgctgtccagcagatacggcgccga ggccgtgagcgagcccctggacaaggctttccacctgctgctgaacacctacggcagaccca tccggtttctgcgggagaacaccacccagtgcacctacaacagcagcctgcggaacagcacc gtcgtgagagagaacgccatcagcttcaactttttccagagctacaaccagtactacgtgtt ccacatgcccagatgcctgtttgccggccctctggccgagcagttcctgaaccaggtggacc tgaccgagacactggaaagataccagcagcggctgaatacctacgccctggtgtccaaggac ctggccagctaccggtcctttagccagcagctcaaggctcaggatagcctcggcgagcagcc taccaccgtgccccctcccatcgacctgagcatcccccacgtgtggatgcctccccagacca cccctcacggctggaccgagagccacaccacctccggcctgcacagaccccacttcaaccag acctgcatcctgttcgacggccacgacctgctgtttagcaccgtgaccccctgcctgcacca gggcttctacctgatcgacgagctgagatacgtgaagatcaccctgaccgaggatttcttcg tggtcaccgtgtccatcgacgacgacacccccatgctgctgatcttcggccacctgcccaga gtgctgttcaaggccccctaccagcgggacaacttcatcctgcggcagaccgagaagcacga gctgctggtgctggtcaagaaggaccagctgaaccggcactcctacctgaaggaccccgact tcctggacgccgccctggacttcaactacctggacctgagcgccctgctgagaaacagcttc cacagatacgccgtggacgtgctgaagtccggacggtgccagatgctcgatcggcggaccgt ggagatggccttcgcctatgccctcgccctgttcgccgctgccagacaggaagaggctggcg cccaggtgtcagtgcccagagccctggatagacaggccgccctgctgcagatccaggaattc atgatcacctgcctgagccagaccccccctagaaccaccctgctgctgtaccccacagccgt ggatctggccaagagggccctgtggacccccaaccagatcaccgacatcacaagcctcgtgc ggctcgtgtacatcctgagcaagcagaaccagcagcacctgatcccccagtgggccctgaga cagatcgccgacttcgccctgaagctgcacaagacccatctggccagctttctgagcgcctt cgccaggcaggaactgtacctgatgggcagcctggtccacagcatgctggtgcataccaccg agcggcgggagatcttcatcgtggagacaggcctgtgtagcctggccgagctgtcccacttt acccagctgctggcccaccctcaccacgagtacctgagcgacctgtacaccccctgcagcag cagcggcagacgggaccacagcctggaacggctgaccagactgttccccgatgccaccgtgc ctgctacagtgcctgccgccctgtccatcctgtccaccatgcagcccagcaccctggaaacc ttccccgacctgttctgcctgcccctgggcgagagctttagcgccctgaccgtgtccgagca cgtgtcctacatcgtgaccaatcagtacctgatcaagggcatcagctaccccgtgtccacca cagtcgtgggccagagcctgatcatcacccagaccgacagccagaccaagtgcgagctgacc cggaacatgcacaccacacacagcatcaccgtggccctgaacatcagcctggaaaactgcgc tttctgtcagtctgccctgctggaatacgacgatacccagggcgtgatcaacatcatgtaca tgcacgacagcgacgacgtgctgttcgccctggacccctacaacgaggtggtggtgtccagc ccccggacccactacctgatgctgctgaagaacggcaccgtgctggaagtgaccgacgtggt ggtggacgccaccgacagcagactgctgatgatgagcgtgtacgccctgagcgccatcatcg gcatctacctgctgtaccggatgctgaaaacctgctgataatctagacggcgcgcccaccca gcggccgcctataactctctacggctaacctgaatggactacgacatagtctagtcgacgcc accatgtgcagaaggcccgactgcggcttcagcttcagccctggacccgtgatcctgctgtg gtgctgcctgctgctgcctatcgtgtcctctgccgccgtgtctgtggcccctacagccgccg agaaggtgccagccgagtgccccgagctgaccagaagatgcctgctgggcgaggtgttcgag ggcgacaagtacgagagctggctgcggcccctggtcaacgtgaccggcagagatggccccct gagccagctgatccggtacagacccgtgacccccgaggccgccaatagcgtgctgctggacg aggccttcctggataccctggccctgctgtacaacaaccccgaccagctgagagccctgctg accctgctgtccagcgacaccgcccccagatggatgaccgtgatgcggggctacagcgagtg tggagatggcagccctgccgtgtacacctgcgtggacgacctgtgcagaggctacgacctga ccagactgagctacggccggtccatcttcacagagcacgtgctgggcttcgagctggtgccc cccagcctgttcaacgtggtggtggccatccggaacgaggccaccagaaccaacagagccgt gcggctgcctgtgtctacagccgctgcacctgagggcatcacactgttctacggcctgtaca acgccgtgaaagagttctgcctccggcaccagctggatccccccctgctgagacacctggac aagtactacgccggcctgcccccagagctgaagcagaccagagtgaacctgcccgcccacag cagatatggccctcaggccgtggacgccagatgataatctagacggcgcgcccacccaatcg atctataactctctacggctaacctgaatggactacgacatagtctagtcgacgccaccatg ggcaagaaagaaatgatcatggtcaagggcatccccaagatcatgctgctgattagcatcac ctttctgctgctgtccctgatcaactgcaacgtgctggtcaacagccggggcaccagaagat cctggccctacaccgtgctgtcctaccggggcaaagagatcctgaagaagcagaaagaggac atcctgaagcggctgatgagcaccagcagcgacggctaccggttcctgatgtaccccagcca gcagaaattccacgccatcgtgatcagcatggacaagttcccccaggactacatcctggccg gacccatccggaacgacagcatcacccacatgtggttcgacttctacagcacccagctgcgg aagcccgccaaatacgtgtacagcgagtacaaccacaccgcccacaagatcaccctgaggcc tcccccttgtggcaccgtgcccagcatgaactgcctgagcgagatgctgaacgtgtccaagc ggaacgacaccggcgagaagggctgcggcaacttcaccaccttcaaccccatgttcttcaac gtgccccggtggaacaccaagctgtacatcggcagcaacaaagtgaacgtggacagccagac catctactttctgggcctgaccgccctgctgctgagatacgcccagcggaactgcacccggt ccttctacctggtcaacgccatgagccggaacctgttccgggtgcccaagtacatcaacggc accaagctgaagaacaccatgcggaagctgaagcggaagcaggccctggtcaaagagcagcc ccagaagaagaacaagaagtcccagagcaccaccaccccctacctgagctacaccacctcca ccgccttcaacgtgaccaccaacgtgacctacagcgccacagccgccgtgaccagagtggcc acaagcaccaccggctaccggcccgacagcaactttatgaagtccatcatggccacccagct gagagatctggccacctgggtgtacaccaccctgcggtacagaaacgagcccttctgcaagc ccgaccggaacagaaccgccgtgagcgagttcatgaagaatacccacgtgctgatcagaaac gagacaccctacaccatctacggcaccctggacatgagcagcctgtactacaacgagacaat gagcgtggagaacgagacagccagcgacaacaacgaaaccacccccacctcccccagcaccc ggttccagcggaccttcatcgaccccctgtgggactacctggacagcctgctgttcctggac aagatccggaacttcagcctgcagctgcccgcctacggcaatctgaccccccctgagcacag aagggccgccaacctgagcaccctgaacagcctgtggtggtggagccagtgataatctagac ggcgcgcccacccaccgcgggcaatatagcaacactaaaaactcgatgtacttccgaggaag cgcagtgcataatgctgcgcagtgttgccacataaccactatattaaccatttatctagcgg acgccaaaaactcaatgtatttctgaggaagcgtggtgcataatgccacgcagcgtctgcat aacttttattatttcttttattaatcaacaaaattttgtttttaacatttcaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaagggtcggcatggcatctccacctcctcgcggtc cgacctgggcatccgaaggaggacgcacgtccactcggatggctaagggagagccacgagct cctgtttaaaccagctccaattcgccctatagtgagtcgtattacgcgcgctcactggccgt cgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcac atccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacag ttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgt ggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctt tcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctc cctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtga tggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtcca cgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctat tcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgattta acaaaaatttaacgcgaattttaacaaaatattaacgcttacaatttaggtggcacttttcg gggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgc tcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtatt caacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctca cccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttaca tcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttcca atgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggca agagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtca cagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatg agtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgc ttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatg aagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgc aaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatgga ggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctg ataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggt aagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaa tagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagttt actcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaag atcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtc agaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgct gcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctacca actctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagt gtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgc taatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactca agacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcc cagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcg ccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacagga gagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcg ccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaa acgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttc tttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgatac cgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcc caatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacagg tttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcatta ggcaccccaggctttacactttatgctcccggctcgtatgttgtgtggaattgtgagcggat aacaatttcacacaggaaacagctatgaccatgattacgccaagcgcgcaattaaccctcac taaagggaacaaaagctgggtaccggcgcca

A526 Vector: SGP-gH-SGP-gL-SGP-UL128-2A-UL130-2Amod-UL131 ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTAGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA CCGTAGGAACTTCCATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAATCATTCAGCTACCTGAGAG CAGCAGCAATTGGCAAGCTGCTTACATAGAACTCGCGGCGATTGGCATGCCGCCTTAAAATTTTTATTTTATTTT TCTTTTCTTTTCCGAATCGGATTTTGTTTTTAATATTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG GGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGC TAAGGGAGAGCCACGTTTAAACGCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTAC TGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTATCTTGTGCAATGTAACATCAGAGATTTT GAGACACAACGTGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAGATCACGCATCTTCCCGACA ACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATCACCAACTGGTCCACCTACAACAAAGCTCTCATCAACC GTGGCTCCCTCACTTTCTGGCTGGATGATGGGGCGATTCAGGCCTGGTATGAGTCAGCAACACCTTCTTCACGAG GCAGACCTCAGCGCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGAAGTGCTTCA TGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATACAGGATATATTCCGCTTCCTCGCTC ACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGAGCGGAAATGGCTTACGAACGGGGCGGAGATTTCCTGGAA GATGCCAGGAAGATACTTAACAGGGAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAGGCTCCGCCCCCCTG ACAAGCATCACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTC CCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACCGGTGTCATTCCGCTGTTATGGCCGCG TTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGTAGGCAGTTCGCTCCAAGCTGGACTGTATGCACGAACCCC CCGTTCAGTCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGAAAGACATGCAAAAGCAC CACTGGCAGCAGCCACTGGTAATTGATTTAGAGGAGTTAGTCTTGAAGTCATGCGCCGGTTAAGGCTAAACTGAA AGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCCAGTTACCTCGGTTCAAAGAGTTGGTAGCTCAGAGAACCTTC GAAAAACCGCCCTGCAAGGCGGTTTTTTCGTTTTCAGAGCAAGAGATTACGCGCAGACCAAAACGATCTCAAGAA GATCATCTTATTAAGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCA AAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACT TGGTCTGACAGTTATTAGAAAAATTCATCCAGCAGACGATAAAACGCAATACGCTGGCTATCCGGTGCCGCAATG CCATACAGCACCAGAAAACGATCCGCCCATTCGCCGCCCAGTTCTTCCGCAATATCACGGGTGGCCAGCGCAATA TCCTGATAACGATCCGCCACGCCCAGACGGCCGCAATCAATAAAGCCGCTAAAACGGCCATTTTCCACCATAATG TTCGGCAGGCACGCATCACCATGGGTCACCACCAGATCTTCGCCATCCGGCATGCTCGCTTTCAGACGCGCAAAC AGCTCTGCCGGTGCCAGGCCCTGATGTTCTTCATCCAGATCATCCTGATCCACCAGGCCCGCTTCCATACGGGTA CGCGCACGTTCAATACGATGTTTCGCCTGATGATCAAACGGACAGGTCGCCGGGTCCAGGGTATGCAGACGACGC ATGGCATCCGCCATAATGCTCACTTTTTCTGCCGGCGCCAGATGGCTAGACAGCAGATCCTGACCCGGCACTTCG CCCAGCAGCAGCCAATCACGGCCCGCTTCGGTCACCACATCCAGCACCGCCGCACACGGAACACCGGTGGTGGCC AGCCAGCTCAGACGCGCCGCTTCATCCTGCAGCTCGTTCAGCGCACCGCTCAGATCGGTTTTCACAAACAGCACC GGACGACCCTGCGCGCTCAGACGAAACACCGCCGCATCAGAGCAGCCAATGGTCTGCTGCGCCCAATCATAGCCA AACAGACGTTCCACCCACGCTGCCGGGCTACCCGCATGCAGGCCATCCTGTTCAATCATACTCTTCCTTTTTCAA TATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAA ATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGT TAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAAT AGACCGAGATAGGGTTGAGTGGCCGCTACAGGGCGCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGG CGTTTCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGT AACGCCAGGGTTTTCCCAGTCACACGCGTAATACGACTCACTATAG

A527 Vector: SGP-gH-SGP-gL-SGP-UL128-EMCV-UL130-EV71-UL131 ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTAGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA CCGTAGGAACTTCCATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAATCATTCAGCTACCTGAGAG CCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGG CCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGT GAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCC CCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCA GTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAA GGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTC GATTTGCAACTTAGAAGCAACGCAAACCAGATCAATAGTAGGTGTGACATACCAGTCGCATCTTGATCAAGCACT TCTGTATCCCCGGACCGAGTATCAATAGACTGTGCACACGGTTGAAGGAGAAAACGTCCGTTACCCGGCTAACTA CTTCGAGAAGCCTAGTAACGCCATTGAAGTTGCAGAGTGTTTCGCTCAGCACTCCCCCCGTGTAGATCAGGTCGA TGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCTATGGGGTAACCCATAGGA CGCTCTAATACGGACATGGCGTGAAGAGTCTATTGAGCTAGTTAGTAGTCCTCCGGCCCCTGAATGCGGCTAATC CTAACTGCGGAGCACATACCCTTAATCCAAAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTAC TTTGGGTGTCCGTGTTTCTTTTTATTCTTGTATTGGCTGCTTATGGTGACAATTAAAGAATTGTTACCATATAGC TATTGGATTGGCCATCCAGTGTCAAACAGAGCTATTGTATATCTCTTTGTTGGATTCACACCTCTCACTCTTGAA TGCAGGATACAGCAGCAATTGGCAAGCTGCTTACATAGAACTCGCGGCGATTGGCATGCCGCCTTAAAATTTTTA TTTTATTTTTCTTTTCTTTTCCGAATCGGATTTTGTTTTTAATATTTCAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCAC TCGGATGGCTAAGGGAGAGCCACGTTTAAACGCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCC TTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTATCTTGTGCAATGTAACATC AGAGATTTTGAGACACAACGTGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAGATCACGCATC TTCCCGACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATCACCAACTGGTCCACCTACAACAAAGCTC TCATCAACCGTGGCTCCCTCACTTTCTGGCTGGATGATGGGGCGATTCAGGCCTGGTATGAGTCAGCAACACCTT CTTCACGAGGCAGACCTCAGCGCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGA AGTGCTTCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATACAGGATATATTCCGCT TCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGAGCGGAAATGGCTTACGAACGGGGCGGAGAT TTCCTGGAAGATGCCAGGAAGATACTTAACAGGGAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAGGCTCC GCCCCCCTGACAAGCATCACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACTATAAAGATACC AGGCGTTTCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACCGGTGTCATTCCGCTGTT ATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGTAGGCAGTTCGCTCCAAGCTGGACTGTATGC ACGAACCCCCCGTTCAGTCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGAAAGACATG CAAAAGCACCACTGGCAGCAGCCACTGGTAATTGATTTAGAGGAGTTAGTCTTGAAGTCATGCGCCGGTTAAGGC TAAACTGAAAGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCCAGTTACCTCGGTTCAAAGAGTTGGTAGCTCAG AGAACCTTCGAAAAACCGCCCTGCAAGGCGGTTTTTTCGTTTTCAGAGCAAGAGATTACGCGCAGACCAAAACGA TCTCAAGAAGATCATCTTATTAAGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATG AGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATAT GAGTAAACTTGGTCTGACAGTTATTAGAAAAATTCATCCAGCAGACGATAAAACGCAATACGCTGGCTATCCGGT GCCGCAATGCCATACAGCACCAGAAAACGATCCGCCCATTCGCCGCCCAGTTCTTCCGCAATATCACGGGTGGCC AGCGCAATATCCTGATAACGATCCGCCACGCCCAGACGGCCGCAATCAATAAAGCCGCTAAAACGGCCATTTTCC ACCATAATGTTCGGCAGGCACGCATCACCATGGGTCACCACCAGATCTTCGCCATCCGGCATGCTCGCTTTCAGA CGCGCAAACAGCTCTGCCGGTGCCAGGCCCTGATGTTCTTCATCCAGATCATCCTGATCCACCAGGCCCGCTTCC ATACGGGTACGCGCACGTTCAATACGATGTTTCGCCTGATGATCAAACGGACAGGTCGCCGGGTCCAGGGTATGC AGACGACGCATGGCATCCGCCATAATGCTCACTTTTTCTGCCGGCGCCAGATGGCTAGACAGCAGATCCTGACCC GGCACTTCGCCCAGCAGCAGCCAATCACGGCCCGCTTCGGTCACCACATCCAGCACCGCCGCACACGGAACACCG GTGGTGGCCAGCCAGCTCAGACGCGCCGCTTCATCCTGCAGCTCGTTCAGCGCACCGCTCAGATCGGTTTTCACA AACAGCACCGGACGACCCTGCGCGCTCAGACGAAACACCGCCGCATCAGAGCAGCCAATGGTCTGCTGCGCCCAA TCATAGCCAAACAGACGTTCCACCCACGCTGCCGGGCTACCCGCATGCAGGCCATCCTGTTCAATCATACTCTTC CTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAA AATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTTGTTAA AATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAAT CAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGCGCTCCCATTCGCCATTCAGGCTGCGCAACTGT TGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATT AAGTTGGGTAACGCCAGGGTTTTCCCAGTCACACGCGTAATACGACTCACTATAG

A531 Vector: SGP-gHsol-SGP-gL ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTCGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA CCGTAGGAACTTCCATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAATCATTCAGCTACCTGAGAG TTACATAGAACTCGCGGCGATTGGCATGCCGCCTTAAAATTTTTATTTTATTTTTCTTTTCTTTTCCGAATCGGA TTTTGTTTTTAATATTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGTCGGCATGGCATCTCCACC TCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGAGCCACGTTTAAA CACGTGATATCTGGCCTCATGGGCCTTCCTTTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA TTAACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGT CGTTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTG CTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAAC CCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCG CTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTC AGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTA TCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGG ATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGA ACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAA CAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAA GATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGA TTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAG TAAACTTGGTCTGACAGTTATTAGAAAAATTCATCCAGCAGACGATAAAACGCAATACGCTGGCTATCCGGTGCC GCAATGCCATACAGCACCAGAAAACGATCCGCCCATTCGCCGCCCAGTTCTTCCGCAATATCACGGGTGGCCAGC GCAATATCCTGATAACGATCCGCCACGCCCAGACGGCCGCAATCAATAAAGCCGCTAAAACGGCCATTTTCCACC ATAATGTTCGGCAGGCACGCATCACCATGGGTCACCACCAGATCTTCGCCATCCGGCATGCTCGCTTTCAGACGC GCAAACAGCTCTGCCGGTGCCAGGCCCTGATGTTCTTCATCCAGATCATCCTGATCCACCAGGCCCGCTTCCATA CGGGTACGCGCACGTTCAATACGATGTTTCGCCTGATGATCAAACGGACAGGTCGCCGGGTCCAGGGTATGCAGA CGACGCATGGCATCCGCCATAATGCTCACTTTTTCTGCCGGCGCCAGATGGCTAGACAGCAGATCCTGACCCGGC ACTTCGCCCAGCAGCAGCCAATCACGGCCCGCTTCGGTCACCACATCCAGCACCGCCGCACACGGAACACCGGTG GTGGCCAGCCAGCTCAGACGCGCCGCTTCATCCTGCAGCTCGTTCAGCGCACCGCTCAGATCGGTTTTCACAAAC AGCACCGGACGACCCTGCGCGCTCAGACGAAACACCGCCGCATCAGAGCAGCCAATGGTCTGCTGCGCCCAATCA TAGCCAAACAGACGTTCCACCCACGCTGCCGGGCTACCCGCATGCAGGCCATCCTGTTCAATCATACTCTTCCTT TTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAAT AAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTTGTTAAAAT TCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAA AAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGCGCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGG GAAGGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAG TTGGGTAACGCCAGGGTTTTCCCAGTCACACGCGTAATACGACTCACTATAG

A532 Vector: SGP-gHsol-2A-gL ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTCGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA GGCGATTGGCATGCCGCCTTAAAATTTTTATTTTATTTTTCTTTTCTTTTCCGAATCGGATTTTGTTTTTAATAT TTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGAC CTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGAGCCACGTTTAAACACGTGATATCTGGC CTCATGGGCCTTCCTTTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAACATGGTCATAG CTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCC TGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCAT AGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAA AGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTG TCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTC GTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGT CTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGG TATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATC TGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGT AGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTT TCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATC TTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGAC AGTTATTAGAAAAATTCATCCAGCAGACGATAAAACGCAATACGCTGGCTATCCGGTGCCGCAATGCCATACAGC ACCAGAAAACGATCCGCCCATTCGCCGCCCAGTTCTTCCGCAATATCACGGGTGGCCAGCGCAATATCCTGATAA CGATCCGCCACGCCCAGACGGCCGCAATCAATAAAGCCGCTAAAACGGCCATTTTCCACCATAATGTTCGGCAGG CACGCATCACCATGGGTCACCACCAGATCTTCGCCATCCGGCATGCTCGCTTTCAGACGCGCAAACAGCTCTGCC GGTGCCAGGCCCTGATGTTCTTCATCCAGATCATCCTGATCCACCAGGCCCGCTTCCATACGGGTACGCGCACGT TCAATACGATGTTTCGCCTGATGATCAAACGGACAGGTCGCCGGGTCCAGGGTATGCAGACGACGCATGGCATCC GCCATAATGCTCACTTTTTCTGCCGGCGCCAGATGGCTAGACAGCAGATCCTGACCCGGCACTTCGCCCAGCAGC AGCCAATCACGGCCCGCTTCGGTCACCACATCCAGCACCGCCGCACACGGAACACCGGTGGTGGCCAGCCAGCTC AGACGCGCCGCTTCATCCTGCAGCTCGTTCAGCGCACCGCTCAGATCGGTTTTCACAAACAGCACCGGACGACCC TGCGCGCTCAGACGAAACACCGCCGCATCAGAGCAGCCAATGGTCTGCTGCGCCCAATCATAGCCAAACAGACGT TCCACCCACGCTGCCGGGCTACCCGCATGCAGGCCATCCTGTTCAATCATACTCTTCCTTTTTCAATATTATTGA AGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTT CCGCGCACATTTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTT GTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGA TAGGGTTGAGTGGCCGCTACAGGGCGCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGGT GCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGG GTTTTCCCAGTCACACGCGTAATACGACTCACTATAG

A533 Vector: SGP-gHsol-EV71-gL ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTCGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA GGCCCACTGGGCGCTAGCACTCTGATTTTACGAAATCCTTGTGCGCCTGTTTTATATCCCTTCCCTAATTCGAAA CGTAGAAGCAATGCGCACCACTGATCAATAGTAGGCGTAACGCGCCAGTTACGTCATGATCAAGCATATCTGTTC CCCCGGACTGAGTATCAATAGACTGCTTACGCGGTTGAAGGAGAAAACGTTCGTTATCCGGCTAACTACTTCGAG AAGCCCAGTAACACCATGGAAGCTGCAGGGTGTTTCGCTCAGCACTTCCCCCGTGTAGATCAGGTCGATGAGCCA CTGCAATCCCCACAGGTGACTGTGGCAGTGGCTGCGTTGGCGGCCTGCCTATGGGGAGACCCATAGGACGCTCTA ATGTGGACATGGTGCGAAGAGCCTATTGAGCTAGTTAGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTG CGGAGCACATGCCTTCAACCCAGAGGGTAGTGTGTCGTAATGGGCAACTCTGCAGCGGAACCGACTACTTTGGGT GTCCGTGTTTCTTTTTATTCTTATATTGGCTGCTTATGGTGACAATTACAGAATTGTTACCATATAGCTATTGGA TTGGCCATCCGGTGTGTAATAGAGCTGTTATATACCTATTTGTTGGCTTTGTACCACTAACTTTAAAATCTATAA TGGCAAGCTGCTTACATAGAACTCGCGGCGATTGGCATGCCGCCTTAAAATTTTTATTTTATTTTTCTTTTCTTT TCCGAATCGGATTTTGTTTTTAATATTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGTCGGCATG GCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGAG CCACGTTTAAACACGTGATATCTGGCCTCATGGGCCTTCCTTTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCG TGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCG CTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAA AGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGA GGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTC CGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCT GTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACC GCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCA CTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCT ACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTT GATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAG GATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTT TGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAA GTATATATGAGTAAACTTGGTCTGACAGTTATTAGAAAAATTCATCCAGCAGACGATAAAACGCAATACGCTGGC TATCCGGTGCCGCAATGCCATACAGCACCAGAAAACGATCCGCCCATTCGCCGCCCAGTTCTTCCGCAATATCAC GGGTGGCCAGCGCAATATCCTGATAACGATCCGCCACGCCCAGACGGCCGCAATCAATAAAGCCGCTAAAACGGC CATTTTCCACCATAATGTTCGGCAGGCACGCATCACCATGGGTCACCACCAGATCTTCGCCATCCGGCATGCTCG CTTTCAGACGCGCAAACAGCTCTGCCGGTGCCAGGCCCTGATGTTCTTCATCCAGATCATCCTGATCCACCAGGC CCGCTTCCATACGGGTACGCGCACGTTCAATACGATGTTTCGCCTGATGATCAAACGGACAGGTCGCCGGGTCCA GGGTATGCAGACGACGCATGGCATCCGCCATAATGCTCACTTTTTCTGCCGGCGCCAGATGGCTAGACAGCAGAT CCTGACCCGGCACTTCGCCCAGCAGCAGCCAATCACGGCCCGCTTCGGTCACCACATCCAGCACCGCCGCACACG GAACACCGGTGGTGGCCAGCCAGCTCAGACGCGCCGCTTCATCCTGCAGCTCGTTCAGCGCACCGCTCAGATCGG TTTTCACAAACAGCACCGGACGACCCTGCGCGCTCAGACGAAACACCGCCGCATCAGAGCAGCCAATGGTCTGCT GCGCCCAATCATAGCCAAACAGACGTTCCACCCACGCTGCCGGGCTACCCGCATGCAGGCCATCCTGTTCAATCA TACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTA TTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATAT TTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCC TTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGCGCTCCCATTCGCCATTCAGGCTGC GCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCA AGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACACGCGTAATACGACTCACTATAG

A534 Vector: SGP-gL-EV71-gH ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTCGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA CCGTAGGAACTTCCATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAATCATTCAGCTACCTGAGAG ATCTAGATTAAAACAGCTGTGGGTTGTTCCCACCCACAGGGCCCACTGGGCGCTAGCACTCTGATTTTACGAAAT CCTTGTGCGCCTGTTTTATATCCCTTCCCTAATTCGAAACGTAGAAGCAATGCGCACCACTGATCAATAGTAGGC GTAACGCGCCAGTTACGTCATGATCAAGCATATCTGTTCCCCCGGACTGAGTATCAATAGACTGCTTACGCGGTT GAAGGAGAAAACGTTCGTTATCCGGCTAACTACTTCGAGAAGCCCAGTAACACCATGGAAGCTGCAGGGTGTTTC GCTCAGCACTTCCCCCGTGTAGATCAGGTCGATGAGCCACTGCAATCCCCACAGGTGACTGTGGCAGTGGCTGCG TTGGCGGCCTGCCTATGGGGAGACCCATAGGACGCTCTAATGTGGACATGGTGCGAAGAGCCTATTGAGCTAGTT AGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACATGCCTTCAACCCAGAGGGTAGTGTGTC GTAATGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCTTTTTATTCTTATATTGGCTGCTTA TGGTGACAATTACAGAATTGTTACCATATAGCTATTGGATTGGCCATCCGGTGTGTAATAGAGCTGTTATATACC TATTTGTTGGCTTTGTACCACTAACTTTAAAATCTATAACTACCCTCAACTTTATATTAACCCTCAATACAGTTG TGGCAAGCTGCTTACATAGAACTCGCGGCGATTGGCATGCCGCCTTAAAATTTTTATTTTATTTTTCTTTTCTTT TCCGAATCGGATTTTGTTTTTAATATTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGTCGGCATG GCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGAG CCACGTTTAAACACGTGATATCTGGCCTCATGGGCCTTCCTTTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCG TGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCG CTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAA AGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGA GGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTC CGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCT GTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACC GCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCA CTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCT ACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTT GATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAG GATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTT TGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAA GTATATATGAGTAAACTTGGTCTGACAGTTATTAGAAAAATTCATCCAGCAGACGATAAAACGCAATACGCTGGC TATCCGGTGCCGCAATGCCATACAGCACCAGAAAACGATCCGCCCATTCGCCGCCCAGTTCTTCCGCAATATCAC GGGTGGCCAGCGCAATATCCTGATAACGATCCGCCACGCCCAGACGGCCGCAATCAATAAAGCCGCTAAAACGGC CATTTTCCACCATAATGTTCGGCAGGCACGCATCACCATGGGTCACCACCAGATCTTCGCCATCCGGCATGCTCG CTTTCAGACGCGCAAACAGCTCTGCCGGTGCCAGGCCCTGATGTTCTTCATCCAGATCATCCTGATCCACCAGGC CCGCTTCCATACGGGTACGCGCACGTTCAATACGATGTTTCGCCTGATGATCAAACGGACAGGTCGCCGGGTCCA GGGTATGCAGACGACGCATGGCATCCGCCATAATGCTCACTTTTTCTGCCGGCGCCAGATGGCTAGACAGCAGAT CCTGACCCGGCACTTCGCCCAGCAGCAGCCAATCACGGCCCGCTTCGGTCACCACATCCAGCACCGCCGCACACG GAACACCGGTGGTGGCCAGCCAGCTCAGACGCGCCGCTTCATCCTGCAGCTCGTTCAGCGCACCGCTCAGATCGG TTTTCACAAACAGCACCGGACGACCCTGCGCGCTCAGACGAAACACCGCCGCATCAGAGCAGCCAATGGTCTGCT GCGCCCAATCATAGCCAAACAGACGTTCCACCCACGCTGCCGGGCTACCCGCATGCAGGCCATCCTGTTCAATCA TACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTA TTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATAT TTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCC TTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGCGCTCCCATTCGCCATTCAGGCTGC GCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCA AGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACACGCGTAATACGACTCACTATAG

A535 Vector: SGP-342-EV71-gHsol-2A-gL ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTCGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA CCGTAGGAACTTCCATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAATCATTCAGCTACCTGAGAG GGGCCCCTATAACTCTCTACGGCTAACCTGAATGGACTACGACATAGTCTAGTCCGCCAAGCTATTCCAGAAGTA GTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTTGTATATCCATTTTCGGATCTGATCAAGAGACA GGATGAGGATCGTTTCGCATGATTGAATAAGATGGATTGCACGTAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTA TTCGGCTATGACTGGGCACAACTGACAATCGGCTGCTCTGATGCCGCCGTGATCCGGTTGTCAGCGCAGGGGCGC CCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGAAGGACGAGGCAGCGCGGCTATCGTGG CTGGCCACGACGGGCGTTCCTTGCGCAGTCTAGACTGGCGCGCCAAACCTGCAGGTTAAAACAGCTGTGGGTTGT TCCCACCCACAGGGCCCACTGGGCGCTAGCACTCTGATTTTACGAAATCCTTGTGCGCCTGTTTTATATCCCTTC CCTAATTCGAAACGTAGAAGCAATGCGCACCACTGATCAATAGTAGGCGTAACGCGCCAGTTACGTCATGATCAA GCATATCTGTTCCCCCGGACTGAGTATCAATAGACTGCTTACGCGGTTGAAGGAGAAAACGTTCGTTATCCGGCT AACTACTTCGAGAAGCCCAGTAACACCATGGAAGCTGCAGGGTGTTTCGCTCAGCACTTCCCCCGTGTAGATCAG GTCGATGAGCCACTGCAATCCCCACAGGTGACTGTGGCAGTGGCTGCGTTGGCGGCCTGCCTATGGGGAGACCCA TAGGACGCTCTAATGTGGACATGGTGCGAAGAGCCTATTGAGCTAGTTAGTAGTCCTCCGGCCCCTGAATGCGGC TAATCCTAACTGCGGAGCACATGCCTTCAACCCAGAGGGTAGTGTGTCGTAATGGGCAACTCTGCAGCGGAACCG ACTACTTTGGGTGTCCGTGTTTCTTTTTATTCTTATATTGGCTGCTTATGGTGACAATTACAGAATTGTTACCAT ATAGCTATTGGATTGGCCATCCGGTGTGTAATAGAGCTGTTATATACCTATTTGTTGGCTTTGTACCACTAACTT ATGCCGCCTTAAAATTTTTATTTTATTTTTCTTTTCTTTTCCGAATCGGATTTTGTTTTTAATATTTCAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCC GAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGAGCCACGTTTAAACACGTGATATCTGGCCTCATGGGCC TTCCTTTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTT GCGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCT AATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCC CCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGG CGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTC TCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCA AGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCA ACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCG GTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGC TGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTT TTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGT CTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGA TCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTATTAGA AAAATTCATCCAGCAGACGATAAAACGCAATACGCTGGCTATCCGGTGCCGCAATGCCATACAGCACCAGAAAAC GATCCGCCCATTCGCCGCCCAGTTCTTCCGCAATATCACGGGTGGCCAGCGCAATATCCTGATAACGATCCGCCA CGCCCAGACGGCCGCAATCAATAAAGCCGCTAAAACGGCCATTTTCCACCATAATGTTCGGCAGGCACGCATCAC CATGGGTCACCACCAGATCTTCGCCATCCGGCATGCTCGCTTTCAGACGCGCAAACAGCTCTGCCGGTGCCAGGC CCTGATGTTCTTCATCCAGATCATCCTGATCCACCAGGCCCGCTTCCATACGGGTACGCGCACGTTCAATACGAT GTTTCGCCTGATGATCAAACGGACAGGTCGCCGGGTCCAGGGTATGCAGACGACGCATGGCATCCGCCATAATGC TCACTTTTTCTGCCGGCGCCAGATGGCTAGACAGCAGATCCTGACCCGGCACTTCGCCCAGCAGCAGCCAATCAC GGCCCGCTTCGGTCACCACATCCAGCACCGCCGCACACGGAACACCGGTGGTGGCCAGCCAGCTCAGACGCGCCG CTTCATCCTGCAGCTCGTTCAGCGCACCGCTCAGATCGGTTTTCACAAACAGCACCGGACGACCCTGCGCGCTCA GACGAAACACCGCCGCATCAGAGCAGCCAATGGTCTGCTGCGCCCAATCATAGCCAAACAGACGTTCCACCCACG CTGCCGGGCTACCCGCATGCAGGCCATCCTGTTCAATCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATC AGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACAT TTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAG CTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAG TGGCCGCTACAGGGCGCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCT TCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAG TCACACGCGTAATACGACTCACTATAG

A536 Vector: SGP-342-EV71-gHsol-EMCV-gL ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTCGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA CCGTAGGAACTTCCATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAATCATTCAGCTACCTGAGAG GGGCCCCTATAACTCTCTACGGCTAACCTGAATGGACTACGACATAGTCTAGTCCGCCAAGCTATTCCAGAAGTA GTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTTGTATATCCATTTTCGGATCTGATCAAGAGACA GGATGAGGATCGTTTCGCATGATTGAATAAGATGGATTGCACGTAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTA TTCGGCTATGACTGGGCACAACTGACAATCGGCTGCTCTGATGCCGCCGTGATCCGGTTGTCAGCGCAGGGGCGC CCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGAAGGACGAGGCAGCGCGGCTATCGTGG CTGGCCACGACGGGCGTTCCTTGCGCAGTCTAGACTGGCGCGCCAAACCTGCAGGTTAAAACAGCTGTGGGTTGT TCCCACCCACAGGGCCCACTGGGCGCTAGCACTCTGATTTTACGAAATCCTTGTGCGCCTGTTTTATATCCCTTC CCTAATTCGAAACGTAGAAGCAATGCGCACCACTGATCAATAGTAGGCGTAACGCGCCAGTTACGTCATGATCAA GCATATCTGTTCCCCCGGACTGAGTATCAATAGACTGCTTACGCGGTTGAAGGAGAAAACGTTCGTTATCCGGCT AACTACTTCGAGAAGCCCAGTAACACCATGGAAGCTGCAGGGTGTTTCGCTCAGCACTTCCCCCGTGTAGATCAG GTCGATGAGCCACTGCAATCCCCACAGGTGACTGTGGCAGTGGCTGCGTTGGCGGCCTGCCTATGGGGAGACCCA TAGGACGCTCTAATGTGGACATGGTGCGAAGAGCCTATTGAGCTAGTTAGTAGTCCTCCGGCCCCTGAATGCGGC TAATCCTAACTGCGGAGCACATGCCTTCAACCCAGAGGGTAGTGTGTCGTAATGGGCAACTCTGCAGCGGAACCG ACTACTTTGGGTGTCCGTGTTTCTTTTTATTCTTATATTGGCTGCTTATGGTGACAATTACAGAATTGTTACCAT ATAGCTATTGGATTGGCCATCCGGTGTGTAATAGAGCTGTTATATACCTATTTGTTGGCTTTGTACCACTAACTT GCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTG GCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCG TGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACC CCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCC AGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGA AGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGT CCTTAAAATTTTTATTTTATTTTTCTTTTCTTTTCCGAATCGGATTTTGTTTTTAATATTTCAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGA GGACGCACGTCCACTCGGATGGCTAAGGGAGAGCCACGTTTAAACACGTGATATCTGGCCTCATGGGCCTTCCTT TCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTGCGTAT TGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCTAATGAG CAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTG ACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTC CCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTT CGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGG GCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGG TAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTA CAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGC CAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTG TTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACG CTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTT TAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTATTAGAAAAATT CATCCAGCAGACGATAAAACGCAATACGCTGGCTATCCGGTGCCGCAATGCCATACAGCACCAGAAAACGATCCG CCCATTCGCCGCCCAGTTCTTCCGCAATATCACGGGTGGCCAGCGCAATATCCTGATAACGATCCGCCACGCCCA GACGGCCGCAATCAATAAAGCCGCTAAAACGGCCATTTTCCACCATAATGTTCGGCAGGCACGCATCACCATGGG TCACCACCAGATCTTCGCCATCCGGCATGCTCGCTTTCAGACGCGCAAACAGCTCTGCCGGTGCCAGGCCCTGAT GTTCTTCATCCAGATCATCCTGATCCACCAGGCCCGCTTCCATACGGGTACGCGCACGTTCAATACGATGTTTCG CCTGATGATCAAACGGACAGGTCGCCGGGTCCAGGGTATGCAGACGACGCATGGCATCCGCCATAATGCTCACTT TTTCTGCCGGCGCCAGATGGCTAGACAGCAGATCCTGACCCGGCACTTCGCCCAGCAGCAGCCAATCACGGCCCG CTTCGGTCACCACATCCAGCACCGCCGCACACGGAACACCGGTGGTGGCCAGCCAGCTCAGACGCGCCGCTTCAT CCTGCAGCTCGTTCAGCGCACCGCTCAGATCGGTTTTCACAAACAGCACCGGACGACCCTGCGCGCTCAGACGAA ACACCGCCGCATCAGAGCAGCCAATGGTCTGCTGCGCCCAATCATAGCCAAACAGACGTTCCACCCACGCTGCCG GGCTACCCGCATGCAGGCCATCCTGTTCAATCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTT ATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCC GAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATT TTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCG CTACAGGGCGCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTA TTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACAC GCGTAATACGACTCACTATAG

A537 Vector: SGP-342-EV71-gL-EMCV-gHsol ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTCGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA CCGTAGGAACTTCCATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAATCATTCAGCTACCTGAGAG GGGCCCCTATAACTCTCTACGGCTAACCTGAATGGACTACGACATAGTCTAGTCCGCCAAGCTATTCCAGAAGTA GTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTTGTATATCCATTTTCGGATCTGATCAAGAGACA GGATGAGGATCGTTTCGCATGATTGAATAAGATGGATTGCACGTAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTA TTCGGCTATGACTGGGCACAACTGACAATCGGCTGCTCTGATGCCGCCGTGATCCGGTTGTCAGCGCAGGGGCGC CCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGAAGGACGAGGCAGCGCGGCTATCGTGG CTGGCCACGACGGGCGTTCCTTGCGCAGTCTAGACTGGCGCGCCAAACCTGCAGGTTAAAACAGCTGTGGGTTGT TCCCACCCACAGGGCCCACTGGGCGCTAGCACTCTGATTTTACGAAATCCTTGTGCGCCTGTTTTATATCCCTTC CCTAATTCGAAACGTAGAAGCAATGCGCACCACTGATCAATAGTAGGCGTAACGCGCCAGTTACGTCATGATCAA GCATATCTGTTCCCCCGGACTGAGTATCAATAGACTGCTTACGCGGTTGAAGGAGAAAACGTTCGTTATCCGGCT AACTACTTCGAGAAGCCCAGTAACACCATGGAAGCTGCAGGGTGTTTCGCTCAGCACTTCCCCCGTGTAGATCAG GTCGATGAGCCACTGCAATCCCCACAGGTGACTGTGGCAGTGGCTGCGTTGGCGGCCTGCCTATGGGGAGACCCA TAGGACGCTCTAATGTGGACATGGTGCGAAGAGCCTATTGAGCTAGTTAGTAGTCCTCCGGCCCCTGAATGCGGC TAATCCTAACTGCGGAGCACATGCCTTCAACCCAGAGGGTAGTGTGTCGTAATGGGCAACTCTGCAGCGGAACCG ACTACTTTGGGTGTCCGTGTTTCTTTTTATTCTTATATTGGCTGCTTATGGTGACAATTACAGAATTGTTACCAT ATAGCTATTGGATTGGCCATCCGGTGTGTAATAGAGCTGTTATATACCTATTTGTTGGCTTTGTACCACTAACTT CCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCA TATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTT CCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGAC AAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGC CACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAG TCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTG ATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAACGTCTAGGCCCCCCGAACCACG CCTTAAAATTTTTATTTTATTTTTCTTTTCTTTTCCGAATCGGATTTTGTTTTTAATATTTCAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGA GGACGCACGTCCACTCGGATGGCTAAGGGAGAGCCACGTTTAAACACGTGATATCTGGCCTCATGGGCCTTCCTT TCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTGCGTAT TGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCTAATGAG CAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTG ACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTC CCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTT CGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGG GCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGG TAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTA CAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGC CAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTG TTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACG CTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTT TAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTATTAGAAAAATT CATCCAGCAGACGATAAAACGCAATACGCTGGCTATCCGGTGCCGCAATGCCATACAGCACCAGAAAACGATCCG CCCATTCGCCGCCCAGTTCTTCCGCAATATCACGGGTGGCCAGCGCAATATCCTGATAACGATCCGCCACGCCCA GACGGCCGCAATCAATAAAGCCGCTAAAACGGCCATTTTCCACCATAATGTTCGGCAGGCACGCATCACCATGGG TCACCACCAGATCTTCGCCATCCGGCATGCTCGCTTTCAGACGCGCAAACAGCTCTGCCGGTGCCAGGCCCTGAT GTTCTTCATCCAGATCATCCTGATCCACCAGGCCCGCTTCCATACGGGTACGCGCACGTTCAATACGATGTTTCG CCTGATGATCAAACGGACAGGTCGCCGGGTCCAGGGTATGCAGACGACGCATGGCATCCGCCATAATGCTCACTT TTTCTGCCGGCGCCAGATGGCTAGACAGCAGATCCTGACCCGGCACTTCGCCCAGCAGCAGCCAATCACGGCCCG CTTCGGTCACCACATCCAGCACCGCCGCACACGGAACACCGGTGGTGGCCAGCCAGCTCAGACGCGCCGCTTCAT CCTGCAGCTCGTTCAGCGCACCGCTCAGATCGGTTTTCACAAACAGCACCGGACGACCCTGCGCGCTCAGACGAA ACACCGCCGCATCAGAGCAGCCAATGGTCTGCTGCGCCCAATCATAGCCAAACAGACGTTCCACCCACGCTGCCG GGCTACCCGCATGCAGGCCATCCTGTTCAATCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTT ATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCC GAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATT TTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCG CTACAGGGCGCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTA TTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACAC GCGTAATACGACTCACTATAG

A554 Vector: SGP-gH-SGP-gL-SGP-UL128-SGP-UL130-SGP-UL131 ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTAGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA CCGTAGGAACTTCCATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAATCATTCAGCTACCTGAGAG ATGCCGCCTTAAAATTTTTATTTTATTTTTCTTTTCTTTTCCGAATCGGATTTTGTTTTTAATATTTCAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCC GAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGAGCCACGTTTAAACGCTAGAGCAAGACGTTTCCCGTTG AATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTT ATCTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTT GAAGGATCAGATCACGCATCTTCCCGACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATCACCAACTG GTCCACCTACAACAAAGCTCTCATCAACCGTGGCTCCCTCACTTTCTGGCTGGATGATGGGGCGATTCAGGCCTG GTATGAGTCAGCAACACCTTCTTCACGAGGCAGACCTCAGCGCTAGCGGAGTGTATACTGGCTTACTATGTTGGC ACTGATGAGGGTGTCAGTGAAGTGCTTCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGT GATACAGGATATATTCCGCTTCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGAGCGGAAATGG CTTACGAACGGGGCGGAGATTTCCTGGAAGATGCCAGGAAGATACTTAACAGGGAAGTGAGAGGGCCGCGGCAAA GCCGTTTTTCCATAGGCTCCGCCCCCCTGACAAGCATCACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCC GACAGGACTATAAAGATACCAGGCGTTTCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTT ACCGGTGTCATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGTAGGCAGTTCG CTCCAAGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGA GTCCAACCCGGAAAGACATGCAAAAGCACCACTGGCAGCAGCCACTGGTAATTGATTTAGAGGAGTTAGTCTTGA AGTCATGCGCCGGTTAAGGCTAAACTGAAAGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCCAGTTACCTCGGT TCAAAGAGTTGGTAGCTCAGAGAACCTTCGAAAAACCGCCCTGCAAGGCGGTTTTTTCGTTTTCAGAGCAAGAGA TTACGCGCAGACCAAAACGATCTCAAGAAGATCATCTTATTAAGGGGTCTGACGCTCAGTGGAACGAAAACTCAC GTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTA AATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTATTAGAAAAATTCATCCAGCAGACGATAAAACG CAATACGCTGGCTATCCGGTGCCGCAATGCCATACAGCACCAGAAAACGATCCGCCCATTCGCCGCCCAGTTCTT CCGCAATATCACGGGTGGCCAGCGCAATATCCTGATAACGATCCGCCACGCCCAGACGGCCGCAATCAATAAAGC CGCTAAAACGGCCATTTTCCACCATAATGTTCGGCAGGCACGCATCACCATGGGTCACCACCAGATCTTCGCCAT CCGGCATGCTCGCTTTCAGACGCGCAAACAGCTCTGCCGGTGCCAGGCCCTGATGTTCTTCATCCAGATCATCCT GATCCACCAGGCCCGCTTCCATACGGGTACGCGCACGTTCAATACGATGTTTCGCCTGATGATCAAACGGACAGG TCGCCGGGTCCAGGGTATGCAGACGACGCATGGCATCCGCCATAATGCTCACTTTTTCTGCCGGCGCCAGATGGC TAGACAGCAGATCCTGACCCGGCACTTCGCCCAGCAGCAGCCAATCACGGCCCGCTTCGGTCACCACATCCAGCA CCGCCGCACACGGAACACCGGTGGTGGCCAGCCAGCTCAGACGCGCCGCTTCATCCTGCAGCTCGTTCAGCGCAC CGCTCAGATCGGTTTTCACAAACAGCACCGGACGACCCTGCGCGCTCAGACGAAACACCGCCGCATCAGAGCAGC CAATGGTCTGCTGCGCCCAATCATAGCCAAACAGACGTTCCACCCACGCTGCCGGGCTACCCGCATGCAGGCCAT CCTGTTCAATCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACA TATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTAAATTGT AAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAAT CGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGCGCTCCCATTCGC CATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGG GGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACACGCGTAATACGACTCACTATAG

A555 Vector: SGP-gHsol-SGP-gL-SGP-UL128-SGP-UL130-SGP-UL131 ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTAGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA CCGTAGGAACTTCCATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAATCATTCAGCTACCTGAGAG TGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGT CTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGA AGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACC TGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCA CGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGC CCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTT CAACTTAGAAGCAACGCAAACCAGATCAATAGTAGGTGTGACATACCAGTCGCATCTTGATCAAGCACTTCTGTA TCCCCGGACCGAGTATCAATAGACTGTGCACACGGTTGAAGGAGAAAACGTCCGTTACCCGGCTAACTACTTCGA GAAGCCTAGTAACGCCATTGAAGTTGCAGAGTGTTTCGCTCAGCACTCCCCCCGTGTAGATCAGGTCGATGAGTC ACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCTATGGGGTAACCCATAGGACGCTCT AATACGGACATGGCGTGAAGAGTCTATTGAGCTAGTTAGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACT GCGGAGCACATACCCTTAATCCAAAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGG TGTCCGTGTTTCTTTTTATTCTTGTATTGGCTGCTTATGGTGACAATTAAAGAATTGTTACCATATAGCTATTGG ATTGGCCATCCAGTGTCAAACAGAGCTATTGTATATCTCTTTGTTGGATTCACACCTCTCACTCTTGAAACGTTA ATACAGCAGCAATTGGCAAGCTGCTTACATAGAACTCGCGGCGATTGGCATGCCGCCTTAAAATTTTTATTTTAT TTTTCTTTTCTTTTCCGAATCGGATTTTGTTTTTAATATTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGACCTGGGCATCCGAAGGAGGACGCACGTCCACTCGGAT GGCTAAGGGAGAGCCACGTTTAAACGCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTAT TACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTATCTTGTGCAATGTAACATCAGAGAT TTTGAGACACAACGTGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAGATCACGCATCTTCCCG ACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATCACCAACTGGTCCACCTACAACAAAGCTCTCATCA ACCGTGGCTCCCTCACTTTCTGGCTGGATGATGGGGCGATTCAGGCCTGGTATGAGTCAGCAACACCTTCTTCAC GAGGCAGACCTCAGCGCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGAAGTGCT TCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATACAGGATATATTCCGCTTCCTCG CTCACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGAGCGGAAATGGCTTACGAACGGGGCGGAGATTTCCTG GAAGATGCCAGGAAGATACTTAACAGGGAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAGGCTCCGCCCCC CTGACAAGCATCACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGT TTCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACCGGTGTCATTCCGCTGTTATGGCC GCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGTAGGCAGTTCGCTCCAAGCTGGACTGTATGCACGAAC CCCCCGTTCAGTCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGAAAGACATGCAAAAG CACCACTGGCAGCAGCCACTGGTAATTGATTTAGAGGAGTTAGTCTTGAAGTCATGCGCCGGTTAAGGCTAAACT GAAAGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCCAGTTACCTCGGTTCAAAGAGTTGGTAGCTCAGAGAACC TTCGAAAAACCGCCCTGCAAGGCGGTTTTTTCGTTTTCAGAGCAAGAGATTACGCGCAGACCAAAACGATCTCAA GAAGATCATCTTATTAAGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTA TCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAA ACTTGGTCTGACAGTTATTAGAAAAATTCATCCAGCAGACGATAAAACGCAATACGCTGGCTATCCGGTGCCGCA ATGCCATACAGCACCAGAAAACGATCCGCCCATTCGCCGCCCAGTTCTTCCGCAATATCACGGGTGGCCAGCGCA ATATCCTGATAACGATCCGCCACGCCCAGACGGCCGCAATCAATAAAGCCGCTAAAACGGCCATTTTCCACCATA ATGTTCGGCAGGCACGCATCACCATGGGTCACCACCAGATCTTCGCCATCCGGCATGCTCGCTTTCAGACGCGCA AACAGCTCTGCCGGTGCCAGGCCCTGATGTTCTTCATCCAGATCATCCTGATCCACCAGGCCCGCTTCCATACGG GTACGCGCACGTTCAATACGATGTTTCGCCTGATGATCAAACGGACAGGTCGCCGGGTCCAGGGTATGCAGACGA CGCATGGCATCCGCCATAATGCTCACTTTTTCTGCCGGCGCCAGATGGCTAGACAGCAGATCCTGACCCGGCACT TCGCCCAGCAGCAGCCAATCACGGCCCGCTTCGGTCACCACATCCAGCACCGCCGCACACGGAACACCGGTGGTG GCCAGCCAGCTCAGACGCGCCGCTTCATCCTGCAGCTCGTTCAGCGCACCGCTCAGATCGGTTTTCACAAACAGC ACCGGACGACCCTGCGCGCTCAGACGAAACACCGCCGCATCAGAGCAGCCAATGGTCTGCTGCGCCCAATCATAG CCAAACAGACGTTCCACCCACGCTGCCGGGCTACCCGCATGCAGGCCATCCTGTTCAATCATACTCTTCCTTTTT CAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTTGTTAAAATTCG CGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAG AATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGCGCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAA GGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTG GGTAACGCCAGGGTTTTCCCAGTCACACGCGTAATACGACTCACTATAG

A556 Vector: SGP-gHsol6His-SGP-gL-SGP-UL128-SGP-UL130-SGP-UL131 ATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAAATGGAGAAAGTTCACGTTGACATCGAGGAAG ACAGCCCATTCCTCAGAGCTTTGCAGCGGAGCTTCCCGCAGTTTGAGGTAGAAGCCAAGCAGGTCACTGATAATG ACCATGCTAATGCCAGAGCGTTTTCGCATCTGGCTTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA TCCTTGACATTGGAAGTGCGCCCGCCCGCAGAATGTATTCTAAGCACAAGTATCATTGTATCTGTCCGATGAGAT GTGCGGAAGATCCGGACAGATTGTATAAGTATGCAACTAAGCTGAAGAAAAACTGTAAGGAAATAACTGATAAGG AATTGGACAAGAAAATGAAGGAGCTCGCCGCCGTCATGAGCGACCCTGACCTGGAAACTGAGACTATGTGCCTCC ACGACGACGAGTCGTGTCGCTACGAAGGGCAAGTCGCTGTTTACCAGGATGTATACGCGGTTGACGGACCGACAA GTCTCTATCACCAAGCCAATAAGGGAGTTAGAGTCGCCTACTGGATAGGCTTTGACACCACCCCTTTTATGTTTA AGAACTTGGCTGGAGCATATCCATCATACTCTACCAACTGGGCCGACGAAACCGTGTTAACGGCTCGTAACATAG GCCTATGCAGCTCTGACGTTATGGAGCGGTCACGTAGAGGGATGTCCATTCTTAGAAAGAAGTATTTGAAACCAT CCAACAATGTTCTATTCTCTGTTGGCTCGACCATCTACCACGAGAAGAGGGACTTACTGAGGAGCTGGCACCTGC CGTCTGTATTTCACTTACGTGGCAAGCAAAATTACACATGTCGGTGTGAGACTATAGTTAGTTGCGACGGGTACG TCGTTAAAAGAATAGCTATCAGTCCAGGCCTGTATGGGAAGCCTTCAGGCTATGCTGCTACGATGCACCGCGAGG GATTCTTGTGCTGCAAAGTGACAGACACATTGAACGGGGAGAGGGTCTCTTTTCCCGTGTGCACGTATGTGCCAG CTACATTGTGTGACCAAATGACTGGCATACTGGCAACAGATGTCAGTGCGGACGACGCGCAAAAACTGCTGGTTG GGCTCAACCAGCGTATAGTCGTCAACGGTCGCACCCAGAGAAACACCAATACCATGAAAAATTACCTTTTGCCCG TAGTGGCCCAGGCATTTGCTAGGTGGGCAAAGGAATATAAGGAAGATCAAGAAGATGAAAGGCCACTAGGACTAC GAGATAGACAGTTAGTCATGGGGTGTTGTTGGGCTTTTAGAAGGCACAAGATAACATCTATTTATAAGCGCCCGG ATACCCAAACCATCATCAAAGTGAACAGCGATTTCCACTCATTCGTGCTGCCCAGGATAGGCAGTAACACATTGG AGATCGGGCTGAGAACAAGAATCAGGAAAATGTTAGAGGAGCACAAGGAGCCGTCACCTCTCATTACCGCCGAGG ACGTACAAGAAGCTAAGTGCGCAGCCGATGAGGCTAAGGAGGTGCGTGAAGCCGAGGAGTTGCGCGCAGCTCTAC CACCTTTGGCAGCTGATGTTGAGGAGCCCACTCTGGAAGCCGATGTAGACTTGATGTTACAAGAGGCTGGGGCCG GCTCAGTGGAGACACCTCGTGGCTTGATAAAGGTTACCAGCTACGATGGCGAGGACAAGATCGGCTCTTACGCTG TGCTTTCTCCGCAGGCTGTACTCAAGAGTGAAAAATTATCTTGCATCCACCCTCTCGCTGAACAAGTCATAGTGA TAACACACTCTGGCCGAAAAGGGCGTTATGCCGTGGAACCATACCATGGTAAAGTAGTGGTGCCAGAGGGACATG CAATACCCGTCCAGGACTTTCAAGCTCTGAGTGAAAGTGCCACCATTGTGTACAACGAACGTGAGTTCGTAAACA GGTACCTGCACCATATTGCCACACATGGAGGAGCGCTGAACACTGATGAAGAATATTACAAAACTGTCAAGCCCA GCGAGCACGACGGCGAATACCTGTACGACATCGACAGGAAACAGTGCGTCAAGAAAGAACTAGTCACTGGGCTAG GGCTCACAGGCGAGCTGGTGGATCCTCCCTTCCATGAATTCGCCTACGAGAGTCTGAGAACACGACCAGCCGCTC CTTACCAAGTACCAACCATAGGGGTGTATGGCGTGCCAGGATCAGGCAAGTCTGGCATCATTAAAAGCGCAGTCA CCAAAAAAGATCTAGTGGTGAGCGCCAAGAAAGAAAACTGTGCAGAAATTATAAGGGACGTCAAGAAAATGAAAG GGCTGGACGTCAATGCCAGAACTGTGGACTCAGTGCTCTTGAATGGATGCAAACACCCCGTAGAGACCCTGTATA TTGACGAAGCTTTTGCTTGTCATGCAGGTACTCTCAGAGCGCTCATAGCCATTATAAGACCTAAAAAGGCAGTGC TCTGCGGGGATCCCAAACAGTGCGGTTTTTTTAACATGATGTGCCTGAAAGTGCATTTTAACCACGAGATTTGCA CACAAGTCTTCCACAAAAGCATCTCTCGCCGTTGCACTAAATCTGTGACTTCGGTCGTCTCAACCTTGTTTTACG ACAAAAAAATGAGAACGACGAATCCGAAAGAGACTAAGATTGTGATTGACACTACCGGCAGTACCAAACCTAAGC AGGACGATCTCATTCTCACTTGTTTCAGAGGGTGGGTGAAGCAGTTGCAAATAGATTACAAAGGCAACGAAATAA TGACGGCAGCTGCCTCTCAAGGGCTGACCCGTAAAGGTGTGTATGCCGTTCGGTACAAGGTGAATGAAAATCCTC TGTACGCACCCACCTCAGAACATGTGAACGTCCTACTGACCCGCACGGAGGACCGCATCGTGTGGAAAACACTAG CCGGCGACCCATGGATAAAAACACTGACTGCCAAGTACCCTGGGAATTTCACTGCCACGATAGAGGAGTGGCAAG CAGAGCATGATGCCATCATGAGGCACATCTTGGAGAGACCGGACCCTACCGACGTCTTCCAGAATAAGGCAAACG TGTGTTGGGCCAAGGCTTTAGTGCCGGTGCTGAAGACCGCTGGCATAGACATGACCACTGAACAATGGAACACTG TGGATTATTTTGAAACGGACAAAGCTCACTCAGCAGAGATAGTATTGAACCAACTATGCGTGAGGTTCTTTGGAC TCGATCTGGACTCCGGTCTATTTTCTGCACCCACTGTTCCGTTATCCATTAGGAATAATCACTGGGATAACTCCC CGTCGCCTAACATGTACGGGCTGAATAAAGAAGTGGTCCGTCAGCTCTCTCGCAGGTACCCACAACTGCCTCGGG CAGTTGCCACTGGAAGAGTCTATGACATGAACACTGGTACACTGCGCAATTATGATCCGCGCATAAACCTAGTAC CTGTAAACAGAAGACTGCCTCATGCTTTAGTCCTCCACCATAATGAACACCCACAGAGTGACTTTTCTTCATTCG TCAGCAAATTGAAGGGCAGAACTGTCCTGGTGGTCGGGGAAAAGTTGTCCGTCCCAGGCAAAATGGTTGACTGGT TGTCAGACCGGCCTGAGGCTACCTTCAGAGCTCGGCTGGATTTAGGCATCCCAGGTGATGTGCCCAAATATGACA TAATATTTGTTAATGTGAGGACCCCATATAAATACCATCACTATCAGCAGTGTGAAGACCATGCCATTAAGCTTA GCATGTTGACCAAGAAAGCTTGTCTGCATCTGAATCCCGGCGGAACCTGTGTCAGCATAGGTTATGGTTACGCTG ACAGGGCCAGCGAAAGCATCATTGGTGCTATAGCGCGGCAGTTCAAGTTTTCCCGGGTATGCAAACCGAAATCCT CACTTGAAGAGACGGAAGTTCTGTTTGTATTCATTGGGTACGATCGCAAGGCCCGTACGCACAATCCTTACAAGC TTTCATCAACCTTGACCAACATTTATACAGGTTCCAGACTCCACGAAGCCGGATGTGCACCCTCATATCATGTGG TGCGAGGGGATATTGCCACGGCCACCGAAGGAGTGATTATAAATGCTGCTAACAGCAAAGGACAACCTGGCGGAG GGGTGTGCGGAGCGCTGTATAAGAAATTCCCGGAAAGCTTCGATTTACAGCCGATCGAAGTAGGAAAAGCGCGAC TGGTCAAAGGTGCAGCTAAACATATCATTCATGCCGTAGGACCAAACTTCAACAAAGTTTCGGAGGTTGAAGGTG ACAAACAGTTGGCAGAGGCTTATGAGTCCATCGCTAAGATTGTCAACGATAACAATTACAAGTCAGTAGCGATTC CACTGTTGTCCACCGGCATCTTTTCCGGGAACAAAGATCGACTAACCCAATCATTGAACCATTTGCTGACAGCTT TAGACACCACTGATGCAGATGTAGCCATATACTGCAGGGACAAGAAATGGGAAATGACTCTCAAGGAAGCAGTGG CTAGGAGAGAAGCAGTGGAGGAGATATGCATATCCGACGACTCTTCAGTGACAGAACCTGATGCAGAGCTGGTGA GGGTGCATCCGAAGAGTTCTTTGGCTGGAAGGAAGGGCTACAGCACAAGCGATGGCAAAACTTTCTCATATTTGG AAGGGACCAAGTTTCACCAGGCGGCCAAGGATATAGCAGAAATTAATGCCATGTGGCCCGTTGCAACGGAGGCCA ATGAGCAGGTATGCATGTATATCCTCGGAGAAAGCATGAGCAGTATTAGGTCGAAATGCCCCGTCGAAGAGTCGG AAGCCTCCACACCACCTAGCACGCTGCCTTGCTTGTGCATCCATGCCATGACTCCAGAAAGAGTACAGCGCCTAA AAGCCTCACGTCCAGAACAAATTACTGTGTGCTCATCCTTTCCATTGCCGAAGTATAGAATCACTGGTGTGCAGA AGATCCAATGCTCCCAGCCTATATTGTTCTCACCGAAAGTGCCTGCGTATATTCATCCAAGGAAGTATCTCGTGG AAACACCACCGGTAGACGAGACTCCGGAGCCATCGGCAGAGAACCAATCCACAGAGGGGACACCTGAACAACCAC CACTTATAACCGAGGATGAGACCAGGACTAGAACGCCTGAGCCGATCATCATCGAAGAGGAAGAAGAGGATAGCA TAAGTTTGCTGTCAGATGGCCCGACCCACCAGGTGCTGCAAGTCGAGGCAGACATTCACGGGCCGCCCTCTGTAT CTAGCTCATCCTGGTCCATTCCTCATGCATCCGACTTTGATGTGGACAGTTTATCCATACTTGACACCCTGGAGG GAGCTAGCGTGACCAGCGGGGCAACGTCAGCCGAGACTAACTCTTACTTCGCAAAGAGTATGGAGTTTCTGGCGC GACCGGTGCCTGCGCCTCGAACAGTATTCAGGAACCCTCCACATCCCGCTCCGCGCACAAGAACACCGTCACTTG CACCCAGCAGGGCCTGCTCGAGAACCAGCCTAGTTTCCACCCCGCCAGGCGTGAATAGGGTGATCACTAGAGAGG AGCTCGAGGCGCTTACCCCGTCACGCACTCCTAGCAGGTCGGTCTCGAGAACCAGCCTGGTCTCCAACCCGCCAG GCGTAAATAGGGTGATTACAAGAGAGGAGTTTGAGGCGTTCGTAGCACAACAACAATGACGGTTTGATGCGGGTG CATACATCTTTTCCTCCGACACCGGTCAAGGGCATTTACAACAAAAATCAGTAAGGCAAACGGTGCTATCCGAAG TGGTGTTGGAGAGGACCGAATTGGAGATTTCGTATGCCCCGCGCCTCGACCAAGAAAAAGAAGAATTACTACGCA AGAAATTACAGTTAAATCCCACACCTGCTAACAGAAGCAGATACCAGTCCAGGAAGGTGGAGAACATGAAAGCCA TAACAGCTAGACGTATTCTGCAAGGCCTAGGGCATTATTTGAAGGCAGAAGGAAAAGTGGAGTGCTACCGAACCC TGCATCCTGTTCCTTTGTATTCATCTAGTGTGAACCGTGCCTTTTCAAGCCCCAAGGTCGCAGTGGAAGCCTGTA ACGCCATGTTGAAAGAGAACTTTCCGACTGTGGCTTCTTACTGTATTATTCCAGAGTACGATGCCTATTTGGACA TGGTTGACGGAGCTTCATGCTGCTTAGACACTGCCAGTTTTTGCCCTGCAAAGCTGCGCAGCTTTCCAAAGAAAC ACTCCTATTTGGAACCCACAATACGATCGGCAGTGCCTTCAGCGATCCAGAACACGCTCCAGAACGTCCTGGCAG CTGCCACAAAAAGAAATTGCAATGTCACGCAAATGAGAGAATTGCCCGTATTGGATTCGGCGGCCTTTAATGTGG AATGCTTCAAGAAATATGCGTGTAATAATGAATATTGGGAAACGTTTAAAGAAAACCCCATCAGGCTTACTGAAG AAAACGTGGTAAATTACATTACCAAATTAAAAGGACCAAAAGCTGCTGCTCTTTTTGCGAAGACACATAATTTGA ATATGTTGCAGGACATACCAATGGACAGGTTTGTAATGGACTTAAAGAGAGACGTGAAAGTGACTCCAGGAACAA AACATACTGAAGAACGGCCCAAGGTACAGGTGATCCAGGCTGCCGATCCGCTAGCAACAGCGTATCTGTGCGGAA TCCACCGAGAGCTGGTTAGGAGATTAAATGCGGTCCTGCTTCCGAACATTCATACACTGTTTGATATGTCGGCTG AAGACTTTGACGCTATTATAGCCGAGCACTTCCAGCCTGGGGATTGTGTTCTGGAAACTGACATCGCGTCGTTTG ATAAAAGTGAGGACGACGCCATGGCTCTGACCGCGTTAATGATTCTGGAAGACTTAGGTGTGGACGCAGAGCTGT TGACGCTGATTGAGGCGGCTTTCGGCGAAATTTCATCAATACATTTGCCCACTAAAACTAAATTTAAATTCGGAG CCATGATGAAATCTGGAATGTTCCTCACACTGTTTGTGAACACAGTCATTAACATTGTAATCGCAAGCAGAGTGT TGAGAGAACGGCTAACCGGATCACCATGTGCAGCATTCATTGGAGATGACAATATCGTGAAAGGAGTCAAATCGG ACAAATTAATGGCAGACAGGTGCGCCACCTGGTTGAATATGGAAGTCAAGATTATAGATGCTGTGGTGGGCGAGA AAGCGCCTTATTTCTGTGGAGGGTTTATTTTGTGTGACTCCGTGACCGGCACAGCGTGCCGTGTGGCAGACCCCC TAAAAAGGCTGTTTAAGCTTGGCAAACCTCTGGCAGCAGACGATGAACATGATGATGACAGGAGAAGGGCATTGC ATGAAGAGTCAACACGCTGGAACCGAGTGGGTATTCTTTCAGAGCTGTGCAAGGCAGTAGAATCAAGGTATGAAA CCGTAGGAACTTCCATCATAGTTATGGCCATGACTACTCTAGCTAGCAGTGTTAAATCATTCAGCTACCTGAGAG CGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTC TTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGC CAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTC TGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATA AGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCT CTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCC TCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGT CTTTGTACGCCTGTTTTATACCCCCTCCCTGATTTGCAACTTAGAAGCAACGCAAACCAGATCAATAGTAGGTGT GACATACCAGTCGCATCTTGATCAAGCACTTCTGTATCCCCGGACCGAGTATCAATAGACTGTGCACACGGTTGA AGGAGAAAACGTCCGTTACCCGGCTAACTACTTCGAGAAGCCTAGTAACGCCATTGAAGTTGCAGAGTGTTTCGC TCAGCACTCCCCCCGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTT GGCGGCCTGCCTATGGGGTAACCCATAGGACGCTCTAATACGGACATGGCGTGAAGAGTCTATTGAGCTAGTTAG TAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACATACCCTTAATCCAAAGGGCAGTGTGTCGT AACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCTTTTTATTCTTGTATTGGCTGCTTATG GTGACAATTAAAGAATTGTTACCATATAGCTATTGGATTGGCCATCCAGTGTCAAACAGAGCTATTGTATATCTC TTTGTTGGATTCACACCTCTCACTCTTGAAACGTTACACACCCTCAATTACATTATACTGCTGAACACGAAGCGC GGCGATTGGCATGCCGCCTTAAAATTTTTATTTTATTTTTCTTTTCTTTTCCGAATCGGATTTTGTTTTTAATAT TTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGTCGGCATGGCATCTCCACCTCCTCGCGGTCCGAC CTGGGCATCCGAAGGAGGACGCACGTCCACTCGGATGGCTAAGGGAGAGCCACGTTTAAACGCTAGAGCAAGACG TTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATG ATATATTTTTATCTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTGTTGAATAAATCGAACTT TTGCTGAGTTGAAGGATCAGATCACGCATCTTCCCGACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAA TCACCAACTGGTCCACCTACAACAAAGCTCTCATCAACCGTGGCTCCCTCACTTTCTGGCTGGATGATGGGGCGA TTCAGGCCTGGTATGAGTCAGCAACACCTTCTTCACGAGGCAGACCTCAGCGCTAGCGGAGTGTATACTGGCTTA CTATGTTGGCACTGATGAGGGTGTCAGTGAAGTGCTTCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAG CAGAATATGTGATACAGGATATATTCCGCTTCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGA GCGGAAATGGCTTACGAACGGGGCGGAGATTTCCTGGAAGATGCCAGGAAGATACTTAACAGGGAAGTGAGAGGG CCGCGGCAAAGCCGTTTTTCCATAGGCTCCGCCCCCCTGACAAGCATCACGAAATCTGACGCTCAAATCAGTGGT GGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGC CTTTCGGTTTACCGGTGTCATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGT AGGCAGTTCGCTCCAAGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGCTGCGCCTTATCCGGTAACT ATCGTCTTGAGTCCAACCCGGAAAGACATGCAAAAGCACCACTGGCAGCAGCCACTGGTAATTGATTTAGAGGAG TTAGTCTTGAAGTCATGCGCCGGTTAAGGCTAAACTGAAAGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCCAG TTACCTCGGTTCAAAGAGTTGGTAGCTCAGAGAACCTTCGAAAAACCGCCCTGCAAGGCGGTTTTTTCGTTTTCA GAGCAAGAGATTACGCGCAGACCAAAACGATCTCAAGAAGATCATCTTATTAAGGGGTCTGACGCTCAGTGGAAC GAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAA TGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTATTAGAAAAATTCATCCAGCAGA CGATAAAACGCAATACGCTGGCTATCCGGTGCCGCAATGCCATACAGCACCAGAAAACGATCCGCCCATTCGCCG CCCAGTTCTTCCGCAATATCACGGGTGGCCAGCGCAATATCCTGATAACGATCCGCCACGCCCAGACGGCCGCAA TCAATAAAGCCGCTAAAACGGCCATTTTCCACCATAATGTTCGGCAGGCACGCATCACCATGGGTCACCACCAGA TCTTCGCCATCCGGCATGCTCGCTTTCAGACGCGCAAACAGCTCTGCCGGTGCCAGGCCCTGATGTTCTTCATCC AGATCATCCTGATCCACCAGGCCCGCTTCCATACGGGTACGCGCACGTTCAATACGATGTTTCGCCTGATGATCA AACGGACAGGTCGCCGGGTCCAGGGTATGCAGACGACGCATGGCATCCGCCATAATGCTCACTTTTTCTGCCGGC GCCAGATGGCTAGACAGCAGATCCTGACCCGGCACTTCGCCCAGCAGCAGCCAATCACGGCCCGCTTCGGTCACC ACATCCAGCACCGCCGCACACGGAACACCGGTGGTGGCCAGCCAGCTCAGACGCGCCGCTTCATCCTGCAGCTCG TTCAGCGCACCGCTCAGATCGGTTTTCACAAACAGCACCGGACGACCCTGCGCGCTCAGACGAAACACCGCCGCA TCAGAGCAGCCAATGGTCTGCTGCGCCCAATCATAGCCAAACAGACGTTCCACCCACGCTGCCGGGCTACCCGCA TGCAGGCCATCCTGTTCAATCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATG AGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCA CCTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAAT AGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGCGC TCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGCCAGCT GGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACACGCGTAATACGA CTCACTATAG

VZV gB MFVTAWSVSPSSFYESLQVEPTQSEDITRSAHLGDGDEIREAIHKSQDAETKPTFYVCPPP TGSTIVRLEPPRTCPDYHLGKNFTEGIAWYKENIAAYKFKATVYYKDVIVSTAWAGSSYTQ ITNRYADRVPIPVSEITDTIDKFGKCSSKATYVRNNHKVEAFNEDKNPQDMPLIASKYNSVG SKAWHTTNDTYMVAGTPGTYRTGTSVNCIIEEVEARSIFPYDSFGLSTGDIIYMSPFFGLRD GAYREHSNYAMDRFHQFEGYRQRDLDTRALLEPAARNFLVTPHLTVGWNWKPKRTEVCSLVK WREVEDWRDEYAHNFRFTMKTLSTTFISETNEFNLNQIHLSQCVKEEARAIINRIYTTRYN SSHVRTGDIQTYLARGGFVVVFQPLLSNSLARLYLQELVRENTNHSPQKHPTRNTRSRRSVP VELRANRTITTTSSVEFAMLQFTYDHIQEHVNEMLARISSSWCQLQNRERALWSGLFPINPS ALASTILDQRVKARILGDVISVSNCPELGSDTRIILQNSMRVSGSTTRCYSRPLISIVSLNG SGTVEGQLGTDNELIMSRDLLEPCVANHKRYFLFGHHYVYYEDYRYVREIAVHDVGMISTYV DLNLTLLKDREFMPLQVYTRDELRDTGLLDYSEIQRRNQMHSLRFYDIDKWQYDSGTAIMQ GMAQFFQGLGTAGQAVGHWLGATGALLSTVHGFTTFLSNPFGALAVGLLVLAGLVAAFFAY RYVLKLKTSPMKALYPLTTKGLKQLPEGMDPFAEKPNATDTPIEEIGDSQNTEPSVNSGFDP DKFREAQEMIKYMTLVSAAERQESKARKKNKTSALLTSRLTGLALRNRRGYSRVRTENVTGV

VZV gH MFALVLAWILPLWTTANKSYVTPTPATRSIGHMSALLREYSDRNMSLKLEAFYPTGFDEEL IKSLHWGNDRKHVFLVIVKVNPTTHEGDVGLVIFPKYLLSPYHFKAEHRAPFPAGRFGFLSH PVTPDVSFFDSSFAPYLTTQHLVAFTTFPPNPLVWHLERAETAATAERPFGVSLLPARPTVP KNTILEHKAHFATWDALARHTFFSAEAIITNSTLRIHVPLFGSVWPIRYWATGSVLLTSDSG RVEVNIGVGFMSSLISLSSGLPIELIWPHTVKLNAVTSDTTWFQLNPPGPDPGPSYRVYLL GRGLDMNFSKHATVDICAYPEESLDYRYHLSMAHTEALRMTTKADQHDINEESYYHIAARIA TSIFALSEMGRTTEYFLLDEIVDVQYQLKFLNYILMRIGAGAHPNTISGTSDLIFADPSQLH DELSLLFGQVKPANVDYFISYDEARDQLKTAYALSRGQDHVNALSLARRVIMSIYKGLLVKQ NLNATERQALFFASMILLNFREGLENSSRVLDGRTTLLLMTSMCTAAHATQAALNIQEGLAY LNPSKHMFTIPNVYSPCMGSLRTDLTEEIHVMNLLSAIPTRPGLNEVLHTQLDESEIFDAAF KTMMIFTTWTAKDLHILHTHVPEVFTCQDAAARNGEYVLILPAVQGHSYVITRNKPQRGLVY SLADVDVYNPISWYLSKDTCVSEHGVIETVALPHPDNLKECLYCGSVFLRYLTTGAIMDII IIDSKDTERQLAAMGNSTIPPFNPDMHGDDSKAVLLFPNGTWTLLGFERRQAIRMSGQYLG ASLGGAFLAWGFGIIGWMLCGNSRLREYNKIPLT

VZV gL MASHKWLLQMIVFLKTITIAYCLHLQDDTPLFFGAKPLSDVSLIITEPCV SSVYEAWDYAAPPVSNLSEALSGIWKTKCPVPEVILWFKDKQMAYWTNPY VTLKGLTQSVGEEHKSGDIRDALLDALSGVWVDSTPSSTNIPENGCVWGA DRLFQRVCQ

VZV gI MFLIQCLISAVIFYIQVTNALIFKGDHVSLQVNSSLTSILIPMQNDNYTE IKGQLVFIGEQLPTGTNYSGTLELLYADTVAFCFRSVQVIRYDGCPRIRT SAFISCRYKHSWHYGNSTDRISTEPDAGVMLKITKPGINDAGVYVLLVRL DHSRSTDGFILGVNVYTAGSHHNIHGVIYTSPSLQNGYSTRALFQQARLC DLPATPKGSGTSLFQHMLDLRAGKSLEDNPWLHEDWTTETKSWKEGIENH VYPTDMSTLPEKSLNDPPENLLIIIPIVASVMILTAMVIVIVISVKRRRI KKHPIYRPNTKTRRGIQNATPESDVMLEAAIAQLATIREESPPHSWNPFV K

VZV gE MGTVNKPWGVLMGFGIITGTLRITNPVRASVLRYDDFHIDEDKLDTNSVYEPYYHSDHAES SWVNRGESSRKAYDHNSPYIWPRNDYDGFLENAHEHHGVYNQGRGIDSGERLMQPTQMSAQE DLGDDTGIHVIPTLNGDDRHKIVNVDQRQYGDVFKGDLNPKPQGQRLIEVSVEENHPFTLRA PIQRIYGVRYTETWSFLPSLTCTGDAAPAIQHICLKHTTCFQDVWDVDCAENTKEDQLAEI SYRFQGKKEADQPWIWNTSTLFDELELDPPEIEPGVLKVLRTEKQYLGVYIWNMRGSDGTS TYATFLVTWKGDEKTRNPTPAVTPQPRGAEFHMWNYHSHVFSVGDTFSLAMHLQYKIHEAPF DLLLEWLYVPIDPTCQPMRLYSTCLYHPNAPQCLSHMNSGCTFTSPHLAQRVASTVYQNCEH ADNYTAYCLGISHMEPSFGLILHDGGTTLKFVDTPESLSGLYVFWYFNGHVEAVAYTWST VDHFVNAIEERGFPPTAGQPPATTKPKEITPVNPGTSPLLRYAAWTGGLAAWLLCLVIFLI CTAKRMRVKAYRVDKSPYNQSMYYAGLPVDDFEDSESTDTEEEFGNAIGGSHGGSSYTVYID KTR

VZV VEERep.SGPgB 1 ataggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcacgttgacatc gaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttgaggtagaagccaagca ggtcactgataatgaccatgctaatgccagagcgttttcgcatctggcttcaaaactgatcgaaacgg aggtggacccatccgacacgatccttgacattggaagtgcgcccgcccgcagaatgtattctaagcac aagtatcattgtatctgtccgatgagatgtgcggaagatccggacagattgtataagtatgcaactaa gctgaagaaaaactgtaaggaaataactgataaggaattggacaagaaaatgaaggagctcgccgccg tcatgagcgaccctgacctggaaactgagactatgtgcctccacgacgacgagtcgtgtcgctacgaa gggcaagtcgctgtttaccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaa taagggagttagagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctg gagcatatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggccta tgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatttgaaacc atccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggacttactgaggagct ggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatgtcggtgtgagactatagtt agttgcgacgggtacgtcgttaaaagaatagctatcagtccaggcctgtatgggaagccttcaggcta tgctgctacgatgcaccgcgagggattcttgtgctgcaaagtgacagacacattgaacggggagaggg tctcttttcccgtgtgcacgtatgtgccagctacattgtgtgaccaaatgactggcatactggcaaca gatgtcagtgcggacgacgcgcaaaaactgctggttgggctcaaccagcgtatagtcgtcaacggtcg cacccagagaaacaccaataccatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggt gggcaaaggaatataaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtc atggggtgttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaac catcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacattggaga tcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctctcattaccgcc gaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgtgaagccgaggagttgcg cgcagctctaccacctttggcagctgatgttgaggagcccactctggaagccgatgtagacttgatgt tacaagaggctggggccggctcagtggagacacctcgtggcttgataaaggttaccagctacgatggc gaggacaagatcggctcttacgctgtgctttctccgcaggctgtactcaagagtgaaaaattatcttg catccaccctctcgctgaacaagtcatagtgataacacactctggccgaaaagggcgttatgccgtgg aaccataccatggtaaagtagtggtgccagagggacatgcaatacccgtccaggactttcaagctctg agtgaaagtgccaccattgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccac acatggaggagcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcg aatacctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctcaca ggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgaccagccgctcc ttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctggcatcattaaaagcg cagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgtgcagaaattataagggacgtc aagaaaatgaaagggctggacgtcaatgccagaactgtggactcagtgctcttgaatggatgcaaaca ccccgtagagaccctgtatattgacgaagcttttgcttgtcatgcaggtactctcagagcgctcatag ccattataagacctaaaaaggcagtgctctgcggggatcccaaacagtgcggtttttttaacatgatg tgcctgaaagtgcattttaaccacgagatttgcacacaagtcttccacaaaagcatctctcgccgttg cactaaatctgtgacttcggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccga aagagactaagattgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcact tgtttcagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctgc ctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcctctgtacg cacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgtgtggaaaacacta gccggcgacccatggataaaaacactgactgccaagtaccctgggaatttcactgccacgatagagga gtggcaagcagagcatgatgccatcatgaggcacatcttggagagaccggaccctaccgacgtcttcc agaataaggcaaacgtgtgttgggccaaggctttagtgccggtgctgaagaccgctggcatagacatg accactgaacaatggaacactgtggattattttgaaacggacaaagctcactcagcagagatagtatt gaaccaactatgcgtgaggttctttggactcgatctggactccggtctattttctgcacccactgttc cgttatccattaggaataatcactgggataactccccgtcgcctaacatgtacgggctgaataaagaa gtggtccgtcagctctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatga catgaacactggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgc ctcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagcaaattg aagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggttgactggttgtc agaccggcctgaggctaccttcagagctcggctggatttaggcatcccaggtgatgtgcccaaatatg acataatatttgttaatgtgaggaccccatataaataccatcactatcagcagtgtgaagaccatgcc attaagcttagcatgttgaccaagaaagcttgtctgcatctgaatcccggcggaacctgtgtcagcat aggttatggttacgctgacagggccagcgaaagcatcattggtgctatagcgcggcagttcaagtttt cccgggtatgcaaaccgaaatcctcacttgaagagacggaagttctgtttgtattcattgggtacgat cgcaaggcccgtacgcacaatccttacaagctttcatcaaccttgaccaacatttatacaggttccag actccacgaagccggatgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaag gagtgattataaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataag aaattcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgcagc taaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtgacaaacagt tggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaagtcagtagcgattcca ctgttgtccaccggcatcttttccgggaacaaagatcgactaacccaatcattgaaccatttgctgac agctttagacaccactgatgcagatgtagccatatactgcagggacaagaaatgggaaatgactctca aggaagcagtggctaggagagaagcagtggaggagatatgcatatccgacgactcttcagtgacagaa cctgatgcagagctggtgagggtgcatccgaagagttctttggctggaaggaagggctacagcacaag cgatggcaaaactttctcatatttggaagggaccaagtttcaccaggcggccaaggatatagcagaaa ttaatgccatgtggcccgttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagc atgagcagtattaggtcgaaatgccccgtcgaagagtcggaagcctccacaccacctagcacgctgcc ttgcttgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaaa ttactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatccaatgctcc cagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatctcgtggaaacacc accggtagacgagactccggagccatcggcagagaaccaatccacagaggggacacctgaacaaccac cacttataaccgaggatgagaccaggactagaacgcctgagccgatcatcatcgaagaggaagaagag gatagcataagtttgctgtcagatggcccgacccaccaggtgctgcaagtcgaggcagacattcacgg gccgccctctgtatctagctcatcctggtccattcctcatgcatccgactttgatgtggacagtttat ccatacttgacaccctggagggagctagcgtgaccagcggggcaacgtcagccgagactaactcttac ttcgcaaagagtatggagtttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctcc acatcccgctccgcgcacaagaacaccgtcacttgcacccagcagggcctgctcgagaaccagcctag tttccaccccgccaggcgtgaatagggtgatcactagagaggagctcgaggcgcttaccccgtcacgc actcctagcaggtcggtctcgagaaccagcctggtctccaacccgccaggcgtaaatagggtgattac aagagaggagtttgaggcgttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatctttt cctccgacaccggtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtg ttggagaggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtggagaaca tgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggcagaaggaaaagtg gagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaaccgtgccttttcaagccc caaggtcgcagtggaagcctgtaacgccatgttgaaagagaactttccgactgtggcttcttactgta ttattccagagtacgatgcctatttggacatggttgacggagcttcatgctgcttagacactgccagt ttttgccctgcaaagctgcgcagctttccaaagaaacactcctatttggaacccacaatacgatcggc agtgccttcagcgatccagaacacgctccagaacgtcctggcagctgccacaaaaagaaattgcaatg tcacgcaaatgagagaattgcccgtattggattcggcggcctttaatgtggaatgcttcaagaaatat gcgtgtaataatgaatattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggt aaattacattaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaata tgttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactccagga acaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctagcaacagcgta tctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgcttccgaacattcatacac tgtttgatatgtcggctgaagactttgacgctattatagccgagcacttccagcctggggattgtgtt ctggaaactgacatcgcgtcgtttgataaaagtgaggacgacgccatggctctgaccgcgttaatgat tctggaagacttaggtgtggacgcagagctgttgacgctgattgaggcggctttcggcgaaatttcat caatacatttgcccactaaaactaaatttaaattcggagccatgatgaaatctggaatgttcctcaca ctgtttgtgaacacagtcattaacattgtaatcgcaagcagagtgttgagagaacggctaaccggatc accatgtgcagcattcattggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcag acaggtgcgccacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgcct tatttctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagaccccct aaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacaggagaaggg cattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgtgcaaggcagtagaa tcaaggtatgaaaccgtaggaacttccatcatagttatggccatgactactctagctagcagtgttaa atcattcagctacctgagaggggcccctataactctctacggctaacctgaatggactacgacatagt ctagtcgagtctagtcgacgccaccatgttcgtgaccgccgtggtgtccgtgtcccccagcagctttt acgagagcctgcaggtcgagcccacccagagcgaggacatcacaagatctgcccacctgggcgacggc gacgagatcagagaggccatccacaagagccaggacgccgagacaaagcccaccttctacgtgtgccc cccacctaccggctctacaattgtgcggctggaaccccccagaacctgccctgattaccacctgggca agaacttcaccgagggaattgccgtggtgtacaaagagaatatcgccgcctacaagttcaaggccacc gtgtactacaaggacgtgatcgtgtccaccgcctgggccggcagcagctacacccagatcaccaacag atacgccgaccgggtgcccatccccgtgtctgagatcaccgacaccatcgacaagttcggcaagtgca gcagcaaggccacctacgtgcggaacaaccacaaggtggaagccttcaacgaggacaagaacccccag gacatgcccctgatcgccagcaagtacaacagcgtgggctccaaggcctggcacaccaccaacgacac ctacatggtggccggcacccccggcacatacagaacaggcaccagcgtgaactgcatcatcgaggaag tggaagcccggtccatcttcccatacgacagcttcggcctgagcaccggcgacattatctacatgagc cctttcttcggcctgcgggacggcgcctacagagagcacagcaactacgccatggaccggttccacca gttcgagggctacagacagcgggacctggacacaagagccctgctggaacctgccgccagaaacttcc tggtcacccctcacctgaccgtgggctggaactggaagcccaagcggaccgaagtgtgcagcctggtc aagtggcgcgaggtggaagatgtcgtgcgggatgagtacgcccacaacttccggttcaccatgaagac cctgagcaccaccttcatcagcgagacaaacgagttcaacctgaaccagatccacctgagccagtgcg tgaaagaggaagccagagccatcatcaaccggatctacaccacccggtacaacagcagccacgtgcgg accggcgatatccagacctatctggctagaggcggcttcgtggtggtgtttcagcccctgctgagcaa cagcctggctagactgtacctgcaggaactcgtcagagagaacaccaaccacagcccccagaagcacc ccacccggaataccagatccagacgcagcgtgcccgtggaactgagagccaaccggaccatcaccacc accagcagcgtggaattcgccatgctgcagttcacctacgaccacatccaggaacacgtgaacgagat gctggcccggatcagcagcagttggtgccagctgcagaatcgggaaagggccctgtggtccggcctgt tccccatcaatccaagcgccctggccagcaccatcctggaccagagagtgaaggccagaatcctgggg gacgtgatcagcgtgtccaactgtcctgagctgggcagcgacacccggatcatcctgcagaacagcat gcgggtgtccggcagcaccaccagatgctacagcagacccctgatcagcatcgtgtccctgaacggca gcggcacagtggaaggccagctgggcaccgataacgagctgatcatgagccgggacctgctcgaaccc tgcgtggccaatcacaagcggtactttctgttcggccaccactacgtgtactatgaggactacagata cgtgcgcgagatcgccgtgcacgacgtgggcatgatcagcacctacgtggacctgaacctgaccctgc tgaaggaccgcgagttcatgccactgcaggtctacacccgggacgagctgagagataccggcctgctg gactacagcgagatccagcggcggaaccagatgcactccctgcggttctacgacatcgacaaggtggt gcagtacgacagcggcaccgccatcatgcagggcatggcccagttctttcagggcctgggaacagccg gacaggccgtgggacatgtggtgctgggagctacaggcgccctgctgtctaccgtgcacggcttcacc acctttctgagcaaccccttcggagccctggctgtgggactgctggtcctggctggactggtggccgc cttctttgcctaccgctacgtgctgaagctgaaaaccagccccatgaaggccctgtaccccctgacca ccaagggcctgaagcagctgcctgagggcatggaccccttcgccgagaagcccaatgccaccgacacc cccatcgaggaaatcggcgacagccagaacaccgagccctccgtgaacagcggcttcgaccccgacaa gtttcgcgaggcccaggaaatgatcaagtacatgaccctggtgtctgctgccgagcggcaggaaagca aggcccggaagaagaacaagacctccgccctgctgaccagcagactgacaggactggccctgcggaac agacggggctatagcagagtgcggaccgagaatgtgaccggcgtgtaatctagacgcggccgcataca gcagcaattggcaagctgcttacatagaactcgcggcgattggcatgccgccttaaaatttttatttt atttttcttttcttttccgaatcggattttgtttttaatatttcaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaagggtcggcatggcatctccacctcctcgcggtccgacctgggcatccgaaggaggac gcacgtccactcggatggctaagggagagccacgtttaaaccagctccaattcgccctatagtgagtc gtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaac ttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgc ccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcgcattaagcgcggc gggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctt tcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctcccttta gggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtag tgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggac tcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttg ccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaat attaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttattttt ctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaa aaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgcctt cctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagt gggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttc caatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagag caactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagca tcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcgg ccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggat catgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacac cacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagctt cccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggccctt ccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagc actggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatgg atgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaa gtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagat cctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccg tagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaa aaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaac tggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttca agaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggc gataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctg aacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagc gtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagg gtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgg gtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaa acgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcct gcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcag ccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctc tccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagt gagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgctccc ggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgatt acgccaagcgcgcaattaaccctcactaaagggaacaaaagctgggtaccgggcccacgcgtaatacg actcactatag_13339

VZV VEERep.SGPgH 1 ataggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcacgttgacatc gaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttgaggtagaagccaagca ggtcactgataatgaccatgctaatgccagagcgttttcgcatctggcttcaaaactgatcgaaacgg aggtggacccatccgacacgatccttgacattggaagtgcgcccgcccgcagaatgtattctaagcac aagtatcattgtatctgtccgatgagatgtgcggaagatccggacagattgtataagtatgcaactaa gctgaagaaaaactgtaaggaaataactgataaggaattggacaagaaaatgaaggagctcgccgccg tcatgagcgaccctgacctggaaactgagactatgtgcctccacgacgacgagtcgtgtcgctacgaa gggcaagtcgctgtttaccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaa taagggagttagagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctg gagcatatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggccta tgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatttgaaacc atccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggacttactgaggagct ggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatgtcggtgtgagactatagtt agttgcgacgggtacgtcgttaaaagaatagctatcagtccaggcctgtatgggaagccttcaggcta tgctgctacgatgcaccgcgagggattcttgtgctgcaaagtgacagacacattgaacggggagaggg tctcttttcccgtgtgcacgtatgtgccagctacattgtgtgaccaaatgactggcatactggcaaca gatgtcagtgcggacgacgcgcaaaaactgctggttgggctcaaccagcgtatagtcgtcaacggtcg cacccagagaaacaccaataccatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggt gggcaaaggaatataaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtc atggggtgttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaac catcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacattggaga tcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctctcattaccgcc gaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgtgaagccgaggagttgcg cgcagctctaccacctttggcagctgatgttgaggagcccactctggaagccgatgtagacttgatgt tacaagaggctggggccggctcagtggagacacctcgtggcttgataaaggttaccagctacgatggc gaggacaagatcggctcttacgctgtgctttctccgcaggctgtactcaagagtgaaaaattatcttg catccaccctctcgctgaacaagtcatagtgataacacactctggccgaaaagggcgttatgccgtgg aaccataccatggtaaagtagtggtgccagagggacatgcaatacccgtccaggactttcaagctctg agtgaaagtgccaccattgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccac acatggaggagcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcg aatacctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctcaca ggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgaccagccgctcc ttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctggcatcattaaaagcg cagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgtgcagaaattataagggacgtc aagaaaatgaaagggctggacgtcaatgccagaactgtggactcagtgctcttgaatggatgcaaaca ccccgtagagaccctgtatattgacgaagcttttgcttgtcatgcaggtactctcagagcgctcatag ccattataagacctaaaaaggcagtgctctgcggggatcccaaacagtgcggtttttttaacatgatg tgcctgaaagtgcattttaaccacgagatttgcacacaagtcttccacaaaagcatctctcgccgttg cactaaatctgtgacttcggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccga aagagactaagattgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcact tgtttcagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctgc ctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcctctgtacg cacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgtgtggaaaacacta gccggcgacccatggataaaaacactgactgccaagtaccctgggaatttcactgccacgatagagga gtggcaagcagagcatgatgccatcatgaggcacatcttggagagaccggaccctaccgacgtcttcc agaataaggcaaacgtgtgttgggccaaggctttagtgccggtgctgaagaccgctggcatagacatg accactgaacaatggaacactgtggattattttgaaacggacaaagctcactcagcagagatagtatt gaaccaactatgcgtgaggttctttggactcgatctggactccggtctattttctgcacccactgttc cgttatccattaggaataatcactgggataactccccgtcgcctaacatgtacgggctgaataaagaa gtggtccgtcagctctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatga catgaacactggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgc ctcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagcaaattg aagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggttgactggttgtc agaccggcctgaggctaccttcagagctcggctggatttaggcatcccaggtgatgtgcccaaatatg acataatatttgttaatgtgaggaccccatataaataccatcactatcagcagtgtgaagaccatgcc attaagcttagcatgttgaccaagaaagcttgtctgcatctgaatcccggcggaacctgtgtcagcat aggttatggttacgctgacagggccagcgaaagcatcattggtgctatagcgcggcagttcaagtttt cccgggtatgcaaaccgaaatcctcacttgaagagacggaagttctgtttgtattcattgggtacgat cgcaaggcccgtacgcacaatccttacaagctttcatcaaccttgaccaacatttatacaggttccag actccacgaagccggatgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaag gagtgattataaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataag aaattcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgcagc taaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtgacaaacagt tggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaagtcagtagcgattcca ctgttgtccaccggcatcttttccgggaacaaagatcgactaacccaatcattgaaccatttgctgac agctttagacaccactgatgcagatgtagccatatactgcagggacaagaaatgggaaatgactctca aggaagcagtggctaggagagaagcagtggaggagatatgcatatccgacgactcttcagtgacagaa cctgatgcagagctggtgagggtgcatccgaagagttctttggctggaaggaagggctacagcacaag cgatggcaaaactttctcatatttggaagggaccaagtttcaccaggcggccaaggatatagcagaaa ttaatgccatgtggcccgttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagc atgagcagtattaggtcgaaatgccccgtcgaagagtcggaagcctccacaccacctagcacgctgcc ttgcttgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaaa ttactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatccaatgctcc cagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatctcgtggaaacacc accggtagacgagactccggagccatcggcagagaaccaatccacagaggggacacctgaacaaccac cacttataaccgaggatgagaccaggactagaacgcctgagccgatcatcatcgaagaggaagaagag gatagcataagtttgctgtcagatggcccgacccaccaggtgctgcaagtcgaggcagacattcacgg gccgccctctgtatctagctcatcctggtccattcctcatgcatccgactttgatgtggacagtttat ccatacttgacaccctggagggagctagcgtgaccagcggggcaacgtcagccgagactaactcttac ttcgcaaagagtatggagtttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctcc acatcccgctccgcgcacaagaacaccgtcacttgcacccagcagggcctgctcgagaaccagcctag tttccaccccgccaggcgtgaatagggtgatcactagagaggagctcgaggcgcttaccccgtcacgc actcctagcaggtcggtctcgagaaccagcctggtctccaacccgccaggcgtaaatagggtgattac aagagaggagtttgaggcgttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatctttt cctccgacaccggtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtg ttggagaggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtggagaaca tgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggcagaaggaaaagtg gagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaaccgtgccttttcaagccc caaggtcgcagtggaagcctgtaacgccatgttgaaagagaactttccgactgtggcttcttactgta ttattccagagtacgatgcctatttggacatggttgacggagcttcatgctgcttagacactgccagt ttttgccctgcaaagctgcgcagctttccaaagaaacactcctatttggaacccacaatacgatcggc agtgccttcagcgatccagaacacgctccagaacgtcctggcagctgccacaaaaagaaattgcaatg tcacgcaaatgagagaattgcccgtattggattcggcggcctttaatgtggaatgcttcaagaaatat gcgtgtaataatgaatattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggt aaattacattaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaata tgttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactccagga acaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctagcaacagcgta tctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgcttccgaacattcatacac tgtttgatatgtcggctgaagactttgacgctattatagccgagcacttccagcctggggattgtgtt ctggaaactgacatcgcgtcgtttgataaaagtgaggacgacgccatggctctgaccgcgttaatgat tctggaagacttaggtgtggacgcagagctgttgacgctgattgaggcggctttcggcgaaatttcat caatacatttgcccactaaaactaaatttaaattcggagccatgatgaaatctggaatgttcctcaca ctgtttgtgaacacagtcattaacattgtaatcgcaagcagagtgttgagagaacggctaaccggatc accatgtgcagcattcattggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcag acaggtgcgccacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgcct tatttctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagaccccct aaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacaggagaaggg cattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgtgcaaggcagtagaa tcaaggtatgaaaccgtaggaacttccatcatagttatggccatgactactctagctagcagtgttaa atcattcagctacctgagaggggcccctataactctctacggctaacctgaatggactacgacatagt ctagtcgagtctagtcgacgccaccatgttcgccctggtgctggccgtggtcatcctgcctctgtgga ccaccgccaacaagagctacgtgacccccacacccgccaccagatccatcggacacatgagcgccctg ctgagagagtacagcgaccggaacatgagcctgaagctggaagccttctaccccaccggcttcgacga ggaactgatcaagagcctgcactggggcaacgaccggaagcacgtgttcctcgtgatcgtgaaagtga accccaccacccacgagggcgacgtcggcctggtcatcttccccaagtacctgctgagcccctaccac ttcaaggccgagcacagagcccccttccctgctggccgctttggctttctgagccaccctgtgacccc cgacgtgtcattcttcgacagcagcttcgccccctacctgaccacacagcacctggtggccttcacca ccttcccccccaatcctctcgtgtggcacctggaaagagccgagacagccgccaccgccgaaagacct tttggcgtgtccctgctgcccgccagacctaccgtgcccaagaacaccatcctggaacacaaggccca cttcgccacctgggatgccctggccagacacaccttctttagcgccgaggccatcatcaccaacagca ccctgagaatccacgtgcccctgttcggcagcgtgtggcccatcagatactgggccacaggcagcgtg ctgctgaccagcgatagcggcagagtggaagtgaacatcggcgtgggcttcatgagcagcctgatcag cctgagcagcggcctgcccatcgagctgattgtggtgccccacaccgtgaagctgaacgccgtgacca gcgacaccacctggttccagctgaacccccctggccctgatcctggccctagttacagagtgtacctg ctgggcagaggcctggacatgaacttcagcaagcacgccaccgtggacatctgcgcctaccctgagga aagcctggactacagataccacctgagcatggcccacaccgaggccctgagaatgaccaccaaggccg accagcacgacatcaacgaggaaagctactaccacattgccgccagaatcgccaccagcatcttcgcc ctgagcgagatgggccggaccaccgagtactttctgctggacgagatcgtggacgtgcagtaccagct gaagttcctgaactacatcctgatgcggatcggcgctggcgcccaccctaataccatcagcggcacca gcgacctgatcttcgccgatcctagccagctgcacgacgagctgagcctgctgttcggccaggtcaaa cccgccaacgtggactacttcatcagctacgacgaggcccgggaccagctgaaaacagcctacgccct gtccagaggccaggatcatgtgaacgccctgtccctggccaggcgcgtgatcatgagcatctacaagg gcctgctggtcaagcagaacctgaacgccaccgagcggcaggccctgttcttcgccagcatgatcctg ctgaacttcagagagggcctggaaaacagcagccgggtgctggatggcagaaccaccctgctgctgat gaccagcatgtgcacagccgcccatgccacacaggccgccctgaatatccaggaaggcctggcttacc tgaaccccagcaagcacatgttcaccatccccaacgtgtacagcccctgcatgggcagcctgagaacc gacctgaccgaagagatccacgtgatgaacctgctgtccgccatccccaccagacccggactgaatga ggtgctgcacacccagctggacgagtccgagatcttcgacgccgccttcaagaccatgatgatcttta ccacctggaccgccaaggacctgcacatcctgcacacacacgtgcccgaggtgttcacatgccaagat gccgccgctcggaacggcgagtatgtgctgattctgcctgccgtgcagggccacagctacgtgatcac ccggaacaagccccagcggggcctggtgtatagcctggctgacgtggacgtgtacaaccccatcagcg tggtgtacctgagcaaggatacctgcgtgtccgagcacggcgtgatcgaaacagtggccctgccccac cccgacaacctgaaagagtgcctgtactgcggctccgtgttcctgcggtatctgaccaccggcgccat catggacatcatcatcatcgacagcaaggacaccgagagacagctggccgccatgggcaacagcacca tcccccccttcaaccccgacatgcacggcgacgatagcaaggccgtgctgctgttccccaacggcacc gtggtcacactgctgggcttcgagcggagacaggccatcagaatgagcggccagtacctgggcgcctc tctgggtggtgcctttctggccgtcgtgggctttggcatcatcggctggatgctgtgcggcaacagca gactgcgcgagtacaacaagatccccctgacctaatctagacgcggccgcatacagcagcaattggca agctgcttacatagaactcgcggcgattggcatgccgccttaaaatttttattttatttttcttttct tttccgaatcggattttgtttttaatatttcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagg gtcggcatggcatctccacctcctcgcggtccgacctgggcatccgaaggaggacgcacgtccactcg gatggctaagggagagccacgtttaaaccagctccaattcgccctatagtgagtcgtattacgcgcgc tcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgc agcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagt tgcgcagcctgaatggcgaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggtt acgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctt tctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgattta gtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccc tgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaac tggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcct attggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttaca atttaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattca aatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtat gagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctc acccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaa ctggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcac ttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgcc gcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggc atgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttct gacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgcc ttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgta gcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaatt aatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggt ttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagat ggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatag acagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatata tactttagattgatttaaaactteatttttaatttaaaaggatctaggtgaagatcctttttgataat ctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaa aggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctac cagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcaga gcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagc accgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtc ttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcg tgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgaga aagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggag agcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctc tgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgc ggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctg attctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgag cgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttg gccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaa ttaatgtgagttagctcactcattaggcaccccaggctttacactttatgctcccggctcgtatgttg tgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcgcgc aattaaccctcactaaagggaacaaaagctgggtaccgggcccacgcgtaatacgactcactatag_13258

VZV VEERep.SGPgL 1 ataggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcacgttgacatc gaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttgaggtagaagccaagca ggtcactgataatgaccatgctaatgccagagcgttttcgcatctggcttcaaaactgatcgaaacgg aggtggacccatccgacacgatccttgacattggaagtgcgcccgcccgcagaatgtattctaagcac aagtatcattgtatctgtccgatgagatgtgcggaagatccggacagattgtataagtatgcaactaa gctgaagaaaaactgtaaggaaataactgataaggaattggacaagaaaatgaaggagctcgccgccg tcatgagcgaccctgacctggaaactgagactatgtgcctccacgacgacgagtcgtgtcgctacgaa gggcaagtcgctgtttaccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaa taagggagttagagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctg gagcatatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggccta tgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatttgaaacc atccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggacttactgaggagct ggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatgtcggtgtgagactatagtt agttgcgacgggtacgtcgttaaaagaatagctatcagtccaggcctgtatgggaagccttcaggcta tgctgctacgatgcaccgcgagggattcttgtgctgcaaagtgacagacacattgaacggggagaggg tctcttttcccgtgtgcacgtatgtgccagctacattgtgtgaccaaatgactggcatactggcaaca gatgtcagtgcggacgacgcgcaaaaactgctggttgggctcaaccagcgtatagtcgtcaacggtcg cacccagagaaacaccaataccatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggt gggcaaaggaatataaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtc atggggtgttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaac catcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacattggaga tcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctctcattaccgcc gaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgtgaagccgaggagttgcg cgcagctctaccacctttggcagctgatgttgaggagcccactctggaagccgatgtagacttgatgt tacaagaggctggggccggctcagtggagacacctcgtggcttgataaaggttaccagctacgatggc gaggacaagatcggctcttacgctgtgctttctccgcaggctgtactcaagagtgaaaaattatcttg catccaccctctcgctgaacaagtcatagtgataacacactctggccgaaaagggcgttatgccgtgg aaccataccatggtaaagtagtggtgccagagggacatgcaatacccgtccaggactttcaagctctg agtgaaagtgccaccattgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccac acatggaggagcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcg aatacctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctcaca ggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgaccagccgctcc ttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctggcatcattaaaagcg cagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgtgcagaaattataagggacgtc aagaaaatgaaagggctggacgtcaatgccagaactgtggactcagtgctcttgaatggatgcaaaca ccccgtagagaccctgtatattgacgaagcttttgcttgtcatgcaggtactctcagagcgctcatag ccattataagacctaaaaaggcagtgctctgcggggatcccaaacagtgcggtttttttaacatgatg tgcctgaaagtgcattttaaccacgagatttgcacacaagtcttccacaaaagcatctctcgccgttg cactaaatctgtgacttcggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccga aagagactaagattgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcact tgtttcagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctgc ctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcctctgtacg cacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgtgtggaaaacacta gccggcgacccatggataaaaacactgactgccaagtaccctgggaatttcactgccacgatagagga gtggcaagcagagcatgatgccatcatgaggcacatcttggagagaccggaccctaccgacgtcttcc agaataaggcaaacgtgtgttgggccaaggctttagtgccggtgctgaagaccgctggcatagacatg accactgaacaatggaacactgtggattattttgaaacggacaaagctcactcagcagagatagtatt gaaccaactatgcgtgaggttctttggactcgatctggactccggtctattttctgcacccactgttc cgttatccattaggaataatcactgggataactccccgtcgcctaacatgtacgggctgaataaagaa gtggtccgtcagctctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatga catgaacactggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgc ctcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagcaaattg aagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggttgactggttgtc agaccggcctgaggctaccttcagagctcggctggatttaggcatcccaggtgatgtgcccaaatatg acataatatttgttaatgtgaggaccccatataaataccatcactatcagcagtgtgaagaccatgcc attaagcttagcatgttgaccaagaaagcttgtctgcatctgaatcccggcggaacctgtgtcagcat aggttatggttacgctgacagggccagcgaaagcatcattggtgctatagcgcggcagttcaagtttt cccgggtatgcaaaccgaaatcctcacttgaagagacggaagttctgtttgtattcattgggtacgat cgcaaggcccgtacgcacaatccttacaagctttcatcaaccttgaccaacatttatacaggttccag actccacgaagccggatgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaag gagtgattataaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataag aaattcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgcagc taaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtgacaaacagt tggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaagtcagtagcgattcca ctgttgtccaccggcatcttttccgggaacaaagatcgactaacccaatcattgaaccatttgctgac agctttagacaccactgatgcagatgtagccatatactgcagggacaagaaatgggaaatgactctca aggaagcagtggctaggagagaagcagtggaggagatatgcatatccgacgactcttcagtgacagaa cctgatgcagagctggtgagggtgcatccgaagagttctttggctggaaggaagggctacagcacaag cgatggcaaaactttctcatatttggaagggaccaagtttcaccaggcggccaaggatatagcagaaa ttaatgccatgtggcccgttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagc atgagcagtattaggtcgaaatgccccgtcgaagagtcggaagcctccacaccacctagcacgctgcc ttgcttgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaaa ttactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatccaatgctcc cagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatctcgtggaaacacc accggtagacgagactccggagccatcggcagagaaccaatccacagaggggacacctgaacaaccac cacttataaccgaggatgagaccaggactagaacgcctgagccgatcatcatcgaagaggaagaagag gatagcataagtttgctgtcagatggcccgacccaccaggtgctgcaagtcgaggcagacattcacgg gccgccctctgtatctagctcatcctggtccattcctcatgcatccgactttgatgtggacagtttat ccatacttgacaccctggagggagctagcgtgaccagcggggcaacgtcagccgagactaactcttac ttcgcaaagagtatggagtttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctcc acatcccgctccgcgcacaagaacaccgtcacttgcacccagcagggcctgctcgagaaccagcctag tttccaccccgccaggcgtgaatagggtgatcactagagaggagctcgaggcgcttaccccgtcacgc actcctagcaggtcggtctcgagaaccagcctggtctccaacccgccaggcgtaaatagggtgattac aagagaggagtttgaggcgttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatctttt cctccgacaccggtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtg ttggagaggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtggagaaca tgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggcagaaggaaaagtg gagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaaccgtgccttttcaagccc caaggtcgcagtggaagcctgtaacgccatgttgaaagagaactttccgactgtggcttcttactgta ttattccagagtacgatgcctatttggacatggttgacggagcttcatgctgcttagacactgccagt ttttgccctgcaaagctgcgcagctttccaaagaaacactcctatttggaacccacaatacgatcggc agtgccttcagcgatccagaacacgctccagaacgtcctggcagctgccacaaaaagaaattgcaatg tcacgcaaatgagagaattgcccgtattggattcggcggcctttaatgtggaatgcttcaagaaatat gcgtgtaataatgaatattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggt aaattacattaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaata tgttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactccagga acaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctagcaacagcgta tctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgcttccgaacattcatacac tgtttgatatgtcggctgaagactttgacgctattatagccgagcacttccagcctggggattgtgtt ctggaaactgacatcgcgtcgtttgataaaagtgaggacgacgccatggctctgaccgcgttaatgat tctggaagacttaggtgtggacgcagagctgttgacgctgattgaggcggctttcggcgaaatttcat caatacatttgcccactaaaactaaatttaaattcggagccatgatgaaatctggaatgttcctcaca ctgtttgtgaacacagtcattaacattgtaatcgcaagcagagtgttgagagaacggctaaccggatc accatgtgcagcattcattggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcag acaggtgcgccacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgcct tatttctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagaccccct aaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacaggagaaggg cattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgtgcaaggcagtagaa tcaaggtatgaaaccgtaggaacttccatcatagttatggccatgactactctagctagcagtgttaa atcattcagctacctgagaggggcccctataactctctacggctaacctgaatggactacgacatagt ctagtcgagtctagtcgacgccaccatggccagccacaagtggctgctgcagatgatcgtgttcctga aaaccatcacaatcgcctactgcctgcatctgcaggacgacacccctctgttcttcggcgccaagcct ctgagcgacgtgtccctgatcatcaccgagccttgcgtgtccagcgtgtacgaggcctgggattatgc cgcccctcccgtgtccaatctgagcgaagccctgagcggcatcgtggtcaagaccaagtgccccgtgc ccgaagtgatcctgtggttcaaggacaagcagatggcctactggaccaacccttacgtgaccctgaag ggcctgacccagagcgtgggcgaggaacacaagagcggcgacatcagagatgccctgctggatgccct gtccggtgtctgggtggacagcacaccctccagcaccaacatccccgagaacggctgtgtgtggggag ccgaccggctgttccagagagtgtgtcagtaatctagacgcggccgcatacagcagcaattggcaagc tgcttacatagaactcgcggcgattggcatgccgccttaaaatttttattttatttttcttttctttt ccgaatcggattttgtttttaatatttcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagggtc ggcatggcatctccacctcctcgcggtccgacctgggcatccgaaggaggacgcacgtccactcggat ggctaagggagagccacgtttaaaccagctccaattcgccctatagtgagtcgtattacgcgcgctca ctggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagc acatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgc gcagcctgaatggcgaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacg cgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttct cgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtg ctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctga tagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactgg aacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctatt ggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatt taggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaat atgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgag tattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacc cagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactg gatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttt taaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgca tacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatg acagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgac aacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttg atcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagca atggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaat agactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggttta ttgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggt aagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagaca gatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatac tttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctc atgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaagg atcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccag cggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcg cagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagcacc gcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtctta ccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgc acacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaag cgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagc gcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctga cttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggc ctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgatt ctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgc agcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggcc gattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaatta atgtgagttagctcactcattaggcaccccaggctttacactttatgctcccggctcgtatgttgtgt ggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcgcgcaat taaccctcactaaagggaacaaaagctgggtaccgggcccacgcgtaatacgactcactatag_11215

VZV VEERep.SGPgH-SGPgL 1 ataggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcacgttgacatc gaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttgaggtagaagccaagca ggtcactgataatgaccatgctaatgccagagcgttttcgcatctggcttcaaaactgatcgaaacgg aggtggacccatccgacacgatccttgacattggaagtgcgcccgcccgcagaatgtattctaagcac aagtatcattgtatctgtccgatgagatgtgcggaagatccggacagattgtataagtatgcaactaa gctgaagaaaaactgtaaggaaataactgataaggaattggacaagaaaatgaaggagctcgccgccg tcatgagcgaccctgacctggaaactgagactatgtgcctccacgacgacgagtcgtgtcgctacgaa gggcaagtcgctgtttaccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaa taagggagttagagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctg gagcatatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggccta tgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatttgaaacc atccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggacttactgaggagct ggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatgtcggtgtgagactatagtt agttgcgacgggtacgtcgttaaaagaatagctatcagtccaggcctgtatgggaagccttcaggcta tgctgctacgatgcaccgcgagggattcttgtgctgcaaagtgacagacacattgaacggggagaggg tctcttttcccgtgtgcacgtatgtgccagctacattgtgtgaccaaatgactggcatactggcaaca gatgtcagtgcggacgacgcgcaaaaactgctggttgggctcaaccagcgtatagtcgtcaacggtcg cacccagagaaacaccaataccatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggt gggcaaaggaatataaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtc atggggtgttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaac catcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacattggaga tcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctctcattaccgcc gaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgtgaagccgaggagttgcg cgcagctctaccacctttggcagctgatgttgaggagcccactctggaagccgatgtagacttgatgt tacaagaggctggggccggctcagtggagacacctcgtggcttgataaaggttaccagctacgatggc gaggacaagatcggctcttacgctgtgctttctccgcaggctgtactcaagagtgaaaaattatcttg catccaccctctcgctgaacaagtcatagtgataacacactctggccgaaaagggcgttatgccgtgg aaccataccatggtaaagtagtggtgccagagggacatgcaatacccgtccaggactttcaagctctg agtgaaagtgccaccattgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccac acatggaggagcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcg aatacctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctcaca ggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgaccagccgctcc ttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctggcatcattaaaagcg cagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgtgcagaaattataagggacgtc aagaaaatgaaagggctggacgtcaatgccagaactgtggactcagtgctcttgaatggatgcaaaca ccccgtagagaccctgtatattgacgaagcttttgcttgtcatgcaggtactctcagagcgctcatag ccattataagacctaaaaaggcagtgctctgcggggatcccaaacagtgcggtttttttaacatgatg tgcctgaaagtgcattttaaccacgagatttgcacacaagtcttccacaaaagcatctctcgccgttg cactaaatctgtgacttcggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccga aagagactaagattgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcact tgtttcagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctgc ctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcctctgtacg cacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgtgtggaaaacacta gccggcgacccatggataaaaacactgactgccaagtaccctgggaatttcactgccacgatagagga gtggcaagcagagcatgatgccatcatgaggcacatcttggagagaccggaccctaccgacgtcttcc agaataaggcaaacgtgtgttgggccaaggctttagtgccggtgctgaagaccgctggcatagacatg accactgaacaatggaacactgtggattattttgaaacggacaaagctcactcagcagagatagtatt gaaccaactatgcgtgaggttctttggactcgatctggactccggtctattttctgcacccactgttc cgttatccattaggaataatcactgggataactccccgtcgcctaacatgtacgggctgaataaagaa gtggtccgtcagctctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatga catgaacactggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgc ctcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagcaaattg aagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggttgactggttgtc agaccggcctgaggctaccttcagagctcggctggatttaggcatcccaggtgatgtgcccaaatatg acataatatttgttaatgtgaggaccccatataaataccatcactatcagcagtgtgaagaccatgcc attaagcttagcatgttgaccaagaaagcttgtctgcatctgaatcccggcggaacctgtgtcagcat aggttatggttacgctgacagggccagcgaaagcatcattggtgctatagcgcggcagttcaagtttt cccgggtatgcaaaccgaaatcctcacttgaagagacggaagttctgtttgtattcattgggtacgat cgcaaggcccgtacgcacaatccttacaagctttcatcaaccttgaccaacatttatacaggttccag actccacgaagccggatgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaag gagtgattataaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataag aaattcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgcagc taaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtgacaaacagt tggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaagtcagtagcgattcca ctgttgtccaccggcatcttttccgggaacaaagatcgactaacccaatcattgaaccatttgctgac agctttagacaccactgatgcagatgtagccatatactgcagggacaagaaatgggaaatgactctca aggaagcagtggctaggagagaagcagtggaggagatatgcatatccgacgactcttcagtgacagaa cctgatgcagagctggtgagggtgcatccgaagagttctttggctggaaggaagggctacagcacaag cgatggcaaaactttctcatatttggaagggaccaagtttcaccaggcggccaaggatatagcagaaa ttaatgccatgtggcccgttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagc atgagcagtattaggtcgaaatgccccgtcgaagagtcggaagcctccacaccacctagcacgctgcc ttgcttgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaaa ttactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatccaatgctcc cagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatctcgtggaaacacc accggtagacgagactccggagccatcggcagagaaccaatccacagaggggacacctgaacaaccac cacttataaccgaggatgagaccaggactagaacgcctgagccgatcatcatcgaagaggaagaagag gatagcataagtttgctgtcagatggcccgacccaccaggtgctgcaagtcgaggcagacattcacgg gccgccctctgtatctagctcatcctggtccattcctcatgcatccgactttgatgtggacagtttat ccatacttgacaccctggagggagctagcgtgaccagcggggcaacgtcagccgagactaactcttac ttcgcaaagagtatggagtttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctcc acatcccgctccgcgcacaagaacaccgtcacttgcacccagcagggcctgctcgagaaccagcctag tttccaccccgccaggcgtgaatagggtgatcactagagaggagctcgaggcgcttaccccgtcacgc actcctagcaggtcggtctcgagaaccagcctggtctccaacccgccaggcgtaaatagggtgattac aagagaggagtttgaggcgttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatctttt cctccgacaccggtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtg ttggagaggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtggagaaca tgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggcagaaggaaaagtg gagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaaccgtgccttttcaagccc caaggtcgcagtggaagcctgtaacgccatgttgaaagagaactttccgactgtggcttcttactgta ttattccagagtacgatgcctatttggacatggttgacggagcttcatgctgcttagacactgccagt ttttgccctgcaaagctgcgcagctttccaaagaaacactcctatttggaacccacaatacgatcggc agtgccttcagcgatccagaacacgctccagaacgtcctggcagctgccacaaaaagaaattgcaatg tcacgcaaatgagagaattgcccgtattggattcggcggcctttaatgtggaatgcttcaagaaatat gcgtgtaataatgaatattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggt aaattacattaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaata tgttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactccagga acaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctagcaacagcgta tctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgcttccgaacattcatacac tgtttgatatgtcggctgaagactttgacgctattatagccgagcacttccagcctggggattgtgtt ctggaaactgacatcgcgtcgtttgataaaagtgaggacgacgccatggctctgaccgcgttaatgat tctggaagacttaggtgtggacgcagagctgttgacgctgattgaggcggctttcggcgaaatttcat caatacatttgcccactaaaactaaatttaaattcggagccatgatgaaatctggaatgttcctcaca ctgtttgtgaacacagtcattaacattgtaatcgcaagcagagtgttgagagaacggctaaccggatc accatgtgcagcattcattggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcag acaggtgcgccacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgcct tatttctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagaccccct aaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacaggagaaggg cattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgtgcaaggcagtagaa tcaaggtatgaaaccgtaggaacttccatcatagttatggccatgactactctagctagcagtgttaa atcattcagctacctgagaggggcccctataactctctacggctaacctgaatggactacgacatagt ctagtcgagtctagtcgacgccaccatgttcgccctggtgctggccgtggtcatcctgcctctgtgga ccaccgccaacaagagctacgtgacccccacacccgccaccagatccatcggacacatgagcgccctg ctgagagagtacagcgaccggaacatgagcctgaagctggaagccttctaccccaccggcttcgacga ggaactgatcaagagcctgcactggggcaacgaccggaagcacgtgttcctcgtgatcgtgaaagtga accccaccacccacgagggcgacgtcggcctggtcatcttccccaagtacctgctgagcccctaccac ttcaaggccgagcacagagcccccttccctgctggccgctttggctttctgagccaccctgtgacccc cgacgtgtcattcttcgacagcagcttcgccccctacctgaccacacagcacctggtggccttcacca ccttcccccccaatcctctcgtgtggcacctggaaagagccgagacagccgccaccgccgaaagacct tttggcgtgtccctgctgcccgccagacctaccgtgcccaagaacaccatcctggaacacaaggccca cttcgccacctgggatgccctggccagacacaccttctttagcgccgaggccatcatcaccaacagca ccctgagaatccacgtgcccctgttcggcagcgtgtggcccatcagatactgggccacaggcagcgtg ctgctgaccagcgatagcggcagagtggaagtgaacatcggcgtgggcttcatgagcagcctgatcag cctgagcagcggcctgcccatcgagctgattgtggtgccccacaccgtgaagctgaacgccgtgacca gcgacaccacctggttccagctgaacccccctggccctgatcctggccctagttacagagtgtacctg ctgggcagaggcctggacatgaacttcagcaagcacgccaccgtggacatctgcgcctaccctgagga aagcctggactacagataccacctgagcatggcccacaccgaggccctgagaatgaccaccaaggccg accagcacgacatcaacgaggaaagctactaccacattgccgccagaatcgccaccagcatcttcgcc ctgagcgagatgggccggaccaccgagtactttctgctggacgagatcgtggacgtgcagtaccagct gaagttcctgaactacatcctgatgcggatcggcgctggcgcccaccctaataccatcagcggcacca gcgacctgatcttcgccgatcctagccagctgcacgacgagctgagcctgctgttcggccaggtcaaa cccgccaacgtggactacttcatcagctacgacgaggcccgggaccagctgaaaacagcctacgccct gtccagaggccaggatcatgtgaacgccctgtccctggccaggcgcgtgatcatgagcatctacaagg gcctgctggtcaagcagaacctgaacgccaccgagcggcaggccctgttcttcgccagcatgatcctg ctgaacttcagagagggcctggaaaacagcagccgggtgctggatggcagaaccaccctgctgctgat gaccagcatgtgcacagccgcccatgccacacaggccgccctgaatatccaggaaggcctggcttacc tgaaccccagcaagcacatgttcaccatccccaacgtgtacagcccctgcatgggcagcctgagaacc gacctgaccgaagagatccacgtgatgaacctgctgtccgccatccccaccagacccggactgaatga ggtgctgcacacccagctggacgagtccgagatcttcgacgccgccttcaagaccatgatgatcttta ccacctggaccgccaaggacctgcacatcctgcacacacacgtgcccgaggtgttcacatgccaagat gccgccgctcggaacggcgagtatgtgctgattctgcctgccgtgcagggccacagctacgtgatcac ccggaacaagccccagcggggcctggtgtatagcctggctgacgtggacgtgtacaaccccatcagcg tggtgtacctgagcaaggatacctgcgtgtccgagcacggcgtgatcgaaacagtggccctgccccac cccgacaacctgaaagagtgcctgtactgcggctccgtgttcctgcggtatctgaccaccggcgccat catggacatcatcatcatcgacagcaaggacaccgagagacagctggccgccatgggcaacagcacca tcccccccttcaaccccgacatgcacggcgacgatagcaaggccgtgctgctgttccccaacggcacc gtggtcacactgctgggcttcgagcggagacaggccatcagaatgagcggccagtacctgggcgcctc tctgggtggtgcctttctggccgtcgtgggctttggcatcatcggctggatgctgtgcggcaacagca gactgcgcgagtacaacaagatccccctgacctaatctagacgtcgcgaccacccaggatccgcctat aactctctacggctaacctgaatggactacgacatagtctagtcgacgccaccatggccagccacaag tggctgctgcagatgatcgtgttcctgaaaaccatcacaatcgcctactgcctgcatctgcaggacga cacccctctgttcttcggcgccaagcctctgagcgacgtgtccctgatcatcaccgagccttgcgtgt ccagcgtgtacgaggcctgggattatgccgcccctcccgtgtccaatctgagcgaagccctgagcggc atcgtggtcaagaccaagtgccccgtgcccgaagtgatcctgtggttcaaggacaagcagatggccta ctggaccaacccttacgtgaccctgaagggcctgacccagagcgtgggcgaggaacacaagagcggcg acatcagagatgccctgctggatgccctgtccggtgtctgggtggacagcacaccctccagcaccaac atccccgagaacggctgtgtgtggggagccgaccggctgttccagagagtgtgtcagtaatctagacg cggccgcatacagcagcaattggcaagctgcttacatagaactcgcggcgattggcatgccgccttaa aatttttattttatttttcttttcttttccgaatcggattttgtttttaatatttcaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaagggtcggcatggcatctccacctcctcgcggtccgacctgggcat ccgaaggaggacgcacgtccactcggatggctaagggagagccacgtttaaaccagctccaattcgcc ctatagtgagtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctg gcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcc cgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcgc attaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccg ctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgg gggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtga tggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttct ttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgattta taagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaa ttttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctat ttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttc aataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcg gcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagtt gggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccg aagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgac gccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagt cacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtg ataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcac aacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacga cgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactac ttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctg cgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcgg tatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtc aggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaa ctgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggat ctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgag cgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgc ttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttt tccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttag gccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggct gctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgca gcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactga gatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccg gtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatcttta tagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcgga gcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcac atgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgatac cgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatac gcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactgg aaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttaca ctttatgctcccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagct atgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctgggtaccgggccc acgcgtaatacgactcactatag_13827

VZV VEERep.SGPgE 1 ataggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcacgttgacatc gaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttgaggtagaagccaagca ggtcactgataatgaccatgctaatgccagagcgttttcgcatctggcttcaaaactgatcgaaacgg aggtggacccatccgacacgatccttgacattggaagtgcgcccgcccgcagaatgtattctaagcac aagtatcattgtatctgtccgatgagatgtgcggaagatccggacagattgtataagtatgcaactaa gctgaagaaaaactgtaaggaaataactgataaggaattggacaagaaaatgaaggagctcgccgccg tcatgagcgaccctgacctggaaactgagactatgtgcctccacgacgacgagtcgtgtcgctacgaa gggcaagtcgctgtttaccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaa taagggagttagagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctg gagcatatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggccta tgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatttgaaacc atccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggacttactgaggagct ggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatgtcggtgtgagactatagtt agttgcgacgggtacgtcgttaaaagaatagctatcagtccaggcctgtatgggaagccttcaggcta tgctgctacgatgcaccgcgagggattcttgtgctgcaaagtgacagacacattgaacggggagaggg tctcttttcccgtgtgcacgtatgtgccagctacattgtgtgaccaaatgactggcatactggcaaca gatgtcagtgcggacgacgcgcaaaaactgctggttgggctcaaccagcgtatagtcgtcaacggtcg cacccagagaaacaccaataccatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggt gggcaaaggaatataaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtc atggggtgttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaac catcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacattggaga tcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctctcattaccgcc gaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgtgaagccgaggagttgcg cgcagctctaccacctttggcagctgatgttgaggagcccactctggaagccgatgtagacttgatgt tacaagaggctggggccggctcagtggagacacctcgtggcttgataaaggttaccagctacgatggc gaggacaagatcggctcttacgctgtgctttctccgcaggctgtactcaagagtgaaaaattatcttg catccaccctctcgctgaacaagtcatagtgataacacactctggccgaaaagggcgttatgccgtgg aaccataccatggtaaagtagtggtgccagagggacatgcaatacccgtccaggactttcaagctctg agtgaaagtgccaccattgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccac acatggaggagcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcg aatacctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctcaca ggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgaccagccgctcc ttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctggcatcattaaaagcg cagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgtgcagaaattataagggacgtc aagaaaatgaaagggctggacgtcaatgccagaactgtggactcagtgctcttgaatggatgcaaaca ccccgtagagaccctgtatattgacgaagcttttgcttgtcatgcaggtactctcagagcgctcatag ccattataagacctaaaaaggcagtgctctgcggggatcccaaacagtgcggtttttttaacatgatg tgcctgaaagtgcattttaaccacgagatttgcacacaagtcttccacaaaagcatctctcgccgttg cactaaatctgtgacttcggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccga aagagactaagattgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcact tgtttcagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctgc ctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcctctgtacg cacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgtgtggaaaacacta gccggcgacccatggataaaaacactgactgccaagtaccctgggaatttcactgccacgatagagga gtggcaagcagagcatgatgccatcatgaggcacatcttggagagaccggaccctaccgacgtcttcc agaataaggcaaacgtgtgttgggccaaggctttagtgccggtgctgaagaccgctggcatagacatg accactgaacaatggaacactgtggattattttgaaacggacaaagctcactcagcagagatagtatt gaaccaactatgcgtgaggttctttggactcgatctggactccggtctattttctgcacccactgttc cgttatccattaggaataatcactgggataactccccgtcgcctaacatgtacgggctgaataaagaa gtggtccgtcagctctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatga catgaacactggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgc ctcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagcaaattg aagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggttgactggttgtc agaccggcctgaggctaccttcagagctcggctggatttaggcatcccaggtgatgtgcccaaatatg acataatatttgttaatgtgaggaccccatataaataccatcactatcagcagtgtgaagaccatgcc attaagcttagcatgttgaccaagaaagcttgtctgcatctgaatcccggcggaacctgtgtcagcat aggttatggttacgctgacagggccagcgaaagcatcattggtgctatagcgcggcagttcaagtttt cccgggtatgcaaaccgaaatcctcacttgaagagacggaagttctgtttgtattcattgggtacgat cgcaaggcccgtacgcacaatccttacaagctttcatcaaccttgaccaacatttatacaggttccag actccacgaagccggatgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaag gagtgattataaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataag aaattcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgcagc taaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtgacaaacagt tggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaagtcagtagcgattcca ctgttgtccaccggcatcttttccgggaacaaagatcgactaacccaatcattgaaccatttgctgac agctttagacaccactgatgcagatgtagccatatactgcagggacaagaaatgggaaatgactctca aggaagcagtggctaggagagaagcagtggaggagatatgcatatccgacgactcttcagtgacagaa cctgatgcagagctggtgagggtgcatccgaagagttctttggctggaaggaagggctacagcacaag cgatggcaaaactttctcatatttggaagggaccaagtttcaccaggcggccaaggatatagcagaaa ttaatgccatgtggcccgttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagc atgagcagtattaggtcgaaatgccccgtcgaagagtcggaagcctccacaccacctagcacgctgcc ttgcttgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaaa ttactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatccaatgctcc cagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatctcgtggaaacacc accggtagacgagactccggagccatcggcagagaaccaatccacagaggggacacctgaacaaccac cacttataaccgaggatgagaccaggactagaacgcctgagccgatcatcatcgaagaggaagaagag gatagcataagtttgctgtcagatggcccgacccaccaggtgctgcaagtcgaggcagacattcacgg gccgccctctgtatctagctcatcctggtccattcctcatgcatccgactttgatgtggacagtttat ccatacttgacaccctggagggagctagcgtgaccagcggggcaacgtcagccgagactaactcttac ttcgcaaagagtatggagtttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctcc acatcccgctccgcgcacaagaacaccgtcacttgcacccagcagggcctgctcgagaaccagcctag tttccaccccgccaggcgtgaatagggtgatcactagagaggagctcgaggcgcttaccccgtcacgc actcctagcaggtcggtctcgagaaccagcctggtctccaacccgccaggcgtaaatagggtgattac aagagaggagtttgaggcgttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatctttt cctccgacaccggtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtg ttggagaggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtggagaaca tgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggcagaaggaaaagtg gagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaaccgtgccttttcaagccc caaggtcgcagtggaagcctgtaacgccatgttgaaagagaactttccgactgtggcttcttactgta ttattccagagtacgatgcctatttggacatggttgacggagcttcatgctgcttagacactgccagt ttttgccctgcaaagctgcgcagctttccaaagaaacactcctatttggaacccacaatacgatcggc agtgccttcagcgatccagaacacgctccagaacgtcctggcagctgccacaaaaagaaattgcaatg tcacgcaaatgagagaattgcccgtattggattcggcggcctttaatgtggaatgcttcaagaaatat gcgtgtaataatgaatattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggt aaattacattaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaata tgttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactccagga acaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctagcaacagcgta tctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgcttccgaacattcatacac tgtttgatatgtcggctgaagactttgacgctattatagccgagcacttccagcctggggattgtgtt ctggaaactgacatcgcgtcgtttgataaaagtgaggacgacgccatggctctgaccgcgttaatgat tctggaagacttaggtgtggacgcagagctgttgacgctgattgaggcggctttcggcgaaatttcat caatacatttgcccactaaaactaaatttaaattcggagccatgatgaaatctggaatgttcctcaca ctgtttgtgaacacagtcattaacattgtaatcgcaagcagagtgttgagagaacggctaaccggatc accatgtgcagcattcattggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcag acaggtgcgccacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgcct tatttctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagaccccct aaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacaggagaaggg cattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgtgcaaggcagtagaa tcaaggtatgaaaccgtaggaacttccatcatagttatggccatgactactctagctagcagtgttaa atcattcagctacctgagaggggcccctataactctctacggctaacctgaatggactacgacatagt ctagtcgagtctagtcgacgccaccatgggcaccgtgaacaagcctgtcgtgggcgtgctgatgggct tcggcatcatcaccggcaccctgagaatcaccaaccctgtgcgggccagcgtgctgagatacgacgac ttccacatcgacgaggacaagctggacaccaacagcgtgtacgagccctactaccacagcgaccacgc cgagagcagctgggtcaacagaggcgagagcagccggaaggcctacgaccacaacagcccctacatct ggccccggaacgactacgacggcttcctggaaaacgcccacgagcaccacggcgtgtacaatcagggc agaggcatcgacagcggcgagagactgatgcagcccacacagatgagcgcccaggaagatctgggcga cgacacaggcatccacgtgatccccaccctgaacggcgacgaccggcacaagatcgtgaacgtggacc agcggcagtacggcgacgtgttcaagggcgacctgaaccctaagccccagggccagagactgatcgag gtgtccgtggaagagaaccaccccttcaccctgagagcccccatccagagaatctacggcgtgcggta taccgagacttggagcttcctgcccagcctgacctgtacaggcgacgccgctcctgccatccagcaca tctgcctgaagcacaccacctgtttccaggacgtggtggtggacgtggactgcgccgagaacaccaaa gaggaccagctggccgagatcagctaccggttccagggcaagaaagaggccgaccagccctggatcgt ggtcaataccagcaccctgttcgacgagctggaactggacccccccgagattgaacccggcgtgctga aggtgctgcggaccgagaagcagtacctgggcgtgtacatctggaacatgcggggctccgacggcacc tctacctacgccaccttcctggtcacatggaagggcgacgagaaaacccggaaccctacccctgccgt gacccctcagcctagaggcgccgagttccatatgtggaattaccactcccacgtgttcagcgtgggcg acaccttcagcctggccatgcatctgcagtacaagatccacgaggcccccttcgacctgctgctggaa tggctgtacgtgcccatcgaccctacctgccagcccatgcggctgtacagcacctgtctgtaccaccc caacgcccctcagtgcctgagccacatgaacagcggctgcaccttcaccagccctcacctggctcaga gggtggccagcaccgtgtaccagaattgcgagcacgccgacaactacaccgcctactgcctgggcatc agccacatggaacccagcttcggcctgatcctgcacgatggcggcaccaccctgaagttcgtggacac acccgagagcctgagcggcctgtacgtgttcgtggtgtacttcaacggccacgtggaagccgtggcct acaccgtggtgtccaccgtggaccacttcgtgaacgccatcgaggaaagaggcttcccacccacagcc ggacagcctccagccaccaccaagcccaaagaaatcacccccgtgaaccccggcaccagccccctgct gagatatgctgcttggacaggcggactggccgctgtggtgctgctgtgcctggtcatcttcctgatct gcaccgccaagcggatgagagtgaaggcctaccgggtggacaagtccccctacaaccagagcatgtac tacgccggcctgcccgtggacgatttcgaggatagcgagagcaccgacaccgaggaagagttcggcaa cgccatcggcggatctcacggcggcagcagctacaccgtgtacatcgacaagaccagataatctagac gcggccgcatacagcagcaattggcaagctgcttacatagaactcgcggcgattggcatgccgcctta aaatttttattttatttttcttttcttttccgaatcggattttgtttttaatatttcaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaagggtcggcatggcatctccacctcctcgcggtccgacctgggca tccgaaggaggacgcacgtccactcggatggctaagggagagccacgtttaaaccagctccaattcgc cctatagtgagtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccct ggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggc ccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcg cattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgccc gctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcg ggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtg atggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttc tttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgattt ataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcga attttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaaccccta tttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgctt caataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgc ggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagt tgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgcccc gaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattga cgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccag tcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagt gataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgca caacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacg acgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaacta cttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttct gcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcg gtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagt caggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggta actgtcagaccaagtttactcatatatactttagattgatttaaaactteatttttaatttaaaagga tctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactga gcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctg cttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactcttt ttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagtta ggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggc tgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgc agcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactg agatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatcc ggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatcttt atagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcgg agcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctca catgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgata ccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaata cgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactg gaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttac actttatgctcccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagc tatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctgggtaccgggcc cacgcgtaatacgactcactatag_12604

VZV VEERep.SGPgI 1 ataggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcacgttgacatc gaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttgaggtagaagccaagca ggtcactgataatgaccatgctaatgccagagcgttttcgcatctggcttcaaaactgatcgaaacgg aggtggacccatccgacacgatccttgacattggaagtgcgcccgcccgcagaatgtattctaagcac aagtatcattgtatctgtccgatgagatgtgcggaagatccggacagattgtataagtatgcaactaa gctgaagaaaaactgtaaggaaataactgataaggaattggacaagaaaatgaaggagctcgccgccg tcatgagcgaccctgacctggaaactgagactatgtgcctccacgacgacgagtcgtgtcgctacgaa gggcaagtcgctgtttaccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaa taagggagttagagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctg gagcatatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggccta tgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatttgaaacc atccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggacttactgaggagct ggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatgtcggtgtgagactatagtt agttgcgacgggtacgtcgttaaaagaatagctatcagtccaggcctgtatgggaagccttcaggcta tgctgctacgatgcaccgcgagggattcttgtgctgcaaagtgacagacacattgaacggggagaggg tctcttttcccgtgtgcacgtatgtgccagctacattgtgtgaccaaatgactggcatactggcaaca gatgtcagtgcggacgacgcgcaaaaactgctggttgggctcaaccagcgtatagtcgtcaacggtcg cacccagagaaacaccaataccatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggt gggcaaaggaatataaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtc atggggtgttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaac catcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacattggaga tcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctctcattaccgcc gaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgtgaagccgaggagttgcg cgcagctctaccacctttggcagctgatgttgaggagcccactctggaagccgatgtagacttgatgt tacaagaggctggggccggctcagtggagacacctcgtggcttgataaaggttaccagctacgatggc gaggacaagatcggctcttacgctgtgctttctccgcaggctgtactcaagagtgaaaaattatcttg catccaccctctcgctgaacaagtcatagtgataacacactctggccgaaaagggcgttatgccgtgg aaccataccatggtaaagtagtggtgccagagggacatgcaatacccgtccaggactttcaagctctg agtgaaagtgccaccattgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccac acatggaggagcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcg aatacctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctcaca ggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgaccagccgctcc ttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctggcatcattaaaagcg cagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgtgcagaaattataagggacgtc aagaaaatgaaagggctggacgtcaatgccagaactgtggactcagtgctcttgaatggatgcaaaca ccccgtagagaccctgtatattgacgaagcttttgcttgtcatgcaggtactctcagagcgctcatag ccattataagacctaaaaaggcagtgctctgcggggatcccaaacagtgcggtttttttaacatgatg tgcctgaaagtgcattttaaccacgagatttgcacacaagtcttccacaaaagcatctctcgccgttg cactaaatctgtgacttcggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccga aagagactaagattgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcact tgtttcagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctgc ctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcctctgtacg cacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgtgtggaaaacacta gccggcgacccatggataaaaacactgactgccaagtaccctgggaatttcactgccacgatagagga gtggcaagcagagcatgatgccatcatgaggcacatcttggagagaccggaccctaccgacgtcttcc agaataaggcaaacgtgtgttgggccaaggctttagtgccggtgctgaagaccgctggcatagacatg accactgaacaatggaacactgtggattattttgaaacggacaaagctcactcagcagagatagtatt gaaccaactatgcgtgaggttctttggactcgatctggactccggtctattttctgcacccactgttc cgttatccattaggaataatcactgggataactccccgtcgcctaacatgtacgggctgaataaagaa gtggtccgtcagctctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatga catgaacactggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgc ctcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagcaaattg aagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggttgactggttgtc agaccggcctgaggctaccttcagagctcggctggatttaggcatcccaggtgatgtgcccaaatatg acataatatttgttaatgtgaggaccccatataaataccatcactatcagcagtgtgaagaccatgcc attaagcttagcatgttgaccaagaaagcttgtctgcatctgaatcccggcggaacctgtgtcagcat aggttatggttacgctgacagggccagcgaaagcatcattggtgctatagcgcggcagttcaagtttt cccgggtatgcaaaccgaaatcctcacttgaagagacggaagttctgtttgtattcattgggtacgat cgcaaggcccgtacgcacaatccttacaagctttcatcaaccttgaccaacatttatacaggttccag actccacgaagccggatgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaag gagtgattataaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataag aaattcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgcagc taaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtgacaaacagt tggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaagtcagtagcgattcca ctgttgtccaccggcatcttttccgggaacaaagatcgactaacccaatcattgaaccatttgctgac agctttagacaccactgatgcagatgtagccatatactgcagggacaagaaatgggaaatgactctca aggaagcagtggctaggagagaagcagtggaggagatatgcatatccgacgactcttcagtgacagaa cctgatgcagagctggtgagggtgcatccgaagagttctttggctggaaggaagggctacagcacaag cgatggcaaaactttctcatatttggaagggaccaagtttcaccaggcggccaaggatatagcagaaa ttaatgccatgtggcccgttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagc atgagcagtattaggtcgaaatgccccgtcgaagagtcggaagcctccacaccacctagcacgctgcc ttgcttgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaaa ttactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatccaatgctcc cagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatctcgtggaaacacc accggtagacgagactccggagccatcggcagagaaccaatccacagaggggacacctgaacaaccac cacttataaccgaggatgagaccaggactagaacgcctgagccgatcatcatcgaagaggaagaagag gatagcataagtttgctgtcagatggcccgacccaccaggtgctgcaagtcgaggcagacattcacgg gccgccctctgtatctagctcatcctggtccattcctcatgcatccgactttgatgtggacagtttat ccatacttgacaccctggagggagctagcgtgaccagcggggcaacgtcagccgagactaactcttac ttcgcaaagagtatggagtttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctcc acatcccgctccgcgcacaagaacaccgtcacttgcacccagcagggcctgctcgagaaccagcctag tttccaccccgccaggcgtgaatagggtgatcactagagaggagctcgaggcgcttaccccgtcacgc actcctagcaggtcggtctcgagaaccagcctggtctccaacccgccaggcgtaaatagggtgattac aagagaggagtttgaggcgttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatctttt cctccgacaccggtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtg ttggagaggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtggagaaca tgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggcagaaggaaaagtg gagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaaccgtgccttttcaagccc caaggtcgcagtggaagcctgtaacgccatgttgaaagagaactttccgactgtggcttcttactgta ttattccagagtacgatgcctatttggacatggttgacggagcttcatgctgcttagacactgccagt ttttgccctgcaaagctgcgcagctttccaaagaaacactcctatttggaacccacaatacgatcggc agtgccttcagcgatccagaacacgctccagaacgtcctggcagctgccacaaaaagaaattgcaatg tcacgcaaatgagagaattgcccgtattggattcggcggcctttaatgtggaatgcttcaagaaatat gcgtgtaataatgaatattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggt aaattacattaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaata tgttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactccagga acaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctagcaacagcgta tctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgcttccgaacattcatacac tgtttgatatgtcggctgaagactttgacgctattatagccgagcacttccagcctggggattgtgtt ctggaaactgacatcgcgtcgtttgataaaagtgaggacgacgccatggctctgaccgcgttaatgat tctggaagacttaggtgtggacgcagagctgttgacgctgattgaggcggctttcggcgaaatttcat caatacatttgcccactaaaactaaatttaaattcggagccatgatgaaatctggaatgttcctcaca ctgtttgtgaacacagtcattaacattgtaatcgcaagcagagtgttgagagaacggctaaccggatc accatgtgcagcattcattggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcag acaggtgcgccacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgcct tatttctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagaccccct aaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacaggagaaggg cattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgtgcaaggcagtagaa tcaaggtatgaaaccgtaggaacttccatcatagttatggccatgactactctagctagcagtgttaa atcattcagctacctgagaggggcccctataactctctacggctaacctgaatggactacgacatagt ctagtcgagtctagtcgacgccaccatgtttctgatccagtgcctgatcagcgccgtgatcttctata ttcaagtcacaaacgccctgatctttaagggcgaccacgtgtcactgcaggtcaacagcagcctgacc agcatcctgatccccatgcagaacgacaattacaccgagatcaagggccagctggtgttcatcggcga gcagctgcccaccggcaccaattacagcggcaccctggaactgctgtacgccgataccgtggccttct gcttcagaagcgtgcaggtcatcagatacgacggctgcccccggatcagaaccagcgcctteatcage tgccggtacaagcacagctggcactacggcaacagcaccgaccggatcagcaccgaacctgatgccgg cgtgatgctgaagatcaccaagcccggcatcaacgacgccggcgtgtacgtgctgctcgtgcggctgg atcacagcagaagcaccgacggcttcatcctgggcgtgaacgtgtacaccgccggcagccaccacaac atccacggcgtgatctacaccagccccagcctgcagaacggctacagcaccagagccctgttccagca ggccagactgtgcgatctgcccgccacacctaagggcagcggcacaagcctgtttcagcacatgctgg acctgagagccggcaagagcctggaagataacccctggctgcacgaggacgtggtcaccaccgagaca aagagcgtggtcaaagagggcatcgagaaccacgtgtaccccaccgacatgagcaccctgcccgagaa gtccctgaacgacccccctgagaacctgctgatcatcatccccatcgtggccagcgtgatgatcctga ccgccatggtcatcgtgatcgtgatcagcgtgaagcggcggagaatcaagaagcaccccatctaccgg cccaacaccaagaccagacggggcatccagaacgccacccctgagtccgacgtgatgctggaagccgc cattgcccagctggccaccatcagagaggaaagcccccctcacagcgtcgtgaaccccttcgtgaagt aatctagacgcggccgcatacagcagcaattggcaagctgcttacatagaactcgcggcgattggcat gccgccttaaaatttttattttatttttcttttcttttccgaatcggattttgtttttaatatttcaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagggtcggcatggcatctccacctcctcgcggtccg acctgggcatccgaaggaggacgcacgtccactcggatggctaagggagagccacgtttaaaccagct ccaattcgccctatagtgagtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgg gaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatag cgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccct gtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgcc ctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagc tctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttg attagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggag tccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattc ttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaat ttaacgcgaattttaacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcg gaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctga taaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcc cttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctg aagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagt tttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatc ccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagt actcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccata accatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgc ttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagcca taccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaact ggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcagg accacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtg ggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacg acggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaa gcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaat ttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcg ttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgt aatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctac caactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtag ccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgtt accagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccgg ataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctac accgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcgga caggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcct ggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtca ggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggcc ttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagt gagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagag cgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtt tcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcacccc aggctttacactttatgctcccggctcgtatgttgtgtggaattgtgagcggataacaatttcacaca ggaaacagctatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggg taccgggcccacgcgtaatacgactcactatag_11797

VZV VEErep.SGPgE-SGPgI 1 ataggcggcgcatgagagaagcccagaccaattacctacccaaaatggagaaagttcacgttgacatc gaggaagacagcccattcctcagagctttgcagcggagcttcccgcagtttgaggtagaagccaagca ggtcactgataatgaccatgctaatgccagagcgttttcgcatctggcttcaaaactgatcgaaacgg aggtggacccatccgacacgatccttgacattggaagtgcgcccgcccgcagaatgtattctaagcac aagtatcattgtatctgtccgatgagatgtgcggaagatccggacagattgtataagtatgcaactaa gctgaagaaaaactgtaaggaaataactgataaggaattggacaagaaaatgaaggagctcgccgccg tcatgagcgaccctgacctggaaactgagactatgtgcctccacgacgacgagtcgtgtcgctacgaa gggcaagtcgctgtttaccaggatgtatacgcggttgacggaccgacaagtctctatcaccaagccaa taagggagttagagtcgcctactggataggctttgacaccaccccttttatgtttaagaacttggctg gagcatatccatcatactctaccaactgggccgacgaaaccgtgttaacggctcgtaacataggccta tgcagctctgacgttatggagcggtcacgtagagggatgtccattcttagaaagaagtatttgaaacc atccaacaatgttctattctctgttggctcgaccatctaccacgagaagagggacttactgaggagct ggcacctgccgtctgtatttcacttacgtggcaagcaaaattacacatgtcggtgtgagactatagtt agttgcgacgggtacgtcgttaaaagaatagctatcagtccaggcctgtatgggaagccttcaggcta tgctgctacgatgcaccgcgagggattcttgtgctgcaaagtgacagacacattgaacggggagaggg tctcttttcccgtgtgcacgtatgtgccagctacattgtgtgaccaaatgactggcatactggcaaca gatgtcagtgcggacgacgcgcaaaaactgctggttgggctcaaccagcgtatagtcgtcaacggtcg cacccagagaaacaccaataccatgaaaaattaccttttgcccgtagtggcccaggcatttgctaggt gggcaaaggaatataaggaagatcaagaagatgaaaggccactaggactacgagatagacagttagtc atggggtgttgttgggcttttagaaggcacaagataacatctatttataagcgcccggatacccaaac catcatcaaagtgaacagcgatttccactcattcgtgctgcccaggataggcagtaacacattggaga tcgggctgagaacaagaatcaggaaaatgttagaggagcacaaggagccgtcacctctcattaccgcc gaggacgtacaagaagctaagtgcgcagccgatgaggctaaggaggtgcgtgaagccgaggagttgcg cgcagctctaccacctttggcagctgatgttgaggagcccactctggaagccgatgtagacttgatgt tacaagaggctggggccggctcagtggagacacctcgtggcttgataaaggttaccagctacgatggc gaggacaagatcggctcttacgctgtgctttctccgcaggctgtactcaagagtgaaaaattatcttg catccaccctctcgctgaacaagtcatagtgataacacactctggccgaaaagggcgttatgccgtgg aaccataccatggtaaagtagtggtgccagagggacatgcaatacccgtccaggactttcaagctctg agtgaaagtgccaccattgtgtacaacgaacgtgagttcgtaaacaggtacctgcaccatattgccac acatggaggagcgctgaacactgatgaagaatattacaaaactgtcaagcccagcgagcacgacggcg aatacctgtacgacatcgacaggaaacagtgcgtcaagaaagaactagtcactgggctagggctcaca ggcgagctggtggatcctcccttccatgaattcgcctacgagagtctgagaacacgaccagccgctcc ttaccaagtaccaaccataggggtgtatggcgtgccaggatcaggcaagtctggcatcattaaaagcg cagtcaccaaaaaagatctagtggtgagcgccaagaaagaaaactgtgcagaaattataagggacgtc aagaaaatgaaagggctggacgtcaatgccagaactgtggactcagtgctcttgaatggatgcaaaca ccccgtagagaccctgtatattgacgaagcttttgcttgtcatgcaggtactctcagagcgctcatag ccattataagacctaaaaaggcagtgctctgcggggatcccaaacagtgcggtttttttaacatgatg tgcctgaaagtgcattttaaccacgagatttgcacacaagtcttccacaaaagcatctctcgccgttg cactaaatctgtgacttcggtcgtctcaaccttgttttacgacaaaaaaatgagaacgacgaatccga aagagactaagattgtgattgacactaccggcagtaccaaacctaagcaggacgatctcattctcact tgtttcagagggtgggtgaagcagttgcaaatagattacaaaggcaacgaaataatgacggcagctgc ctctcaagggctgacccgtaaaggtgtgtatgccgttcggtacaaggtgaatgaaaatcctctgtacg cacccacctcagaacatgtgaacgtcctactgacccgcacggaggaccgcatcgtgtggaaaacacta gccggcgacccatggataaaaacactgactgccaagtaccctgggaatttcactgccacgatagagga gtggcaagcagagcatgatgccatcatgaggcacatcttggagagaccggaccctaccgacgtcttcc agaataaggcaaacgtgtgttgggccaaggctttagtgccggtgctgaagaccgctggcatagacatg accactgaacaatggaacactgtggattattttgaaacggacaaagctcactcagcagagatagtatt gaaccaactatgcgtgaggttctttggactcgatctggactccggtctattttctgcacccactgttc cgttatccattaggaataatcactgggataactccccgtcgcctaacatgtacgggctgaataaagaa gtggtccgtcagctctctcgcaggtacccacaactgcctcgggcagttgccactggaagagtctatga catgaacactggtacactgcgcaattatgatccgcgcataaacctagtacctgtaaacagaagactgc ctcatgctttagtcctccaccataatgaacacccacagagtgacttttcttcattcgtcagcaaattg aagggcagaactgtcctggtggtcggggaaaagttgtccgtcccaggcaaaatggttgactggttgtc agaccggcctgaggctaccttcagagctcggctggatttaggcatcccaggtgatgtgcccaaatatg acataatatttgttaatgtgaggaccccatataaataccatcactatcagcagtgtgaagaccatgcc attaagcttagcatgttgaccaagaaagcttgtctgcatctgaatcccggcggaacctgtgtcagcat aggttatggttacgctgacagggccagcgaaagcatcattggtgctatagcgcggcagttcaagtttt cccgggtatgcaaaccgaaatcctcacttgaagagacggaagttctgtttgtattcattgggtacgat cgcaaggcccgtacgcacaatccttacaagctttcatcaaccttgaccaacatttatacaggttccag actccacgaagccggatgtgcaccctcatatcatgtggtgcgaggggatattgccacggccaccgaag gagtgattataaatgctgctaacagcaaaggacaacctggcggaggggtgtgcggagcgctgtataag aaattcccggaaagcttcgatttacagccgatcgaagtaggaaaagcgcgactggtcaaaggtgcagc taaacatatcattcatgccgtaggaccaaacttcaacaaagtttcggaggttgaaggtgacaaacagt tggcagaggcttatgagtccatcgctaagattgtcaacgataacaattacaagtcagtagcgattcca ctgttgtccaccggcatcttttccgggaacaaagatcgactaacccaatcattgaaccatttgctgac agctttagacaccactgatgcagatgtagccatatactgcagggacaagaaatgggaaatgactctca aggaagcagtggctaggagagaagcagtggaggagatatgcatatccgacgactcttcagtgacagaa cctgatgcagagctggtgagggtgcatccgaagagttctttggctggaaggaagggctacagcacaag cgatggcaaaactttctcatatttggaagggaccaagtttcaccaggcggccaaggatatagcagaaa ttaatgccatgtggcccgttgcaacggaggccaatgagcaggtatgcatgtatatcctcggagaaagc atgagcagtattaggtcgaaatgccccgtcgaagagtcggaagcctccacaccacctagcacgctgcc ttgcttgtgcatccatgccatgactccagaaagagtacagcgcctaaaagcctcacgtccagaacaaa ttactgtgtgctcatcctttccattgccgaagtatagaatcactggtgtgcagaagatccaatgctcc cagcctatattgttctcaccgaaagtgcctgcgtatattcatccaaggaagtatctcgtggaaacacc accggtagacgagactccggagccatcggcagagaaccaatccacagaggggacacctgaacaaccac cacttataaccgaggatgagaccaggactagaacgcctgagccgatcatcatcgaagaggaagaagag gatagcataagtttgctgtcagatggcccgacccaccaggtgctgcaagtcgaggcagacattcacgg gccgccctctgtatctagctcatcctggtccattcctcatgcatccgactttgatgtggacagtttat ccatacttgacaccctggagggagctagcgtgaccagcggggcaacgtcagccgagactaactcttac ttcgcaaagagtatggagtttctggcgcgaccggtgcctgcgcctcgaacagtattcaggaaccctcc acatcccgctccgcgcacaagaacaccgtcacttgcacccagcagggcctgctcgagaaccagcctag tttccaccccgccaggcgtgaatagggtgatcactagagaggagctcgaggcgcttaccccgtcacgc actcctagcaggtcggtctcgagaaccagcctggtctccaacccgccaggcgtaaatagggtgattac aagagaggagtttgaggcgttcgtagcacaacaacaatgacggtttgatgcgggtgcatacatctttt cctccgacaccggtcaagggcatttacaacaaaaatcagtaaggcaaacggtgctatccgaagtggtg ttggagaggaccgaattggagatttcgtatgccccgcgcctcgaccaagaaaaagaagaattactacg caagaaattacagttaaatcccacacctgctaacagaagcagataccagtccaggaaggtggagaaca tgaaagccataacagctagacgtattctgcaaggcctagggcattatttgaaggcagaaggaaaagtg gagtgctaccgaaccctgcatcctgttcctttgtattcatctagtgtgaaccgtgccttttcaagccc caaggtcgcagtggaagcctgtaacgccatgttgaaagagaactttccgactgtggcttcttactgta ttattccagagtacgatgcctatttggacatggttgacggagcttcatgctgcttagacactgccagt ttttgccctgcaaagctgcgcagctttccaaagaaacactcctatttggaacccacaatacgatcggc agtgccttcagcgatccagaacacgctccagaacgtcctggcagctgccacaaaaagaaattgcaatg tcacgcaaatgagagaattgcccgtattggattcggcggcctttaatgtggaatgcttcaagaaatat gcgtgtaataatgaatattgggaaacgtttaaagaaaaccccatcaggcttactgaagaaaacgtggt aaattacattaccaaattaaaaggaccaaaagctgctgctctttttgcgaagacacataatttgaata tgttgcaggacataccaatggacaggtttgtaatggacttaaagagagacgtgaaagtgactccagga acaaaacatactgaagaacggcccaaggtacaggtgatccaggctgccgatccgctagcaacagcgta tctgtgcggaatccaccgagagctggttaggagattaaatgcggtcctgcttccgaacattcatacac tgtttgatatgtcggctgaagactttgacgctattatagccgagcacttccagcctggggattgtgtt ctggaaactgacatcgcgtcgtttgataaaagtgaggacgacgccatggctctgaccgcgttaatgat tctggaagacttaggtgtggacgcagagctgttgacgctgattgaggcggctttcggcgaaatttcat caatacatttgcccactaaaactaaatttaaattcggagccatgatgaaatctggaatgttcctcaca ctgtttgtgaacacagtcattaacattgtaatcgcaagcagagtgttgagagaacggctaaccggatc accatgtgcagcattcattggagatgacaatatcgtgaaaggagtcaaatcggacaaattaatggcag acaggtgcgccacctggttgaatatggaagtcaagattatagatgctgtggtgggcgagaaagcgcct tatttctgtggagggtttattttgtgtgactccgtgaccggcacagcgtgccgtgtggcagaccccct aaaaaggctgtttaagcttggcaaacctctggcagcagacgatgaacatgatgatgacaggagaaggg cattgcatgaagagtcaacacgctggaaccgagtgggtattctttcagagctgtgcaaggcagtagaa tcaaggtatgaaaccgtaggaacttccatcatagttatggccatgactactctagctagcagtgttaa atcattcagctacctgagaggggcccctataactctctacggctaacctgaatggactacgacatagt ctagtcgagtctagtcgacgccaccatgggcaccgtgaacaagcctgtcgtgggcgtgctgatgggct tcggcatcatcaccggcaccctgagaatcaccaaccctgtgcgggccagcgtgctgagatacgacgac ttccacatcgacgaggacaagctggacaccaacagcgtgtacgagccctactaccacagcgaccacgc cgagagcagctgggtcaacagaggcgagagcagccggaaggcctacgaccacaacagcccctacatct ggccccggaacgactacgacggcttcctggaaaacgcccacgagcaccacggcgtgtacaatcagggc agaggcatcgacagcggcgagagactgatgcagcccacacagatgagcgcccaggaagatctgggcga cgacacaggcatccacgtgatccccaccctgaacggcgacgaccggcacaagatcgtgaacgtggacc agcggcagtacggcgacgtgttcaagggcgacctgaaccctaagccccagggccagagactgatcgag gtgtccgtggaagagaaccaccccttcaccctgagagcccccatccagagaatctacggcgtgcggta taccgagacttggagcttcctgcccagcctgacctgtacaggcgacgccgctcctgccatccagcaca tctgcctgaagcacaccacctgtttccaggacgtggtggtggacgtggactgcgccgagaacaccaaa gaggaccagctggccgagatcagctaccggttccagggcaagaaagaggccgaccagccctggatcgt ggtcaataccagcaccctgttcgacgagctggaactggacccccccgagattgaacccggcgtgctga aggtgctgcggaccgagaagcagtacctgggcgtgtacatctggaacatgcggggctccgacggcacc tctacctacgccaccttcctggtcacatggaagggcgacgagaaaacccggaaccctacccctgccgt gacccctcagcctagaggcgccgagttccatatgtggaattaccactcccacgtgttcagcgtgggcg acaccttcagcctggccatgcatctgcagtacaagatccacgaggcccccttcgacctgctgctggaa tggctgtacgtgcccatcgaccctacctgccagcccatgcggctgtacagcacctgtctgtaccaccc caacgcccctcagtgcctgagccacatgaacagcggctgcaccttcaccagccctcacctggctcaga gggtggccagcaccgtgtaccagaattgcgagcacgccgacaactacaccgcctactgcctgggcatc agccacatggaacccagcttcggcctgatcctgcacgatggcggcaccaccctgaagttcgtggacac acccgagagcctgagcggcctgtacgtgttcgtggtgtacttcaacggccacgtggaagccgtggcct acaccgtggtgtccaccgtggaccacttcgtgaacgccatcgaggaaagaggcttcccacccacagcc ggacagcctccagccaccaccaagcccaaagaaatcacccccgtgaaccccggcaccagccccctgct gagatatgctgcttggacaggcggactggccgctgtggtgctgctgtgcctggtcatcttcctgatct gcaccgccaagcggatgagagtgaaggcctaccgggtggacaagtccccctacaaccagagcatgtac tacgccggcctgcccgtggacgatttcgaggatagcgagagcaccgacaccgaggaagagttcggcaa cgccatcggcggatctcacggcggcagcagctacaccgtgtacatcgacaagaccagataatctagac gtcgcgaccacccaggatccgcctataactctctacggctaacctgaatggactacgacatagtctag tcgacgccaccatgtttctgatccagtgcctgatcagcgccgtgatcttctatattcaagtcacaaac gccctgatctttaagggcgaccacgtgtcactgcaggtcaacagcagcctgaccagcatcctgatccc catgcagaacgacaattacaccgagatcaagggccagctggtgttcatcggcgagcagctgcccaccg gcaccaattacagcggcaccctggaactgctgtacgccgataccgtggccttctgcttcagaagcgtg caggtcatcagatacgacggctgcccccggatcagaaccagcgcctteatcagetgccggtacaagca cagctggcactacggcaacagcaccgaccggatcagcaccgaacctgatgccggcgtgatgctgaaga tcaccaagcccggcatcaacgacgccggcgtgtacgtgctgctcgtgcggctggatcacagcagaagc accgacggcttcatcctgggcgtgaacgtgtacaccgccggcagccaccacaacatccacggcgtgat ctacaccagccccagcctgcagaacggctacagcaccagagccctgttccagcaggccagactgtgcg atctgcccgccacacctaagggcagcggcacaagcctgtttcagcacatgctggacctgagagccggc aagagcctggaagataacccctggctgcacgaggacgtggtcaccaccgagacaaagagcgtggtcaa agagggcatcgagaaccacgtgtaccccaccgacatgagcaccctgcccgagaagtccctgaacgacc cccctgagaacctgctgatcatcatccccatcgtggccagcgtgatgatcctgaccgccatggtcatc gtgatcgtgatcagcgtgaagcggcggagaatcaagaagcaccccatctaccggcccaacaccaagac cagacggggcatccagaacgccacccctgagtccgacgtgatgctggaagccgccattgcccagctgg ccaccatcagagaggaaagcccccctcacagcgtcgtgaaccccttcgtgaagtaatctagacgcggc cgcatacagcagcaattggcaagctgcttacatagaactcgcggcgattggcatgccgccttaaaatt tttattttatttttcttttcttttccgaatcggattttgtttttaatatttcaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaagggtcggcatggcatctccacctcctcgcggtccgacctgggcatccga aggaggacgcacgtccactcggatggctaagggagagccacgtttaaaccagctccaattcgccctat agtgagtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgt tacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgca ccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcgcatta agcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcc tttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggc tccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggt tcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaa tagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataag ggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaatttt aacaaaatattaacgcttacaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgt ttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaata atattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcat tttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggt gcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaaga acgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccg ggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcaca gaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataa cactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaaca tgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgag cgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttac tctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgct cggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatc attgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggc aactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgt cagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctag gtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtc agaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgc aaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccg aaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggcca ccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctg ccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcgg tcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagata cctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaa gcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagt cctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcct atggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgt tctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgct cgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaa accgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaag cgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacacttt atgctcccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatga ccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctgggtaccgggcccacgc gtaatacgactcactatag_13775

VEE-based replicon encoding eGFP                                                    nsP1                                                 ~~~~~~~~~~~~~~~~~ 1 ATAGGCGGCG CATGAGAGAA GCCCAGACCA ATTACCTACC CAAAATGGAG AAAGTTCACG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 61 TTGACATCGA GGAAGACAGC CCATTCCTCA GAGCTTTGCA GCGGAGCTTC CCGCAGTTTG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 121 AGGTAGAAGC CAAGCAGGTC ACTGATAATG ACCATGCTAA TGCCAGAGCG TTTTCGCATC                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 181 TGGCTTCAAA ACTGATCGAA ACGGAGGTGG ACCCATCCGA CACGATCCTT GACATTGGAA                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 241 GTGCGCCCGC CCGCAGAATG TATTCTAAGC ACAAGTATCA TTGTATCTGT CCGATGAGAT                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 301 GTGCGGAAGA TCCGGACAGA TTGTATAAGT ATGCAACTAA GCTGAAGAAA AACTGTAAGG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 361 AAATAACTGA TAAGGAATTG GACAAGAAAA TGAAGGAGCT CGCCGCCGTC ATGAGCGACC                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 421 CTGACCTGGA AACTGAGACT ATGTGCCTCC ACGACGACGA GTCGTGTCGC TACGAAGGGC                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 481 AAGTCGCTGT TTACCAGGAT GTATACGCGG TTGACGGACC GACAAGTCTC TATCACCAAG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 541 CCAATAAGGG AGTTAGAGTC GCCTACTGGA TAGGCTTTGA CACCACCCCT TTTATGTTTA                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 601 AGAACTTGGC TGGAGCATAT CCATCATACT CTACCAACTG GGCCGACGAA ACCGTGTTAA                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 661 CGGCTCGTAA CATAGGCCTA TGCAGCTCTG ACGTTATGGA GCGGTCACGT AGAGGGATGT                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 721 CCATTCTTAG AAAGAAGTAT TTGAAACCAT CCAACAATGT TCTATTCTCT GTTGGCTCGA                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 781 CCATCTACCA CGAGAAGAGG GACTTACTGA GGAGCTGGCA CCTGCCGTCT GTATTTCACT                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 841 TACGTGGCAA GCAAAATTAC ACATGTCGGT GTGAGACTAT AGTTAGTTGC GACGGGTACG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 901 TCGTTAAAAG AATAGCTATC AGTCCAGGCC TGTATGGGAA GCCTTCAGGC TATGCTGCTA                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 961 CGATGCACCG CGAGGGATTC TTGTGCTGCA AAGTGACAGA CACATTGAAC GGGGAGAGGG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1021 TCTCTTTTCC CGTGTGCACG TATGTGCCAG CTACATTGTG TGACCAAATG ACTGGCATAC                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1081 TGGCAACAGA TGTCAGTGCG GACGACGCGC AAAAACTGCT GGTTGGGCTC AACCAGCGTA                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1141 TAGTCGTCAA CGGTCGCACC CAGAGAAACA CCAATACCAT GAAAAATTAC CTTTTGCCCG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1201 TAGTGGCCCA GGCATTTGCT AGGTGGGCAA AGGAATATAA GGAAGATCAA GAAGATGAAA                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1261 GGCCACTAGG ACTACGAGAT AGACAGTTAG TCATGGGGTG TTGTTGGGCT TTTAGAAGGC                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1321 ACAAGATAAC ATCTATTTAT AAGCGCCCGG ATACCCAAAC CATCATCAAA GTGAACAGCG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1381 ATTTCCACTC ATTCGTGCTG CCCAGGATAG GCAGTAACAC ATTGGAGATC GGGCTGAGAA                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1441 CAAGAATCAG GAAAATGTTA GAGGAGCACA AGGAGCCGTC ACCTCTCATT ACCGCCGAGG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1501 ACGTACAAGA AGCTAAGTGC GCAGCCGATG AGGCTAAGGA GGTGCGTGAA GCCGAGGAGT                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1561 TGCGCGCAGC TCTACCACCT TTGGCAGCTG ATGTTGAGGA GCCCACTCTG GAAGCCGATG                                             nsP2                                ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1621 TAGACTTGAT GTTACAAGAG GCTGGGGCCG GCTCAGTGGA GACACCTCGT GGCTTGATAA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1681 AGGTTACCAG CTACGATGGC GAGGACAAGA TCGGCTCTTA CGCTGTGCTT TCTCCGCAGG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1741 CTGTACTCAA GAGTGAAAAA TTATCTTGCA TCCACCCTCT CGCTGAACAA GTCATAGTGA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1801 TAACACACTC TGGCCGAAAA GGGCGTTATG CCGTGGAACC ATACCATGGT AAAGTAGTGG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1861 TGCCAGAGGG ACATGCAATA CCCGTCCAGG ACTTTCAAGC TCTGAGTGAA AGTGCCACCA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1921 TTGTGTACAA CGAACGTGAG TTCGTAAACA GGTACCTGCA CCATATTGCC ACACATGGAG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1981 GAGCGCTGAA CACTGATGAA GAATATTACA AAACTGTCAA GCCCAGCGAG CACGACGGCG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2041 AATACCTGTA CGACATCGAC AGGAAACAGT GCGTCAAGAA AGAACTAGTC ACTGGGCTAG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2101 GGCTCACAGG CGAGCTGGTG GATCCTCCCT TCCATGAATT CGCCTACGAG AGTCTGAGAA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2161 CACGACCAGC CGCTCCTTAC CAAGTACCAA CCATAGGGGT GTATGGCGTG CCAGGATCAG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2221 GCAAGTCTGG CATCATTAAA AGCGCAGTCA CCAAAAAAGA TCTAGTGGTG AGCGCCAAGA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2281 AAGAAAACTG TGCAGAAATT ATAAGGGACG TCAAGAAAAT GAAAGGGCTG GACGTCAATG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2341 CCAGAACTGT GGACTCAGTG CTCTTGAATG GATGCAAACA CCCCGTAGAG ACCCTGTATA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2401 TTGACGAAGC TTTTGCTTGT CATGCAGGTA CTCTCAGAGC GCTCATAGCC ATTATAAGAC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2461 CTAAAAAGGC AGTGCTCTGC GGGGATCCCA AACAGTGCGG TTTTTTTAAC ATGATGTGCC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2521 TGAAAGTGCA TTTTAACCAC GAGATTTGCA CACAAGTCTT CCACAAAAGC ATCTCTCGCC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2581 GTTGCACTAA ATCTGTGACT TCGGTCGTCT CAACCTTGTT TTACGACAAA AAAATGAGAA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2641 CGACGAATCC GAAAGAGACT AAGATTGTGA TTGACACTAC CGGCAGTACC AAACCTAAGC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2701 AGGACGATCT CATTCTCACT TGTTTCAGAG GGTGGGTGAA GCAGTTGCAA ATAGATTACA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2761 AAGGCAACGA AATAATGACG GCAGCTGCCT CTCAAGGGCT GACCCGTAAA GGTGTGTATG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2821 CCGTTCGGTA CAAGGTGAAT GAAAATCCTC TGTACGCACC CACCTCAGAA CATGTGAACG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2881 TCCTACTGAC CCGCACGGAG GACCGCATCG TGTGGAAAAC ACTAGCCGGC GACCCATGGA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2941 TAAAAACACT GACTGCCAAG TACCCTGGGA ATTTCACTGC CACGATAGAG GAGTGGCAAG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3001 CAGAGCATGA TGCCATCATG AGGCACATCT TGGAGAGACC GGACCCTACC GACGTCTTCC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3061 AGAATAAGGC AAACGTGTGT TGGGCCAAGG CTTTAGTGCC GGTGCTGAAG ACCGCTGGCA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3121 TAGACATGAC CACTGAACAA TGGAACACTG TGGATTATTT TGAAACGGAC AAAGCTCACT                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3181 CAGCAGAGAT AGTATTGAAC CAACTATGCG TGAGGTTCTT TGGACTCGAT CTGGACTCCG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3241 GTCTATTTTC TGCACCCACT GTTCCGTTAT CCATTAGGAA TAATCACTGG GATAACTCCC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3301 CGTCGCCTAA CATGTACGGG CTGAATAAAG AAGTGGTCCG TCAGCTCTCT CGCAGGTACC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3361 CACAACTGCC TCGGGCAGTT GCCACTGGAA GAGTCTATGA CATGAACACT GGTACACTGC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3421 GCAATTATGA TCCGCGCATA AACCTAGTAC CTGTAAACAG AAGACTGCCT CATGCTTTAG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3481 TCCTCCACCA TAATGAACAC CCACAGAGTG ACTTTTCTTC ATTCGTCAGC AAATTGAAGG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3541 GCAGAACTGT CCTGGTGGTC GGGGAAAAGT TGTCCGTCCC AGGCAAAATG GTTGACTGGT                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3601 TGTCAGACCG GCCTGAGGCT ACCTTCAGAG CTCGGCTGGA TTTAGGCATC CCAGGTGATG                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3661 TGCCCAAATA TGACATAATA TTTGTTAATG TGAGGACCCC ATATAAATAC CATCACTATC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3721 AGCAGTGTGA AGACCATGCC ATTAAGCTTA GCATGTTGAC CAAGAAAGCT TGTCTGCATC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3781 TGAATCCCGG CGGAACCTGT GTCAGCATAG GTTATGGTTA CGCTGACAGG GCCAGCGAAA                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3841 GCATCATTGG TGCTATAGCG CGGCAGTTCA AGTTTTCCCG GGTATGCAAA CCGAAATCCT                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3901 CACTTGAAGA GACGGAAGTT CTGTTTGTAT TCATTGGGTA CGATCGCAAG GCCCGTACGC                             nsP2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3961 ACAATCCTTA CAAGCTTTCA TCAACCTTGA CCAACATTTA TACAGGTTCC AGACTCCACG                                   nsP3             ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    nsP2 ~~~~~~~~~~~~ 4021 AAGCCGGATG TGCACCCTCA TATCATGTGG TGCGAGGGGA TATTGCCACG GCCACCGAAG                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4081 GAGTGATTAT AAATGCTGCT AACAGCAAAG GACAACCTGG CGGAGGGGTG TGCGGAGCGC                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4141 TGTATAAGAA ATTCCCGGAA AGCTTCGATT TACAGCCGAT CGAAGTAGGA AAAGCGCGAC                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4201 TGGTCAAAGG TGCAGCTAAA CATATCATTC ATGCCGTAGG ACCAAACTTC AACAAAGTTT                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4261 CGGAGGTTGA AGGTGACAAA CAGTTGGCAG AGGCTTATGA GTCCATCGCT AAGATTGTCA                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4321 ACGATAACAA TTACAAGTCA GTAGCGATTC CACTGTTGTC CACCGGCATC TTTTCCGGGA                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4381 ACAAAGATCG ACTAACCCAA TCATTGAACC ATTTGCTGAC AGCTTTAGAC ACCACTGATG                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4441 CAGATGTAGC CATATACTGC AGGGACAAGA AATGGGAAAT GACTCTCAAG GAAGCAGTGG                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4501 CTAGGAGAGA AGCAGTGGAG GAGATATGCA TATCCGACGA CTCTTCAGTG ACAGAACCTG                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4561 ATGCAGAGCT GGTGAGGGTG CATCCGAAGA GTTCTTTGGC TGGAAGGAAG GGCTACAGCA                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4621 CAAGCGATGG CAAAACTTTC TCATATTTGG AAGGGACCAA GTTTCACCAG GCGGCCAAGG                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4681 ATATAGCAGA AATTAATGCC ATGTGGCCCG TTGCAACGGA GGCCAATGAG CAGGTATGCA                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4741 TGTATATCCT CGGAGAAAGC ATGAGCAGTA TTAGGTCGAA ATGCCCCGTC GAAGAGTCGG                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4801 AAGCCTCCAC ACCACCTAGC ACGCTGCCTT GCTTGTGCAT CCATGCCATG ACTCCAGAAA                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4861 GAGTACAGCG CCTAAAAGCC TCACGTCCAG AACAAATTAC TGTGTGCTCA TCCTTTCCAT                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4921 TGCCGAAGTA TAGAATCACT GGTGTGCAGA AGATCCAATG CTCCCAGCCT ATATTGTTCT                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4981 CACCGAAAGT GCCTGCGTAT ATTCATCCAA GGAAGTATCT CGTGGAAACA CCACCGGTAG                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5041 ACGAGACTCC GGAGCCATCG GCAGAGAACC AATCCACAGA GGGGACACCT GAACAACCAC                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5101 CACTTATAAC CGAGGATGAG ACCAGGACTA GAACGCCTGA GCCGATCATC ATCGAAGAGG                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5161 AAGAAGAGGA TAGCATAAGT TTGCTGTCAG ATGGCCCGAC CCACCAGGTG CTGCAAGTCG                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5221 AGGCAGACAT TCACGGGCCG CCCTCTGTAT CTAGCTCATC CTGGTCCATT CCTCATGCAT                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5281 CCGACTTTGA TGTGGACAGT TTATCCATAC TTGACACCCT GGAGGGAGCT AGCGTGACCA                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5341 GCGGGGCAAC GTCAGCCGAG ACTAACTCTT ACTTCGCAAA GAGTATGGAG TTTCTGGCGC                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5401 GACCGGTGCC TGCGCCTCGA ACAGTATTCA GGAACCCTCC ACATCCCGCT CCGCGCACAA                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5461 GAACACCGTC ACTTGCACCC AGCAGGGCCT GCTCGAGAAC CAGCCTAGTT TCCACCCCGC                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5521 CAGGCGTGAA TAGGGTGATC ACTAGAGAGG AGCTCGAGGC GCTTACCCCG TCACGCACTC                             nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5581 CTAGCAGGTC GGTCTCGAGA ACCAGCCTGG TCTCCAACCC GCCAGGCGTA AATAGGGTGA                             nsP4                                              ~~~~~~~~~~~~~~~~~~~~                   nsP3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5641 TTACAAGAGA GGAGTTTGAG GCGTTCGTAG CACAACAACA ATGACGGTTT GATGCGGGTG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5701 CATACATCTT TTCCTCCGAC ACCGGTCAAG GGCATTTACA ACAAAAATCA GTAAGGCAAA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5761 CGGTGCTATC CGAAGTGGTG TTGGAGAGGA CCGAATTGGA GATTTCGTAT GCCCCGCGCC                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5821 TCGACCAAGA AAAAGAAGAA TTACTACGCA AGAAATTACA GTTAAATCCC ACACCTGCTA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5881 ACAGAAGCAG ATACCAGTCC AGGAAGGTGG AGAACATGAA AGCCATAACA GCTAGACGTA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5941 TTCTGCAAGG CCTAGGGCAT TATTTGAAGG CAGAAGGAAA AGTGGAGTGC TACCGAACCC                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6001 TGCATCCTGT TCCTTTGTAT TCATCTAGTG TGAACCGTGC CTTTTCAAGC CCCAAGGTCG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6061 CAGTGGAAGC CTGTAACGCC ATGTTGAAAG AGAACTTTCC GACTGTGGCT TCTTACTGTA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6121 TTATTCCAGA GTACGATGCC TATTTGGACA TGGTTGACGG AGCTTCATGC TGCTTAGACA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6181 CTGCCAGTTT TTGCCCTGCA AAGCTGCGCA GCTTTCCAAA GAAACACTCC TATTTGGAAC                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6241 CCACAATACG ATCGGCAGTG CCTTCAGCGA TCCAGAACAC GCTCCAGAAC GTCCTGGCAG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6301 CTGCCACAAA AAGAAATTGC AATGTCACGC AAATGAGAGA ATTGCCCGTA TTGGATTCGG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6361 CGGCCTTTAA TGTGGAATGC TTCAAGAAAT ATGCGTGTAA TAATGAATAT TGGGAAACGT                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6421 TTAAAGAAAA CCCCATCAGG CTTACTGAAG AAAACGTGGT AAATTACATT ACCAAATTAA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6481 AAGGACCAAA AGCTGCTGCT CTTTTTGCGA AGACACATAA TTTGAATATG TTGCAGGACA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6541 TACCAATGGA CAGGTTTGTA ATGGACTTAA AGAGAGACGT GAAAGTGACT CCAGGAACAA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6601 AACATACTGA AGAACGGCCC AAGGTACAGG TGATCCAGGC TGCCGATCCG CTAGCAACAG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6661 CGTATCTGTG CGGAATCCAC CGAGAGCTGG TTAGGAGATT AAATGCGGTC CTGCTTCCGA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6721 ACATTCATAC ACTGTTTGAT ATGTCGGCTG AAGACTTTGA CGCTATTATA GCCGAGCACT                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6781 TCCAGCCTGG GGATTGTGTT CTGGAAACTG ACATCGCGTC GTTTGATAAA AGTGAGGACG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6841 ACGCCATGGC TCTGACCGCG TTAATGATTC TGGAAGACTT AGGTGTGGAC GCAGAGCTGT                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6901 TGACGCTGAT TGAGGCGGCT TTCGGCGAAA TTTCATCAAT ACATTTGCCC ACTAAAACTA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6961 AATTTAAATT CGGAGCCATG ATGAAATCTG GAATGTTCCT CACACTGTTT GTGAACACAG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7021 TCATTAACAT TGTAATCGCA AGCAGAGTGT TGAGAGAACG GCTAACCGGA TCACCATGTG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7081 CAGCATTCAT TGGAGATGAC AATATCGTGA AAGGAGTCAA ATCGGACAAA TTAATGGCAG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7141 ACAGGTGCGC CACCTGGTTG AATATGGAAG TCAAGATTAT AGATGCTGTG GTGGGCGAGA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7201 AAGCGCCTTA TTTCTGTGGA GGGTTTATTT TGTGTGACTC CGTGACCGGC ACAGCGTGCC                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7261 GTGTGGCAGA CCCCCTAAAA AGGCTGTTTA AGCTTGGCAA ACCTCTGGCA GCAGACGATG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7321 AACATGATGA TGACAGGAGA AGGGCATTGC ATGAAGAGTC AACACGCTGG AACCGAGTGG                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7381 GTATTCTTTC AGAGCTGTGC AAGGCAGTAG AATCAAGGTA TGAAACCGTA GGAACTTCCA                             nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7441 TCATAGTTAT GGCCATGACT ACTCTAGCTA GCAGTGTTAA ATCATTCAGC TACCTGAGAG                subgenomic promoter              ~~~~~~~~~~~~~~~~~~~~~~~~~~            nsP4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7501 GGGCCCCTAT AACTCTCTAC GGCTAACCTG AATGGACTAC GACATAGTCT AGTCGACGCC                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7561 ACCATGGTGA GCAAGGGCGA GGAGCTGTTC ACCGGGGTGG TGCCCATCCT GGTCGAGCTG                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7621 GACGGCGACG TAAACGGCCA CAAGTTCAGC GTGTCCGGCG AGGGCGAGGG CGATGCCACC                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7681 TACGGCAAGC TGACCCTGAA GTTCATCTGC ACCACCGGCA AGCTGCCCGT GCCCTGGCCC                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7741 ACCCTCGTGA CCACCCTGAC CTACGGCGTG CAGTGCTTCA GCCGCTACCC CGACCACATG                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7801 AAGCAGCACG ACTTCTTCAA GTCCGCCATG CCCGAAGGCT ACGTCCAGGA GCGCACCATC                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7861 TTCTTCAAGG ACGACGGCAA CTACAAGACC CGCGCCGAGG TGAAGTTCGA GGGCGACACC                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7921 CTGGTGAACC GCATCGAGCT GAAGGGCATC GACTTCAAGG AGGACGGCAA CATCCTGGGG                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7981 CACAAGCTGG AGTACAACTA CAACAGCCAC AACGTCTATA TCATGGCCGA CAAGCAGAAG                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8041 AACGGCATCA AGGTGAACTT CAAGATCCGC CACAACATCG AGGACGGCAG CGTGCAGCTC                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8101 GCCGACCACT ACCAGCAGAA CACCCCCATC GGCGACGGCC CCGTGCTGCT GCCCGACAAC                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8161 CACTACCTGA GCACCCAGTC CGCCCTGAGC AAAGACCCCA ACGAGAAGCG CGATCACATG                             eGFP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8221 GTCCTGCTGG AGTTCGTGAC CGCCGCCGGG ATCACTCTCG GCATGGACGA GCTGTACAAG  eGFP                                           3′UTR ~~~~~~                                ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8281 TGATAATCTA GACGGCGCGC CCACCCAGCG GCCGCATACA GCAGCAATTG GCAAGCTGCT                            3′UTR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8341 TACATAGAAC TCGCGGCGAT TGGCATGCCG CCTTAAAATT TTTATTTTAT TTTTCTTTTC              3′UTR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8401 TTTTCCGAAT CGGATTTTGT TTTTAATATT TCAAAAAAAA AAAAAAAAAA AAAAAAAAAA                            HDV ribozyme         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8461 AAAAAAAGGG TCGGCATGGC ATCTCCACCT CCTCGCGGTC CGACCTGGGC ATCCGAAGGA             HDV ribozyme ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8521 GGACGCACGT CCACTCGGAT GGCTAAGGGA GAGCCACGTT TAAACCAGCT CCAATTCGCC 8581 CTATAGTGAG TCGTATTACG CGCGCTCACT GGCCGTCGTT TTACAACGTC GTGACTGGGA 8641 AAACCCTGGC GTTACCCAAC TTAATCGCCT TGCAGCACAT CCCCCTTTCG CCAGCTGGCG 8701 TAATAGCGAA GAGGCCCGCA CCGATCGCCC TTCCCAACAG TTGCGCAGCC TGAATGGCGA 8761 ATGGGACGCG CCCTGTAGCG GCGCATTAAG CGCGGCGGGT GTGGTGGTTA CGCGCAGCGT 8821 GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC GCTTTCTTCC CTTCCTTTCT 8881 CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG GGGCTCCCTT TAGGGTTCCG 8941 ATTTAGTGCT TTACGGCACC TCGACCCCAA AAAACTTGAT TAGGGTGATG GTTCACGTAG 9001 TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTTGACG TTGGAGTCCA CGTTCTTTAA 9061 TAGTGGACTC TTGTTCCAAA CTGGAACAAC ACTCAACCCT ATCTCGGTCT ATTCTTTTGA 9121 TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA AATGAGCTGA TTTAACAAAA 9181 ATTTAACGCG AATTTTAACA AAATATTAAC GCTTACAATT TAGGTGGCAC TTTTCGGGGA 9241 AATGTGCGCG GAACCCCTAT TTGTTTATTT TTCTAAATAC ATTCAAATAT GTATCCGCTC                                                            bla                                                         ~~~~~~~~~ 9301 ATGAGACAAT AACCCTGATA AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9361 CAACATTTCC GTGTCGCCCT TATTCCCTTT TTTGCGGCAT TTTGCCTTCC TGTTTTTGCT                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9421 CACCCAGAAA CGCTGGTGAA AGTAAAAGAT GCTGAAGATC AGTTGGGTGC ACGAGTGGGT                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9481 TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTTGAGA GTTTTCGCCC CGAAGAACGT                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9541 TTTCCAATGA TGAGCACTTT TAAAGTTCTG CTATGTGGCG CGGTATTATC CCGTATTGAC                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9601 GCCGGGCAAG AGCAACTCGG TCGCCGCATA CACTATTCTC AGAATGACTT GGTTGAGTAC                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9661 TCACCAGTCA CAGAAAAGCA TCTTACGGAT GGCATGACAG TAAGAGAATT ATGCAGTGCT                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9721 GCCATAACCA TGAGTGATAA CACTGCGGCC AACTTACTTC TGACAACGAT CGGAGGACCG                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9781 AAGGAGCTAA CCGCTTTTTT GCACAACATG GGGGATCATG TAACTCGCCT TGATCGTTGG                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9841 GAACCGGAGC TGAATGAAGC CATACCAAAC GACGAGCGTG ACACCACGAT GCCTGTAGCA                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9901 ATGGCAACAA CGTTGCGCAA ACTATTAACT GGCGAACTAC TTACTCTAGC TTCCCGGCAA                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9961 CAATTAATAG ACTGGATGGA GGCGGATAAA GTTGCAGGAC CACTTCTGCG CTCGGCCCTT                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10021 CCGGCTGGCT GGTTTATTGC TGATAAATCT GGAGCCGGTG AGCGTGGGTC TCGCGGTATC                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10081 ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC TCCCGTATCG TAGTTATCTA CACGACGGGG                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10141 AGTCAGGCAA CTATGGATGA ACGAAATAGA CAGATCGCTG AGATAGGTGC CTCACTGATT                             bla ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10201 AAGCATTGGT AACTGTCAGA CCAAGTTTAC TCATATATAC TTTAGATTGA TTTAAAACTT 10261 CATTTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTTG ATAATCTCAT GACCAAAATC 10321 CCTTAACGTG AGTTTTCGTT CCACTGAGCG TCAGACCCCG TAGAAAAGAT CAAAGGATCT 10381 TCTTGAGATC CTTTTTTTCT GCGCGTAATC TGCTGCTTGC AAACAAAAAA ACCACCGCTA 10441 CCAGCGGTGG TTTGTTTGCC GGATCAAGAG CTACCAACTC TTTTTCCGAA GGTAACTGGC 10501 TTCAGCAGAG CGCAGATACC AAATACTGTT CTTCTAGTGT AGCCGTAGTT AGGCCACCAC 10561 TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT ACCAGTGGCT 10621 GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA GTTACCGGAT 10681 AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC AGCCCAGCTT GGAGCGAACG 10741 ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG AAAGCGCCAC GCTTCCCGAA 10801 GGGAGAAAGG CGGACAGGTA TCCGGTAAGC GGCAGGGTCG GAACAGGAGA GCGCACGAGG 10861 GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA 10921 CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGGCGGA GCCTATGGAA AAACGCCAGC 10981 AACGCGGCCT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT TTGCTCACAT GTTCTTTCCT 11041 GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCCT TTGAGTGAGC TGATACCGCT 11101 CGCCGCAGCC GAACGACCGA GCGCAGCGAG TCAGTGAGCG AGGAAGCGGA AGAGCGCCCA 11161 ATACGCAAAC CGCCTCTCCC CGCGCGTTGG CCGATTCATT AATGCAGCTG GCACGACAGG 11221 TTTCCCGACT GGAAAGCGGG CAGTGAGCGC AACGCAATTA ATGTGAGTTA GCTCACTCAT 11281 TAGGCACCCC AGGCTTTACA CTTTATGCTC CCGGCTCGTA TGTTGTGTGG AATTGTGAGC 11341 GGATAACAAT TTCACACAGG AAACAGCTAT GACCATGATT ACGCCAAGCG CGCAATTAAC 11401 CCTCACTAAA GGGAACAAAA GCTGGGTACC GGGCCCACGC GTAATACGAC TCACTATAG

VEE cap helper                    5′UTR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                      nsP1                                                 ~~~~~~~~~~~~~~~~~ 1 ATAGGCGGCG CATGAGAGAA GCCCAGACCA ATTACCTACC CAAATAGGAG AAAGTTCACG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 61 TTGACATCGA GGAAGACAGC CCATTCCTCA GAGCTTTGCA GCGGAGCTTC CCGCAGTTTG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 121 AGGTAGAAGC CAAGCAGGTC ACTGATAATG ACCATGCTAA TGCCAGAGCG TTTTCGCATC                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 181 TGGCTTCAAA ACTGATCGAA ACGGAGGTGG ACCCATCCGA CACGATCCTT GACATTGGAC                                VEECAP          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 241 GGACCGACCA TGTTCCCGTT CCAGCCAATG TATCCGATGC AGCCAATGCC CTATCGCAAC                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 301 CCGTTCGCGG CCCCGCGCAG GCCCTGGTTC CCCAGAACCG ACCCTTTTCT GGCGATGCAG                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 361 GTGCAGGAAT TAACCCGCTC GATGGCTAAC CTGACGTTCA AGCAACGCCG GGACGCGCCA                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 421 CCTGAGGGGC CATCCGCTAA GAAACCGAAG AAGGAGGCCT CGCAAAAACA GAAAGGGGGA                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 481 GGCCAAGGGA AGAAGAAGAA GAACCAAGGG AAGAAGAAGG CTAAGACAGG GCCGCCTAAT                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 541 CCGAAGGCAC AGAATGGAAA CAAGAAGAAG ACCAACAAGA AACCAGGCAA GAGACAGCGC                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 601 ATGGTCATGA AATTGGAATC TGACAAGACG TTCCCAATCA TGTTGGAAGG GAAGATAAAC                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                               H152G                                               ~~~ 661 GGCTACGCTT GTGTGGTCGG AGGGAAGTTA TTCAGGCCGA TGGGTGTGGA AGGCAAGATC                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 721 GACAACGACG TTCTGGCCGC GCTTAAGACG AAGAAAGCAT CCAAATACGA TCTTGAGTAT                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 781 GCAGATGTGC CACAGAACAT GCGGGCCGAT ACATTCAAAT ACACCCATGA GAAACCCCAA                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 841 GGCTATTACA GCTGGCATCA TGGAGCAGTC CAATATGAAA ATGGGCGTTT CACGGTGCCG                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 901 AAAGGAGTTG GGGCCAAGGG AGACAGCGGA CGACCCATTC TGGATAACCA GGGACGGGTG                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 961 GTCGCTATTG TGCTGGGAGG TGTGAATGAA GGATCTAGGA CAGCCCTTTC AGTCGTCATG                            VEECAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1021 TGGAACGAGA AGGGAGTTAC CGTGAAGTAT ACTCCGGAGA ACTGCGAGCA ATGGTAATAG VEECAP                            3′UTR ~~~         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1081 TAAGCGGCCG CATACAGCAG CAATTGGCAA GCTGCTTACA TAGAACTCGC GGCGATTGGC                            3′UTR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1141 ATGCCGCCTT AAAATTTTTA TTTTATTTTT CTTTTCTTTT CCGAATCGGA TTTTGTTTTT  3′UTR                                           HDV ribozyme ~~~~~~~~                                       ~~~~~~~~~~~~~~~~~~ 1201 AATATTTCAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAGGGTCGG CATGGCATCT                         HDV ribozyme ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1261 CCACCTCCTC GCGGTCCGAC CTGGGCATCC GAAGGAGGAC GCACGTCCAC TCGGATGGCT HDV ribozyme ~~~~~~~~~~~~~~ 1321 AAGGGAGAGC CACGTTTAAA CACGTGATAT CTGGCCTCAT GGGCCTTCCT TTCACTGCCC 1381 GCTTTCCAGT CGGGAAACCT GTCGTGCCAG CTGCATTAAC ATGGTCATAG CTGTTTCCTT 1441 GCGTATTGGG CGCTCTCCGC TTCCTCGCTC ACTGACTCGC TGCGCTCGGT CGTTCGGGTA                                      colE1                   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1501 AAGCCTGGGG TGCCTAATGA GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1561 CGTTGCTGGC GTTTTTCCAT AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1621 CAAGTCAGAG GTGGCGAAAC CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCTGGAA                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1681 GCTCCCTCGT GCGCTCTCCT GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCTTTC                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1741 TCCCTTCGGG AAGCGTGGCG CTTTCTCATA GCTCACGCTG TAGGTATCTC AGTTCGGTGT                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1801 AGGTCGTTCG CTCCAAGCTG GGCTGTGTGC ACGAACCCCC CGTTCAGCCC GACCGCTGCG                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1861 CCTTATCCGG TAACTATCGT CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1921 CAGCAGCCAC TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1981 TGAAGTGGTG GCCTAACTAC GGCTACACTA GAAGAACAGT ATTTGGTATC TGCGCTCTGC                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2041 TGAAGCCAGT TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGCAAA CAAACCACCG                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2101 CTGGTAGCGG TGGTTTTTTT GTTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC           colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2161 AAGAAGATCC TTTGATCTTT TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT 2221 AAGGGATTTT GGTCATGAGA TTATCAAAAA GGATCTTCAC CTAGATCCTT TTAAATTAAA 2281 AATGAAGTTT TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTATTAGA                                                          ~~~                                                            KanR 2341 AAAATTCATC CAGCAGACGA TAAAACGCAA TACGCTGGCT ATCCGGTGCC GCAATGCCAT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 2401 ACAGCACCAG AAAACGATCC GCCCATTCGC CGCCCAGTTC TTCCGCAATA TCACGGGTGG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 2461 CCAGCGCAAT ATCCTGATAA CGATCCGCCA CGCCCAGACG GCCGCAATCA ATAAAGCCGC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 2521 TAAAACGGCC ATTTTCCACC ATAATGTTCG GCAGGCACGC ATCACCATGG GTCACCACCA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 2581 GATCTTCGCC ATCCGGCATG CTCGCTTTCA GACGCGCAAA CAGCTCTGCC GGTGCCAGGC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 2641 CCTGATGTTC TTCATCCAGA TCATCCTGAT CCACCAGGCC CGCTTCCATA CGGGTACGCG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 2701 CACGTTCAAT ACGATGTTTC GCCTGATGAT CAAACGGACA GGTCGCCGGG TCCAGGGTAT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 2761 GCAGACGACG CATGGCATCC GCCATAATGC TCACTTTTTC TGCCGGCGCC AGATGGCTAG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 2821 ACAGCAGATC CTGACCCGGC ACTTCGCCCA GCAGCAGCCA ATCACGGCCC GCTTCGGTCA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 2881 CCACATCCAG CACCGCCGCA CACGGAACAC CGGTGGTGGC CAGCCAGCTC AGACGCGCCG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 2941 CTTCATCCTG CAGCTCGTTC AGCGCACCGC TCAGATCGGT TTTCACAAAC AGCACCGGAC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 3001 GACCCTGCGC GCTCAGACGA AACACCGCCG CATCAGAGCA GCCAATGGTC TGCTGCGCCC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 3061 AATCATAGCC AAACAGACGT TCCACCCACG CTGCCGGGCT ACCCGCATGC AGGCCATCCT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 3121 GTTCAATCAT ACTCTTCCTT TTTCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA ~~~~~~~~~~~    KanR 3181 TGAGCGGATA CATATTTGAA TGTATTTAGA AAAATAAACA AATAGGGGTT CCGCGCACAT 3241 TTCCCCGAAA AGTGCCACCT AAATTGTAAG CGTTAATATT TTGTTAAAAT TCGCGTTAAA 3301 TTTTTGTTAA ATCAGCTCAT TTTTTAACCA ATAGGCCGAA ATCGGCAAAA TCCCTTATAA 3361 ATCAAAAGAA TAGACCGAGA TAGGGTTGAG TGGCCGCTAC AGGGCGCTCC CATTCGCCAT 3421 TCAGGCTGCG CAACTGTTGG GAAGGGCGTT TCGGTGCGGG CCTCTTCGCT ATTACGCCAG 3481 CTGGCGAAAG GGGGATGTGC TGCAAGGCGA TTAAGTTGGG TAACGCCAGG GTTTTCCCAG             T7 promoter          ~~~~~~~~~~~~~~~~~~~~ 3541 TCACACGCGT AATACGACTC ACTATAG

VEE gly helper                    5′UTR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                      nsP1                                                 ~~~~~~~~~~~~~~~~~ 1 ATAGGCGGCG CATGAGAGAA GCCCAGACCA ATTACCTACC CAAATAGGAG AAAGTTCACG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 61 TTGACATCGA GGAAGACAGC CCATTCCTCA GAGCTTTGCA GCGGAGCTTC CCGCAGTTTG                             nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 121 AGGTAGAAGC CAAGCAGGTC ACTGATAATG ACCATGCTAA TGCCAGAGCG TTTTCGCATC                            nsP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 181 TGGCTTCAAA ACTGATCGAA ACGGAGGTGG ACCCATCCGA CACGATCCTT GACATTGGAC                                VEE GLY          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 241 GGACCGACCA TGTCACTAGT GACCACCATG TGTCTGCTCG CCAATGTGAC GTTCCCATGT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 301 GCTCAACCAC CAATTTGCTA CGACAGAAAA CCAGCAGAGA CTTTGGCCAT GCTCAGCGTT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 361 AACGTTGACA ACCCGGGCTA CGATGAGCTG CTGGAAGCAG CTGTTAAGTG CCCCGGAAGG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 421 AAAAGGAGAT CCACCGAGGA GCTGTTTAAT GAGTATAAGC TAACGCGCCC TTACATGGCC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 481 AGATGCATCA GATGTGCAGT TGGGAGCTGC CATAGTCCAA TAGCAATCGA GGCAGTAAAG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 541 AGCGACGGGC ACGACGGTTA TGTTAGACTT CAGACTTCCT CGCAGTATGG CCTGGATTCC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 601 TCCGGCAACT TAAAGGGCAG GACCATGCGG TATGACATGC ACGGGACCAT TAAAGAGATA                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 661 CCACTACATC AAGTGTCACT CTATACATCT CGCCCGTGTC ACATTGTGGA TGGGCACGGT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 721 TTTCCTGC TTGCCAGGTG CCCGGCAGGG GACTCCATCA CCATGGAATT TAAGAAAGAT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 781 TCCGTCAGAC ACTCCTGCTC GGTGCCGTAT GAAGTGAAAT TTAATCCTGT AGGCAGAGAA                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 841 CTCTATACTC ATCCCCCAGA ACACGGAGTA GAGCAAGCGT GCCAAGTCTA CGCACATGAT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 901 GCACAGAACA GAGGAGCTTA TGTCGAGATG CACCTCCCGG GCTCAGAAGT GGACAGCAGT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 961 TTGGTTTCCT TGAGCGGCAG TTCAGTCACC GTGACACCTC CTGATGGGAC TAGCGCCCTG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1021 GTGGAATGCG AGTGTGGCGG CACAAAGATC TCCGAGACCA TCAACAAGAC AAAACAGTTC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1081 AGCCAGTGCA CAAAGAAGGA GCAGTGCAGA GCATATCGGC TGCAGAACGA TAAGTGGGTG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1141 TATAATTCTG ACAAACTGCC CAAAGCAGCG GGAGCCACCT TAAAAGGAAA ACTGCATGTC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1201 CCATTCTTGC TGGCAGACGG CAAATGCACC GTGCCTCTAG CACCAGAACC TATGATAACC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1261 TTCGGTTTCA GATCAGTGTC ACTGAAACTG CACCCTAAGA ATCCCACATA TCTAATCACC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1321 CGCCAACTTG CTGATGAGCC TCACTACACG CACGAGCTCA TATCTGAACC AGCTGTTAGG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1381 AATTTTACCG TCACCGAAAA AGGGTGGGAG TTTGTATGGG GAAACCACCC GCCGAAAAGG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1441 TTTTGGGCAC AGGAAACAGC ACCCGGAAAT CCACATGGGC TACCGCACGA GGTGATAACT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1501 CATTATTACC ACAGATACCC TATGTCCACC ATCCTGGGTT TGTCAATTTG TGCCGCCATT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1561 GCAACCGTTT CCGTTGCAGC GTCTACCTGG CTGTTTTGCA GATCTAGAGT TGCGTGCCTA                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1621 ACTCCTTACC GGCTAACACC TAACGCTAGG ATACCATTTT GTCTGGCTGT GCTTTGCTGC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1681 GCCCGCACTG CCCGGGCCGA GACCACCTGG GAGTCCTTGG ATCACCTATG GAACAATAAC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1741 CAACAGATGT TCTGGATTCA ATTGCTGATC CCTCTGGCCG CCTTGATCGT AGTGACTCGC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1801 CTGCTCAGGT GCGTGTGCTG TGTCGTGCCT TTTTTAGTCA TGGCCGGCGC CGCAGGCGCC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1861 GGCGCCTACG AGCACGCGAC CACGATGCCG AGCCAAGCGG GAATCTCGTA TAACACTATA                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1921 GTCAACAGAG CAGGCTACGC ACCACTCCCT ATCAGCATAA CACCAACAAA GATCAAGCTG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1981 ATACCTACAG TGAACTTGGA GTACGTCACC TGCCACTACA AAACAGGAAT GGATTCACCA                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2041 GCCATCAAAT GCTGCGGATC TCAGGAATGC ACTCCAACTT ACAGGCCTGA TGAACAGTGC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2101 AAAGTCTTCA CAGGGGTTTA CCCGTTCATG TGGGGTGGTG CATATTGCTT TTGCGACACT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2161 GAGAACACCC AAGTCAGCAA GGCCTACGTA ATGAAATCTG ACGACTGCCT TGCGGATCAT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2221 GCTGAAGCAT ATAAAGCGCA CACAGCCTCA GTGCAGGCGT TCCTCAACAT CACAGTGGGA                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2281 GAACACTCTA TTGTGACTAC CGTGTATGTG AATGGAGAAA CTCCTGTGAA TTTCAATGGG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2341 GTCAAAATAA CTGCAGGTCC GCTTTCCACA GCTTGGACAC CCTTTGATCG CAAAATCGTG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2401 CAGTATGCCG GGGAGATCTA TAATTATGAT TTTCCTGAGT ATGGGGCAGG ACAACCAGGA                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2461 GCATTTGGAG ATATACAATC CAGAACAGTC TCAAGCTCTG ATCTGTATGC CAATACCAAC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2521 CTAGTGCTGC AGAGACCCAA AGCAGGAGCG ATCCACGTGC CATACACTCA GGCACCTTCG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2581 GGTTTTGAGC AATGGAAGAA AGATAAAGCT CCATCATTGA AATTTACCGC CCCTTTCGGA                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2641 TGCGAAATAT ATACAAACCC CATTCGCGCC GAAAACTGTG CTGTAGGGTC AATTCCATTA                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2701 GCCTTTGACA TTCCCGACGC CTTGTTCACC AGGGTGTCAG AAACACCGAC ACTTTCAGCG                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2761 GCCGAATGCA CTCTTAACGA GTGCGTGTAT TCTTCCGACT TTGGTGGGAT CGCCACGGTC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2821 AAGTACTCGG CCAGCAAGTC AGGCAAGTGC GCAGTCCATG TGCCATCAGG GACTGCTACC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2881 CTAAAAGAAG CAGCAGTCGA GCTAACCGAG CAAGGGTCGG CGACTATCCA TTTCTCGACC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2941 GCAAATATCC ACCCGGAGTT CAGGCTCCAA ATATGCACAT CATATGTTAC GTGCAAAGGT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3001 GATTGTCACC CCCCGAAAGA CCATATTGTG ACACACCCTC AGTATCACGC CCAAACATTT                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3061 ACAGCCGCGG TGTCAAAAAC CGCGTGGACG TGGTTAACAT CCCTGCTGGG AGGATCAGCC                           VEE GLY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3121 GTAATTATTA TAATTGGCTT GGTGCTGGCT ACTATTGTGG CCATGTACGT GCTGACCAAC        VEE GLY                              3′UTR ~~~~~~~~~~~~~~~~~~~~~~~        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3181 CAGAAACATA ATTAATAGTA AGCGGCCGCA TACAGCAGCA ATTGGCAAGC TGCTTACATA                            3′UTR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3241 GAACTCGCGG CGATTGGCAT GCCGCCTTAA AATTTTTATT TTATTTTTCT TTTCTTTTCC           3′UTR ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3301 GAATCGGATT TTGTTTTTAA TATTTCAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA                         HDV ribozyme ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3361 AGGGTCGGCA TGGCATCTCC ACCTCCTCGC GGTCCGACCT GGGCATCCGA AGGAGGACGC          HDV ribozyme ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3421 ACGTCCACTC GGATGGCTAA GGGAGAGCCA CGTTTAAACA CGTGATATCT GGCCTCATGG 3481 GCCTTCCTTT CACTGCCCGC TTTCCAGTCG GGAAACCTGT CGTGCCAGCT GCATTAACAT 3541 GGTCATAGCT GTTTCCTTGC GTATTGGGCG CTCTCCGCTT CCTCGCTCAC TGACTCGCTG                                                 colE1                                       ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3601 CGCTCGGTCG TTCGGGTAAA GCCTGGGGTG CCTAATGAGC AAAAGGCCAG CAAAAGGCCA                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3661 GGAACCGTAA AAAGGCCGCG TTGCTGGCGT TTTTCCATAG GCTCCGCCCC CCTGACGAGC                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3721 ATCACAAAAA TCGACGCTCA AGTCAGAGGT GGCGAAACCC GACAGGACTA TAAAGATACC                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3781 AGGCGTTTCC CCCTGGAAGC TCCCTCGTGC GCTCTCCTGT TCCGACCCTG CCGCTTACCG                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3841 GATACCTGTC CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT TTCTCATAGC TCACGCTGTA                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3901 GGTATCTCAG TTCGGTGTAG GTCGTTCGCT CCAAGCTGGG CTGTGTGCAC GAACCCCCCG                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3961 TTCAGCCCGA CCGCTGCGCC TTATCCGGTA ACTATCGTCT TGAGTCCAAC CCGGTAAGAC                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4021 ACGACTTATC GCCACTGGCA GCAGCCACTG GTAACAGGAT TAGCAGAGCG AGGTATGTAG                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4081 GCGGTGCTAC AGAGTTCTTG AAGTGGTGGC CTAACTACGG CTACACTAGA AGAACAGTAT                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4141 TTGGTATCTG CGCTCTGCTG AAGCCAGTTA CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT                            colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4201 CCGGCAAACA AACCACCGCT GGTAGCGGTG GTTTTTTTGT TTGCAAGCAG CAGATTACGC                    colE1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4261 GCAGAAAAAA AGGATCTCAA GAAGATCCTT TGATCTTTTC TACGGGGTCT GACGCTCAGT 4321 GGAACGAAAA CTCACGTTAA GGGATTTTGG TCATGAGATT ATCAAAAAGG ATCTTCACCT 4381 AGATCCTTTT AAATTAAAAA TGAAGTTTTA AATCAATCTA AAGTATATAT GAGTAAACTT 4441 GGTCTGACAG TTATTAGAAA AATTCATCCA GCAGACGATA AAACGCAATA CGCTGGCTAT            ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                   KanR 4501 CCGGTGCCGC AATGCCATAC AGCACCAGAA AACGATCCGC CCATTCGCCG CCCAGTTCTT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 4561 CCGCAATATC ACGGGTGGCC AGCGCAATAT CCTGATAACG ATCCGCCACG CCCAGACGGC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 4621 CGCAATCAAT AAAGCCGCTA AAACGGCCAT TTTCCACCAT AATGTTCGGC AGGCACGCAT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 4681 CACCATGGGT CACCACCAGA TCTTCGCCAT CCGGCATGCT CGCTTTCAGA CGCGCAAACA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 4741 GCTCTGCCGG TGCCAGGCCC TGATGTTCTT CATCCAGATC ATCCTGATCC ACCAGGCCCG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 4801 CTTCCATACG GGTACGCGCA CGTTCAATAC GATGTTTCGC CTGATGATCA AACGGACAGG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 4861 TCGCCGGGTC CAGGGTATGC AGACGACGCA TGGCATCCGC CATAATGCTC ACTTTTTCTG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 4921 CCGGCGCCAG ATGGCTAGAC AGCAGATCCT GACCCGGCAC TTCGCCCAGC AGCAGCCAAT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 4981 CACGGCCCGC TTCGGTCACC ACATCCAGCA CCGCCGCACA CGGAACACCG GTGGTGGCCA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 5041 GCCAGCTCAG ACGCGCCGCT TCATCCTGCA GCTCGTTCAG CGCACCGCTC AGATCGGTTT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 5101 TCACAAACAG CACCGGACGA CCCTGCGCGC TCAGACGAAA CACCGCCGCA TCAGAGCAGC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 5161 CAATGGTCTG CTGCGCCCAA TCATAGCCAA ACAGACGTTC CACCCACGCT GCCGGGCTAC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             KanR 5221 CCGCATGCAG GCCATCCTGT TCAATCATAC TCTTCCTTTT TCAATATTAT TGAAGCATTT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             KanR 5281 ATCAGGGTTA TTGTCTCATG AGCGGATACA TATTTGAATG TATTTAGAAA AATAAACAAA 5341 TAGGGGTTCC GCGCACATTT CCCCGAAAAG TGCCACCTAA ATTGTAAGCG TTAATATTTT 5401 GTTAAAATTC GCGTTAAATT TTTGTTAAAT CAGCTCATTT TTTAACCAAT AGGCCGAAAT 5461 CGGCAAAATC CCTTATAAAT CAAAAGAATA GACCGAGATA GGGTTGAGTG GCCGCTACAG 5521 GGCGCTCCCA TTCGCCATTC AGGCTGCGCA ACTGTTGGGA AGGGCGTTTC GGTGCGGGCC 5581 TCTTCGCTAT TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT AAGTTGGGTA                                 T7 promoter                              ~~~~~~~~~~~~~~~~~~~~ 5641 ACGCCAGGGT TTTCCCAGTC ACACGCGTAA TACGACTCAC TATAG

Claims

1. A self-replicating RNA molecule comprising a polynucleotide which comprises:

a. a first nucleotide sequence encoding a first protein or fragment thereof from a herpes virus or fragment thereof; and
b. a second nucleotide sequence encoding a second protein or fragment thereof from said herpes virus or fragment thereof;
wherein the first nucleotide sequence and second nucleotide sequence are operably linked to one or more control elements so that when the self-replicating RNA molecule is introduced into a suitable cell, the first and second herpes virus proteins or fragments thereof are produced in an amount sufficient for the formation of a complex in the cell that contains the first and second proteins or fragments.

2. The self-replicating RNA molecule of claim 1 with the proviso that the first protein and the second protein are not the same protein or fragments of the same protein, the first protein is not a fragment of the second protein, and the second protein is not a fragment of the first protein.

3. The self-replicating RNA molecule of claim 2, wherein the first nucleotide sequence is operably linked to a first control element and the second nucleotide sequence is operably linked to a second control element.

4. The self-replicating RNA molecule of claim 1, further comprising a third nucleotide sequence encoding a third protein or fragment thereof from said herpes virus, wherein the third nucleotide sequences is operably linked to a control element.

5. The self-replicating RNA molecule of claim 4, wherein the third nucleotide sequence is operably linked to a third control element.

6. The self-replicating RNA molecule of claim 4, further comprising a fourth nucleotide sequence encoding a fourth protein or fragment thereof from said herpes virus, wherein the fourth nucleotide sequences is operably linked to a control element.

7. The self-replicating RNA molecule of claim 6, wherein the fourth nucleotide sequence is operably linked to a fourth control element.

8. The self-replicating RNA molecule of claim 6, further comprising a fifth nucleotide sequence encoding a fifth protein or fragment thereof from said herpes virus, wherein the fifth nucleotide sequences is operably linked to a control element.

9. The self-replicating RNA molecule of claim 8, wherein the fifth nucleotide sequence is operably linked to a fifth control element.

10. The self-replicating RNA molecule of claim 1 wherein the control elements are independently selected from the group consisting of a subgenomic promoter, an IRES, and a viral 2A site.

11. The self-replicating RNA molecule of claim 1, wherein the herpes virus is cytomegalovirus (CMV).

12. The self-replicating RNA molecule of claim 8 wherein the first protein or fragment, the second protein or fragment, the third protein or fragment, the fourth protein or fragment, and the fifth protein or fragment are independently selected from the group consisting of gB, gH, gL; gO; gM, gN; UL128, UL130, UL131, and a fragment of any one of the foregoing.

13. The self-replicating RNA molecule of claim 11, wherein the first protein or fragment is gH or a fragment thereof, and the second protein or fragment is gL or a fragment thereof.

14. The self-replicating RNA molecule of claim 11, wherein the first protein or fragment is gH or a fragment thereof, and the second protein or fragment is gL or a fragment thereof, and the third protein or fragment is gO or a fragment thereof.

15. The self-replicating RNA molecule of claim 11, wherein the first protein or fragment is gH or a fragment thereof, and the second protein or fragment is gL or a fragment thereof, the third protein or fragment is UL128 or a fragment thereof, the fourth protein or fragment is UL130 or a fragment thereof, and the fifth protein or fragment is UL131 or a fragment thereof.

16. The self-replicating RNA molecule of claim 1, wherein the herpes virus is varicella zoster virus (VZV).

17. The self-replicating RNA molecule of claim 16, wherein the first protein or fragment, the second protein or fragment, the third protein or fragment, the fourth protein or fragment, and the fifth protein or fragment are independently selected from the group consisting of gB, gE, gH, gI, gL, and a fragment of any one of the foregoing.

18. The self-replicating RNA molecule of claim 16, wherein the first protein or fragment is gH or a fragment thereof, and the second protein or fragment is gL or a fragment thereof.

19. The self-replicating RNA molecule of claim 8, wherein the self-replicating RNA molecule is an alphavirus replicon.

20. (canceled)

21. (canceled)

22. (canceled)

23. (canceled)

24. A composition comprising the self-replicating RNA of claim 1 and a pharmaceutically acceptable vehicle.

25. The composition of claim 24, further comprising a second self-replicating RNA molecule that encodes a protein or fragment thereof from the herpes virus.

26. The composition of claim 24, further comprising an RNA delivery system.

27. The composition of claim 26, wherein the RNA delivery system is a liposome, a polymeric nanoparticle, an oil-in-water cationic nanoemulsion or combinations thereof.

28. (canceled)

29. A method of forming a protein complex, comprising delivering an alphavirus replicon particle (VRP) comprising a self-replicating RNA molecule of claim 8 to a cell, and maintaining the cell under conditions suitable for expression of the alphavirus replicon, wherein a protein complex is formed.

30. The method of claim 29 wherein the cell is in vivo.

31. A method of forming a protein complex, comprising delivering the self-replicating RNA of claim 1 to a cell, and maintaining the cell under conditions suitable for expression of said self-replicating RNA, wherein a protein complex is formed.

32. (canceled)

33. A method of inhibiting herpes virus entry into a cell comprising contacting the cell with the self-replicating RNA of claim 1.

34. A method of inhibiting herpes virus entry into a cell comprising contacting the cell with an alphavirus replicon particle (VRP) comprising a self-replicating RNA molecule of claim 8.

35. The method of claim 33 wherein the cell is selected from the group consisting of an epithelial cell, an endothelial cell, and a fibroblast.

36. (canceled)

37. (canceled)

38. (canceled)

39. A method of inducing an immune response in an individual, comprising administering to the individual a self-replicating RNA molecule of claim 1.

40. The method of claim 39, wherein the immune response comprises the production of neutralizing antibodies.

41. The method of claim 40 wherein the neutralizing antibodies are complement-independent.

42. A recombinant DNA molecule that encodes the self-replicating RNA molecule of claim 1.

43. The recombinant DNA molecule of claim 42, wherein the recombinant DNA molecule is a plasmid.

44. (canceled)

45. (canceled)

46. (canceled)

Patent History
Publication number: 20140030292
Type: Application
Filed: Oct 11, 2011
Publication Date: Jan 30, 2014
Applicant: Novartis AG (Basel)
Inventors: Michael Franti (Redding, CT), Anders Lilja (Somerville, MA), Rebecca Loomis (Philadelphia, PA), Peter Mason (Somerville, MA)
Application Number: 13/878,835