IMMUNOBINDERS DIRECTED AGAINST TNF

Isolated binding proteins, e.g., antibodies or antigen binding portions thereof, which bind to tumor necrosis factor-alpha (TNF-α), e.g., human TNF-α, and related antibody-based compositions and molecules are disclosed. Also disclosed are pharmaceutical compositions comprising the antibodies, as well as therapeutic and diagnostic methods for using the antibodies.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 61/550,587, filed Oct. 24, 2011, which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

TNF-α binding proteins and their uses in the prevention and/or treatment of acute and chronic immunological diseases are provided.

2. Background of the Invention

There is a need in the art for improved binding proteins capable of binding TNF-α (also referred to as tumor necrosis factor, tumor necrosis factor-alpha, tumor necrosis factor-α, TNF, and cachectin). Provided are a novel family of binding proteins, CDR grafted binding proteins, humanized binding proteins, and fragments thereof, capable of binding TNF-α with high affinity and neutralizing TNF-α.

BRIEF SUMMARY OF THE INVENTION

TNF-α binding proteins, or antigen-binding portions thereof, that bind TNF-α are provided. In an embodiment, the antigen binding domain comprises the VH region chosen from any one of SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom. In another embodiment, the antigen binding domain comprises the VL region chosen from any one of SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom. In a particular embodiment, the antigen binding domain comprises a VH region and a VL region, for example, wherein the VH region comprises SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom, and the VL region comprises SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom.

In an embodiment, the binding protein binds TNF-α. In another embodiment, the binding protein modulates a biological function of TNF-α. In another embodiment, the binding protein neutralizes TNF-α. In yet another embodiment, the binding protein diminishes the ability of TNF-α to bind to its receptor, for example, the binding protein diminishes the ability of pro-human TNF-α, mature-human TNF-α, or truncated-human TNF-α to bind to its receptor. In yet another embodiment, the binding protein reduces one or more TNF-α biological activities selected from: TNF-dependent cytokine production; TNF-dependent cell killing; TNF-dependent inflammation; TNF-dependent bone erosion; and TNF-dependent cartilage damage.

In an embodiment, the binding protein has an on rate constant (Kon) selected from: at least about 102M−1 s−1; at least about 103M−1 s−1; at least about 104M−1 s−1; at least about 105M−1 s−1; and at least about 106M−1 s−1; as measured by surface plasmon resonance. In another embodiment, the binding protein has an off rate constant (Koff) selected from: at most about 10−3 s−1; at most about 10−4 s−1; at most about 10−5 s−1; and at most about 10−6 s−1, as measured by surface plasmon resonance. In yet another embodiment, the binding protein has a dissociation constant (KD) selected from: at most about 10−7 M; at most about 10−8 M; at most about 10−9 M; at most about 10−10 M; m at most about 10−11 M; at most about 10−12 M; and at most 10−13M.

In another aspect, a method for treating a mammal is provided comprising administering to the mammal an effective amount of the pharmaceutical composition disclosed herein. In another embodiment, a method for reducing human TNF-α activity is provided, the method comprising: contacting human TNF-α with the binding protein disclosed herein such that human TNF-α activity is reduced. In another embodiment, provided is a method for reducing human TNF-α activity in a human subject suffering from a disorder in which TNF-α activity is detrimental, the method comprising administering to the human subject the binding protein disclosed herein such that human TNF-α activity in the human subject is reduced. In another embodiment, provided is a method for treating a subject for a disease or a disorder in which TNF-α activity is detrimental, the method comprising administering to the subject the binding protein disclosed herein such that treatment is achieved.

In one embodiment, the method treats diseases involving immune and inflammatory elements, such as autoimmune diseases, particularly those associated with inflammation, including Crohn's disease, psoriasis (including plaque psoriasis), arthritis (including rheumatoid arthritis, psoriatic arthritis, osteoarthritis, or juvenile idiopathic arthritis), multiple sclerosis, and ankylosing spondylitis. Therefore, the binding proteins herein may be used to treat these disorders.

DETAILED DESCRIPTION OF THE INVENTION

Provided are TNF-α binding proteins, or antigen-binding portions thereof, that bind TNF-α, pharmaceutical compositions thereof, as well as nucleic acids, recombinant expression vectors and host cells for making such binding proteins and fragments. Also provided are methods of using the binding proteins disclosed herein to detect human TNF-α, to inhibit human TNF-α either in vitro or in vivo, and to regulate gene expression or TNF-α related functions.

Unless otherwise defined herein, scientific and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. The meaning and scope of the terms should be clear, however, in the event of any latent ambiguity, definitions provided herein take precedent over any dictionary or extrinsic definition. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. In this application, the use of “or” means “and/or”, unless stated otherwise. Furthermore, the use of the term “including”, as well as other forms of the term, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit unless specifically stated otherwise.

Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, pathology, oncology, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art. The methods and techniques of the present disclosure are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclatures used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.

The term “human TNF-α” (abbreviated herein as hTNF-α) includes a trimeric cytokine protein. The term includes a homotrimeric protein comprising three 17.5 kD TNF-α proteins. The homotrimeric protein is referred to as a “TNF-α protein”. The term human “TNF-α” is intended to include recombinant human TNF-α (rhTNF-α), which can be prepared by standard recombinant expression methods. The sequence of human TNF-α is shown in Table 1.

TABLE 1 Sequence of Human TNF-α Sequence Identi- Sequence Protein fier 12345678901234567890123456789012 Human SEQ VRSSSRTPSDKPVAHVVANPQAEGQLQWLNDR TNF-α ID NO.: 1 ANALLANGVELRDNQLVVPSEGLYLIYSQVLF KGQGCPSTHVLLTHTISRIAVSYQTKVNLLSA IKSPCQRETPEGAEAKPWYEPIYLGGVFQLEK GDRLSAEINRPDYLDFAESGQVYFGIIAL

The term “antibody”, broadly refers to any immunoglobulin (Ig) molecule, or antigen binding portion thereof, comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains, or any functional fragment, mutant, variant, or derivation thereof, which retains the essential epitope binding features of an Ig molecule. Such mutant, variant, or derivative antibody formats are known in the art.

In a full-length antibody, each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Immunoglobulin molecules can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG 1, IgG2, IgG 3, IgG4, IgA1 and IgA2) or subclass.

The term “antigen-binding portion” or “antigen-binding region” of a binding protein (or simply “binding protein portion”), refers to one or more fragments of a binding protein that retain the ability to specifically bind to an antigen (e.g., hTNF-α). The antigen-binding function of a binding protein can be performed by fragments of a full-length binding protein. Such binding protein embodiments may also have bispecific, dual specific, or multi-specific formats; specifically binding to two or more different antigens. Examples of binding fragments encompassed within the term “antigen-binding portion” of a binding protein include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al. (1989) Nature 341:544-546, Winter et al., PCT publication WO 90/05144 A1), which comprises a single variable domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see, e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Such single chain binding proteins are also intended to be encompassed within the term “antigen-binding portion” of a binding protein. Other forms of single chain binding proteins, such as diabodies are also encompassed. Diabodies are bivalent, bispecific binding proteins in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see, e.g., Holliger, et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, et al. (1994) Structure 2:1121-1123).

The term “binding protein” refers to a polypeptide comprising one or more antigen-binding portions disclosed herein optionally linked to a linker polypeptide or a constant domain. Linker polypeptides comprise two or more amino acid residues joined by peptide bonds and are used to link one or more antigen binding portions. Such linker polypeptides are well known in the art (see e.g., Holliger, et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, et al. (1994) Structure 2:1121-1123). A constant domain refers to a heavy or light chain constant domain. Human IgG heavy chain and light chain constant domain amino acid sequences are known in the art and represented in Table 2.

TABLE 2 Sequence of Human IgG Heavy Chain Constant Domain and Light Chain Constant Domain Sequence Sequence Protein Identifier 12345678901234567890123456789012 Ig gamma-1 SEQ ID NO.: 2 ASTKGPSVFFLAPSSKSTSGGTAALGCLVKDY constant region FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPP KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKG QPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT QKSLSLSPGK Ig gamma-1 SEQ ID NO.: 3 ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDY constant region FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS mutant LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK KVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPP KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKG QPREPQVYTLPPSREEMTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT QKSLSLSPGK Ig Kappa constant SEQ ID NO.: 4 TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFY region PREAKVQWKVDNALQSGNSQESVTEQDSKDST YSLSSTLTLSKADYEKHKVYACEVTHQGLSSP VTKSFNRGEC Ig Lambda SEQ ID NO.: 5 QPKAAPSVTLFPPSSEELQANKATLVCLISDF constant region YPGAVTVAWKADSSPVKAGVETTTPSKQSNNK YAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE KTVAPTECS

A binding protein, or antigen-binding portion thereof, may be part of a larger immunoadhesion molecule, formed by covalent or noncovalent association of the binding protein or binding protein portion with one or more other proteins or peptides. Examples of such immunoadhesion molecules include use of the streptavidin core region to make a tetrameric scFv molecule (Kipriyanov, et al. (1995) Hum. Antibod. Hybridomas 6:93-101) and use of a cysteine residue, a marker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv molecules (Kipriyanov, et al. (1994) Mol. Immunol. 31:1047-1058). Antibody portions, such as Fab and F(ab′)2 fragments, can be prepared from whole antibodies using conventional techniques, such as papain or pepsin digestion, respectively, of whole antibodies. Moreover, binding proteins, binding protein portions and immunoadhesion molecules can be obtained using standard recombinant DNA techniques, as described herein.

An “isolated binding protein” refers to a binding protein, or antigen-binding portion thereof, that is substantially free of other binding proteins having different antigenic specificities (e.g., an isolated binding protein that specifically binds hTNF-α is substantially free of binding proteins that specifically bind antigens other than hTNF-α). An isolated binding protein that specifically binds hTNF-α may, however, have cross-reactivity to other antigens, such as TNF-α molecules from other species. Moreover, an isolated binding protein may be substantially free of other cellular material and/or chemicals.

The term “human binding protein” includes binding proteins, or antigen-binding portion thereof, that having variable and constant regions derived from human germline immunoglobulin sequences. The human binding proteins disclosed herein may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3. However, the term “human binding protein”, is not intended to include binding proteins in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.

The terms “Kabat numbering”, “Kabat definitions” and “Kabat labeling” are used interchangeably herein. These terms, which are recognized in the art, refer to a system of numbering amino acid residues which are more variable (i.e., hypervariable) than other amino acid residues in the heavy and light chain variable regions of an antibody, or an antigen binding portion thereof (Kabat et al. (1971) Ann. NY Acad. Sci. 190:382-391 and Kabat, et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242). See also, Martin, “Protein Sequence and Structure Analysis of Antibody Variable Domains,” In Kontermann and Dübel, eds., Antibody Engineering (Springer-Verlag, Berlin, 2001), Chapter 31, especially pages 432-433. For the heavy chain variable region, the hypervariable region ranges from amino acid positions 31 to 35 for CDR1, amino acid positions 50 to 65 for CDR2, and amino acid positions 95 to 106 for CDR3. For the light chain variable region, the hypervariable region ranges from amino acid positions 24 to 34 for CDR1, amino acid positions 50 to 56 for CDR2, and amino acid positions 89 to 97 for CDR3.

The term “CDR” refers to the complementarity determining region within antibody variable sequences. There are three CDRs in each of the variable regions of the heavy chain and the light chain, which are designated CDR1, CDR2 and CDR3, for each of the variable regions. The term “CDR set” refers to a group of three CDRs that occur in a single variable region capable of binding the antigen. The exact boundaries of these CDRs have been defined differently according to different systems. The system described by Kabat (Kabat et al., Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987) and (1991)) not only provides an unambiguous residue numbering system applicable to any variable region of an antibody, but also provides precise residue boundaries defining the three CDRs. These CDRs may be referred to as Kabat CDRs. Chothia and coworkers (Chothia and Lesk (1987) J. Mol. Biol. 196:901-917) and Chothia et al. (1989) Nature 342:877-883) found that certain sub-portions within Kabat CDRs adopt nearly identical peptide backbone conformations, despite having great diversity at the level of amino acid sequence. These sub-portions were designated as L1, L2 and L3 or H1, H2 and H3 where the “L” and the “H” designates the light chain and the heavy chains regions, respectively. These regions may be referred to as Chothia CDRs, which have boundaries that overlap with Kabat CDRs. Other boundaries defining CDRs overlapping with the Kabat CDRs have been described by Padlan (1995) FASEB J. 9:133-139 and MacCallum (1996) J. Mol. Biol. 262(5):732-745. Still other CDR boundary definitions may not strictly follow one of the above systems, but will nonetheless overlap with the Kabat CDRs, although they may be shortened or lengthened in light of prediction or experimental findings that particular residues or groups of residues or even entire CDRs do not significantly impact antigen binding. The methods used herein may utilize CDRs defined according to any of these systems, although particular embodiments use Kabat or Chothia defined CDRs.

Human heavy chain and light chain acceptor sequences are known in the art. In one embodiment of the disclosure the human heavy chain and light chain acceptor sequences are selected from the sequences listed from V-base (hvbase.mrc-cpe.cam.ac.uk/) or from IMGT®, the international ImMunoGeneTics information system® (himgt.cines.fr/textes/IMGTrepertoire/LocusGenes/). In another embodiment of the disclosure the human heavy chain and light chain acceptor sequences are selected from the sequences described in Table 3 and Table 4, respectively.

TABLE 3 Heavy Chain Acceptor Sequences SEQ ID Protein Sequence No. region 12345678901234567890123456789012 SEQ ID VH4-59 FR1 QVQLQESGPGLVKPSETLSLTCTVSGGSISS NO: 6 SEQ ID VH4-59 FR2 WIRQPPGKGLEWIG NO: 7 SEQ ID VH4-59 FR3 RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR NO: 8 SEQ ID VH3-53 FR1 EVQLVESGGGLIQPGGSLRLSCAASGFTVSS NO: 9 SEQ ID VH3-53 FR2 WVRQAPGKGLEWVS NO: 10 SEQ ID VH3-53 FR3 RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR NO: 11 SEQ ID JH1/JH4/JH5 WGQGTLVTVSS NO: 12 FR4 SEQ ID JH2 FR4 WGRGTLVTVSS NO: 13 SEQ ID JH6 FR4 WGQGTTVTVSS NO: 14

TABLE 4 Light Chain Acceptor Sequences SEQ ID Protein Sequence No. region 12345678901234567890123456789012 SEQ ID 1-39/O12 DIQMTQSPSSLSASVGDRVTITC NO: 15 FR1 SEQ ID 1-39/O12 WYQQKPGKAPKLLIY NO: 16 FR2 SEQ ID 1-39/O12 GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC NO: 17 FR3 SEQ ID 3-15/L2 FR1 EIVMTQSPATLSVSPGERATLSC NO: 18 SEQ ID 3-15/L2 FR2 WYQQKPGQAPRLLIY NO: 19 SEQ ID 3-15/L2 FR3 GIPARFSGSGSGTEFTLTISSLQSEDFAVYYC NO: 20 SEQ ID JK2 FR4 FGQGTKLEIKR NO: 21

The term “multivalent binding protein” is used in this specification to denote a binding protein comprising two or more antigen binding sites. The multivalent binding protein may be engineered to have the three or more antigen binding sites, and is generally not a naturally occurring antibody. The term “multispecific binding protein” refers to a binding protein capable of binding two or more related or unrelated targets. Dual variable domain (DVD) binding proteins or immunoglobulins (DVD-Ig) as used herein, are binding proteins that comprise two or more antigen binding sites and are tetravalent or multivalent binding proteins. Such DVD-binding proteins may be monospecific, i.e., capable of binding one antigen or multispecific, i.e., capable of binding two or more antigens. DVD-binding proteins comprising two heavy chain DVD-Ig polypeptides and two light chain DVD-Ig polypeptides are referred to a DVD-Ig. Each half of a DVD-Ig comprises a heavy chain DVD-Ig polypeptide, and a light chain DVD-Ig polypeptide, and two antigen binding sites. Each binding site comprises a heavy chain variable domain and a light chain variable domain with a total of 6 CDRs involved in antigen binding per antigen binding site. DVD binding proteins and methods of making DVD binding proteins are disclosed in U.S. Pat. No. 7,612,181.

One aspect of the disclosure pertains to a DVD binding protein comprising binding proteins capable of binding TNF-α. In a particular embodiment, the DVD binding protein is capable of binding TNF-α and a second target.

The term “neutralizing” refers to neutralization of a biological activity of a cytokine when a binding protein specifically binds the cytokine. In a particular embodiment, binding of a neutralizing binding protein to hTNF-α results in inhibition of a biological activity of hTNF-α, e.g., the neutralizing binding protein binds hTNF-α and reduces a biologically activity of hTNF-α by at least about 20%, 40%, 60%, 80%, 85% or more Inhibition of a biological activity of hTNF-α by a neutralizing binding protein can be assessed by measuring one or more indicators of hTNF-α biological activity well known in the art. For example neutralization of the cytoxicity of TNF-α on L929 cells.

In another embodiment, the terms “agonist” or “agonizing” refer to an increase of a biological activity of TNF-α when a binding protein specifically binds TNF-α, e.g., hTNF-α. In a particular embodiment, binding of an agonizing binding protein to TNF-α results in the increase of a biological activity of TNF-α. In a particular embodiment, the agonistic binding protein binds TNF-α and increases a biologically activity of TNF-α by at least about 20%, 40%, 60%, 80%, 85%, 90%, 95, 96%, 97%, 98%, 99%, and 100%. An inhibition of a biological activity of TNF-α by an agonistic binding protein can be assessed by measuring one or more indicators of TNF-α biological activity well known in the art.

The term “activity” includes activities such as the binding specificity/affinity of a binding protein for an antigen, for example, a hTNF-α binding protein that binds to a TNF-α antigen and/or the neutralizing potency (or agonizing potency) of a binding protein, for example, a hTNF-α binding protein whose binding to hTNF-α inhibits the biological activity of hTNF-α, e.g., neutralization of the cytoxicity of TNF-α on L929 cells.

The term “surface plasmon resonance” refers to an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIAcore system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.).

The term “Kon” refers to the on rate constant for association of a binding protein (e.g., an antibody) to the antigen to form, e.g., the antibody/antigen complex as is known in the art. The “Kon” also is known by the terms “association rate constant”, or “ka”, as used interchangeably herein. This value indicating the binding rate of an antibody to its target antigen or the rate of complex formation between an antibody and antigen also is shown by the equation below:


Antibody(“Ab”)+Antigen(“Ag”)→Ab−Ag

The term “Koff” refers to the off rate constant for dissociation, or “dissociation rate constant”, of a binding protein (e.g., an antibody), from the, e.g., antibody/antigen complex as is known in the art. This value indicates the dissociation rate of an antibody from its target antigen or separation of Ab−Ag complex over time into free antibody and antigen as shown by the equation below:


Ab+Ag←Ab−Ag

The term “KD” refers to the “equilibrium dissociation constant” and refers to the value obtained in a titration measurement at equilibrium, or by dividing the dissociation rate constant (Koff) by the association rate constant (Kon). The association rate constant, the dissociation rate constant and the equilibrium dissociation constant are used to represent the binding affinity of an antibody to an antigen. Methods for determining association and dissociation rate constants are well known in the art. Using fluorescence-based techniques offers high sensitivity and the ability to examine samples in physiological buffers at equilibrium. Other experimental approaches and instruments such as a BIAcore® (biomolecular interaction analysis) assay can be used (e.g., instrument available from BIAcore International AB, a GE Healthcare company, Uppsala, Sweden). Additionally, a KinExA® (Kinetic Exclusion Assay) assay, available from Sapidyne Instruments (Boise, Id.) can also be used.

I. Binding Proteins that Bind Human TNF-α

One aspect of the present disclosure provides isolated fully-human anti-human TNF binding proteins, such as monoclonal antibodies, or antigen-binding portions thereof, that bind to TNF-α with high affinity, a slow off rate and high neutralizing capacity. A second aspect of the disclosure provides affinity-matured fully-human anti-TNF binding proteins, such as monoclonal antibodies, or antigen-binding portions thereof, that bind to TNF-α with high affinity, a slow off rate and high neutralizing capacity.

A. Method of Making TNF-α Binding Proteins

The binding proteins disclosed herein may be made by any of a number of techniques known in the art.

1. Anti-TNF-α Monoclonal Antibodies Using Transgenic Animals

In another embodiment of the disclosure, binding proteins are produced by immunizing a non-human animal comprising some, or all, of the human immunoglobulin locus with a TNF-α antigen. In a particular embodiment, the non-human animal is a XENOMOUSE transgenic mouse, an engineered mouse strain that comprises large fragments of the human immunoglobulin loci and is deficient in mouse antibody production. See, e.g., Green et al. (1994) Nature Genet. 7:13-21 and U.S. Pat. Nos. 5,916,771; 5,939,598; 5,985,615; 5,998,209; 6,075,181; 6,091,001; 6,114,598 and 6,130,364. See also PCT Publications WO 91/10741, published Jul. 25, 1991; WO 94/02602, published Feb. 3, 1994; WO 96/34096 and WO 96/33735, both published Oct. 31, 1996; WO 98/16654, published Apr. 23, 1998; WO 98/24893, published Jun. 11, 1998; WO 98/50433, published Nov. 12, 1998; WO 99/45031, published Sep. 10, 1999; WO 99/53049, published Oct. 21, 1999; WO 00/09560, published Feb. 24, 2000; and WO 00/37504, published Jun. 29, 2000. The XENOMOUSE transgenic mouse produces an adult-like human repertoire of fully human antibodies, and generates antigen-specific human Mabs. The XENOMOUSE transgenic mouse contains approximately 80% of the human antibody repertoire through introduction of megabase sized, germline configuration YAC fragments of the human heavy chain loci and x light chain loci. See, Mendez et al. (1997) Nature Genet. 15:146-156; Green and Jakobovits (1998) J. Exp. Med. 188:483-495.

2. Anti-TNF-α Monoclonal Antibodies Using Recombinant Antibody Libraries

In vitro methods also can be used to make the binding protein disclosed herein, wherein an antibody library is screened to identify an antibody having the desired binding specificity. Methods for such screening of recombinant antibody libraries are well known in the art and include methods described in, for example, U.S. Pat. No. 5,223,409; PCT Publications WO 92/18619; WO 91/17271; WO 92/20791; WO 92/15679; WO 93/01288; WO 92/01047; WO 92/09690; and WO 97/29131; Fuchs et al. (1991) Bio/Technology 9:1369-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; McCafferty et al. (1990) Nature 348:552-554; Griffiths et al. (1993) EMBO J. 12:725-734; Hawkins et al. (1992) J. Mol. Biol. 226:889-896; Clackson et al. (1991) Nature 352:624-628; Gram et al. (1992) Proc. Natl. Acad. Sci. USA 89:3576-3580; Garrard et al. (1991) Bio/Technology 9:1373-1377; Hoogenboom et al. (1991) Nucl. Acid Res. 19:4133-4137; and Barbas et al. (1991) Proc. Natl. Acad. Sci. USA 88:7978-7982; and U.S. Patent Publication No. 2003.0186374.

The recombinant antibody library may be from a subject immunized with TNF-α, or a portion of TNF-α. Alternatively, the recombinant antibody library may be from a naïve subject, i.e., one who has not been immunized with TNF-α, such as a human antibody library from a human subject who has not been immunized with human TNF-α. Antibodies disclosed herein are selected by screening the recombinant antibody library with the peptide comprising human TNF-α to thereby select those antibodies that recognize TNF-α. Methods for conducting such screening and selection are well known in the art, such as described in the references in the preceding paragraph. To select antibodies disclosed herein having particular binding affinities for hTNF-α, such as those that dissociate from human TNF-α with a particular koff rate constant, the art-known method of surface plasmon resonance can be used to select antibodies having the desired koff rate constant. To select antibodies disclosed herein having a particular neutralizing activity for hTNF-α, such as those with a particular an IC50, standard methods known in the art for assessing the inhibition of hTNF-α activity may be used.

In one aspect, provided is an isolated binding protein, or an antigen-binding portion thereof, that binds TNF-α, e.g., human TNF-α. In a particular embodiment, the binding protein is a neutralizing binding protein. In various embodiments, the binding protein is a recombinant binding protein or a monoclonal antibody.

For example, the binding proteins disclosed herein can also be generated using various phage display methods known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. In a particular, such phage can be utilized to display antigen-binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead. Phage used in these methods are typically filamentous phage including fd and M13 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein. Examples of phage display methods that can be used to make the binding proteins disclosed herein can be found in the art.

As described in the above references, after phage selection, the binding protein coding regions from the phage can be isolated and used to generate whole binding proteins including human binding protein or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below. For example, techniques to recombinantly produce Fab, Fab′ and F(ab′)2 fragments can also be employed using methods known in the art such as those disclosed in PCT Publication WO 92/22324; Mullinax et al. (1992) BioTechniques 12(6):864-869; and Sawai et al. (1995) Am. J. Reprod. Immunol. 34:26-34; and Better et al. (1998) Science 240:1041-1043. Examples of techniques which can be used to produce single-chain Fvs and antibodies include those described in U.S. Pat. Nos. 4,946,778 and 5,258,498; Huston et al. (1991) Methods Enzymol. 203:46-88; Shu et al. (1993) Proc. Natl. Acad. Sci. USA 90:7995-7999; and Skerra et al. (1998) Science 240:1038-1041.

Alternative to screening of recombinant antibody libraries by phage display, other methodologies known in the art for screening large combinatorial libraries can be applied to the identification of dual specificity binding protein disclosed herein. One type of alternative expression system is one in which the recombinant antibody library is expressed as RNA-protein fusions, as described in PCT Publication No. WO 98/31700 and in Roberts and Szostak (1997) Proc. Natl. Acad. Sci. USA 94:12297-12302. In this system, a covalent fusion is created between an mRNA and the peptide or protein that it encodes by in vitro translation of synthetic mRNAs that carry puromycin, a peptidyl acceptor antibiotic, at their 3′ end. Thus, a specific mRNA can be enriched from a complex mixture of mRNAs (e.g., a combinatorial library) based on the properties of the encoded peptide or protein, e.g., antibody, or portion thereof, such as binding of the antibody, or portion thereof, to the dual specificity antigen. Nucleic acid sequences encoding antibodies, or portions thereof, recovered from screening of such libraries can be expressed by recombinant means as described above (e.g., in mammalian host cells) and, moreover, can be subjected to further affinity maturation by either additional rounds of screening of mRNA-peptide fusions in which mutations have been introduced into the originally selected sequence(s), or by other methods for affinity maturation in vitro of recombinant antibodies, as described above.

In another approach the binding proteins disclosed herein can also be generated using yeast display methods known in the art. In yeast display methods, genetic methods are used to tether antibody domains to the yeast cell wall and display them on the surface of yeast. In particular, such yeast can be utilized to display antigen-binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Examples of yeast display methods that can be used to make the binding proteins disclosed herein include those disclosed Wittrup et al. U.S. Pat. No. 6,699,658 and Frenken et al., U.S. Pat. No. 6,114,147.

B. Production of Recombinant TNF-α Binding Proteins

Binding proteins disclosed herein may be produced by any of a number of techniques known in the art. For example, expression from host cells, wherein expression vector(s) encoding the heavy and light chains is (are) transfected into a host cell by standard techniques. The various forms of the term “transfection” are intended to encompass a wide variety of techniques commonly used for the introduction of exogenous DNA into a prokaryotic or eukaryotic host cell, e.g., electroporation, calcium-phosphate precipitation, DEAE-dextran transfection and the like. Although it is possible to express the binding proteins disclosed herein in either prokaryotic or eukaryotic host cells, expression of binding protein in eukaryotic cells is contemplated, for example, in mammalian host cells, because such eukaryotic cells (and in particular mammalian cells) are more likely than prokaryotic cells to assemble and secrete a properly folded and immunologically active binding protein.

Mammalian host cells for expressing the recombinant binding proteins disclosed herein include Chinese Hamster Ovary (CHO cells) (including dhfr-CHO cells, described in Urlaub and Chasin (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in Kaufman and Sharp (1982) J. Mol. Biol. 159:601-621), NS0 myeloma cells, COS cells and SP2 cells. When recombinant expression vectors encoding binding protein genes are introduced into mammalian host cells, the binding proteins are produced by culturing the host cells for a period of time sufficient to allow for expression of the binding protein in the host cells or, in particular, secretion of the antibody into the culture medium in which the host cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods.

Host cells can also be used to produce functional binding protein fragments, such as Fab fragments or scFv molecules. It will be understood that variations on the above procedure are within the scope of the present disclosure. For example, it may be desirable to transfect a host cell with DNA encoding functional fragments of either the light chain and/or the heavy chain of a binding protein disclosed herein. Recombinant DNA technology may also be used to remove some, or all, of the DNA encoding either or both of the light and heavy chains that is not necessary for binding to the antigens of interest. The molecules expressed from such truncated DNA molecules are also encompassed by the binding proteins disclosed herein. In addition, bifunctional binding proteins may be produced in which one heavy and one light chain are a binding protein disclosed herein and the other heavy and light chain are specific for an antigen other than the antigens of interest by crosslinking a binding protein disclosed herein to a second binding protein by standard chemical crosslinking methods.

In an exemplary system for recombinant expression of a binding protein, or antigen-binding portion thereof, disclosed herein, a recombinant expression vector encoding both the heavy chain and the light chain is introduced into dhfrCHO cells by calcium phosphate-mediated transfection. Within the recombinant expression vector, the heavy and light chain genes are each operatively linked to CMV enhancer/AdMLP promoter regulatory elements to drive high levels of transcription of the genes. The recombinant expression vector also carries a DHFR gene, which allows for selection of CHO cells that have been transfected with the vector using methotrexate selection/amplification. The selected transformant host cells are cultured to allow for expression of the heavy and light chains and intact binding protein is recovered from the culture medium. Standard molecular biology techniques are used to prepare the recombinant expression vector, transfect the host cells, select for transformants, culture the host cells and recover the binding protein from the culture medium. Still further a method of synthesizing a recombinant binding protein disclosed herein is provided by culturing a host cell disclosed herein in a suitable culture medium until a recombinant binding protein disclosed herein is synthesized. The method can further comprise isolating the recombinant binding protein from the culture medium.

II. hTNF-α Binding Proteins

A. Individual Clone Sequences

Table 5 provides the VH and VL sequences of fully human anti-human TNF binding proteins, including CDRs from each VH and VL sequence.

TABLE 5 Individual Fully Human Anti-TNF-α VH Sequences Sequence Protein region 123456789012345678901234567890 AE11-1 VH SEQ ID NO.: 22 EVQLVQSGAEVKKPGASVKVSCKASGYTFT SYDVNWVRQATGQGLEWMGWMNPNSGNTGY AQKFQGRVTITADESTSTAYMELSSLRSED TAVYYCAIFDSDYMDVWGKGTLVTVSS AE11-1 VH CDR- Residues 31-35 SYDVN H1 of SEQ ID NO.: 22 AE11-1 VH CDR- Residues 50-66 WMNPNSGNTGYAQKFQG H2 of SEQ ID NO.: 22 AE11-1 VH CDR- Residues 99-106 FDSDYMDV H3 of SEQ ID NO.: 22 AE11-1 VL SEQ ID NO.: 23 SYELTQPPSVSLSPGQTARITCSGDALPKQ YAYWYQQKPGQAPVLVIYKDTERPSGIPER FSGSSSGTTVTLTISGAQAEDEADYYCQSA DSSGTSWVFGGGTKLTVL AE11-1 VL CDR- Residues 23-33 SGDALPKQYAY L1 of SEQ ID NO.: 23 AE11-1 VL CDR- Residues 49-55 KDTERPS L2 of SEQ ID NO.: 23 AE11-1 VL CDR- Residues 89-98 SADSSGTSWV L3 of SEQ ID NO.: 23 AE11-5 VH SEQ ID NO.: 24 EVQLVQSGAEVKKPGSSAKVSCKASGGTFS SYAISWVRQAPGQGLEWMGGIIPILGTANY AQKFLGRVTITADESTSTVYMELSSLRSED TAVYYCARGLYYDPTRADYWGQGTLVTVSS AE11-5 VH CDR- Residues 31-35 SYAIS H1 of SEQ ID NO.: 24 AE11-5 VH CDR- Residues 50-66 GIIPILGTANYAQKFLG H2 of SEQ ID NO.: 24 AE11-5 VH CDR- Residues 99-109 GLYYDPTRADY H3 of SEQ ID NO.: 24 AE11-5 VL SEQ ID NO.: 25 DIVMTQSPDFHSVTPKEKVTITCRASQSIG SSLHWYQQKPDQSPKLLIRHASQSISGVPS RFSGSGSGTDFTLTIHSLEAEDAATYYCHQ SSSSPPPTFGQGTQVEIK AE11-5 VL CDR- Residues 24-34 RASQSIGSSLH L1 of SEQ ID NO.: 25 AE11-5 VL CDR- Residues 50-56 HASQSIS L2 of SEQ ID NO.: 25 AE11-5 VL CDR- Residues 89-98 HQSSSSPPPT L3 of SEQ ID NO.: 25 TNF-JK1 VH SEQ ID NO.: 26 EVQLVESGGGLVQPGGSLRLSCATSGFTFN NYWMSWVRQAPGKGLEWVANINHDESEKYY VDSAKGRFTISRDNAEKSLFLQMNSLRAED TAVYYCARIIRGRVGFDYYNYAMDVWGQGT LVTVSS TNF-JK1 VH CDR- Residues 31-35 NYWMS H1 of SEQ ID NO.: 26 TNF-JK1 VH CDR- Residues 50-66 NINHDESEKYYVDSAKG H2 of SEQ ID NO.: 26 TNF-JK1 VH CDR- Residues 99-115 IIRGRVGFDYYNYAMDV H3 of SEQ ID NO.: 26 TNF-JK1 VL SEQ ID NO.: 27 DIRLTQSPSPLSASVGDRVTITCRASQSIG NYLNWYQHKPGKAPKLLIYAASSLQSGVPS RFSGTGSGTDFTLTISSLQPEDFATYYCQE SYSLIFAGGTKVEIK TNF-JK1 VL CDR- Residues 24-34 RASQSIGNYLN L1 of SEQ ID NO.: 27 TNF-JK1 VL CDR- Residues 50-56 AASSLQS L2 of SEQ ID NO.: 27 TNF-JK1 VL CDR- Residues 89-95 QESYSLI L3 of SEQ ID NO.: 27 TNF-Y7C VH SEQ ID NO.: 28 EVQLVQSGAEVKKPGASVKVSCKTSGYTFS NYDINWVRQPTGQGLEWMGWMDPNNGNTGY AQKFVGRVTMTRDTSKTTAYLELSGLKSED TAVYYCARSSGSGGTWYKEYFQSWGQGTMV TVSS TNF-Y7C VH CDR- Residues 31-35 NYDIN H1 of SEQ ID NO.: 28 TNF-Y7C VH CDR- Residues 50-66 WMDPNNGNTGYAQKFVG H2 of SEQ ID NO.: 28 TNF-Y7C VH CDR- Residues 99-112 KSSGSGGTWYKEYFQS H3 of SEQ ID NO.: 28 TNF-Y7C VL SEQ ID NO.: 29 DIVMTQSPLSLPVTPGEPASISCRSSQSLL HSNGYNYLDWYLQKPGQFPQLLIYLGSYRA SGVPDRFSGSGSGTDFTLKISRVEAEDVGV YYCMQRIEFPPGTFGQGTKLGIK TNF-Y7C VL CDR- Residues 24-39 RSSQSLLHSNGYNYLD L1 of SEQ ID NO.: 29 TNF-Y7C VL CDR- Residues 55-61 LGSYRAS L2 of SEQ ID NO.: 29 TNF-Y7C VL CDR- Residues 94-103 MQRIEFPPGT L3 of SEQ ID NO.: 29 AE11-7 VH SEQ ID NO.: 30 EVQLVQSGAEVKKPGASVKVSCKTSGYSLT QYPIHWVRQAPGQRPEWMGWISPGNGNTKL SPKFQGRVTLSRDASAGTVFMDLSGLTSDD TAVYFCTSVDLGDHWGQGTLVTVSS AE11-7 VH CDR- Residues 31-35 QYPIH H1 of SEQ ID NO.: 30 AE11-7 VH CDR- Residues 50-66 WISPGNGNTKLSPKFQG H2 of SEQ ID NO.: 30 AE11-7 VH CDR- Residues 99-104 VDLGDH H3 of SEQ ID NO.: 30 AE11-7 VL SEQ ID NO.: 31 DIVMTQSPEFQSVTPKEKVTITCRASQSIG SSLHWYQQKPDQSPKLLINYASQSFSGVPS RFSGGGSGTDFTLTINSLEAEDAATYYCHQ SSNLPITFGQGTRLEIK AE11-7 VL CDR- Residues 24-34 RASQSIGSSLH L1 of SEQ ID NO.: 31 AE11-7 VL CDR- Residues 50-56 YASQSFS L2 of SEQ ID NO.: 31 AE11-7 VL CDR- Residues 89-97 HQSSNLPIT L3 of SEQ ID NO.: 31 AE11-13 VH SEQ ID NO.: 32 EVQLVESGGGLVQPGRSLRLSCAASGFTFD DYPMHWVRQAPGEGLEWVSGISSNSASIGY ADSVKGRFTISRDNAQNTLYLQMNSLGDED TAVYYCVSLTLGIGQGTLVTVSS AE11-13 VH CDR- Residues 31-35 DYPMH H1 of SEQ ID NO.: 32 AE11-13 VH CDR- Residues 50-66 GISSNSASIGYADSVKG H2 of SEQ ID NO.: 332 AE11-13 VH CDR- Residues 99-102 LTLG H3 of SEQ ID NO.: 32 AE11-13 VL SEQ ID NO.: 33 DIRLTQSPSSLSASVGDRVTITCRASQSIG NYLHWYQQKPGKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ SYSTLYSFGQGTKLEIK AE11-13 VL CDR- Residues 24-34 RASQSIGNYLH L1 of SEQ ID NO.: 33 AE11-13 VL CDR- Residues 50-56 AASSLQS L2 of SEQ ID NO.: 33 AE11-13 VL CDR- Residues 89-97 QQSYSTLYS L3 of SEQ ID NO.: 33

B. IgG Converted Clones

Table 6 provides the VH sequence of humanized anti-TNF MAK-195 antibodies that were converted into IgG clones as discussed in detail in Example 2.

TABLE 6 Humanized anti-TNF MAK-195 Ab VH sequences of IgG converted clones Protein Sequence region 123456789012345678901234567890 A8 SEQ ID NO.: 34 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVNWVRQAPGKGLEWVSMIAADGFTDYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWHHGPVAYWGQGTLVTVSS A8 CDR-H1 Residues 31-35 NYGVN VH of SEQ ID NO.: 34 A8 CDR-H2 Residues 50-65 MIAADGFTDYASSVKG VH of SEQ ID NO.: 34 A8 CDR-H3 Residues 98-106 EWHHGPVAY VH of SEQ ID NO.: 34 B5 SEQ ID NO.: 35 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVSWVRQAPGKGLEWVSLIRGDGSTDYA SSLKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWHHGPVAYWGQGTLVTVSS B5 CDR-H1 Residues 31-35 NYGVS VH of SEQ ID NO.: 35 B5 CDR-H2 Residues 50-65 LIRGDGSTDYASSLKG VH of SEQ ID NO.: 35 B5 CDR-H3 Residues 98-106 EWHHGPVAY VH of SEQ ID NO.: 35 rHC44 SEQ ID NO.: 36 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA DTLKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS rHC44 CDR-H1 Residues 31-35 NYGVS VH of SEQ ID NO.: 36 rHC44 CDR-H2 Residues 50-65 MIWADGSTHYADTLKS VH of SEQ ID NO.: 36 rHC44 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 36 rHC22 SEQ ID NO.: 37 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTDYA DTVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS rHC22 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 37 rHC22 CDR-H2 Residues 50-65 MIWADGSTDYADTVKG VH of SEQ ID NO.: 37 rHC22 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 37 rHC81 SEQ ID NO.: 38 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA DSVKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPLAYWGQGTLVTVSS rHC81 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 38 rHC81 CDR-H2 Residues 50-65 MIWADGSTHYADSVKS VH of SEQ ID NO.: 38 rHC81 CDR-H3 Residues 98-106 EWQHGPLAY VH of SEQ ID NO.: 38 rHC18 SEQ ID NO.: 39 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWSDGSTDYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS rHC18 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 39 rHC18 CDR-H2 Residues 50-65 MIWSDGSTDYASSVKG VH of SEQ ID NO.: 39 rHC18 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 39 rHC14 SEQ ID NO.: 40 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSLKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPAAYWGQGTLVTVSS rHC14 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 40 rHC14 CDR-H2 Residues 50-65 MIWADGSTHYASSLKG VH of SEQ ID NO.: 40 rHC14 CDR-H3 Residues 98-106 EWQHGPAAY VH of SEQ ID NO.: 40 rHC3 SEQ ID NO.: 41 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA SSLKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS rHC3 CDR-H1 Residues 31-35 NYGVS VH of SEQ ID NO.: 41 rHC3 CDR-H2 Residues 50-65 MIWADGSTHYASSLKG VH of SEQ ID NO.: 41 rHC3 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 41 rHC19 SEQ ID NO.: 42 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPAAYWGQGTLVTVSS rHC19 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 42 rHC19 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 42 rHC19 CDR-H3 Residues 98-106 EWQHGPAAY VH of SEQ ID NO.: 42 rHC34 SEQ ID NO.: 43 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPSAYWGQGTLVTVSS rHC34 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 43 rHC34 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 43 rHC34 CDR-H3 Residues 98-106 EWQHGPSAY VH of SEQ ID NO.: 43 rHC83 SEQ ID NO.: 44 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS rHC83 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 44 rHC83 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 44 rHC83 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 44 S4-19 SEQ ID NO.: 45 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA DTVKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-19 CDR-H1 Residues 31-35 NYGVE VH of SEQ ID NO.: 45 S4-19 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS VH of SEQ ID NO.: 45 S4-19 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 45 S4-50 SEQ ID NO.: 46 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA DTVKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVGYWGQGTLVTVSS S4-50 CDR-H1 Residues 31-35 NYGVE VH of SEQ ID NO.: 46 S4-50 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS VH of SEQ ID NO.: 46 S4-50 CDR-H3 Residues 98-106 EWQHGPVGY VH of SEQ ID NO.: 46 S4-63 SEQ ID NO.: 47 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA DTVKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVGYWGQGTLVTVSS S4-63 CDR-H1 Residues 31-35 NYGVE VH of SEQ ID NO.: 47 S4-63 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS VH of SEQ ID NO.: 47 S4-63 CDR-H3 Residues 98-106 EWQHGPVGY VH of SEQ ID NO.: 47 S4-55 SEQ ID NO.: 48 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTDYA STVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVGYWGQGTLVTVSS S4-55 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 48 S4-55 CDR-H2 Residues 50-65 MIWADGSTDYASTVKG VH of SEQ ID NO.: 48 S4-55 CDR-H3 Residues 98-106 EWQHGPVGY VH of SEQ ID NO.: 48 S4-6 SEQ ID NO.: 49 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-6 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 49 S4-6 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 49 S4-6 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 49 S4-18 SEQ ID NO.: 50 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA DSVKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPLAYWGQGTLVTVSS S4-18 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 50 S4-18 CDR-H2 Residues 50-65 MIWADGSTHYADSVKS VH of SEQ ID NO.: 50 S4-18 CDR-H3 Residues 98-106 EWQHGPLAY VH of SEQ ID NO.: 50 S4-31 SEQ ID NO.: 51 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVQWVRQAPGKGLEWVSGIGADGSTAYA SSLKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHSGLAYWGQGTLVTVSS S4-31 CDR-H1 Residues 31-35 NYGVQ VH of SEQ ID NO.: 51 S4-31 CDR-H2 Residues 50-65 GIGADGSTAYASSLKG VH of SEQ ID NO.: 51 S4-31 CDR-H3 Residues 98-106 EWQHSGLAY VH of SEQ ID NO.: 51 S4-34 SEQ ID NO.: 52 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA DTVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPLAYWGQGTLVTVSS S4-34 CDR-H1 Residues 31-35 NYGVS VH of SEQ ID NO.: 52 S4-34 CDR-H2 Residues 50-65 MIWADGSTHYADTVKG VH of SEQ ID NO.: 52 S4-34 CDR-H3 Residues 98-106 EWQHGPLAY VH of SEQ ID NO.: 52 S4-74 SEQ ID NO.: 53 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA DTVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPLAYWGQGTLVTVSS S4-74 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 53 S4-74 CDR-H2 Residues 50-65 MIWADGSTHYADTVKG VH of SEQ ID NO.: 53 S4-74 CDR-H3 Residues 98-106 EWQHGPLAY VH of SEQ ID NO.: 53 S4-12 SEQ ID NO.: 54 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-12 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 54 S4-12 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 54 S4-12 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 54 S4-54 SEQ ID NO.: 55 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-54 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 55 S4-54 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 55 S4-54 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 55 S4-17 SEQ ID NO.: 56 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-17 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 56 S4-17 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 56 S4-17 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 56 S4-40 SEQ ID NO.: 57 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-40 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 57 S4-40 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 57 S4-40 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 57 S4-24 SEQ ID NO.: 58 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-24 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 58 S4-24 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 58 S4-24 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 58

Table 7 provides VL sequences of IgG converted clones for Humanized anti-TNF MAK-195 antibodies as discussed in detail in Example 2.

TABLE 7 Humanized anti-TNF MAK-195 Ab VL sequences of IgG converted clones Sequence Protein region 123456789012345678901234567890 hMAK195 SEQ ID NO.: 59 DIQMTQSPSSLSASVGDRVTITCKASQAVS VL.1 SAVAWYQQKPGKAPKLLIYWASTRHTGVPS VL RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYSTPFTFGQGTKLEIKR hMAK195 CDR-L1 Residues 24-34 KASQAVSSAVA VL.1 of SEQ ID VL NO.: 59 hMAK195 CDR-L2 Residues 50-56 WASTRHT VL.1 of SEQ ID VL NO.: 59 hMAK195 CDR-L3 Residues 89-97 QQHYSTPFT VL.1 of SEQ ID VL NO.: 59 S4-24 SEQ ID NO.: 60 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-24 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 60 S4-24 CDR-L2 Residues 50-56 WASTLHT VL of SEQ ID NO.: 60 S4-24 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 60 S4-40 SEQ ID NO.: 61 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASTRHSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFSFGQGTKLEIKR S4-40 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 61 S4-40 CDR-L2 Residues 50-56 WASTRHS VL of SEQ ID NO.: 61 S4-40 CDR-L3 Residues 89-97 QQHYRTPFS VL of SEQ ID NO.: 61 S4-17 SEQ ID NO.: 62 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASTRHSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-17 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 62 S4-17 CDR-L2 Residues 50-56 WASTRHS VL of SEQ ID NO.: 62 S4-17 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 62 S4-54 SEQ ID NO.: 63 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYKTPFSFGQGTKLEIKR S4-54 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 63 S4-54 CDR-L2 Residues 50-56 WASARHT VL of SEQ ID NO.: 63 S4-54 CDR-L3 Residues 89-97 QQHYKTPFS VL of SEQ ID NO.: 63 S4-12 SEQ ID NO.: 64 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYKTPFTFGQGTKLEIKR S4-12 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 64 S4-12 CDR-L2 Residues 50-56 WASARHT VL of SEQ ID NO.: 64 S4-12 CDR-L3 Residues 89-97 QQHYKTPFT VL of SEQ ID NO.: 64 S4-74 SEQ ID NO.: 65 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-74 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 65 S4-74 CDR-L2 Residues 50-56 WASARHT VL of SEQ ID NO.: 65 S4-74 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 65 S4-34 SEQ ID NO.: 66 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASTRHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-34 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 66 S4-34 CDR-L2 Residues 50-56 WASTRHT VL of SEQ ID NO.: 66 S4-34 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 66 S4-31 SEQ ID NO.: 67 DIQMTQSPSSLSASVGDRVTITCRASQGVS VL SALAWYQQKPGKAPKLLIYWASALHSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYSAPFTFGQGTKLEIKR S4-31 CDR-L1 Residues 24-34 RASQGVSSALA VL of SEQ ID NO.: 67 S4-31 CDR-L2 Residues 50-56 WASALHS VL of SEQ ID NO.: 67 S4-31 CDR-L3 Residues 89-97 QQHYSAPFT VL of SEQ ID NO.: 67 S4-18 SEQ ID NO.: 68 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASTLHSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYSTPFTFGQGTKLEIKR S4-18 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 68 S4-18 CDR-L2 Residues 50-56 WASTLHS VL of SEQ ID NO.: 68 S4-18 CDR-L3 Residues 89-97 QQHYSTPFT VL of SEQ ID NO.: 68 S4-6 SEQ ID NO.: 69 DIQMTQSPSSLSASVGDRVTITCKASQLVS VL SAVAWYQQKPGKAPKLLIYWASTRHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYSTPFTFGQGTKLEIKR S4-6 CDR-L1 Residues 24-34 KASQLVSSAVA VL of SEQ ID NO.: 69 S4-6 CDR-L2 Residues 50-56 WASTRHT VL of SEQ ID NO.: 69 S4-6 CDR-L3 Residues 89-97 QQHYSTPFT VL of SEQ ID NO.: 69 S4-55 SEQ ID NO.: 70 DIQMTQSPSSLSASVGDRVTITCKASQLVS VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-55 CDR-L1 Residues 24-34 KASQLVSSAVA VL of SEQ ID NO.: 70 S4-55 CDR-L2 Residues 50-56 WASTLHT VL of SEQ ID NO.: 70 S4-55 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 70 S4-63 SEQ ID NO.: 71 DIQMTQSPSSLSASVGDRVTITCKASQKVS VL SALAWYQQKPGKAPKLLIYWASALHSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRPPFTFGQGTKLEIKR S4-63 CDR-L1 Residues 24-34 KASQKVSSALA VL of SEQ ID NO.: 71 S4-63 CDR-L2 Residues 50-56 WASALHS VL of SEQ ID NO.: 71 S4-63 CDR-L3 Residues 89-97 QQHYRPPFT VL of SEQ ID NO.: 71 S4-50 SEQ ID NO.: 72 DIQMTQSPSSLSASVGDRVTITCKASQLVS VL SAVAWYQQKPGKAPKLLIYWASALHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYSSPYTFGQGTKLEIKR S4-50 CDR-L1 Residues 24-34 KASQLVSSAVA VL of SEQ ID NO.: 72 S4-50 CDR-L2 Residues 50-56 WASALHT VL of SEQ ID NO.: 72 S4-50 CDR-L3 Residues 89-97 QQHYSSPYT VL of SEQ ID NO.: 72 S4-19 SEQ ID NO.: 73 DIQMTQSPSSLSASVGDRVTITCKASQLVS VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-19 CDR-L1 Residues 24-34 KASQLVSSAVA VL of SEQ ID NO.: 73 S4-19 CDR-L2 Residues 50-56 WASTLHT VL of SEQ ID NO.: 73 S4-19 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 73

C. Individual hMAK-199 Sequences from Converted Clones

Table 8 provides VH sequences of humanized anti-TNF MAK-199 converted clones as discussed in detail in Example 3.

TABLE 8 Humanized Anti-TNF MAK-199 Ab VH sequences of IgG converted clones Sequence Protein region 123456789012345678901234567890 J662M2S3 SEQ ID NO.: 74 EVQLVQSGAEVKKPGASVKVSCKASGYTFA #10 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYYCARKLFTTMDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 10 VH of SEQ ID NO.: 74 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 10 VH of SEQ ID NO.: 74 J662M2S3# CDR-H3 Residues 99-112 RASQDISQYLN 10 VH of SEQ ID NO.: 74 J662M2S3# SEQ ID NO.: 75 EVQLVQSGAEVKKPGASVKVSCKASGYTFN 13 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY AQKLQGRVTMTTDTSTSTAYMELSSLRSED TAVYFCARKLFNTVDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 13 VH of SEQ ID NO.: 75 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKLQG 13 VH of SEQ ID NO.: 75 J662M2S3# CDR-H3 Residues 99-112 KLFNTVDVTDNAMD 13 VH of SEQ ID NO.: 75 J662M2S3# SEQ ID NO.: 76 EVQLVQSGAEVKKPGASVKVSCKASGYTFN 15 VH NYGIIWVRQAPGQGLEWMGWINTYTGVPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYYCARKLFNTVDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 15 VH of SEQ ID NO.: 76 J662M2S3# CDR-H2 Residues 50-66 WINTYTGVPTYAQKFQG 15 VH of SEQ ID NO.: 76 J662M2S3# CDR-H3 Residues 99-112 KLFNTVDVTDNAMD 15 VH of SEQ ID NO.: 76 J662M2S3# SEQ ID NO.: 77 EVQLVQSGAEVKKPGASVKVSCKASGYTFN 16 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYYCARKLFNTVAVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 16 VH of SEQ ID NO.: 77 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 16 VH of SEQ ID NO.: 77 J662M2S3# CDR-H3 Residues 99-112 KLFNTVAVTDNAMD 16 VH of SEQ ID NO.: 77 J662M2S3# SEQ ID NO.: 78 EVQLVQSGAEVKKPGASVKVSCKASGYTFR 21 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYFCARKLFTTVDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 21 VH of SEQ ID NO.: 78 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 21 VH of SEQ ID NO.: 78 J662M2S3# CDR-H3 Residues 99-112 KLFTTVDVTDNAMD 21 VH of SEQ ID NO.: 78 J662M2S3# SEQ ID NO.: 79 EVQLVQSGAEVKKPGASVKVSCKASGYTFN 34 VH NYGINWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYFCARKFRNTVAVTDYAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGIN 34 VH of SEQ ID NO.: 79 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 34 VH of SEQ ID NO.: 79 J662M2S3# CDR-H3 Residues 99-112 KFRNTVAVTDYAMD 34 VH of SEQ ID NO.: 79 J662M2S3# SEQ ID NO.: 80 EVQLVQSGAEVKKPGASVKVSCKASGYTFR 36 VH NYGITWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYFCARKLFTTMDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGIT 36 VH of SEQ ID NO.: 80 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 36 VH of SEQ ID NO.: 80 J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD 36 VH of SEQ ID NO.: 80 J662M2S3# SEQ ID NO.: 81 EVQLVQSGAEVKKPGASVKVSCKASGYTFA 45 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYYCARKLFTTMDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 45 VH of SEQ ID NO.: 81 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 45 VH of SEQ ID NO.: 81 J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD 45 VH of SEQ ID NO.: 81 J662M2S3# SEQ ID NO.: 82 EVQLVQSGAEVKKPGASVKVSCKASGYTFS 58 VH NYGINWVRQAPGQGLEWMGWINTYTGQPSY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYYCARKLFKTEAVTDYAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGIN 58 VH of SEQ ID NO.: 82 J662M2S3# CDR-H2 Residues 50-66 WINTYTGQPSYAQKFQG 58 VH of SEQ ID NO.: 82 J662M2S3# CDR-H3 Residues 99-112 KLFKTEAVTDYAMD 58 VH of SEQ ID NO.: 82 J662M2S3# SEQ ID NO.: 83 EVQLVQSGAEVKKPGASVKVSCKASGYTFN 72 VH NYGIIWVRQAPGQGLEWMGWINTYSGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYFCARKLFTTMDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 72 VH of SEQ ID NO.: 83 J662M2S3# CDR-H2 Residues 50-66 WINTYSGKPTYAQKFQG 72 VH of SEQ ID NO.: 83 J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD 72 VH of SEQ ID NO.: 83

Table 9 provides VL sequences of humanized anti-TNF MAK-199 converted clones as discussed in detail in Example 3.

TABLE 9 Humanized Anti-TNF MAK-199 Ab VL sequences of IgG converted clones Sequence Protein region 123456789012345678901234567890 J662M2S3# SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS 10 VL NO.: 84 QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYFCQQ GNTWPPTFGQGTKLEIK J662M2S3#10 CDR-L1 Residues 24-34 RASQDISQYLN VL of SEQ ID NO.: 84 J662M2S3#10 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 84 J662M2S3#10 CDR-L3 Residues 89-97 QQGNTWPPT VL of SEQ ID NO.: 84 J662M2S3#13 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS VL NO.: 85 NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDYTLTISSLQPEDFATYFCQQ GNSWPPTFGQGTKLEIK J662M2S3#13 CDR-L1 Residues 24-34 RASQDISNYLN VL of SEQ ID NO.: 85 J662M2S3#13 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 85 J662M2S3#13 CDR-L3 Residues 89-97 QQGNSWPPT VL of SEQ ID NO.: 85 J662M2S3#15 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIY VL NO.: 86 NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDYTLTISSLQPEDFATYFCQQ GNTQPPTFGQGTKLEIK J662M2S3#15 CDR-L1 Residues 24-34 RASQDIYNYLN VL of SEQ ID NO.: 86 J662M2S3#15 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 86 J662M2S3#15 CDR-L3 Residues 89-97 QQGNTQPPT VL of SEQ ID NO.: 86 J662M2S3#16 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIE VL NO.: 87 NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYFCQQ GNTQPPTFGQGTKLEIK J662M2S3#16 CDR-L1 Residues 24-34 RASQDIENYLN VL of SEQ ID NO.: 87 J662M2S3#16 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 87 J662M2S3#16 CDR-L3 Residues 89-97 QQGNTQPPT VL of SEQ ID NO.: 87 J662M2S3#21 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS VL NO.: 88 NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDYTLTISSLQPEDFATYFCQQ GNTWPPTFGQGTKLEIK J662M2S3#21 CDR-L1 Residues 24-34 RASQDISNYLN VL of SEQ ID NO.: 88 J662M2S3#21 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 88 J662M2S3#21 CDR-L3 Residues 89-97 QQGNTWPPT VL of SEQ ID NO.: 88 J662M2S3#34 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIY VL NO.: 89 DVLNWYQQKPGKAPKLLIYYASRLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ GITLPPTFGQGTKLEIK J662M2S3#34 CDR-L1 Residues 24-34 RASQDIYDVLN VL of SEQ ID NO.: 89 J662M2S3#34 CDR-L2 Residues 50-56 YASRLQS VL of SEQ ID NO.: 89 J662M2S3#34 CDR-L3 Residues 89-97 QQGITLPPT VL of SEQ ID NO.: 89 J662M2S3#36 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS VL NO.: 90 NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDYTLTISSLQPEDFATYFCQQ GNTWPPTFGQGTKLEIK J662M2S3#36 CDR-L1 Residues 24-34 RASQDISNYLN VL of SEQ ID NO.: 90 J662M2S3#36 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 90 J662M2S3#36 CDR-L3 Residues 89-97 QQGNTWPPT VL of SEQ ID NO.: 90 J662M2S3#45 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS VL NO.: 91 QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYFCQQ GNTWPPTFGQGTKLEIK J662M2S3#45 CDR-L1 Residues 24-34 RASQDISQYLN VL of SEQ ID NO.: 91 J662M2S3#45 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 91 J662M2S3#45 CDR-L3 Residues 89-97 QQGNTWPPT VL of SEQ ID NO.: 91 J662M2S3#58 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQNIY VL NO.: 92 NVLNWYQQKPGKAPKLLIYYASRLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYFCQQ GNTMPPTFGQGTKLEIK J662M2S3#58 CDR-L1 Residues 24-34 RASQNIYNVLN VL of SEQ ID NO.: 92 J662M2S3#58 CDR-L2 Residues 50-56 YASRLQS VL of SEQ ID NO.: 92 J662M2S3#58 CDR-L3 Residues 89-97 QQGNTMPPT VL of SEQ ID NO.: 92 J662M2S3#72 SEQ ID DIQMTQSPSSLSASVGDRVTITCRASQDIS VL NO.: 93 NFLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDYTLTISSLQPEDFATYFCQQ GNTQPPTFGQGTKLEIK J662M2S3#72 CDR-L1 Residues 24-34 RASQDISNFLN VL of SEQ ID NO.: 93 J662M2S3#72 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 93 J662M2S3#72 CDR-L3 Residues 89-97 QQGNTQPPT VL of SEQ ID NO.: 93

In an embodiment, the antigen binding domain comprises the VH region chosen from any one of SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom. In another embodiment, the antigen binding domain comprises the VL region chosen from any one of SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom. In a particular embodiment, the antigen binding domain comprises a VH region and a VL region, for example, wherein the VH region comprises SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom, and the VL region comprises SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom.

In an embodiment where the VH and/or the VL CDR sequences are provided above, the human acceptor framework comprises at least one amino acid sequence selected from: SEQ ID NOs: 6-21. In a particular embodiment, the human acceptor framework comprises an amino acid sequence selected from: SEQ 1N NOs: 9, 10, 11, 12, 15, 16, 17, and 21. In another embodiment, the human acceptor framework comprises at least one framework region amino acid substitution, wherein the amino acid sequence of the framework is at least 65% identical to the sequence of the human acceptor framework and comprises at least 70 amino acid residues identical to the human acceptor framework. In another embodiment, the human acceptor framework comprises at least one framework region amino acid substitution at a key residue. The key residue selected from: a residue adjacent to a CDR; a glycosylation site residue; a rare residue; a residue capable of interacting with human TNF-α; a residue capable of interacting with a CDR; a canonical residue; a contact residue between heavy chain variable region and light chain variable region; a residue within a Vernier zone; and a residue in a region that overlaps between a Chothia-defined variable heavy chain CDR1 and a Kabat-defined first heavy chain framework. In an embodiment, the key residue is selected from: H1, H12, H24, H27, H29, H37, H48, H49, H67, H71, H73, H76, H78, L13, L43, L58, L70, and L80. In an embodiment, the VH mutation is selected from: Q1E, I12V, A24V, G27F, I29L, V29F F29L 137V, I48L, V48L, S49G, V67L, F67L, V71K, R71K, T73N, N76S, L78I, and F78I. In another embodiment, the VL mutation is selected from: V13L, A435, I58V, E70D, and S80P. In an embodiment, the binding protein comprises two variable domains, wherein the two variable domains have amino acid sequences selected from: SEQ ID NOS: 22 and 23; 23 and 24; 24 and 25; 26 and 27; 28 and 29; 30 and 31; or 32 and 33.

III. Production of Binding Proteins and Binding Protein-Producing Cell Lines

In an embodiment, TNF-α binding proteins disclosed herein exhibit a high capacity to reduce or to neutralize TNF-α activity, e.g., as assessed by any one of several in vitro and in vivo assays known in the art. Alternatively, TNF-α binding proteins disclosed herein, also exhibit a high capacity to increase or agonize TNF-α activity.

In particular embodiments, the isolated binding protein, or antigen-binding portion thereof, binds human TNF-α, wherein the binding protein, or antigen-binding portion thereof, dissociates from human TNF-α with a koff rate constant of about 0.1 s−1 or less, as determined by surface plasmon resonance, such as 1×10−2 s−1 or less, 1×10−3 s−1 or less, 1×10−4 s−1 or less, 1×10−5 s−1 or less and 1×10−6 s−1 or less; or which inhibits human TNF-α activity with an IC50 of about 1×10−6 M or less, such as 1×10−7M or less, 1×10−8M or less, 1×10−9M or less, 1×10−10 M or less and 1×1011 M or less. In certain embodiments, the binding protein comprises a heavy chain constant region, such as an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region. In an embodiment, the heavy chain constant region is an IgG1 heavy chain constant region or an IgG4 heavy chain constant region. Furthermore, the binding protein can comprise a light chain constant region, either a kappa light chain constant region or a lambda light chain constant region. In another embodiment, the binding protein comprises a kappa light chain constant region. Alternatively, the binding protein portion can be, for example, a Fab fragment or a single chain Fv fragment.

Replacements of amino acid residues in the Fc portion to alter binding protein effector function are known in the art (See U.S. Pat. Nos. 5,648,260 and 5,624,821). The Fc portion of a binding protein mediates several important effector functions, e.g., cytokine induction, ADCC, phagocytosis, complement dependent cytotoxicity (CDC) and half-life/clearance rate of antibody and antigen-antibody complexes. In some cases these effector functions are desirable for therapeutic antibody but in other cases might be unnecessary or even deleterious, depending on the therapeutic objectives. Certain human IgG isotypes, particularly IgG1 and IgG3, mediate ADCC and CDC via binding to FcγRs and complement C1q, respectively. Neonatal Fc receptors (FcRn) are the critical components determining the circulating half-life of antibodies. In still another embodiment at least one amino acid residue is replaced in the constant region of the binding protein, for example the Fc region of the binding protein, such that effector functions of the binding protein are altered.

One embodiment provides a labeled binding protein wherein an antibody or antibody portion disclosed herein is derivatized or linked to another functional molecule (e.g., another peptide or protein). For example, a labeled binding protein disclosed herein can be derived by functionally linking an antibody or antibody portion disclosed herein (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., a bispecific antibody or a diabody), a detectable agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate associate of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).

Useful detectable agents with which an antibody or antibody portion disclosed herein may be derivatized include fluorescent compounds. Exemplary fluorescent detectable agents include fluorescein, fluorescein isothiocyanate, rhodamine, 5-dimethylamine-1-napthalenesulfonyl chloride, phycoerythrin and the like. An antibody may also be derivatized with detectable enzymes, such as alkaline phosphatase, horseradish peroxidase, glucose oxidase and the like. When an antibody is derivatized with a detectable enzyme, it is detected by adding additional reagents that the enzyme uses to produce a detectable reaction product. For example, when the detectable agent horseradish peroxidase is present, the addition of hydrogen peroxide and diaminobenzidine leads to a colored reaction product, which is detectable. An antibody may also be derivatized with biotin, and detected through indirect measurement of avidin or streptavidin binding.

Another embodiment of the disclosure provides a crystallized binding protein. In an embodiment, provided are crystals of whole TNF-α binding proteins and fragments thereof as disclosed herein, and formulations and compositions comprising such crystals. In one embodiment the crystallized binding protein has a greater half-life in vivo than the soluble counterpart of the binding protein. In another embodiment the binding protein retains biological activity after crystallization.

Crystallized binding protein disclosed herein may be produced according methods known in the art and as disclosed in PCT Publication WO 02/72636.

Another embodiment of the disclosure provides a glycosylated binding protein wherein the binding protein or antigen-binding portion thereof comprises one or more carbohydrate residues. Nascent in vivo protein production may undergo further processing, known as post-translational modification. In particular, sugar (glycosyl) residues may be added enzymatically, a process known as glycosylation. The resulting proteins bearing covalently linked oligosaccharide side chains are known as glycosylated proteins or glycoproteins. Protein glycosylation depends on the amino acid sequence of the protein of interest, as well as the host cell in which the protein is expressed. Different organisms may produce different glycosylation enzymes (e.g., glycosyltransferases and glycosidases), and have different substrates (nucleotide sugars) available. Due to such factors, protein glycosylation pattern, and composition of glycosyl residues, may differ depending on the host system in which the particular protein is expressed. Glycosyl residues useful in the disclosure may include, but are not limited to, glucose, galactose, mannose, fucose, n-acetylglucosamine and sialic acid. In an embodiment, the glycosylated binding protein comprises glycosyl residues such that the glycosylation pattern is human.

It is known to those skilled in the art that differing protein glycosylation may result in differing protein characteristics. For instance, the efficacy of a therapeutic protein produced in a microorganism host, such as yeast, and glycosylated utilizing the yeast endogenous pathway may be reduced compared to that of the same protein expressed in a mammalian cell, such as a CHO cell line. Such glycoproteins may also be immunogenic in humans and show reduced half-life in vivo after administration. Specific receptors in humans and other animals may recognize specific glycosyl residues and promote the rapid clearance of the protein from the bloodstream. Other adverse effects may include changes in protein folding, solubility, susceptibility to proteases, trafficking, transport, compartmentalization, secretion, recognition by other proteins or factors, antigenicity, or allergenicity. Accordingly, a practitioner may prefer a therapeutic protein with a specific composition and pattern of glycosylation, for example glycosylation composition and pattern identical, or at least similar, to that produced in human cells or in the species-specific cells of the intended subject animal.

Expressing glycosylated proteins different from that of a host cell may be achieved by genetically modifying the host cell to express heterologous glycosylation enzymes. Using techniques known in the art a practitioner may generate antibodies or antigen-binding portions thereof exhibiting human protein glycosylation. For example, yeast strains have been genetically modified to express non-naturally occurring glycosylation enzymes such that glycosylated proteins (glycoproteins) produced in these yeast strains exhibit protein glycosylation identical to that of animal cells, especially human cells (U.S. Pat. Nos. 7,449,308 and 7,029,872).

Further, it will be appreciated by one skilled in the art that a protein of interest may be expressed using a library of host cells genetically engineered to express various glycosylation enzymes, such that member host cells of the library produce the protein of interest with variant glycosylation patterns. A practitioner may then select and isolate the protein of interest with particular novel glycosylation patterns. In an embodiment, the protein having a particularly selected novel glycosylation pattern exhibits improved or altered biological properties.

IV. Uses of TNF-α Binding Proteins

Given their ability to bind to human TNF-α, e.g., the human TNF-α binding proteins, or portions thereof, disclosed herein can be used to detect TNF-α (e.g., in a biological sample, such as serum or plasma), using a conventional immunoassay, such as an enzyme linked immunosorbent assays (ELISA), an radioimmunoassay (RIA) or tissue immunohistochemistry. A method for detecting TNF-α in a biological sample is provided comprising contacting a biological sample with a binding protein, or binding protein portion, disclosed herein and detecting either the binding protein (or binding protein portion) bound to TNF-α or unbound binding protein (or binding protein portion), to thereby detect TNF-α in the biological sample. The binding protein is directly or indirectly labeled with a detectable substance to facilitate detection of the bound or unbound antibody. Suitable detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; and examples of suitable radioactive material include 3H, 14C, 35S, 90Y, 99Tc, 111In, 125I, 131I, 177Lu, 166Ho, or 153Sm.

Alternative to labeling the binding protein, human TNF-α can be assayed in biological fluids by a competition immunoassay utilizing rhTNF-α standards labeled with a detectable substance and an unlabeled human TNF-α binding protein. In this assay, the biological sample, the labeled rhTNF-α standards and the human TNF-α binding protein are combined and the amount of labeled rhTNF-α standard bound to the unlabeled binding protein is determined. The amount of human TNF-α in the biological sample is inversely proportional to the amount of labeled rhTNF-α standard bound to the TNF-α binding protein. Similarly, human TNF-α can also be assayed in biological fluids by a competition immunoassay utilizing rhTNF-α standards labeled with a detectable substance and an unlabeled human TNF-α binding protein.

In an embodiment, the binding proteins and binding protein portions disclosed herein are capable of neutralizing TNF-α activity, e.g., human TNF-α activity, both in vitro and in vivo. In another embodiment, the binding proteins and binding protein portions disclosed herein are capable of increasing or agonizing human TNF-α activity, e.g., human TNF-α activity. Accordingly, such binding proteins and binding protein portions disclosed herein can be used to inhibit or increase hTNF-α activity, e.g., in a cell culture containing hTNF-α, in human subjects or in other mammalian subjects having TNF-α with which a binding protein disclosed herein cross-reacts. In one embodiment, a method for inhibiting or increasing hTNF-α activity is provided comprising contacting hTNF-α with a binding protein or binding protein portion disclosed herein such that hTNF-α activity is inhibited or increased. For example, in a cell culture containing, or suspected of containing hTNF-α, a binding protein or binding protein portion disclosed herein can be added to the culture medium to inhibit or increase hTNF-α activity in the culture.

In another embodiment, a method is provided for reducing or increasing hTNF-α activity in a subject, advantageously from a subject suffering from a disease or disorder in which TNF-α activity is detrimental or, alternatively, beneficial. Methods for reducing or increasing TNF-α activity in a subject suffering from such a disease or disorder is provided, which method comprises administering to the subject a binding protein or binding protein portion disclosed herein such that TNF-α activity in the subject is reduced or increased. In a particular embodiment, the TNF-α is human TNF-α, and the subject is a human subject. Alternatively, the subject can be a mammal expressing a TNF-α to which a binding protein provided is capable of binding. Still further the subject can be a mammal into which TNF-α has been introduced (e.g., by administration of TNF-α or by expression of a TNF-α transgene). A binding protein disclosed herein can be administered to a human subject for therapeutic purposes. Moreover, a binding protein disclosed herein can be administered to a non-human mammal expressing a TNF-α with which the binding protein is capable of binding for veterinary purposes or as an animal model of human disease. Regarding the latter, such animal models may be useful for evaluating the therapeutic efficacy of binding proteins disclosed herein (e.g., testing of dosages and time courses of administration).

The term “a disorder in which TNF-α activity is detrimental” includes diseases and other disorders in which the presence of TNF-α activity in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder. Accordingly, a disorder in which TNF-α activity is detrimental is a disorder in which reduction of TNF-α activity is expected to alleviate the symptoms and/or progression of the disorder. Such disorders may be evidenced, for example, by an increase in the concentration of TNF-α in a biological fluid of a subject suffering from the disorder (e.g., an increase in the concentration of TNF-α in serum, plasma, synovial fluid, etc. of the subject), which can be detected, for example, using an anti-TNF-α antibody as described above. Non-limiting examples of disorders that can be treated with the binding proteins disclosed herein include those disorders discussed in the section below pertaining to pharmaceutical compositions of the antibodies disclosed herein.

Alternatively, the term “a disorder in which TNF-α activity is beneficial” include diseases and other disorders in which the presence of TNF-α activity in a subject suffering from the disorder has been shown to be or is suspected of being either beneficial for treating the pathophysiology of the disorder or a factor that contributes to a treatment of the disorder. Accordingly, a disorder in which TNF-α activity is beneficial is a disorder in which an increase of TNF-α activity is expected to alleviate the symptoms and/or progression of the disorder. Non-limiting examples of disorders that can be treated with the antibodies disclosed herein include those disorders discussed in the section below pertaining to pharmaceutical compositions of the antibodies disclosed herein.

V. Pharmaceutical Compositions

Pharmaceutical compositions are also provided comprising a binding protein, or antigen-binding portion thereof, disclosed herein and a pharmaceutically acceptable carrier. The pharmaceutical compositions comprising binding protein disclosed herein are for use in, but not limited to, diagnosing, detecting, or monitoring a disorder, in preventing, treating, managing, or ameliorating of a disorder or one or more symptoms thereof, and/or in research. In a specific embodiment, a composition comprises one or more binding proteins disclosed herein. In another embodiment, the pharmaceutical composition comprises one or more binding proteins disclosed herein and one or more prophylactic or therapeutic agents other than binding proteins disclosed herein for treating a disorder in which TNF-α activity is detrimental. In a particular embodiment, the prophylactic or therapeutic agents known to be useful for or having been or currently being used in the prevention, treatment, management, or amelioration of a disorder or one or more symptoms thereof. In accordance with these embodiments, the composition may further comprise of a carrier, diluent or excipient.

The binding proteins and binding protein-portions disclosed herein can be incorporated into pharmaceutical compositions suitable for administration to a subject. Typically, the pharmaceutical composition comprises a binding protein or binding protein portion disclosed herein and a pharmaceutically acceptable carrier. The term “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Examples of pharmaceutically acceptable carriers include one or more of water, saline, phosphate buffered saline, dextrose, glycerol, ethanol and the like, as well as combinations thereof. In many cases, isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition, may be included. Pharmaceutically acceptable carriers may further comprise minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the binding protein or binding protein portion.

Various delivery systems are known and can be used to administer one or more binding proteins disclosed herein or the combination of one or more binding proteins disclosed herein and a prophylactic agent or therapeutic agent useful for preventing, managing, treating, or ameliorating a disorder or one or more symptoms thereof, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the binding protein or binding protein fragment, receptor-mediated endocytosis (see, e.g., Wu and Wu (1987) J. Biol. Chem. 262:4429-4432), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of administering a prophylactic or therapeutic agent disclosed herein include, but are not limited to, parenteral administration (e.g., intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous), epidural administration, intratumoral administration, and mucosal administration (e.g., intranasal and oral routes). In addition, pulmonary administration can be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. In one embodiment, a binding protein disclosed herein, combination therapy, or a composition disclosed herein is administered using Alkermes AIR® pulmonary drug delivery technology (Alkermes, Inc., Cambridge, Mass.). In a specific embodiment, prophylactic or therapeutic agents disclosed herein are administered intramuscularly, intravenously, intratumorally, orally, intranasally, pulmonary, or subcutaneously. The prophylactic or therapeutic agents may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents Administration can be systemic or local.

In a specific embodiment, it may be desirable to administer the prophylactic or therapeutic agents disclosed herein locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion, by injection, or by means of an implant, said implant being of a porous or non-porous material, including membranes and matrices, such as sialastic membranes, polymers, fibrous matrices (e.g., Tissuel®), or collagen matrices. In one embodiment, an effective amount of one or more binding proteins disclosed herein antagonists is administered locally to the affected area to a subject to prevent, treat, manage, and/or ameliorate a disorder or a symptom thereof. In another embodiment, an effective amount of one or more binding proteins disclosed herein is administered locally to the affected area in combination with an effective amount of one or more therapies (e.g., one or more prophylactic or therapeutic agents) other than an antibody disclosed herein of a subject to prevent, treat, manage, and/or ameliorate a disorder or one or more symptoms thereof.

In a specific embodiment, where the composition disclosed herein is a nucleic acid encoding a prophylactic or therapeutic agent, the nucleic acid can be administered in vivo to promote expression of its encoded prophylactic or therapeutic agent, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Pat. No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, DuPont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see, e.g., Joliot et al. (1991) Proc. Natl. Acad. Sci. USA 88:1864-1868). Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression by homologous recombination.

The method disclosed herein may comprise administration of a composition formulated for parenteral administration by injection (e.g., by bolus injection or continuous infusion). Formulations for injection may be presented in unit dosage form (e.g., in ampoules or in multi-dose containers) with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle (e.g., sterile pyrogen-free water) before use.

The methods disclosed herein may additionally comprise of administration of compositions formulated as depot preparations. Such long acting formulations may be administered by implantation (e.g., subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compositions may be formulated with suitable polymeric or hydrophobic materials (e.g., as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives (e.g., as a sparingly soluble salt).

The methods disclosed herein encompass administration of compositions formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

Generally, the ingredients of compositions are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the mode of administration is infusion, composition can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the mode of administration is by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

In particular, it is also provided that one or more of the prophylactic or therapeutic agents, or pharmaceutical compositions disclosed herein is packaged in a hermetically sealed container such as an ampoule or sachette indicating the quantity of the agent. In one embodiment, one or more of the prophylactic or therapeutic agents, or pharmaceutical compositions disclosed herein is supplied as a dry sterilized lyophilized powder or water free concentrate in a hermetically sealed container and can be reconstituted (e.g., with water or saline) to the appropriate concentration for administration to a subject. In an embodiment, one or more of the prophylactic or therapeutic agents or pharmaceutical compositions disclosed herein is supplied as a dry sterile lyophilized powder in a hermetically sealed container at a unit dosage of at least 5 mg, at least 10 mg, at least 15 mg, at least 25 mg, at least 35 mg, at least 45 mg, at least 50 mg, at least 75 mg, or at least 100 mg. The lyophilized prophylactic or therapeutic agents or pharmaceutical compositions disclosed herein should be stored at between 2° C. and 8° C. in its original container and the prophylactic or therapeutic agents, or pharmaceutical compositions disclosed herein should be administered within 1 week, within 5 days, within 72 hours, within 48 hours, within 24 hours, within 12 hours, within 6 hours, within 5 hours, within 3 hours, or within 1 hour after being reconstituted. In an alternative embodiment, one or more of the prophylactic or therapeutic agents or pharmaceutical compositions disclosed herein is supplied in liquid form in a hermetically sealed container indicating the quantity and concentration of the agent. In an embodiment, the liquid form of the administered composition is supplied in a hermetically sealed container at least 0.25 mg/ml, at least 0.5 mg/ml, at least 1 mg/ml, at least 2.5 mg/ml, at least 5 mg/ml, at least 8 mg/ml, at least 10 mg/ml, at least 15 mg/kg, at least 25 mg/ml, at least 50 mg/ml, at least 75 mg/ml or at least 100 mg/ml. The liquid form should be stored at between 2° C. and 8° C. in its original container.

The binding proteins and binding protein-portions disclosed herein can be incorporated into a pharmaceutical composition suitable for parenteral administration. In an embodiment, the binding protein or binding protein-portions will be prepared as an injectable solution containing 0.1-250 mg/ml binding protein. The injectable solution can be composed of either a liquid or lyophilized dosage form in a flint or amber vial, ampoule or pre-filled syringe. The buffer can be L-histidine (1-50 mM), optimally 5-10 mM, at pH 5.0 to 7.0 (optimally pH 6.0). Other suitable buffers include but are not limited to, sodium succinate, sodium citrate, sodium phosphate or potassium phosphate. Sodium chloride can be used to modify the toxicity of the solution at a concentration of 0-300 mM (optimally 150 mM for a liquid dosage form). Cryoprotectants can be included for a lyophilized dosage form, principally 0-10% sucrose (optimally 0.5-1.0%). Other suitable cryoprotectants include trehalose and lactose. Bulking agents can be included for a lyophilized dosage form, principally 1-10% mannitol (optimally 2-4%). Stabilizers can be used in both liquid and lyophilized dosage forms, principally 1-50 mM L-Methionine (optimally 5-10 mM). Other suitable bulking agents include glycine, arginine, can be included as 0-0.05% polysorbate-80 (optimally 0.005-0.01%). Additional surfactants include but are not limited to polysorbate 20 and BRIJ surfactants.

Typical compositions are in the form of injectable or infusible solutions, such as compositions similar to those used for passive immunization of humans with other antibodies. Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration. Sterile injectable solutions can be prepared by incorporating the active compound (i.e., binding protein or binding protein portion) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile, lyophilized powders for the preparation of sterile injectable solutions, the methods of preparation include vacuum drying and spray-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable compositions can be brought about by including, in the composition, an agent that delays absorption, for example, monostearate salts and gelatin.

As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. In certain embodiments, the active compound may be prepared with a carrier that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.

Supplementary active compounds can also be incorporated into the compositions. In certain embodiments, a binding protein or binding protein portion disclosed herein is coformulated with and/or coadministered with one or more additional therapeutic agents that are useful for treating disorders in which TNF-α activity is detrimental. For example, an anti-hTNF-α antibody or antibody portion disclosed herein may be coformulated and/or coadministered with one or more additional antibodies that bind other targets (e.g., antibodies that bind other cytokines or that bind cell surface molecules). Furthermore, one or more binding proteins disclosed herein may be used in combination with two or more of the foregoing therapeutic agents. Such combination therapies may advantageously utilize lower dosages of the administered therapeutic agents, thus avoiding possible toxicities or complications associated with the various monotherapies.

In certain embodiments, a binding protein to TNF-α or fragment thereof is linked to a half-life extending vehicle known in the art. Such vehicles include, but are not limited to, the Fc domain, polyethylene glycol, and dextran. Such vehicles are described, e.g., in U.S. Pat. No. 6,660,843.

In a specific embodiment, nucleic acid sequences comprising nucleotide sequences encoding a binding protein disclosed herein or another prophylactic or therapeutic agent disclosed herein are administered to treat, prevent, manage, or ameliorate a disorder or one or more symptoms thereof by way of gene therapy. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid. In this embodiment of the disclosure, the nucleic acids produce their encoded binding protein or prophylactic or therapeutic agent disclosed herein that mediates a prophylactic or therapeutic effect.

Any of the methods for gene therapy available in the art can be used according to the present disclosure.

TNF-α plays a critical role in the pathology associated with a variety of diseases involving immune and inflammatory elements, such as autoimmune diseases, particularly those associated with inflammation, including Crohn's disease, psoriasis (including plaque psoriasis), arthritis (including rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis), multiple sclerosis, systemic lupus erythematosus, and ankylosing spondylitis. Therefore, the binding proteins herein may be used to treat these disorders. In another embodiment, the disorder is a respiratory disorder; asthma; allergic and nonallergic asthma; asthma due to infection; asthma due to infection with respiratory syncytial virus (RSV); chronic obstructive pulmonary disease (COPD); a condition involving airway inflammation; eosinophilia; fibrosis and excess mucus production; cystic fibrosis; pulmonary fibrosis; an atopic disorder; atopic dermatitis; urticaria; eczema; allergic rhinitis; allergic enterogastritis; an inflammatory and/or autoimmune condition of the skin; an inflammatory and/or autoimmune condition of gastrointestinal organs; inflammatory bowel diseases (IBD); ulcerative colitis; an inflammatory and/or autoimmune condition of the liver; liver cirrhosis; liver fibrosis; liver fibrosis caused by hepatitis B and/or C virus; scleroderma; tumors or cancers; hepatocellular carcinoma; glioblastoma; lymphoma; Hodgkin's lymphoma; a viral infection; a bacterial infection; a parasitic infection; HTLV-1 infection; suppression of expression of protective type 1 immune responses, suppression of expression of a protective type 1 immune response during vaccination, neurodegenerative diseases, neuronal regeneration, and spinal cord injury.

It will be readily apparent to those skilled in the art that other suitable modifications and adaptations of the methods disclosed herein may be made using suitable equivalents without departing from the scope of the invention or the embodiments disclosed herein. Having now described the present disclosure in detail, the same will be more clearly understood by reference to the following examples, which are included for purposes of illustration only and are not intended to be limiting of the invention.

EXAMPLES Example 1 Identification of Fully Human Antibodies to TNF by In Vitro Display Systems 1.1: Antibody Selections

Fully human anti-human TNF monoclonal antibodies were isolated by in vitro display technologies from human antibody libraries by their ability to bind recombinant human TNF proteins. The amino acid sequences of the variable heavy (VH) and variable light (VL) chains were determined from DNA sequencing and listed in Table 10.

TABLE 10 Individual clones sequences Sequence Protein region SEQ ID NO: 123456789012345678901234567890 AE11-1 VH 22 EVQLVQSGAEVKKPGASVKVSCKASGYTFT SYDVNWVRQATGQGLEWMGWMNPNSGNTGY AQKFQGRVTITADESTSTAYMELSSLRSED TAVYYCAIFDSDYMDVWGKGTLVTVSS AE11-1 VH CDR- Residues 31-35 SYDVN H1 of SEQ ID NO.: 22 AE11-1 VH CDR- Residues 50-66 WMNPNSGNTGYAQKFQG H2 of SEQ ID NO.: 22 AE11-1 VH CDR- Residues 99-106 FDSDYMDV H3 of SEQ ID NO.: 22 AE11-1 VL 23 SYELTQPPSVSLSPGQTARITCSGDALPKQ YAYWYQQKPGQAPVLVIYKDTERPSGIPER FSGSSSGTTVTLTISGAQAEDEADYYCQSA DSSGTSWVFGGGTKLTVL AE11-1 VL CDR- Residues 23-33 SGDALPKQYAY L1 of SEQ ID NO.: 23 AE11-1 VL CDR- Residues 49-55 KDTERPS L2 of SEQ ID NO.: 23 AE11-1 VL CDR- Residues 89-98 SADSSGTSWV L3 of SEQ ID NO.: 23 AE11-5 VH 24 EVQLVQSGAEVKKPGSSAKVSCKASGGTFS SYAISWVRQAPGQGLEWMGGIIPILGTANY AQKFLGRVTITADESTSTVYMELSSLRSED TAVYYCARGLYYDPTRADYWGQGTLVTVSS AE11-5 VH CDR- Residues 31-35 SYAIS H1 of SEQ ID NO.: 24 AE11-5 VH CDR- Residues 50-66 GIIPILGTANYAQKFLG H2 of SEQ ID NO.: 24 AE11-5 VH CDR- Residues 99-109 GLYYDPTRADY H3 of SEQ ID NO.: 24 AE11-5 VL 25 DIVMTQSPDFHSVTPKEKVTITCRASQSIG SSLHWYQQKPDQSPKLLIRHASQSISGVPS RFSGSGSGTDFTLTIHSLEAEDAATYYCHQ SSSSPPPTFGQGTQVEIK AE11-5 VL CDR- Residues 24-34 RASQSIGSSLH L1 of SEQ ID NO.: 25 AE11-5 VL CDR- Residues 50-56 HASQSIS L2 of SEQ ID NO.: 25 AE11-5 VL CDR- Residues 89-98 HQSSSSPPPT L3 of SEQ ID NO.: 25 TNF-JK1 VH 26 EVQLVESGGGLVQPGGSLRLSCATSGFTFN NYWMSWVRQAPGKGLEWVANINHDESEKYY VDSAKGRFTISRDNAEKSLFLQMNSLRAED TAVYYCARIIRGRVGFDYYNYAMDVWGQGT LVTVSS TNF-JK1 VH CDR- Residues 31-35 NYWMS H1 of SEQ ID NO.: 26 TNF-JK1 VH CDR- Residues 50-66 NINHDESEKYYVDSAKG H2 of SEQ ID NO.: 26 TNF-JK1 VH CDR- Residues 99-115 IIRGRVGFDYYNYAMDV H3 of SEQ ID NO.: 26 TNF-JK1 VL 27 DIRLTQSPSPLSASVGDRVTITCRASQSIG NYLNWYQHKPGKAPKLLIYAASSLQSGVPS RFSGTGSGTDFTLTISSLQPEDFATYYCQE SYSLIFAGGTKVEIK TNF-JK1 VL CDR- Residues 24-34 RASQSIGNYLN L1 of SEQ ID NO.: 27 TNF-JK1 VL CDR- Residues 50-56 AASSLQS L2 of SEQ ID NO.: 27 TNF-JK1 VL CDR- Residues 89-95 QESYSLI L3 of SEQ ID NO.: 27 TNF-Y7C VH 28 EVQLVQSGAEVKKPGASVKVSCKTSGYTFS NYDINWVRQPTGQGLEWMGWMDPNNGNTGY AQKFVGRVTMTRDTSKTTAYLELSGLKSED TAVYYCARSSGSGGTWYKEYFQSWGQGTMV TVSS TNF-Y7C VH CDR- Residues 31-35 NYDIN H1 of SEQ ID NO.: 28 TNF-Y7C VH CDR- Residues 50-66 WMDPNNGNTGYAQKFVG H2 of SEQ ID NO.: 28 TNF-Y7C VH CDR- Residues 99-112 KSSGSGGTWYKEYFQS H3 of SEQ ID NO.: 28 TNF-Y7C VL 29 DIVMTQSPLSLPVTPGEPASISCRSSQSLL HSNGYNYLDWYLQKPGQFPQLLIYLGSYRA SGVPDRFSGSGSGTDFTLKISRVEAEDVGV YYCMQRIEFPPGTFGQGTKLGIK TNF-Y7C VL CDR- Residues 24-39 RSSQSLLHSNGYNYLD L1 of SEQ ID NO.: 29 TNF-Y7C VL CDR- Residues 55-61 LGSYRAS L2 of SEQ ID NO.: 29 TNF-Y7C VL CDR- Residues 94-103 MQRIEFPPGT L3 of SEQ ID NO.: 29 AE11-7 VH 30 EVQLVQSGAEVKKPGASVKVSCKTSGYSLT QYPIHWVRQAPGQRPEWMGWISPGNGNTKL SPKFQGRVTLSRDASAGTVFMDLSGLTSDD TAVYFCTSVDLGDHWGQGTLVTVSS AE11-7 VH CDR- Residues 31-35 QYPIH H1 of SEQ ID NO.: 30 AE11-7 VH CDR- Residues 50-66 WISPGNGNTKLSPKFQG H2 of SEQ ID NO.: 30 AE11-7 VH CDR- Residues 99-104 VDLGDH H3 of SEQ ID NO.: 30 AE11-7 VL 31 DIVMTQSPEFQSVTPKEKVTITCRASQSIG SSLHWYQQKPDQSPKLLINYASQSFSGVPS RFSGGGSGTDFTLTINSLEAEDAATYYCHQ SSNLPITFGQGTRLEIK AE11-7 VL CDR- Residues 24-34 RASQSIGSSLH L1 of SEQ ID NO.: 31 AE11-7 VL CDR- Residues 50-56 YASQSFS L2 of SEQ ID NO.: 31 AE11-7 VL CDR- Residues 89-97 HQSSNLPIT L3 of SEQ ID NO.: 31 AE11-13 VH 32 EVQLVESGGGLVQPGRSLRLSCAASGFTFD DYPMHWVRQAPGEGLEWVSGISSNSASIGY ADSVKGRFTISRDNAQNTLYLQMNSLGDED TAVYYCVSLTLGIGQGTLVTVSS AE11-13 VH CDR- Residues 31-35 DYPMH H1 of SEQ ID NO.: 32 AE11-13 VH CDR- Residues 50-66 GISSNSASIGYADSVKG H2 of SEQ ID NO.: 32 AE11-13 VH CDR- Residues 99-102 LTLG H3 of SEQ ID NO.: 32 AE11-13 VL 33 DIRLTQSPSSLSASVGDRVTITCRASQSIG NYLHWYQQKPGKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ SYSTLYSFGQGTKLEIK AE11-13 VL CDR- Residues 24-34 RASQSIGNYLH L1 of SEQ ID NO.: 33 AE11-13 VL CDR- Residues 50-56 AASSLQS L2 of SEQ ID NO.: 33 AE11-13 VL CDR- Residues 89-97 QQSYSTLYS L3 of SEQ ID NO.: 33

1.2: Affinity Maturation of the Fully Human Anti-Human TNF Antibody AE11-5

The AE11-5 human antibody to human TNF was affinity matured by in vitro display technology. One light chain library was constructed to contain limited mutagenesis at the following residues: 28, 31, 32, 51, 55, 91, 92, 93, 95a and 96 (Kabat numbering). This library also contained framework germline back-mutations D1E, M4L, H11Q, R49K, H76N and Q103K as well as toggled residues at position 50(R/K) and 94(S/L) to allow for framework germlining during library selections. Two heavy chain libraries were made to contain limited mutagenesis in CDRH1 and CDRH2 at residues 30, 31, 33, 50, 52, and 55 to 58 (Kabat numbering) or in CDRH3 at residues 95 to 100b. The library containing CDRH1 and CDRH2 diversities also had framework germline back-mutations A18V and L64Q and toggled residue at 54(L/F) and 78(V/A). The CDRH3 library has an additional toggled residue at 100c(A/F).

All three libraries were selected separately for the ability to bind human or cynomolgus monkey TNF in the presence of decreasing concentrations of biotinylated human or cynomolgus monkey TNF antigens. All mutated CDR sequences recovered from library selections were recombined into additional libraries and the recombined libraries were subjected to more stringent selection conditions before individual antibodies are identified.

Table 11 provides a list of amino acid sequences of VH regions of affinity matured fully human TNF antibodies derived from AE11-5 Amino acid residues of individual CDRs of each VH sequence are indicated in bold.

TABLE 11 List of amino acid sequences of affinity matured AE11-5 VH variants SEQ ID Clone NO: VH J685M2S2- 94 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 10VH ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 95 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYS 12VH ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 96 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 13VH ISWVRQAPGQGLEWMGGIIPILGSPIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 97 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 14VH ISWVRQAPGQGLEWMGGIIPILGSPIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 98 EVQLVQSGAEVKKPGSSVKVSCKASGGTFAWYS 16VH ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 99 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSFYA 18VH ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 100 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA 1VH ISWVRQAPGQGLEWMGGITPILGAAVYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 101 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 21VH ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 102 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 23VH ISWVRQAPGQGLEWMGGITPILGVAVYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 103 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 25VH ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 104 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 27VH ISWVRQAPGQGLEWMGGITPILGSAHYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 105 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 28VH ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 106 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 29VH ISWVRQAPGQGLEWMGGITPILGTAIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 107 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYT 31VH ISWVRQAPGQGLEWMGGIIPILRNPIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 108 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA 32VH ISWVRQAPGQGLEWMGGIMPILGTPTYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 109 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYT 35VH ISWVRQAPGQGLEWMGGIIPILGAPIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 110 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 37VH ISWVRQAPGQGLEWMGGITPILGSATYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 111 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS 38VH ISWVRQAPGQGLEWMGGIMPILGSASYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 112 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 43VH ISWVRQAPGQGLEWMGGIMPILGTASYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 113 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS 44VH ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 114 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 45VH ISWVRQAPGQGLEWMGGIMPILGTATYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 115 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSFYT 46VH ISWVRQAPGQGLEWMGGIMPILGSPHYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 116 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 47VH ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 117 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 48VH ISWVRQAPGQGLEWMGGIMPILGSATYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 118 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 4VH ISWVRQAPGQGLEWMGGIIPILGTPTYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 119 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 50VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J685M2S2- 120 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSLYT 51VH ISWVRQAPGQGLEWMGGIMPILGAPRYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 121 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA 52VH ISWVRQAPGQGLEWMGGIMPILGSPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 122 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA 53VH ISWVRQAPGQGLEWMGGILPILGSPIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 123 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA 55VH ISWVRQAPGQGLEWMGGIIPILGSPIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 124 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 56VH ISWVRQAPGQGLEWMGGIVPILGAPLYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 125 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA 58VH ISWVRQAPGQGLEWMGGIMPILGAPIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 126 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYT 5VH ISWVRQAPGQGLEWMGGIMPILGTPAYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 127 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS 61VH ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 128 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 62VH ISWVRQAPGQGLEWMGGIIPILGTPTYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 129 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 63VH ISWVRQAPGQGLEWMGGIIPILGTPIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 130 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 64VH ISWVRQAPGQGLEWMGGITPILGIGNYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 131 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA 66VH ISWVRQAPGQGLEWMGGIVPILGAATYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 132 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 67VH ISWVRQAPGQGLEWMGGITPILGSSTYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 133 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 68VH ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 134 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 6VH ISWVRQAPGQGLEWMGGITPILGNSIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 135 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 70VH ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 136 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 71VH ISWVRQAPGQGLEWMGGIMPILGTPTYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 137 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA 72VH ISWVRQAPGQGLEWMGGITPILGAANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 138 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 73VH ISWVRQAPGQGLEWMGGITPILGAAIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 139 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 75VH ISWVRQAPGQGLEWMGGITPILGTATYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 140 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS 76VH ISWVRQAPGQGLEWMGGITPILGSAHYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 141 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 77VH ISWVRQAPGQGLEWMGGITPILGNAIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 142 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 78VH ISWVRQAPGQGLEWMGGITPILRSAVYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 143 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS 7VH ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 144 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 80VH ISWVRQAPGQGLEWMGGITPILGTASYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 145 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 81VH ISWVRQAPGQGLEWMGGITPILGTAIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 146 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 82VH ISWVRQAPGQGLEWMGGITPILGSPAYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 147 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSRYA 83VH ISWVRQAPGQGLEWMGGIIPILGPASYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 148 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 84VH ISWVRQAPGQGLEWMGGITPILDAAIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 149 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 86VH ISWVRQAPGQGLEWMGGIMPILGIPNYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 150 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA 87VH ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 151 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA 88VH ISWVRQAPGQGLEWMGGIMPILGTATYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 152 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 89VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYFDPKRADYWGQGTLVTVSS J685M2S2- 153 EVQLVQSGAEVKKPGSSVKVSCKASGGTFNWYT 8VH ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 154 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 90VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYFDFTRADYWGQGTLVTVSS J685M2S2- 155 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 91VH ISWVRQAPGQGLEWMGGIIPILRFPTYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 156 EVQLVQSGAEVKKPGSSVKVSCKVSGGTFSWYS 92VH ISWVRQAPGQGLEWMGGILPILDTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 157 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 93VH ISWVRQAPGQGLEWMGGIMPILGTAVYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J685M2S2- 158 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYS 94VH ISWVRQAPGQGLEWMGGILPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J688M2-11VH 159 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPTRADYWGQGTLVTVSS J688M2-13VH 160 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPSRADYWGQGTLVTVSS J688M2-14VH 161 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYFNPTRADYWGQGTLVTVSS J688M2-16VH 162 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPARFDYWGQGTLVTVSS J688M2-20VH 163 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYNPSRADYWGQGTLVTVSS J688M2-21VH 164 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPKRADYWGQGTLVTVSS J688M2-22VH 165 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPRRADYWGQGTLVTVSS J688M2-28VH 166 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG FYYDPTRADYWGQGTLVTVSS J688M2-29VH 167 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDFTRADYWGQGTLVTVSS J688M2-2VH 168 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYFDPKRADYWGQGTLVTVSS J688M2-37VH 169 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYFDPTRADYWGQGTLVTVSS J688M2-3VH 170 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPSRADYWGQGTLVTVSS J688M2-46VH 171 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARS LYYERTRADYWGQGTLVTVSS J688M2-48VH 172 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARW RFYIPIRFDYWGQGTLVTVSS J688M2-4VH 173 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDFTRADYWGQGTLVTVSS J688M2-50VH 174 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LFYDPSRADYWGQGTLVTVSS J688M2-52VH 175 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPVRADYWGQGTLVTVSS J688M2-56VH 176 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPIRADYWGQGTLVTVSS J688M2-57VH 177 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPKRADYWGQGTLVTVSS J688M2-58VH 178 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYNPIRFDYWGQGTLVTVSS J688M2-64VH 179 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYFDPARADYWGQGTLVTVSS J688M2-65VH 180 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VFFDPTRADYWGQGTLVTVSS J688M2-68VH 181 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VFYNPTRADYWGQGTLVTVSS J688M2-69VH 182 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYEGPSADYWGQGTLVTVSS J688M2-6VH 183 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYAPNRADYWGQGTLVTVSS J688M2-73VH 184 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LFYDPTRADYWGQGTLVTVSS J688M2-74VH 185 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYNPTRADYWGQGTLVTVSS J688M2-75VH 186 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPARADYWGQGTLVTVSS J688M2-7VH 187 EVQLVQSGAEVKKSGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPGRADYWGQGTLVTVSS J688M2-81VH 188 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYFDPSRADYWGQGTLVTVSS J688M2-82VH 189 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYFDPSRFDYWGQGTLVTVSS J688M2-83VH 190 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYFDFTRADYWGQGTLVTVSS J688M2-84VH 191 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPTRADYWGQGTLVTVSS J688M2-88VH 192 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYFDPSRADYWGQGTLVTVSS J688M2-89VH 193 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPSRFDYWGQGTLVTVSS J688M2-8VH 194 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG QYYDTSRADYWGQGTLVTVSS J688M2-90VH 195 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARS LYYDTTRFDYWGQGTLVTVSS J688M2-92VH 196 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VFYDPTRADYWGQGTLVTVSS J688M2-94VH 197 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPARADYWGQGTLVTVSS J688M2-95VH 198 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LFYDPRRADYWGQGTLVTVSS J688M2-96VH 199 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDTTRADYWGQGTLVTVSS J693FRM2S- 200 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 2L-32VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPARADYWGQGTLVTVSS J693FRM2S- 201 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 2L-40VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCSRG LYYDPTRADYWGQGTLVTVSS J693FRM2S- 202 EVQLVQSGAEVMKPGSSVKVSCKASGGTFSSYA 2L-70VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCTRG LYYDPTRADYWGQGTLVTVSS J693FRM2-S 203 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYA 2R-29VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J693FRM2S- 204 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 2R-46VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCTRG LYYDPTRADYWGQGTLVTVSS J693FRM2S- 205 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 2R-65VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCTRG IYYDPTRADYWGQGTLVTVSS J693M2S2L- 206 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 17VH ISWVRQAPGQGLEWMGGIIPILGTANYAQEFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J693M2S2L- 207 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 32VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCVRG LYYDPTRADYWGQGTLVTVSS J693M2S2L- 208 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 67VH ISWVRQAPGQGLEWMGGIIPILGTASYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J693M2S2L- 209 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 75VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCAKG LYYDPTRADYWGQGTLVTVSS J693M2S2L- 210 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 78VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCERG LYYDPTRADYWGQGTLVTVSS J693M2S2L- 211 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSNYA 79VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J693M2S2L- 212 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 94VH ISWVRQAPGQGLEWMGGIIPILGTANYAHKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J693M2S2R- 213 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 22VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADCWGQGTLVTVSS J693M2S2R- 214 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 24VH ISWVQQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J693M2S2R- 215 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 2VH ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J693M2S2R- 216 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 31VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J693M2S2R- 217 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 71VH TSWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J693M2S2R- 218 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA 84VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFLG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J693M2S2R- 219 EVQLVQSGAEVKKPGSSVKVSCKASGGTSSSYA 89VH ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPTRADYWGQGTLVTVSS J703M1S3- 220 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 10VH ISWVRQAPGQGLEWMGGITPILGSATYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPKRADYWGQGTLVTVSS J703M1S3- 221 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 11VH ISWVRQAPGQGLEWMGGITPILGAASYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPTRADYWGQGTLVTVSS J703M1S3- 222 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 12VH ISWVRQAPGQGLEWMGGITPILGAASYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPARADYWGQGTLVTVSS J703M1S3- 223 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 13VH ISWVRQAPGQGLEWMGGITPILGAANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 224 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 14VH ISWVRQAPGQGLEWMGGIMPILGSPTYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPRRADYWGQGTLVTVSS J703M1S3- 225 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 16VH ISWVRQAPGQGLEWMGGITPILGSATYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPKRADYWGQGTLVTVSS J703M1S3- 226 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 17VH ISWVRQAPGQGLEWMGGIVPILGTPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 227 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 18VH ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPARADYWGQGTLVTVSS J703M1S3- 228 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 19VH ISWVRQAPGQGLEWMGGITPILGSPTYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 229 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 1VH ISWVRQAPGQGLEWMGGIMPILGTPVYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDFRRANYWGQGTLVTVSS J703M1S3- 230 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 20VH ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPKRADYWGQGTLVTVSS J703M1S3- 231 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 21VH ISWVRQAPGQGLEWMGGITPILGDPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPKRADYWGQGTLVTVSS J703M1S3- 232 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 22VH ISWVRQAPGQGLEWMGGITPILGNPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDYKRADYWGQGTLVTVSS J703M1S3- 233 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 25VH ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LFYDFRRADYWGQGTLVTVSS J703M1S3- 234 EVQLVQSGAEVKKPGSSVKVSCKASGGTFAWYA 28VH ISWVRQAPGQGLEWMGGITPILGNAIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 235 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 29VH ISWVRQAPGQGLEWMGGITPILGNPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 236 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 2VH TSWVRQAPGQGLEWMGGITPILGSPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDHRRADYWGQGTLVTVSS J703M1S3- 237 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 34VH ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDYKRADYWGQGTLVTVSS J703M1S3- 238 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 37VH ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 239 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 38VH ISWVRQAPGQGLEWMGGITPILGTPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDFKRADYWGQGTLVTVSS J703M1S3- 240 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 3VH ISWVRQAPGQGLEWMGGIMPILGTPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPRRADYWGQGTLVTVSS J703M1S3- 241 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 41VH ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 242 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 42VH ISWVRQAPGQGLEWMGGITPILGAPVYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 243 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 45VH ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 244 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 46VH ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPKRADYWGQGTLVTVSS J703M1S3- 245 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 47VH ISWVRQAPGQGLEWMGGIMPILGSANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPKRADYWGQGTLVTVSS J703M1S3- 246 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 4VH ISWVRQAPGQGLEWMGGITPILGNAIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPKRADYWGQGTLVTVSS J703M1S3- 247 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 50VH ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 248 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 51VH ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDYRRADYWGQGTLVTVSS J703M1S3- 249 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 53VH ISWVRQAPGQGLEWMGGIMPILGIPTYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPARADYWGQGTLVTVSS J703M1S3- 250 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 54VH ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 251 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 57VH ISWVRQAPGQGLEWMGGITPILGSAVYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 252 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 5VH ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDYKRADYWGQGTLVTVSS J703M1S3- 253 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 62VH ISWVRQAPGQGLEWMGGITPILGYPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 254 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 6VH ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDFRRADYWGQGTLVTVSS J703M1S3- 255 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYP 72VH ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDFRRADYWGQGTLVTVSS J703M1S3- 256 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 78VH ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 257 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 79VH ISWVRQAPGQGLEWMGGITPILGSAVYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPKRADYWGQGTLVTVSS J703M1S3- 258 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 7VH ISWVRQAPGQGLEWMGGITPILGNPIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPARADYWGQGTLVTVSS J703M1S3- 259 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 81VH ISWVRQAPGQGLEWMGGIMPILGAPNYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDYTRADYWGQGTLVTVSS J703M1S3- 260 EVQLVQSGAEVKKPGSSVKVSCKASGGTFAWYA 83VH ISWVRQAPGQGLEWMGGITPILGSPTYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 261 EVQLVQSGAEVKKPGSSVKVSCKASGGTFGWYA 86VH TSWVRQAPGQGLEWMGGIIPILGTPNYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 262 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 87VH ISWVRQAPGQGLEWMGGIMPILGTPTYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDPKRADYWGQGTLVTVSS J703M1S3- 263 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT 88VH ISWVRQAPGQGLEWMGGIMPILGSPNYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG IYYDPKRADYWGQGTLVTVSS J703M1S3- 264 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 91VH ISWVRQAPGQGLEWMGGIMPILGSATYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYFDPKRADYWGQGTLVTVSS J703M1S3- 265 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA 93VH ISWVRQAPGQGLEWMGGITPILGAANYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG LYYDPKRADYWGQGTLVTVSS J703M1S3- 266 EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYP 9VH ISWVRQAPGQGLEWMGGITPILGAGIYAQKFQG RVTITADESTSTVYMELSSLRSEDTAVYYCARG VYYDFKRADYWGQGTLVTVSS

Table 12 provides a list of amino acid sequences of VL regions of affinity matured fully human TNF antibodies derived from AE11-5 Amino acid residues of individual CDRs of each VH sequence are indicated in bold.

TABLE 12 List of amino acid sequences of affinity matured AE11-5 VL variants SEQ ID Clone NO: VL J685M2S2-17Vk 267 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPPPTF GQGTKVEIK J685M2S2-94Vk 268 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPPPTF GQWTKVEIK J688M2-37Vk 269 EIVLTQSPDFQSVTPKEKVTITCRARQSIGSSL HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTNFTLTINSLEAEDAATYYCHQSSSSPPPTF GQGTKVEIK J688M2-90Vk 270 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPPPTF GQGTKVEIK J693FRM2S2L- 271 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSL 26Vk HWYQQKPDQSPKLLIKHASQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNRSSPPSTF GQGTKVEIK J693FRM2S2L- 272 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSL 27Vk HWYQQKPDQSPKLLIKYASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPPVTF GQGTKVEIK J693FRM2S2L- 273 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 29Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSNLPAPTF GQGTKVEIK J693FRM2S2L- 274 EIVLTQSPDFQSVTPKEKVTITCRASQIIGGSL 39Vk HWYQQKPDQSPKLLIKYASQSFSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQPICSPPRTF GQGTKVEIK J693FRM2S2L- 275 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSNL 3Vk HWYQQKPDQSPKLLIKYASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCSISPPATF GQGTKVEIK J693FRM2S2L- 276 EIVLTQSPDFQSVTPKEKVTITCRASQCIGTSL 40Vk HWYQQKPDQSPKLLIKYDSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSSSPPPTF GQGTKVEIK J693FRM2S2L- 277 EIVLTQSPDFQSVTPKEKVTITCRASQNIGNSL 42Vk HWYQQKPDQSPKLLIKYTSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQTSSLPLPTF GQGTKVEIK J693FRM2S2L- 278 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 43Vk HWYQQKPDQSPKLLIKYVSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQISDLPTSTF GQGTKVEIK J693FRM2S2L- 279 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSNL 45Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSSLPPPTF GQGTKVEIK J693FRM2S2L- 280 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSL 46Vk HWYQQKPDQSPKLLIKHTSQSNSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSNSSPLSTF GQGTKVEIK J693FRM2S2L- 281 EIVLTQSPDFQSVTPKEKVTITCRASQNIGGSL 47Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSSLPLPTF GQGTKVEIK J693FRM2S2L- 282 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL 48Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSKSPPPTF GQGTKVEIK J693FRM2S2L- 283 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCL 52Vk HWYQQKPDQSPKLLIKYASQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSSLPTPTF GQGTKVEIK J693FRM2S2L- 284 EIVLTQSPDFQSVTPKEKVTITCRASQSIGGRL 53Vk HWYQQKPDQSPKLLIKYASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQASSSPSTTF GQGTKVEIK J693FRM2S2L- 285 EIVLTQSPDFQSVTPKEKVTITCRASQRIGPSL 54Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSCLPSTTF GQGTKVEIK J693FRM2S2L- 286 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSL 58Vk HWYQQKPDQSPKLLIKYASQSRSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSGISPPTTF GQGTKVEIK J693FRM2S2L- 287 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSL 59Vk HWYQQKPDQSPKLLIKYVSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGMSSPAPTF GQGTKVEIK J693FRM2S2L- 288 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 5Vk HWYQQKPDQSPKLLIKYASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRRNSPPPTF GQGTKVEIK J693FRM2S2L- 289 EIVLTQSPDFQSVTPKEKVTITCRASQKIGSGL 88Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNNSSPHKTF GQGTKVEIK J693FRM2S2L- 290 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSNL 89Vk HWYQQKPDQSPKLLIKHSSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSSSPLPTF GQGTKVEIK J693FRM2S2L- 291 EIVLTQSPDFQSVTPKEKVTITCRASQNIGRSL 8Vk HWYQQKPDQSPKLLIKYASQSSSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRSSPPPTF GQGTKVEIK J693FRM2S2L- 292 EIVLTQSPDFQSVTPKEKVTITCRASQCIGKSL 90Vk HWYQQKPDQSPKLLIKHPSQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSIGLPPTTF GQGTKVEIK J693FRM2S2L- 293 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSL 91Vk HWYQQKPDQSPKLLIKHASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSISPPATF GQGTKVEIK J693FRM2S2L- 294 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTL 92Vk HWYQQKPDQSPKLLIKYESQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRCCSPTQTF GQGTKVEIK J693FRM2S2L- 295 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRKL 94Vk HWYQQKPDQSPKLLIKYSSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSRSPPTTF GQGTKVEIK J693FRM2S2R- 296 EIVLTQSPDFQSVTPKEKVTITCRASQTIGTSL 10Vk HWYQQKPDQSPKLLIKHASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPSPTF GQGTKVEIK J693FRM2S2R- 297 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 11Vk HWYQQKPDQSPKLLIKHVSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRGSSPPRTF GQGTKVEIK J693FRM2S2R- 298 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSTL 12Vk HWYQQKPDQSPKLLIKHTSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSSSPPPTF GQGTKVEIK J693FRM2S2R- 299 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNL 14Vk HWYQQKPDQSPKLLIKHGSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRHSSPRATF GQGTKVEIK J693FRM2S2R- 300 EIVLTQSPDFQSVTPKEKVTITCRASQKIGSNL 15Vk HWYQQKPDQSPKLLIKYASQSFSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSSSPPATF GQGTKVEIK J693FRM2S2R- 301 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSL 16Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSRSPFRTF GQGTKVEIK J693FRM2S2R- 302 EIVLTQSPDFQSVTPKEKVTITCRASQCIGRRL 34Vk HWYQQKPDQSPKLLIKHASQSRSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCTSSPPPTF GQGTKVEIK J693FRM2S2R- 303 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSNL 36Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSLRLPPQTF GQGTKVEIK J693FRM2S2R- 304 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 39Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNRSLPRLTF GQGTKVEIK J693FRM2S2R- 305 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCL 3Vk HWYQQKPDQSPKLLIKYASQSISGVPSSSVASG SGTDFTLTINSLEAEDAATYYCHQRSSLPQPTF GQGTKVEIK J693FRM2S2R- 306 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRL 42Vk HWYQQKPDQSPKLLIKHPSQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSIDSPPPTF GQGTKVEIK J693FRM2S2R- 307 EIVLTQSPDFQSVTPKEKVTITCRASQTIGRSL 45Vk HWYQQKPDQSPKLLIKYKSQSSSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRWGLPMPTF GQGTKVEIK J693FRM2S2R- 308 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSML 48Vk HWYQQKPDQSPKLLIKHSSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQTNSLPPRTF GQGTKVEIK J693FRM2S2R- 309 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSL 50Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSRSPLDTF GQGTKVEIK J693FRM2S2R- 310 EIVLTQSPDFQSVTPKEKVTITCRASQSIGCSL 51Vk HWYQQKPDQSPKLLIKYASQSVSVVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSTLPPPTF GQGTKVEIK J693FRM2S2R- 311 EIVLTQSPDFQSVTPKEKVTITCRASQGIGTSL 52Vk HWYQQKPDQSPKLLIKHDSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQTSSLPPPTF GQGTKVEIK J693FRM2S2R- 312 EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSL 56Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPLPTF GQGTKVEIK J693FRM2S2R- 313 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 58Vk HWYQQKPDQSPKLLIKYTSQSKSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGNRSPSTTF GQGTKVEIK J693FRM2S2R- 314 EIVLTQSPDFQSVTPKEKVTITCRASKRIGSSL 59Vk HWYQQKPDQSPKLLIKHKSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSASPPPTF GQGTKVEIK J693FRM2S2R- 315 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSL 5Vk HWYQQKPDQSPKLLIKHPSQSMSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSTSPPATF GQGTKVEIK J693FRM2S2R- 316 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 60Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSSLPTPTF GQGTKVEIK J693FRM2S2R- 317 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTL 61Vk HWYQQKPDQSPKLLIKHASQSFSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSNCSPAHTF GQGTKVEIK J693FRM2S2R- 318 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSRL 62Vk HWYQQKPDQSPKLLIKYVSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSRLPPPTF GQGTKVEIK J693FRM2S2R- 319 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSTL 63Vk HWYQQKPDQSPKLLIKHASQSNSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSCSPQATF GQGTKVEIK J693FRM2S2R- 320 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSL 64Vk HWYQQKPDQSPKLLIKYPSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSGRSPPHTF GQGTKVEIK J693FRM2S2R- 321 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 65Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSILPPPTF GQGTKVEIK J693FRM2S2R- 322 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSYL 92Vk HWYQQKPDQSPKLLIKHVSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPTLTF GQGTKVEIK J693FRM2S2R- 323 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 93Vk HWYQQKPDQSPKLLIKHASQSMSGVPSGFSGSG SGTDFTLTINSLEAEDAATYYCHQTNRSPPPTF GQGTKVEIK J693FRM2S2R- 324 EIVLTQSPDFQSVTPKEKVTITCRASQNIGTSL 9Vk HWYQQKPDQSPKLLIKYVSQSISGVPSRFSGSG SGTDFTLNINSLEAEDAATYYCHQSSCLPRPTF GQGTKVEIK J693M2S2L- 325 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSPL 10Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSSSPPPTF GQGTKVEIK J693M2S2L- 326 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTL 11Vk HWYQQKPDQSPKLLIKHDSQSKSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSDSPAPTF GQGTKVEIK J693M2S2L- 327 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCL 12Vk HWYQQKPDQSPKLLIKHASQSNSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRISPLPTF GQGTKVEIK J693M2S2L- 328 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRL 13Vk HWYQQKPDQSPKLLIKHSSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCSSLPHPTF GQGTKVEIK J693M2S2L- 329 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSRL 14Vk HWYQQKPDQSPKLLIKHASQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSCSSPLVTF GQGTKVEIK J693M2S2L- 330 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL 16Vk HWYQQKPDQSPKLLIKHASQSSSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSGSSPQATF GQGTKVEIK J693M2S2L- 331 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 17Vk HWYQQKPDQSPKLLIKHASQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNRGSPPQTF GQGTKVEIK J693M2S2L- 332 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSIL 18Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNTSLPPPTF GQGTKVEIK J693M2S2L- 333 EIVLTQSPDFQSVTPKEKVTITCRASQSIGNSL 19Vk HWYQQKPDQSPKLLIKYPSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSRLPVPTF GQGTKVEIK J693M2S2L-1Vk 334 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL HWYQQKPDQSPKLLIKHTSQSNSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPAPTF GQGTKVEIK J693M2S2L- 335 EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSL 20Vk HWYQQKPDQSPKLLIKHVSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSNSLPAPTF GQGTKVEIK J693M2S2L- 336 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 21Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSMSLPSATF GQGTKVEIK J693M2S2L- 337 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSL 22Vk HWYQQKPDQSPKLLIKHLSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQPCRLPPSTF GQGTKVEIK J693M2S2L- 338 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSLL 23Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSCSSPRHTF GQGTKVEIK J693M2S2L- 339 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSL 24Vk HWYQQKPDQSPKLLIKHPSQSKSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSRSPAPTF GQGTKVEIK J693M2S2L- 340 EIVLTQSPDFQSVTPKEKVTITCRASQSIGGSL 25Vk HWYQQKPDQSPKLLIKYSSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSILPSLTF GQGTKVEIK J693M2S2L- 341 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 26Vk HWYQQKPDQSPKLLIKHPSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRNLPPRTF GQGTKVEIK J693M2S2L- 342 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSIL 27Vk HWYQQKPDQSPKLLIKYGSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNGSSPPRTF GQGTKVEIK J693M2S2L- 343 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 28Vk HWYQQKPDQSPKLLIKYFSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSCLPMQTF GQGTKVEIK J693M2S2L- 344 EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSL 29Vk HWYQQKPDQSPKLLIKYSSQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSISPPATF GQGTKVEIK J693M2S2L-2Vk 345 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSL HWYQQKPDQSPKLLIKHASQSNSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSTCLPPRTF GQGTKVEIK J693M2S2L- 346 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL 30Vk HWYQQKPDQSPKLLIKYVSQSMSGVLSRFSGSG SGTDFTLTINSLEAEDAATYYCHQPSTSPRPTF GQGTKVEIK J693M2S2L- 347 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL 31Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSSLPPSTF GQGTKVEIK J693M2S2L- 348 EIVLTQSPDFQSVTPKEKVTITCRASQSIGCSL 32Vk HWYQQKPDQSPKLLIKYASQSNSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPSSTF GQGTKVEIK J693M2S2L- 349 EIVLTQSPDFQSVTPKEKVTITCRASQIIGTSL 33Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSRSPPRTF GQGTKVEIK J693M2S2L- 350 EIVLTQSPDFQSVTPKEKVTITCRASQKIGTSL 34Vk HWYQQKPDQSPKLLIKHESQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSGSPPPTF GQGTKVEIK J693M2S2L- 351 EIVLTQSPDFQSVTPKEKVTITCRASQTIGGSL 35Vk HWYQQKPDQSPKLLIKHVSQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSISPPPTF GQGTKVEIK J693M2S2L- 352 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSDL 36Vk HWYQQKPDQSPKLLIKHVSQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSCMSPSLTF GQGTKVEIK J693M2S2L- 353 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNL 37Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPNTTF GQGTKVEIK J693M2S2L- 354 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSIL 38Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGRISPSSTF GQGTKVEIK J693M2S2L- 355 EIVLTQSPDFQSVTPKEKVTITCRASQSIGNRL 39Vk HWYQQKPDQSPKLLIKHASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSGSLPTLTF GQGTKVEIK J693M2S2L-3Vk 356 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSL HWYQQKPDQSPKLLIKHDSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSSLPTHTF GQGTKVEIK J693M2S2L- 357 EIVLTQSPDFQSVTPKEKVTITCRASQTIGRSL 40Vk HWYQQKPDQSPKLLIKHGSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRSSPPSTF GQGTKVEIK J693M2S2L- 358 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 41Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNCSSPPPTF GQGTKVEIK J693M2S2L- 359 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 44Vk HWYQQKPDQSPKLLIKYESQSDSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRRNSPPSTF GQGTKVEIK J693M2S2L- 360 EIVLTQSPDFQSVTPKEKVTITCRASQGIGSRL 45Vk HWYQQKPDQSPKLLIKHGSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNRGLPAPTF GQGTKVEIK J693M2S2L- 361 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 46Vk HWYQQKPDQSPKLLIKYASQSSSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNHTSPPPTF GQGTKVEIK J693M2S2L- 362 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL 47Vk HWYQQKPDQSPKLLIKHASQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSGRLPPPTF GQGTKVEIK J693M2S2L-4Vk 363 EIVLTQSPDFQSVTPKEKVTITCRASQYIGKRL HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSNISPPPTF GQGTKVEIK J693M2S2L- 364 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSL 51Vk HWYQQKPDQSPKLLIKHESQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPPPTF GQGTKVEIK J693M2S2L- 365 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSL 52Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSSLPPSTF GQGTKVEIK J693M2S2L- 366 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSL 54Vk HWYQQKPDQSPKLLIKHPSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCSSSPAQTF GQGTKVEIK J693M2S2L- 367 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSL 55Vk HWYQQKPDQSPKLLIKHTSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSSLPLPTF GQGTKVEIK J693M2S2L- 368 EIVLTQSPDFQSVTPKEKVTITCRASQWIGSSL 56Vk HWYQQKPDQSPKLLIKHTSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPPQTF GQGTKVEIK J693M2S2L- 369 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSL 58Vk HWYQQKPDQSPKLLIKYSSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSSSPPPTF GQGTKVEIK J693M2S2L- 370 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 59Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSRLPPSTF GQGTKVEIK J693M2S2L-5Vk 371 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKYGSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNWSLPLPTF GQGTKVEIK J693M2S2L- 372 EIVLTQSPDFQSVTPKEKVTITCRASQRIGTSL 62Vk HWYQQKPDQSPKLLIKYASQSKSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSCSPTPTF GQGTKVEIK J693M2S2L- 373 EIVLTQSPDFQSVTPKEKVTITCRASQSIGGSL 64Vk HWYQQKPDQSPKLLIKYGSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRCVSPSPTF GQGTKVEIK J693M2S2L- 374 EIVLTQSPDFQSVTPKEKVTITCRASQSIGGTL 65Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPARTF GQGTKVEIK J693M2S2L- 375 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 66Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCGSSPLHTF GQGTKVEIK J693M2S2L- 376 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSL 67Vk HWYQQKPDQSPKLLIKHPSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSTSSPPPTF GQGTKVEIK J693M2S2L- 377 EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSL 68Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSGLPLPTF GQGTKVEIK J693M2S2L- 378 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRL 69Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSSSPSPTF GQGTKVEIK J693M2S2L-6Vk 379 EIVLTQSPDFQSVTPKEKVTITCRASQRIGGNL HWYQQKPDQSPKLLIKHESQSNSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPSHTF GQGTKVEIK J693M2S2L- 380 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 70Vk HWYQQKPDQSPKLLIKYASQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCSSSPSHTF GQGTKVEIK J693M2S2L- 381 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 71Vk HWYQQKPDQSPKLLIKHASQSMSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRNSPPTTF GQGTKVEIK J693M2S2L- 382 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSRL 72Vk HWYQQKPDQSPKLLIKHGSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSSSPPPTF GQGTKVEIK J693M2S2L- 383 EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSL 74Vk HWYQQKPDQSPKLLIKYASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSLLPAPTF GQGTKVEIK J693M2S2L- 384 EIVLTQSPDFQSVTPKEKVTITCRASQIIGTTL 75Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSNLPPSTF GQGTKVEIK J693M2S2L- 385 EIVLTQSPDFQSVTPKEKVTITCRASQNIGGNL 76Vk HWYQQKPDQSPKLLIKHASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSNLPPPTF GQGTKVEIK J693M2S2L- 386 EIVLTQSPDFQSVTPKEKVTITCRASQGIGGSL 77Vk HWYQQKPDQSPKLLIKYASQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSACLPTRTF GQGTKVEIK J693M2S2L- 387 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSL 78Vk HWYQQKPDQSPKLLIKYASQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQIGSLPPPTF GQGTKVEIK J693M2S2R- 388 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSL 13Vk HWYQQKPDQSPKLLIKHASQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSRLPPPTF GQGTKVEIK J693M2S2R- 389 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 14Vk HWYQQKPDQSPKLLIKHNSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSSSPPLTF GQGTKVEIK J693M2S2R- 390 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRNL 15Vk HWYQQKPDQSPKLLIKHVSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSRSPPSTF GQGTKVEIK J693M2S2R- 391 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 16Vk HWYQQKPDQSPKLLIKHASQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCSSLPAPTF GQGTKVEIK J693M2S2R- 392 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSL 17Vk HWYQQKPDQSPKLLIKHASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSRLPPQTF GQGTKVEIK J693M2S2R- 393 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSRL 18Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRGRLPPRTF GQGTKVEIK J693M2S2R- 394 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 19Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSTSLPRLTF GQGTKVEIK J693M2S2R- 395 EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSL 20Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRSSPQQTF GQGTKVEIK J693M2S2R- 396 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTL 21Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPPPTF GQGTKVEIK J693M2S2R- 397 EIVLTQSPDFQSVTPKEKVTITCRASQSIGNSL 22Vk HWYQQKPDQSPKLLIKHGSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRRSSPRHTF GQGTKVEIK J693M2S2R- 398 EIVLTQSPDFQSVTPKEKVTITCRASQRIGRRL 27Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSIGSPPLTF GQGTKVEIK J693M2S2R- 399 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRGL 29Vk HWYQQKPDQSPKLLIKYGSQSMSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPPPTF GQGTKVEIK J693M2S2R-2Vk 400 EIVLTQSPDFQSVTPKEKVTITCRASQSIGCSL HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCTSLPLPTF GQGTKVEIK J693M2S2R- 401 EIVLTQSPDFQSVTPKEKVTITCRASQGIGSSL 30Vk HWYQQKPDQSPKLLIKYVSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSSLPTPTF GQGTKVEIK J693M2S2R- 402 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSL 31Vk HWYQQKPDQSPKLLIKHASQSSSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSRLPPLTF GQGTKVEIK J693M2S2R- 403 EIVLTQSPDFQSVTPKEKVTITCRASQVIGGVL 32Vk HWYQQKPDQSPKLLIKYTSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPRPTF GQGTKVEIK J693M2S2R- 404 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 33Vk HWYQQKPDQSPKLLIKHSSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSNSPHRTF GQGTKVEIK J693M2S2R- 405 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRTL 36Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCSISPQPTF GQGTKVEIK J693M2S2R- 406 EIVLTQSPDFQSVTPKEKVTITCRASQRIGNTL 37Vk HWYQQKPDQSPKLLIKYPSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSGSSPPPTF GQGTKVEIK J693M2S2R- 407 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL 39Vk HWYQQKPDQSPKLLIKYISQSMSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSCGLPPPTF GQGTKVEIK J693M2S2R-3Vk 408 EIVLTQSPDFQSVTPKEKVTITCRASQNIGTRL HWYQQKPDQSPKLLIKYGSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRISPPPTF GQGTKVEIK J693M2S2R- 409 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTL 40Vk HWYQQKPDQSPKLLIKYVSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCSRLPPPTF GQGTKVEIK J693M2S2R- 410 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL 44Vk HWYQQKPDQSPKLLIKYASQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSNLPSPTF GQGTKVEIK J693M2S2R- 411 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNL 45Vk HWYQQKPDQSPKLLIKHASQSMSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPRPTF GQGTKVEIK J693M2S2R- 412 EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSL 46Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSISSPSPTF GQGTKVEIK J693M2S2R- 413 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 47Vk HWYQQKPDQSPKLLIKYASQSFSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSNCLPPPTF GQGTKVEIK J693M2S2R- 414 EIVLTQSPDFQSVTPKEKVTITCRASQSIGKSL 48Vk HWYQQKPDQSPKLLIKHESQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQANSLPPPTF GQGTKVEIK J693M2S2R-4Vk 415 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRL HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCSSSPPSTF GQGTKVEIK J693M2S2R- 416 EIVLTQSPDFQSVTPKEKVTITCRASQIIGHSL 52Vk HWYQQKPDQSPKLLIKHASQSILGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSIKSPPATF GQGTKVEIK J693M2S2R- 417 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSL 54Vk HWYQQKPDQSPKLLIKHTSQSKSGVPSRFSGSG SGTDFALTINSLEAEDAATYYCHQSSNSPRYTF GQGTKVEIK J693M2S2R- 418 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 55Vk HWYQQKPDQSPKLLIKHASQSHSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSGGSPPWTF GQGTKVEIK J693M2S2R- 419 EIVLTQSPDFQSVTPKEKVTITCRASQGIGRSL 56Vk HWYQQKPDQSPKLLIKYASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSNRSPPPTF GQGTKVEIK J693M2S2R-5Vk 420 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTTL HWYQQKPDQSPKLLIKHVSQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPHPTF GQGTKVEIK J693M2S2R- 421 EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSL 60Vk HWYQQKPDQSPKLLIKYPSQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSWSSPLMTF GQGTKVEIK J693M2S2R- 422 EIVLTQSPDFQSVTPKEKVTITCRASQSIGNTL 61Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPPPTF GQGTKVEIK J693M2S2R- 423 EIVLTQSPDFQSVTPKEKVTITCRASQRIGICL 62Vk HWYQQKPDQSPKLLIKYASQSMSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGFSLPPATF GQGTKVEIK J693M2S2R- 424 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCL 63Vk HWYQQKPDQSPKLLIKYPSQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSCSPTTTF GQGTKVEIK J693M2S2R- 425 EIVLTQSPDFQSVTPKEKVTITCRASQRIGNTL 64Vk HWYQQKPDQSPKLLIKYPSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSGSSPPPTF GQGTKVEIK J693M2S2R- 426 EIVLTQSPDFQSVTPKEKVTITCRASQTIGTSL 65Vk HWYQQKPDQSPKLLIKYASQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRCSLPPPTF GQGTKVEIK J693M2S2R- 427 EIVLTQSPDFQSVTPKEKVTITCRASQSIGGSL 68Vk HWYQQKPDQSPKLLIKYASQSHSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCRISPRPTF GQGTKVEIK J693M2S2R- 428 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSL 69Vk HWYQQKPDQSPKLLIKHPSQSKSGVPSRFSGSG SGTDFTLSINSLEAEDAATYYCHQTSRSPLHTF GQGTKVEIK J693M2S2R-6Vk 429 EIVLTQSPDFQSVTPKEKVTITCRASQNIGKNL HWYQQKPDQSPKLLIKYPSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRSSPLSTF GQGTKVEIK J693M2S2R- 430 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL 70Vk HWYQQKPDQSPKLLIKYMSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRVLPPPTF GQGTKVEIK J693M2S2R- 431 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 71Vk HWYQQKPDQSPKLLIKYGSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSISPRRTF GQGTKVEIK J693M2S2R- 432 EIVLTQSPDFQSVTPKEKVTITCRASQTIGRSL 72Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRKSSPTPTF GQGTKVEIK J693M2S2R- 433 EIVLTQSPDFQSVTPKEKVTITCRASQRIGRQL 75Vk HWYQQKPDQSPKLLIKHPSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPPQTF GQGTKVEIK J693M2S2R- 434 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 77Vk HWYQQKPDQSPKLLIKHTSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQICRSPSPTF GQGTKVEIK J693M2S2R- 435 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 78Vk HWYQQKPDQSPKLLIKYASQSSSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSGSPAPTF GQGTKVEIK J693M2S2R- 436 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 79Vk HWYQQKPDQSPKLLIKYSSQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQISSSPPPTF GQGTKVEIK J693M2S2R-7Vk 437 EIVLTQSPDFQSVTPKEKVTITCRASQTIGNSL HWYQQKPDQSPKLLIKHASQSNSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQTMTSPPPTF GQGTKVEIK J693M2S2R- 438 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 80Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRSSPSPTF GQGTKVEIK J693M2S2R- 439 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 81Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRRWSPPPTF GQGTKVEIK J693M2S2R- 440 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 82Vk HWYQQKPDQSPKLLIKYASQSNSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQISCLPLPTF GQGTKVEIK J693M2S2R- 441 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSL 83Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSISLPPPTF GQGTKVEIK J693M2S2R- 442 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRNL 84Vk HWYQQKPDQSPKLLIKHTSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQTSTLPPQTF GQGTKVEIK J693M2S2R- 443 EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSL 85Vk HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRNSPQPTF GQGTKVEIK J693M2S2R- 444 EIVLTQSPDFQSVTPKEKVTITCRASQSIGTRL 86Vk HWYQQKPDQSPKLLIKYVSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSHSPPPTF GQGTKVEIK J693M2S2R- 445 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCL 87Vk HWYQQKPDQSPKLLIKHRSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQWSSSPPPTF GQGTKVEIK J693M2S2R- 446 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSL 89Vk HWYQQKPDQSPKLLIKHPSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQTSGSPSHTF GQGTKVEIK J693M2S2R-8Vk 447 EIVLTQSPDFQSVTPKEKVTITCRASQGIGSSL HWYQQKPDQSPKLLIKYESQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPPPTF GQGTKVEIK J693M2S2R- 448 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL 90Vk HWYQQKPDQSPKLLIKHDSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSSSPPTTF GQGTKVEIK J693M2S2R- 449 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSNL 91Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRISSPPSTF GQGTKVEIK J693M2S2R- 450 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSL 92Vk HWYQQKPDQSPKLLIKHASQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSCSSPPSTF GQGTKVEIK J693M2S2R- 451 EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSL 93Vk HWYQQKPDQSPKLLIKYVSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQTISSPLPTF GQGTKVEIK J693M2S2R- 452 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL 95Vk HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSCSPAHTF GQGTKVEIK J703M1S3-11Vk 453 EIVLTQSPDFQSVTPKEKVTITCRDSRCIGSNL HWYQQKPDQSPKLLIKHASQSSSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCSSSPPPTF GQGTKVEIK J703M1S3-13Vk 454 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTL HWYQQKPDQSPKLLIKHASQSNSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPPPTF GQGTKVEIK J703M1S3-16Vk 455 EIVLTQSPDFQSVTPKEKVTITCRASQSIGDSL HWYQQKPDQSPKLLIKHASQSKSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGSTSPPRTF GQGTKVEIK J703M1S3-19Vk 456 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKHGSQSSSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSWSSPIPTF GQGTKVEIK J703M1S3-22Vk 457 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL HWYQQKPDQSPKLLIKYASQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSNLPSPTF GQGTKVEIK J703M1S3-26Vk 458 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL HWYQQKPDQSPKLLIKHASQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSGSSPPRTF GQGTKVEIK J703M1S3-29Vk 459 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRTSSPVRTF GQGTKVEIK J703M1S3-2Vk 460 EIVLTQSPDFQSVTPKEKVTITCRASQSIGNTL HWYQQKPDQSPKLLIKHVSQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQKVSSPSPTF GQGTKVEIK J703M1S3-30Vk 461 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSL HWYQQKPDQSPKLLIKHASQSVSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSRSSPPPTF GQGTKVEIK J703M1S3-33Vk 462 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKHASQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPPSTF GQGTKVEIK J703M1S3-34Vk 463 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSSSPSTTF GQGTKVEIK J703M1S3-57Vk 464 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSL HWYQQKPDQSPKLLIKHESQSSSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRCTSPSPTF GQGTKVEIK J703M1S3-5Vk 465 EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSL HWYQQKPDQSPKLLIKHPSQSDSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNCSLPLPTF GQGTKVEIK J703M1S3-62Vk 466 EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSL HWYQQKPDQSPKLLIKHASQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQGISSPPQTF GQGTKVEIK J703M1S3-69Vk 467 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKHVSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQRSSSPSPTF GQGTKVEIK J703M1S3-71Vk 468 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKHPSQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSIRLPPSTF GQGTKVEIK J703M1S3-78Vk 469 EIVLTQSPDFQSVTPKEKVTITCRANQSIGGSL HWYQQKPDQSPKLLIKHASQSKSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQDSRSPTRTF GQGTKVEIK J703M1S3-79Vk 470 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSGL HWYQQKPDQSPKLLIKHTSQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSLPHPTF GQGTKVEIK J703M1S3-7Vk 471 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKHASQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSSSPTPTF GQGTKVEIK J703M1S3-81Vk 472 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRL HWYQQKPDQSPKLLIKYPSQSRSGVPSRFSGSG SGTDLTLTINSLEAEDAATYYCHQNGSLPPPTF GQGTKVEIK J703M1S3-82Vk 473 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSL HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSSSPPPTF GQGTKVEIK J703M1S3-86Vk 474 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSAL HWYQQKPDQSPKLLIKHASQSLSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQSSILPRPTF GQGTKVEIK J703M1S3-90Vk 475 EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNL HWYQQKPDQSPKLLIKHASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQTRTSPPLTF GQGTKVEIK J703M1S3-93Vk 476 EIVLTQSPDFQSVTPKEKVTITCRASQKIGSSL HWYQQKPDQSPKLLIKYGSQSTSGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQCISLPTPTF GQGTKVEIK J703M1S3-94Vk 477 EIVLTQSPDFQSVTPKEKVAITCRASQRIGSSL HWYQQKPDQSPKLLIKYASQSISGVPSRFSGSG SGTDFTLTINSLEAEDAATYYCHQNSSLPPPTF GQGTKVEIK

TABLE 13 Amino acid residues observed in affinity matured AE11-5 antibodies AE11-5 Heavy chain variable region (SEQ ID NO: 1073) AE11-5VH 1234567890123456789012345678901234567890123456789012a345678901 EVQLVQSGAEVKKPGSSAKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPILGTANYAQ                  V           NW TTT              WT   FRSPI                              TY SV                M   TDAST                              GI P                 L   I NGS                              AN G                 V     P V                               F                   N     I H                               R                         V A                               L                         K R                                                         F M                                                           L 234567890123456789012abc345678901234567890abc1234567890123 KFLGRVTITADESTSTVYMELSSLRSEDTAVYYCARGLYYDPTRADYWGQGTLVTVSS   Q             A                   SVFFNTSWF                                     WIVVEFASM                                     TFP TRKP                                     ARH IGRA                                      Q  ADI                                           Y                                           V                                           P                                           N                                           G AE11-5 Light chain variable region (SEQ ID NO: 1074) AE11-5VL 1234567890123456789012345678901234567890123456789012345678901 DIVMTQSPDFHSVTPKEKVTITCRASQSIGSSLHWYQQKPDQSPKLLIRHASQSISGVPSR E  L      Q                R  RR                KYV   L                            T  TT                  P   V                            N  GN                  T   T                            I  NC                  G   S                            C  KG                  S   M                            G  CI                  E   N                            K  HK                  D   K                            Y  VM                      F                            W  PL                      R                               LY                                P                                V 2345678901234567890123456789012345a67890123456a FSGSGSGTDFTLTIHSLEAEDAATYYCHQSSSSPPPTFGQGTQVEIK               N              RRRL LS      K                              NGI  AR                              GIC  SL                              TCG  RT                              CNN  TA                              ITT  QQ                               MK  HH                                    V                                    M

TABLE 14 Individual VH sequences from converted clones Protein Sequence region SEQ ID NO: 123456789012345678901234567890 J703M1S3 478 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS #2 WYATSWVRQAPGQGLEWMGGITPILGSPIY VH AQKFQGRVTITADESTSTVYMELSSLRSED TAVYYCARGVYYDHRRADYWGQGTLVTVSS J703M1S3 CDR-H1 Residues 31-35 WYATS #2 of SEQ ID VH NO.: 478 J703M1S3 CDR-H2 Residues 50-66 GITPILGSPIYAQKFQG #2 of SEQ ID VH NO.: 478 J703M1S3 CDR-H3 Residues 99-109 GVYYDHRRADY #2 of SEQ ID VH NO.: 478 J703M1S3 479 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS #13 WYAISWVRQAPGQGLEWMGGITPILGAANY VH AQKFQGRVTITADESTSTVYMELSSLRSED TAVYYCARGVYYDPKRADYWGQGTLVTVSS J703M1S3 CDR-H1 Residues 31-35 WYAIS #13 of SEQ ID NO.: 479 J703M1S3 CDR-H2 Residues 50-66 GITPILGAANYAQKFQG #13 of SEQ ID VH NO.: 479 J703M1S3 CDR-H3 Residues 99-109 GVYYDPKRADY #13 of SEQ ID VH NO.: 479 J703M1S3 480 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS #26 WYAISWVRQAPGQGLEWMGGITPILGTANY VH AQKFQGRVTITADESTSTVYMELSSLRSED TAVYYCARGVYYDPKRADYWGQGTLVTVSS J703M1S3 CDR-H1 Residues 31-35 WYAIS #26 of SEQ ID VH NO.: 480 J703M1S3 CDR-H2 Residues 50-66 GITPILGTANYAQKFQG #26 of SEQ ID VH NO.: 480 J703M1S3 CDR-H3 Residues 99-109 GVYYDPKRADY #26 of SEQ ID VH NO.: 480 J703M1S3 481 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS #30 WYAISWVRQAPGQGLEWMGGITPILGSPIY VH AQKFQGRVTITADESTSTVYMELSSLRSED TAVYYCARGVYYDPKRADYWGQGTLVTVSS J703M1S3 CDR-H1 Residues 31-35 WYAIS #30 of SEQ ID VH NO.: 481 J703M1S3 CDR-H2 Residues 50-66 GITPILGSPIYAQKFQG #30 of SEQ ID VH NO.: 481 J703M1S3 CDR-H3 Residues 99-109 GVYYDPKRADY #30 of SEQ ID VH NO.: 481 J703M1S3 482 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS #33 WYPISWVRQAPGQGLEWMGGITPILGAGIY VH AQKFQGRVTITADESTSTVYMELSSLRSED TAVYYCARGVYYDFKRADYWGQGTLVTVSS J703M1S3 CDR-H1 Residues 31-35 WYPIS #33 of SEQ ID VH NO.: 482 J703M1S3 CDR-H2 Residues 50-66 GITPILGAGIYAQKFQG #33 of SEQ ID VH NO.: 482 J703M1S3 CDR-H3 Residues 99-109 GVYYDFKRADY #33 of SEQ ID VH NO.: 482 J703M1S3 483 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS #35 WYAISWVRQAPGQGLEWMGGITPILGSATY VH AQKFQGRVTITADESTSTVYMELSSLRSED TAVYYCARGIYYDPKRADYWGQGTLVTVSS J703M1S3 CDR-H1 Residues 31-35 WYAIS #35 of SEQ ID VH NO.: 483 J703M1S3 CDR-H2 Residues 50-66 GITPILGSATYAQKFQG #35 of SEQ ID VH NO.: 483 J703M1S3 CDR-H3 Residues 99-109 GIYYDPKRADY #35 of SEQ ID VH NO.: 483 J703M1S3 484 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS #38 WYAISWVRQAPGQGLEWMGGITPILGTPIY VH AQKFQGRVTITADESTSTVYMELSSLRSED TAVYYCARGVYYDFKRADYWGQGTLVTVSS J703M1S3 CDR-H1 Residues 31-35 WYAIS #38 of SEQ ID VH NO.: 484 J703M1S3 CDR-H2 Residues 50-66 GITPILGTPIYAQKFQG #38 of SEQ ID VH NO.: 484 J703M1S3 CDR-H3 Residues 99-109 GVYYDFKRADY #38 of SEQ ID VH NO.: 484 J703M1S3 485 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS #69 WYAISWVRQAPGQGLEWMGGITPILGSPIY VH AQKFQGRVTITADESTSTVYMELSSLRSED TAVYYCARGIYYDPKRADYWGQGTLVTVSS J703M1S3 CDR-H1 Residues 31-35 WYAIS #69 of SEQ ID VH NO.: 485 J703M1S3 CDR-H2 Residues 50-66 GITPILGSPIYAQKFQG #69 of SEQ ID VH NO.: 485 J703M1S3 CDR-H3 Residues 99-109 GIYYDPKRADY #69 of SEQ ID VH NO.: 485 J703M1S3 486 EVQLVQSGAEVKKPGSSVKVSCKASGGTFS #90 WYAISWVRQAPGQGLEWMGGITPILGSPIY VH AQKFQGRVTITADESTSTVYMELSSLRSED TAVYYCARGVYYDYKRADYWGQGTLVTVSS J703M1S3 CDR-H1 Residues 31-35 WYAIS #90 of SEQ ID VH NO.: 486 J703M1S3 CDR-H2 Residues 50-66 GITPILGSPIYAQKFQG #90 of SEQ ID VH NO.: 486 J703M1S3 CDR-H3 Residues 99-109 GVYYDYKRADY #90 of SEQ ID VH NO.: 486

TABLE 15 Individual clones VL sequences Protein Sequence region 123456789012345678901234567890 J703M1S3 487 EIVLTQSPDFQSVTPKEKVTITCRASQSIG #2 NTLHWYQQKPDQSPKLLIKHVSQSVSGVPS VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ KVSSPSPTFGQGTKVEIK J703M1S3 CDR-L1 Residues 24-34 RASQSIGNTLH #2 of SEQ ID VL NO.: 487 J703M1S3 CDR-L2 Residues 50-56 HVSQSVS #2 of SEQ ID VL NO.: 487 J703M1S3 CDR-L3 Residues 89-98 HQKVSSPSPT #2 of SEQ VL ID NO.: 487 J703M1S3 488 EIVLTQSPDFQSVTPKEKVTITCRASQSIG #13 STLHWYQQKPDQSPKLLIKHASQSNSGVPS VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ SSSLPPPTFGQGTKVEI J703M1S3 CDR-L1 Residues 24-34 RASQSIGSTLH #13 of SEQ ID VL NO.: 488 J703M1S3 CDR-L2 Residues 50-56 HASQSNS #13 of SEQ ID VL NO.: 488 J703M1S3 CDR-L3 Residues 89-98 HQSSSLPPPT #13 of SEQ VL ID NO.: 488 J703M1S3 489 EIVLTQSPDFQSVTPKEKVTITCRASQSIG #26 SRLHWYQQKPDQSPKLLIKHASQSTSGVPS VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ SGSSPPRTFGQGTKVEIK J703M1S3 CDR-L1 Residues 24-34 RASQSIGSRLH #26 of SEQ ID VL NO.: 489 J703M1S3 CDR-L2 Residues 50-56 HASQSTS #26 of SEQ ID VL NO.: 489 J703M1S3 CDR-L3 Residues 89-98 HQSGSSPPRT #26 of SEQ VL ID NO.: 489 J703M1S3 490 EIVLTQSPDFQSVTPKEKVTITCRASQRIG #30 SSLHWYQQKPDQSPKLLIKHASQSVSGVPS VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ SRSSPPPTFGQGTKVEIK J703M1S3 CDR-L1 Residues 24-34 RASQRIGSSLH #30 of SEQ ID VL NO.: 490 J703M1S3 CDR-L2 Residues 50-56 HASQSVS #30 of SEQ ID VL NO.: 490 J703M1S3 CDR-L3 Residues 89-98 HQSRSSPPPT #30 of SEQ VL ID NO.: 490 J703M1S3 491 EIVLTQSPDFQSVTPKEKVTITCRASQSIG #33 SSLHWYQQKPDQSPKLLIKHASQSTSGVPS VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ SSSSPPSTFGQGTKVEIK J703M1S3 CDR-L1 Residues 24-34 RASQSIGSSLH #33 of SEQ ID VL NO.: 491 J703M1S3 CDR-L2 Residues 50-56 HASQSTS #33 of SEQ ID VL NO.: 491 J703M1S3 CDR-L3 Residues 89-98 HQSSSSPPST #33 of SEQ VL ID NO.: 491 J703M1S3 492 EIVLTQSPDFQSVTPKEKVTITCRASQTIG #35 SSLHWYQQKPDQSPKLLIKHASQSISGVPS VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ TSSLPTPTFGQGTKVEIK J703M1S3 CDR-L1 Residues 24-34 RASQTIGSSLH #35 of SEQ ID VL NO.: 492 J703M1S3 CDR-L2 Residues 50-56 HASQSIS #35 of SEQ ID VL NO.: 492 J703M1S3 CDR-L3 Residues 89-98 HQTSSLPTPT #35 of SEQ VL ID NO.: 492 J703M1S3 493 EIVLTQSPDFQSVTPKEKVTITCRASQTIG #38 SSLHWYQQKPDQSPKLLIKHASQSISGVPS VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ SSSSPPPTFGQGTKVEIK J703M1S3 CDR-L1 Residues 24-34 RASQTIGSSLH #38 of SEQ ID VL NO.: 493 J703M1S3 CDR-L2 Residues 50-56 HASQSIS #38 of SEQ ID VL NO.: 493 J703M1S3 CDR-L3 Residues 89-98 HQSSSSPPPT #38 of SEQ VL ID NO.: 493 J703M1S3 494 EIVLTQSPDFQSVTPKEKVTITCRASQSIG #69 SSLHWYQQKPDQSPKLLIKHVSQSLSGVPS VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ RSSSPSPTFGQGTKVEIK J703M1S3 CDR-L1 Residues 24-34 RASQSIGSSLH #69 of SEQ ID VL NO.: 494 J703M1S3 CDR-L2 Residues 50-56 HVSQSLS #69 of SEQ ID VL NO.: 494 J703M1S3 CDR-L3 Residues 89-98 HQRSSSPSPT #69 of SEQ VL ID NO.: 494 J703M1S3 495 EIVLTQSPDFQSVTPKEKVTITCRASQSIG #90 SNLHWYQQKPDQSPKLLIKHASQSISGVPS VL RFSGSGSGTDFTLTINSLEAEDAATYYCHQ TRTSPPLTFGQGTKVEIK J703M1S3 CDR-L1 Residues 24-34 RASQSIGSNLH #90 of SEQ ID VL NO.: 495 J703M1S3 CDR-L2 Residues 50-56 HASQSIS #90 of SEQ ID VL NO.: 495 J703M1S3 CDR-L3 Residues 89-98 HQTRTSPPLT #90 of SEQ VL ID NO.: 495

TABLE 16 AE11-5 affinity matured scFv clones converted to full length IgG Full length ScFv IgG (protein) clone name HC plasmid LC plasmid name J703M1S3#2 pJP368; pHybE-hCg1,z,non- pJP369; pHybE-hCk V3- AE11-5 AM1 a,mut(234,235)-J703M1S3#2 J703M1S31#2 J703M1S3#13 pJP370; pHybE-hCg1,z,non- pJP371; pHybE-hCk V3- AE11-5 AM2 a,mut(234,235)-J703M1S3#13 J703M1S3#13 J703M1S3#26 pJP372; pHybE-hCg1,z,non- pJP373; pHybE-hCk V3- AE11-5 AM3 a,mut(234,235)-J703M1S3#26 J703M1S3#26 J703M1S3#30 pJP374; pHybE-hCg1,z,non- pJP375; pHybE-hCk V3- AE11-5 AM4 a,mut(234,235)-J703M1S3#30 J703M1S3#30 J703M1S3#33 pJP376; pHybE-hCg1,z,non- pJP377; pHybE-hCk V3- AE11-5 AM5 a,mut(234,235)-J703M1S3#33 J703M1S3#33 J703M1S3#35 pJP378; pHybE-hCg1,z,non- pJP379; pHybE-hCk V3- AE11-5 AM6 a,mut(234,235)-J703M1S3#35 J703M1S3#35 J703M1S3#38 pJP382; pHybE-hCg1,z,non- pJP383; pHybE-hCk V3- AE11-5 AM8 a,mut(234,235)-J703M1S3#38 J703M1S3#38 J703M1S3#69 pJP384; pHybE-hCg1,z,non- pJP385; pHybE-hCk V3- AE11-5 AM9 a,mut(234,235)-J703M1S3#69 J703M1S3#69 J703M1S3#90 pJP386; pHybE-hCg1,z,non- pJP387; pHybE-hCk V3- AE11-5 AM10 a,mut(234,235)-J703M1S3#90 J703M1S3#90

1.3 TNF Enzyme-Linked Immunosorbent Assay Protocol (ELISA) and Assay Result

The following protocol is used to characterize the binding of TNF antibodies to biotinylated human or cyno TNF by enzyme-linked immunosorbent assay (ELISA). An ELISA plate was coated with 50 μl per well of goat anti human IgG-Fc at 2 μg/ml, overnight at 4° C. The plate was washed 3 times with PBS/Tween. 50 μl Mab diluted to 1 μg/ml in PBS/0.1% BSA was added to appropriate wells and incubated for 1 hour at room temperature (RT). The plate was washed 3 times with PBS/Tween. 50 μl of serial diluted biotin-human TNF was added to appropriate wells and incubated for 1 hour at RT. The plate was washed 3 times with PBS/Tween. 50 μl of streptavidin-HRP diluted 1:10,000 in PBS/0.1% BSA was added to appropriate wells and incubated for 1 hour at RT. The plate was washed 3 times with PBS/Tween. 50 μl of TMB was added to appropriate wells and the reaction was allowed to proceed for 1 minute. The reaction was stopped with 50 μl/well 2N H2SO4 and the absorbance read at 450 nm. Results are shown in Table 17.

TABLE 17 EC50 in hTNF EC50 in cynoTNF IgG Name ELISA (nM) ELISA (nM) AE11-5-AM1 1.06 2.14 AE11-5-AM2 522.5 >845 AE11-5-AM3 1.57 1.55 AE11-5-AM4 18.32 750.3 AE11-5-AM5 17.7 2.2 AE11-5-AM6 1.37 >720 AE11-5-AM7 10.32 1.26 AE11-5-AM8 250.2 58.58 AE11-5-AM9 16.72 5.29 AE11-5-AM10 0.98 0.28

1.4 TNF Neutralization Potency of TNF Antibodies by L929 Bioassay

Human TNF was prepared at Abbott Bioresearch Center (Worcester, Mass., US) and received from the Biologics Pharmacy. Mouse TNF was prepared at Abbott Bioresearch Center and received from the Biologics Pharmacy. Rat TNF was prepared at Abbott Bioresearch Center and received from the Biologics Pharmacy. Rabbit TNF was purchased from R&D Systems. Rhesus/Macaque TNF (rhTNF) was purchased from R&D Systems. Actinomycin was purchased from Sigma Aldrich and resuspended at a stock concentration of 10 mg/mL in DMSO.

Assay Media: 10% FBS (Hyclone#SH30070.03), Gibco reagents: RPMI 1640 (#21870), 2 mM L-glutamine (#25030), 50 units/mL penicillin/50 μg/mL streptomycin (#15140), 0.1 mM MEM non-essential amino acids (#11140) and 5.5×10−5 M 2-mercaptoethanol (#21985-023).

L929 cells were grown to a semi-confluent density and harvested using 0.05% tryspin (Gibco#25300). The cells were washed with PBS, counted, and resuspended at 1E6 cells/mL in assay media containing 4 μg/mL actinomycin D. The cells were seeded in a 96-well plate (Costar#3599) at a volume of 50 μL and 5E4 cells/well. Wells received 50 μL of assay media, bringing the volume to 100 μL.

A test sample was prepared as follows. The test and control IgG proteins were diluted to a 4× concentration in assay media and serial 1:3 dilutions were performed. TNF species were diluted to the following concentrations in assay media: 400 pg/mL huTNF, 200 pg/mL muTNF, 600 pg/mL ratTNF, and 100 pg/mL rabTNF. Antibody sample (200 μL) was added to the TNF (200 μL) in a 1:2 dilution scheme and allowed to incubate for 0.5 hour at room temperature.

To measure huTNF neutralization potency in this assay, the antibody/TNF solution was added to the plated cells at 100 μL for a final concentration at 375 nM-0.019 nM. The final concentration of TNF was as follows: 100 pg/mL huTNF, 50 pg/mL muTNF, 150 pg/mL ratTNF, and 25 pg/mL rabTNF. The plates were incubated for 20 hours at 37° C., 5% CO2. To quantitate viability, 100 μL was removed from the wells and 10 μL of WST-1 reagent (Roche cat#11644807001) was added. Plates were incubated under assay conditions for 3.5 hours, centrifuged at 500×g, and 75 μL of supernatant transferred to an ELISA plate (Costar cat#3369). The plates were read at OD 420-600 nm on a Spectromax 190 ELISA plate reader. The neutralization potency of selected TNF/IL-17 DVD-Ig binding proteins is shown in Table 18.

TABLE 18 hu TNF neutralization rhesus TNF neutralization IC50 IgG Name IC50 (nM) (nM) AE11-5 AM1 0.439 0.251 AE11-5 AM2 1.241 0.756 AE11-5 AM3 0.291 0.165 AE11-5 AM4 0.259 0.109 AE11-5 AM5 0.968 0.613 AE11-5 AM6 2.029 0.652 AE11-5 AM7 0.049 0.104 AE11-5 AM8 1.356 3.040 AE11-5 AM9 0.391 0.123 AE11-5 AM10 0.678 0.140

Example 2 Affinity Maturation of a Humanized Anti-Human TNF Antibody hMAK-195

The mouse anti-human TNF antibody MAK-195 was humanized and affinity-matured to generate a panel of humanized MAK195 variants that have cross-reactivity to cyno-TNF and improved affinity and binding kinetics against both human and cyno TNF.

To improve the affinity of hMAK195 to TNF, hypermutated CDR residues were identified from other human antibody sequences in the IgBLAST database that also shared high identity to germlines VH3-53 and IGKV1-39. The corresponding hMAK195 CDR residues were then subjected to limited mutagenesis by PCR with primers having low degeneracy at these positions to create three antibody libraries in the scFv format. The first library contained mutations at residues 31, 32, 33, 35, 50, 52, 53, 54, 56 and 58 in the VH CDR1 and 2 (Kabat numbering); the second library at residues 95 to 100, 100a, 101, and 102 in VH CDR3; and the third library at residues 28, 30, 31, 32, 50, 53, 92, 93, 94, and 95 in the three VL CDRs. To further increase the identity of hMAK195 to the human germline framework sequences, a binary degeneracy at VH positions 60 (D/A), 61 (S/D), 62 (T/S), 63 (L/V), and 65 (S/G) were introduced into the first library. Also, a binary degeneracy at VL positions 24 (K/R), 33 (V/L), 54 (R/L), 55 (H/Q), 56 (T/S), 91 (H/S) and 96 (F/Y) were introduced into the third library.

These hMAK195 variants were selected against a low concentration of biotinylated TNF for improved on-rate, off-rate, or both were carried out and antibody protein sequences of affinity-modulated hMAK195 were recovered for converting back to IgG for further characterization. All three libraries were selected separately for the ability to bind human or cynomolgus monkey TNF in the presence of decreasing concentrations of biotinylated human or cynomolgus monkey TNF antigens. All mutated CDR sequences recovered from library selections were recombined into additional libraries and the recombined libraries were subjected to more stringent selection conditions before individual antibodies are identified.

Table 19 provides a list of amino acid sequences of VH and VL of the humanized MAK-195 which were subjected to the affinity maturation selection protocol Amino acid residues of individual CDRs of each VH and VL sequence are indicated in bold.

TABLE 19 List of amino acid sequences of affinity matured hMAK195 VH variants SEQ ID Clone NO: VH rHC1_B8 496 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSIIRGDGSTDYASTLKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC1_H12 497 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSIIRGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_E1 498 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVNWVRQAPGK GLEWVSIIWGDGATDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_A2 499 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMISSDGFTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC1_H6 500 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIAADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS H1 + H2_D7 501 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRADGSTDYASSLKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_D9 502 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRDDGSTDYADTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_A10 503 EVQLVESGGGLVQPGGSLRLSCAASGETFSHIGVSWVRQAPGK GLEWVSMISYAGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARLLHKGPIDYWGQGTLVTVSS H1 + H2_A5 504 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK GLEWVSMIWSDGSTDYADTVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_F8 505 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSIIRADGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_D1 506 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK GLEWVSMIRGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARPSHHGLIDNWGQGTLVTVSS rHC2_C2 507 EVQLVESGGGLVQPGGSLRLSCAASGFTFSELGVNWVRQAPGK GLEWVSYISDVGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARDWHHGRFDYWGQGTLVTVSS rHC1_G4 508 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSLIRADGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_F3 509 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRADGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARDWQHGPSVYWGQGTLVTVSS rHC1_B4 510 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSIIRADGVTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_G3 511 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK GLEWVSMIGADGYTDYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_D7 512 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMISADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_D5 513 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRSDGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR TEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_E4 514 EVQLVESGGGLVQPGGSLRLSCAASGFTFSEYGVNWVRQAPGK GLEWVSIIWHDGSTAYADTVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_E10 515 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSLIRGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_B6 516 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVSWVRQAPGK GLEWVSMIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_B7 517 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRDDGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS H1 + H2_G8 518 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK GLEWVSMIWAGGSTAYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_G5 519 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSLIGADGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQYGPLAYWGQGTLVTVSS H1 + H2_F1 520 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIEGDGGTHYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC19 521 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGSTHYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPAAYWGQGTLVTVSS H1 + H2_A10 522 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAXGK GLEWVSMISADGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_B9 523 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSIIRGDGTTDYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS H1 + H2_F7 524 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVGWVRQAPGK GLEWVSMIWGAGSTNYADTVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_B1 525 EVQLVESGGGLVQPGGSLRLSCAASGFTFSSFGVNWVRQAPGK GLEWVSMIWADGTTDYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_H9 526 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSVIGGDGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS H1 + H2_A12 527 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGX GLEWVSMISSDGYTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC2_G8 528 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIWSDGSTHYADTVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC2_B4 529 EVQLVESGGGLVQPGGSLRLSCAASGFTFSQLGVTWVRQAPGK GLEWVSTISDAGSTYYASSVKGRFTIIRINSKNTLYLQMNSLR AEDTAVYYCARDWHHGRFAYWGQGTLVTVSS H1 + H2_G5 530 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSIIRGDGSTYYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_C6 531 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK GLEWVSMIRDDGSTSYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_F5 532 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSIIRGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS H1 + H2_B4 533 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVNWVRQAPGK GLEWVSMISGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_F6 534 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVTWVRQAPGK GLEWVSNIWASGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_B6 535 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRADGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS H1 + H2_A3 536 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGK GLEWVSVIWGDGSTAYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_D10 537 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSIIRGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS rHC18 538 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWSDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS S4-18 539 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGSTHYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS rHC2_E6 540 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSLIRGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_D4 541 EVQLVESGGGLVQPGGSLRISCAASGFTFSAFGVSWVRQAPGK GLEWVSMIWGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC2_F8 542 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDLGVNWVRQAPGK GLEWVSTISDIGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARDWHNGRFDYWGQGTLVTVSS rHC1_F10 543 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSIIRGDGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_C12 544 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSIIRADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_C11 545 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVNWVRQAPGK GLEWVSIIWGDGSTAYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_C4 546 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK GLEWVSKIWADGSTDYADSLKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS H1 + H2_E12 547 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK GLEWVSLIWGDGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_C4 548 EVQLVESGGGLVQPGGSLRLSCAASGFTFSYFGVSWVRQAPGK GLEWVSMIWGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_F9 549 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRSDGSTDYADTLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS H1 + H2_B5 550 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK GLEWVSIIWSDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS S4-34 551 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIWADGSTHYADTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS H1 + H2_C2 552 EVQLVESGGGLVQPGGSLRLSCAASGFTFSEFGVNWVRQAPGK GLEWVSMIWGNGATDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_F11 553 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK GLEWVSMIWGDGTTAYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC2_E9 554 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_B2 555 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK GLEWVSMIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_E9 556 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAXGK GLEWVSMIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_A6 557 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIGSDGFTDYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS H1 + H2_C8 558 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQTPGK GLEWVSMIRGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_C5 559 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVSWVRQAPGK GLEWVSQIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC2_D5 560 EVQLVESGGGLVQPGGSLRLSCAASGFTFSQLGVTWVRQAPGK GLEWVSTISDAGSTYYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARDWHHGRFAYWGQGTLVTVSS rHC1_C7 561 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARDWQHGPLGYWGQGTLVTVSS H1 + H2_C3 562 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVHWVRQAPGK GLEWVSMIWGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_G7 563 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRGDGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARDWQHGPIGYWGQGTLVTVSS rHC1_A5 564 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS H1 + H2_G9 565 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK GLEWVSKIWGDGTTDYADTLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_E2 566 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIGGEGRTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_C9 567 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNLGVNWVRQAPGK GLEWVSMIWDVGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARDWHHGLFDYWGQGTLVTVSS rHC1_G6 568 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIMGDGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC1_C1 569 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRDDGATDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS rHC1_C2 570 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMISGDGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS H1 + H2_C1 571 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSIIRGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_B10 572 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGX GLEWVSMIWADGSTDYASTLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_E3 573 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAFGVCWVRQAPGK GLEWVSMIWADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_H4 574 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRSDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARDWQHGPEGYWGQGTLVTVSS rHC2_A1 575 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIRGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_G11 576 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSLIRSDGSTHYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_D8 577 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIRGDGYTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_A3 578 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGSTHYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS S4-31 579 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK GLEWVSGIGADGSTAYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHSGLAYWGQGTLVTVSS rHC36 580 EVQLVESGGGLVQPGGSLILSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIWADGSTHYASSLKGRFTISRDNFKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC2_G3 581 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIRGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_C10 582 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIAADGSTAYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC14 583 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPAAYWGQGTLVTVSS rHC1_D4 584 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRGDGSTDYADTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC2_D11 585 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSIISGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC2_E11 586 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDWGVHWMRQAPGK GLEWVSTIWDDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARHGHHGPFVYWGQGTLVTVSS H1 + H2_E7 587 EVQLVESGGGLVQPGGSLRLSCAASXFTFSNFGVNWVRQAPGK GLEWVSMIWGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_A8 588 EVQLVESGGGLVQPGGSLRLSCAASGFTFSVYGVNWVRQAPGK GLEWVSMIGDEGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARHWHHGAVDYWGQGTLVTVSS H1 + H2_B9 589 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK GLEWVSMIWADGSTHYADSLKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS S4-19 590 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK GLEWVSGIWADGSTHYADTVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS S4-74 591 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGSTHYADTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS rHC1_H2 592 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC1_E3 593 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRADGYTSYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC34 594 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGSTHYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPSAYWGQGTLVTVSS H1 + H2_F2 595 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIRADGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_D9 596 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRADGTTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS H1 + H2_E6 597 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVHWVRQAPGK GLEWVSMIWADGSTVYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_F3 598 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIGSDGSTYYADSLKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_G11 599 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS H1 + H2_D3 600 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK GLEWVSMIWGDGHTAYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_B12 601 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK GLEWVSMIWAHGATHYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_B11 602 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSLIRDDGSTDYASTLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_A8 603 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS S4-24 604 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGSTHYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC1_F11 605 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMISADGYTDYADSLKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS H1 + H2_D10 606 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC2_D6 607 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIGADGYTDYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_G4 608 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAFGVSWVRQAPGK GLEWVSMIWADGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_D11 609 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSLIRGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_E9 610 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGTTYYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS rHC1_A12 611 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK GLEWVSRISGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_A2 612 EVQLVESGGGLVQPGGSLRLSCAASGFSFSNFGVNWVRQAPGK GLEWVSMIWADGSTNYADTVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_B7 613 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVSWVRQAPGK GLEWVSIISADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_H8 614 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC1_F12 615 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIGADGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_E5 616 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSIIRGDGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_A11 617 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK GLEWVSMIWGSGATDYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_D6 618 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMISADGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC2_G10 619 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIAADGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_H3 620 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSLIAADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS H1 + H2_F10 621 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSIIRGDGSTAYADTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_C7 622 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIWGDGNTGYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_A9 623 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS H1 + H2_E5 624 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK GLEWVSMIWGDGSTEYADTLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC62 625 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS H1 + H2_F4 626 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVYWVRQAPGK GLEWVSMIWDDGSTEYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC2_H8 627 EVQLVESGGGLVQPGGSLRLSCAASGFTFSQLGVTWVRQAPGK GLEWVSTISDAGSTYYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARDWHHGRFAYWGQGTLVTVSS rHC2_F4 628 EVQLVESGGGLVQPGGSLRLSCAASGFTFSGPGVNWVRQAPGK GLEWVSSIWDDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCARHSHDGRFDYWGQGTLVTVSS S4-50 629 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK GLEWVSGIWADGSTHYADTVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS H1 + H2_F12 630 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK GLEWVSMIWGEGSTGYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_E6 631 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSIIRDDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_F2 632 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIGGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS H1 + H2_G6 633 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK GLEWVSMIWADGTTDYDDSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC2_F5 634 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSGISADGSTAYDSSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_D6 635 EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGK GLEWVSLIRGDGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_A9 636 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGK GLEWVSMIWGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_A1 637 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVNWVRQAPGK GLEWVSMIWADGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC60 638 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPAAYWGQGTLVTVSS rHC1_C8 639 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK GLEWVSMIAGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS rHC44 640 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIWADGSTHYADTLKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC1_G9 641 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSIIGADGATDYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS H1 + H2_A6 642 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSGITGDGITAYASTLKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_G2 643 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMISGDGFTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_G7 644 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK GLEWVSNIWGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_E10 645 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIRADGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_E2 646 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_A4 647 EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVSWVRQAPGK GLEWVSMIWRDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_H3 648 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK GLEWVSMIWGDGSTHYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_G1 649 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK GLEWVSGISADGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_E8 650 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVNWVRQAPGK GLEWVSMIGGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_C9 651 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIRADGSTDYASSLKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_F7 652 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK GLEWVSVISADGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_F6 653 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIGADGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS rHC22 654 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGSTDYADTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC2_G5 655 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSLIRGDGYTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_C12 656 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVSWVRQAPGK GLEWVSVIRADGVTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS rHC3 657 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS rHC1_F1 658 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK GLEWVSRINGDGSTDYASTLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_E11 659 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIRSDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_B8 660 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGK GLEWVSMIWVDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_G1 661 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK GLEWVSMIWGDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_B3 662 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVSWVRQAPGK GLEWVSMIRSDGFTDYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_D2 663 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMITGDGYTDYADTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS rHC1_E12 664 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSIIRADGLTDYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_B5 665 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSLIRSDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_D11 666 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRADGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS H1 + H2_A7 667 EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVIWVRQAPGK GLEWVSMIGGDGSTYYDSSLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_G3 668 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK GLEWVSMIGSDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_D5 669 EVQLVESGGGLVQPGGSLRLSCAASGFTFSYYGVHWVRQAPGK GLEWVSGISGEGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_D1 670 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRGDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWVKGTLVTVSS rHC1_E7 671 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSIIRGDGSTDYASSLKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS rHC1_E11 672 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIRADGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS S4-55 673 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK GLEWVSMIWADGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS H1 + H2_C10 674 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK GLEWVSMIRGDGSTYYADTLKGRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS H1 + H2_G10 675 EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVNWVRQAPGK GLEWVSMIWADGSTSYADSVKSRFTISRDNSKNTLYLQMNSLR AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS

Table 20 provides a list of amino acid sequences of VL regions of affinity matured fully human TNF antibodies derived from hMAK195 Amino acid residues of individual CDRs of each VH sequence are indicated in bold.

TABLE 20 List of amino acid sequences of affinity matured hMAK195 VL variants SEQ ID Clone NO: VL S3_92 676 DIQMTQSPSSLSASVGDRVTITCRASQKVSSAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYHTPYTFGQGTKLEIK S3_79 677 DIQMTQSPSSLSASVGDRVTITCKASQAVSTEVAWYQQK PGKAPKLLIYCASTRQTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQSYSAPYTFGQGTKLEIK S3_68 678 DIQMTQSPSSLSASVGDRVTITCRASQVVSSAVAWYQQK PGKAPKLLIYWASKRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S3_60 679 DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S4-63 680 DIQMTQSPSSLSASVGDRVTITCKASQKVSSALAWYQQK PGKAPKLLIYWASALHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRPPFTFGQGTKLEIK S3_5 681 DIQMTQSPSSLSASVGDRVTITCRASQGVSSAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYTTPFTFGQGTKLEIK S3_44 682 DIQMTQSPSSLSASVGDRVTITCRASQGVSRALAWYQQK PGKAPKLLIYWASTLHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRAPFTFGQGTKLEIK S3_53 683 DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYHTPFTFGQGTKLEIK S3_91 684 DIQMTQSPSSLSASVGDRVTITCKASQGVSSALAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPFTFGQGTKLEIK S3_59 685 DIQMTQSPSSLSASVGDRVTITCKASQGVSSALAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPYTFGQGTKLEIK S3_47 686 DIQMTQSPSSLSASVGDRVTITCKASQWVSSAVAWYQQK PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRIPFTFGQGTKLEIK S3_70 687 DIQMTQSPSSLSASVGDRVTITCKASQAVSSALAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPYTFGQGTKLEIK S3_56 688 DIQMTQSPSSLSASVGDRVTITCKASQRVSSAVAWYQQK PGKAPKLLIYWASTLHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPYTFGQGTKLEIK S3_37 689 DIQMTQSPSSLSASVGDRVTITCKASQGVSSAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYNTPFTFGQGTKLEIK S3_36 690 DIQMTQSPSSLSASVGDRVTITCKASQKVSSAVAWYQQK PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S3_67 691 DIQMTQSPSSLSASVGDRVTITCKASQTVXRAVAWYQQK PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQSYSTPFTFGQGTKLEIK S3_40 692 DIQMTQSPSSLSASVGDRVTITCRASQRVSSAVAWSQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYTTPYTFGQGTKLEIK S3_73 693 DIQMTQSPSSLSASVGDRVTITCKASQAVSSAVAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S4-50 694 DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK PGKAPKLLIYWASALHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSSPYTFGQGTKLEIK S4-6 695 DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S3_19 696 DIQMTQSPSSLSASVGDRVTITCKASQKVSSAVAWYQQK PGKAPKLLIYWASARHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRSPFTFGQGTKLEIK S3_83 697 DIQMTQSPSSLSASVGDRVTITCRASQAVSTALAWYQQK PGKAPKLLIYSASTLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRSPFTFGQGTKLEIK S3_78 698 DIQMTQSPSSLSASVGDRVTITCKASQYVGGAVAWYQQK PGKAPKLLIYQASTLQTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHISKPFTFGQGTKLEIK S4-19 699 DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK PGKAPKLLIYWASTLHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPFTFGQGTKLEIK S3_58 700 DIQMTQSPSSLSASVGDRVTITCKASQSVNGALAWYQQK PGKAPKLLIYRASTRQTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSIPFTFGQGTKLEIK S4-31 701 DIQMTQSPSSLSASVGDRVTITCRASQGVSSALAWYQQK PGKAPKLLIYWASALHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSAPFTFGQGTKLEIK S3_31 702 DIQMTQSPSSLSASVGDRVTITCKASQAVSSSVAWYQQK PGKAPKLLIYGASTLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYNEPYTFGQGTKLEIK S3_13 703 DIQMTQSPSSLSASVGDRVTITCKASQKVSSAVAWYQQK PGKAPKLLIYWASARHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPYTFGQGTKLEIK S4-40 704 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPFSFGQGTKLEIK S3_26 705 DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK PGKAPKLLIYWASKRQTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYISPYTFGQGTKLEIK S3_33 706 DIQMTQSPSSLSASVGDRVTITCKASQGVRSALAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQSYSAPYTFGQGTKLEIK S3_28 707 DIQMTQSPSSLSASVGDRVTITCKASQTVSNAVAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S4-74 708 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPFTFGQGTKLEIK S3_84 709 DIQMTQSPSSLSASVGDRVTITCKASQPVRSAVAWYQQK PGKAPKLLIYSASTRQTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQSYSIPFTFGQGTKLEIK S4-54 710 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYKTPFSFGQGTKLEIK S3_23 711 DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK PGKAPKLLIYWASSRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S3_55 712 DIQMTQSPSSLSASVGDRVTITCKASQTVGRAVAWYQQK PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQSYSTPFTFGQGTKLEIK S4-34 713 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPFTFGQGTKLEIK S3_76 714 DIQMTQSPSSLSASVGDRVTITCRASQKVSNAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYNSPFTFGQGTKLEIK S4-12 715 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYKTPFTFGQGTKLEIK S3_86 716 DIQMTQSPSSLSASVGDRVTITCRASQRVSSAVAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYTTPYTFGQGTKLEIK S3_61 717 DIQMTQSPSSLSASVGDRVTITCKASQRVSSAVAWYQQK PGKAPKLLIYWASNRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S3_18 718 DIQMTQSPSSLSASVGDRVTITCKASQLVSSALAWYQQK PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPFTFGQGTKLEIK S3_72 719 DIQMTQSPSSLSASVGDRVTITCKASQLVSSALAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRNPFTFGQGTKLEIK S3_41 720 DIQMTQSPSSLSASVGDRVTITCKASQAVSSALAWYQQK PXKAPKLLIYWASSRQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPFTFGQGTKLEIK S4-24 721 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK PGKAPKLLIYWASTLHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPFTFGQGTKLEIK S4-17 722 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPFTFGQGTKLEIK S3_90 723 DIQMTQSPSSLSASVGDRVTITCKASQPVSGAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRASYTFGQGTKLEIK S3_87 724 DIQMTQSPSSLSASVGDRVTITCRASQKVSSAVAWYQQK PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPYTFGQGTKLEIK S3_66 725 DIQMTQSPSSLSASVGDRVTITCRASQRVSSAVAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYTTPYTFGQGTKLEIK S4-18 726 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK PGKAPKLLIYWASTLHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S3_4 727 DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSSPYTFGQGTKLEIK S3_64 728 DIQMTQSPSSLSASVGDRVTITCKASQPVSSAVAWYQQK PGKAPKLLIYWASTLHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPFTFGQGTKLEIK S3_62 729 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPYTFGQGTNLEIK S3_29 730 DIQMTQSPSSLSASVGDIVTITCKASQLVSSAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRTPYTFGQGTKLEIK S3_65 731 DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK PGKAPKLLIYWASMRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSSPFTFGQGTKLEIK S3_81 732 DIQMTQSPSSLSASVGDRVTITCKASQTVSSAVAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYRAPYTFGQGTKLEIK S3_39 733 DIQMTQSPSSLSASVGDRVTITCKASQRVSSALAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S3_49 734 DIQMTQSPSSLSASVGDRVTITCRASQLVSNAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSSPFTFGQGTKLEIK S3_85 735 DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK PGKAPKLLIYWASARHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK S3_82 736 DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYTTPFTFGQGTKLEIK S3_93 737 DIQMTQSPSSLSASVGDRVTITCKASQRVSSAVAWYQQK PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQHYSTPFTFGQGTKLEIK

TABLE 21 Amino acid residues observed in affinity matured hMAK-195. hMAK195 Heavy chain variable region (SEQ ID NO: 1075) hMAK195VH EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGKGLEWVSMIWGDGSTD                               NFS T              I RAG T A                               HLN S              V GSE F H                               YS  H              L SDA A V                               IR  Q              R AEV Y S                                   Y              K LVG W N                                                  S  NY   G YDSTLKSRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREWHHGPVAYWGQGTLVTVSS  ADSV G                                HSQQRTLDS                                        QLRPASGVF                                        LCLLVQDGC                                        YRYNWAETN                                        DFPYEKW P                                        NDARS R I                                        TYVTP P H                                        PPDDI A                                        AICA  I                                        SG C                                        R hMAK195 Light chain variable region (SEQ ID NO: 1076) hMAK195VL DIQMTQSPSSLSASVGDRVTITCKASQAVSSAVAWYQQKPGKAPKLLIYWASTRHTG                        R   S RRPL                S  SLQS                            V TNT                 R  I T                            G IGG                 L  L A                            D NCV                 C  K E                            T CTS                 Q  A F                            P KIR                 G  R VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQHYSTPFTFGQGTKLEIK                                  SNRSTY                                   FGPR                                   DTML                                   GIIQ                                   HCAA                                      S

The tables below provide a list of humanized MAK-195 antibodies that were converted into IgG proteins for characterization.

TABLE 22 VH sequences of IgG converted clones Protein Sequence region SEQ ID NO: 123456789012345678901234567890 A8 738 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVNWVRQAPGKGLEWVSMIAADGFTDYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWHHGPVAYWGQGTLVTVSS A8 CDR-H1 Residues 31-35 NYGVN VH of SEQ ID NO.: 738 A8 CDR-H2 Residues 50-65 MIAADGFTDYASSVKG VH of SEQ ID NO.: 738 A8 CDR-H3 Residues 98-106 EWHHGPVAY VH of SEQ ID NO.: 738 B5 739 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVSWVRQAPGKGLEWVSLIRGDGSTDYA SSLKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWHHGPVAYWGQGTLVTVSS B5 CDR-H1 Residues 31-35 NYGVS VH of SEQ ID NO.: 739 B5 CDR-H2 Residues 50-65 LIRGDGSTDYASSLKG VH of SEQ ID NO.: 739 B5 CDR-H3 Residues 98-106 EWHHGPVAY VH of SEQ ID NO.: 739 rHC44 740 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA DTLKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS rHC44 CDR-H1 Residues 31-35 NYGVS VH of SEQ ID NO.: 740 rHC44 CDR-H2 Residues 50-65 MIWADGSTHYADTLKS VH of SEQ ID NO.: 740 rHC44 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 740 rHC22 741 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTDYA DTVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS rHC22 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 741 rHC22 CDR-H2 Residues 50-65 MIWADGSTDYADTVKG VH of SEQ ID NO.: 741 rHC22 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 741 rHC81 742 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA DSVKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPLAYWGQGTLVTVSS rHC81 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 742 rHC81 CDR-H2 Residues 50-65 MIWADGSTHYADSVKS VH of SEQ ID NO.: 742 rHC81 CDR-H3 Residues 98-106 EWQHGPLAY VH of SEQ ID NO.: 742 rHC18 743 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWSDGSTDYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS rHC18 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 743 rHC18 CDR-H2 Residues 50-65 MIWSDGSTDYASSVKG VH of SEQ ID NO.: 743 rHC18 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 743 rHC14 744 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSLKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPAAYWGQGTLVTVSS rHC14 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 744 rHC14 CDR-H2 Residues 50-65 MIWADGSTHYASSLKG VH of SEQ ID NO.: 744 rHC14 CDR-H3 Residues 98-106 EWQHGPAAY VH of SEQ ID NO.: 744 rHC3 745 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA SSLKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS rHC3 CDR-H1 Residues 31-35 NYGVS VH of SEQ ID NO.: 745 rHC3 CDR-H2 Residues 50-65 MIWADGSTHYASSLKG VH of SEQ ID NO.: 745 rHC3 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 745 rHC19 746 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPAAYWGQGTLVTVSS rHC19 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 746 rHC19 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 746 rHC19 CDR-H3 Residues 98-106 EWQHGPAAY VH of SEQ ID NO.: 746 rHC34 747 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPSAYWGQGTLVTVSS rHC34 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 747 rHC34 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 747 rHC34 CDR-H3 Residues 98-106 EWQHGPSAY VH of SEQ ID NO.: 747 rHC83 748 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS rHC83 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 748 rHC83 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 748 rHC83 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 748 S4-19 749 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA DTVKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-19 CDR-H1 Residues 31-35 NYGVE VH of SEQ ID NO.: 749 S4-19 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS VH of SEQ ID NO.: 749 S4-19 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 749 S4-50 750 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA DTVKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVGYWGQGTLVTVSS S4-50 CDR-H1 Residues 31-35 NYGVE VH of SEQ ID NO.: 750 S4-50 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS VH of SEQ ID NO.: 750 S4-50 CDR-H3 Residues 98-106 EWQHGPVGY VH of SEQ ID NO.: 750 S4-63 751 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVEWVRQAPGKGLEWVSGIWADGSTHYA DTVKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVGYWGQGTLVTVSS S4-63 CDR-H1 Residues 31-35 NYGVE VH of SEQ ID NO.: 751 S4-63 CDR-H2 Residues 50-65 GIWADGSTHYADTVKS VH of SEQ ID NO.: 751 S4-63 CDR-H3 Residues 98-106 EWQHGPVGY VH of SEQ ID NO.: 751 S4-55 752 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTDYA STVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVGYWGQGTLVTVSS S4-55 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 752 S4-55 CDR-H2 Residues 50-65 MIWADGSTDYASTVKG VH of SEQ ID NO.: 752 S4-55 CDR-H3 Residues 98-106 EWQHGPVGY VH of SEQ ID NO.: 752 S4-6 753 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-6 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 753 S4-6 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 753 S4-6 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 753 S4-18 754 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA DSVKSRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPLAYWGQGTLVTVSS S4-18 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 754 S4-18 CDR-H2 Residues 50-65 MIWADGSTHYADSVKS VH of SEQ ID NO.: 754 S4-18 CDR-H3 Residues 98-106 EWQHGPLAY VH of SEQ ID NO.: 754 S4-31 755 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVQWVRQAPGKGLEWVSGIGADGSTAYA SSLKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHSGLAYWGQGTLVTVSS S4-31 CDR-H1 Residues 31-35 NYGVQ VH of SEQ ID NO.: 755 S4-31 CDR-H2 Residues 50-65 GIGADGSTAYASSLKG VH of SEQ ID NO.: 755 S4-31 CDR-H3 Residues 98-106 EWQHSGLAY VH of SEQ ID NO.: 755 S4-34 756 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVSWVRQAPGKGLEWVSMIWADGSTHYA DTVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPLAYWGQGTLVTVSS S4-34 CDR-H1 Residues 31-35 NYGVS VH of SEQ ID NO.: 756 S4-34 CDR-H2 Residues 50-65 MIWADGSTHYADTVKG VH of SEQ ID NO.: 756 S4-34 CDR-H3 Residues 98-106 EWQHGPLAY VH of SEQ ID NO.: 756 S4-74 757 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA DTVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPLAYWGQGTLVTVSS S4-74 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 757 S4-74 CDR-H2 Residues 50-65 MIWADGSTHYADTVKG VH of SEQ ID NO.: 757 S4-74 CDR-H3 Residues 98-106 EWQHGPLAY VH of SEQ ID NO.: 757 S4-12 758 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-12 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 758 S4-12 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 758 S4-12 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 758 S4-54 759 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-54 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 759 S4-54 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 759 S4-54 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 759 S4-17 760 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-17 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 760 S4-17 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 760 S4-17 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 760 S4-40 761 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-40 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 761 S4-40 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 761 S4-40 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 761 S4-24 762 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH NYGVTWVRQAPGKGLEWVSMIWADGSTHYA SSVKGRFTISRDNSKNTLYLQMNSLRAEDT AVYYCAREWQHGPVAYWGQGTLVTVSS S4-24 CDR-H1 Residues 31-35 NYGVT VH of SEQ ID NO.: 762 S4-24 CDR-H2 Residues 50-65 MIWADGSTHYASSVKG VH of SEQ ID NO.: 762 S4-24 CDR-H3 Residues 98-106 EWQHGPVAY VH of SEQ ID NO.: 762

TABLE 23 VL sequences of IgG converted clones Protein Sequence region SEQ ID NO: 123456789012345678901234567890 hMAK195 763 DIQMTQSPSSLSASVGDRVTITCKASQAVS VL.1 SAVAWYQQKPGKAPKLLIYWASTRHTGVPS VL RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYSTPFTFGQGTKLEIKR hMAK195 CDR-L1 Residues 24-34 KASQAVSSAVA VL.1 of SEQ ID VL NO.: 763 hMAK195 CDR-L2 Residues 50-56 WASTRHT VL.1 of SEQ ID VL NO.: 763 hMAK195 CDR-L3 Residues 89-97 QQHYSTPFT VL.1 of SEQ ID VL NO.: 763 S4-24 764 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-24 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 764 S4-24 CDR-L2 Residues 50-56 WASTLHT VL of SEQ ID NO.: 764 S4-24 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 764 S4-40 765 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASTRHSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFSFGQGTKLEIKR S4-40 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 765 S4-40 CDR-L2 Residues 50-56 WASTRHS VL of SEQ ID NO.: 765 S4-40 CDR-L3 Residues 89-97 QQHYRTPFS VL of SEQ ID NO.: 765 S4-17 766 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASTRHSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-17 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 766 S4-17 CDR-L2 Residues 50-56 WASTRHS VL of SEQ ID NO.: 766 S4-17 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 766 S4-54 767 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYKTPFSFGQGTKLEIKR S4-54 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 767 S4-54 CDR-L2 Residues 50-56 WASARHT VL of SEQ ID NO.: 767 S4-54 CDR-L3 Residues 89-97 QQHYKTPFS VL of SEQ ID NO.: 767 S4-12 768 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYKTPFTFGQGTKLEIKR S4-12 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 768 S4-12 CDR-L2 Residues 50-56 WASARHT VL of SEQ ID NO.: 768 S4-12 CDR-L3 Residues 89-97 QQHYKTPFT VL of SEQ ID NO.: 768 S4-74 769 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASARHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-74 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 769 S4-74 CDR-L2 Residues 50-56 WASARHT VL of SEQ ID NO.: 769 S4-74 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 769 S4-34 770 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASTRHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-34 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 770 S4-34 CDR-L2 Residues 50-56 WASTRHT VL of SEQ ID NO.: 770 S4-34 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 770 S4-31 771 DIQMTQSPSSLSASVGDRVTITCRASQGVS VL SALAWYQQKPGKAPKLLIYWASALHSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYSAPFTFGQGTKLEIKR S4-31 CDR-L1 Residues 24-34 RASQGVSSALA VL of SEQ ID NO.: 771 S4-31 CDR-L2 Residues 50-56 WASALHS VL of SEQ ID NO.: 771 S4-31 CDR-L3 Residues 89-97 QQHYSAPFT VL of SEQ ID NO.: 771 S4-18 772 DIQMTQSPSSLSASVGDRVTITCRASQLVS VL SAVAWYQQKPGKAPKLLIYWASTLHSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYSTPFTFGQGTKLEIKR S4-18 CDR-L1 Residues 24-34 RASQLVSSAVA VL of SEQ ID NO.: 772 S4-18 CDR-L2 Residues 50-56 WASTLHS VL of SEQ ID NO.: 772 S4-18 CDR-L3 Residues 89-97 QQHYSTPFT VL of SEQ ID NO.: 772 S4-6 773 DIQMTQSPSSLSASVGDRVTITCKASQLVS VL SAVAWYQQKPGKAPKLLIYWASTRHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYSTPFTFGQGTKLEIKR S4-6 CDR-L1 Residues 24-34 KASQLVSSAVA VL of SEQ ID NO.: 773 S4-6 CDR-L2 Residues 50-56 WASTRHT VL of SEQ ID NO.: 773 S4-6 CDR-L3 Residues 89-97 QQHYSTPFT VL of SEQ ID NO.: 773 S4-55 774 DIQMTQSPSSLSASVGDRVTITCKASQLVS VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-55 CDR-L1 Residues 24-34 KASQLVSSAVA VL of SEQ ID NO.: 774 S4-55 CDR-L2 Residues 50-56 WASTLHT VL of SEQ ID NO.: 774 S4-55 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 774 S4-63 775 DIQMTQSPSSLSASVGDRVTITCKASQKVS VL SALAWYQQKPGKAPKLLIYWASALHSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRPPFTFGQGTKLEIKR S4-63 CDR-L1 Residues 24-34 KASQKVSSALA VL of SEQ ID NO.: 775 S4-63 CDR-L2 Residues 50-56 WASALHS VL of SEQ ID NO.: 775 S4-63 CDR-L3 Residues 89-97 QQHYRPPFT VL of SEQ ID NO.: 775 S4-50 776 DIQMTQSPSSLSASVGDRVTITCKASQLVS VL SAVAWYQQKPGKAPKLLIYWASALHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYSSPYTFGQGTKLEIKR S4-50 CDR-L1 Residues 24-34 KASQLVSSAVA VL of SEQ ID NO.: 776 S4-50 CDR-L2 Residues 50-56 WASALHT VL of SEQ ID NO.: 776 S4-50 CDR-L3 Residues 89-97 QQHYSSPYT VL of SEQ ID NO.: 776 S4-19 777 DIQMTQSPSSLSASVGDRVTITCKASQLVS VL SAVAWYQQKPGKAPKLLIYWASTLHTGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ HYRTPFTFGQGTKLEIKR S4-19 CDR-L1 Residues 24-34 KASQLVSSAVA VL of SEQ ID NO.: 777 S4-19 CDR-L2 Residues 50-56 WASTLHT VL of SEQ ID NO.: 777 S4-19 CDR-L3 Residues 89-97 QQHYRTPFT VL of SEQ ID NO.: 777

TABLE 24 Heavy and light chain pairs of hMAK195 affinity matured clones Clone name HC LC Protein name A8 hMAK195-A8 hMAK195 VL.1 hMAK195-AM11 B5 hMAK195-B5 hMAK195 VL.1 hMAK195-AM13 rHC3 hMAK195 rHC3 hMAK195 VL.1 hMAK195-AM14 rHC18 hMAK195 rHC18 hMAK195 VL.1 hMAK195-AM15 rHC19 hMAK195 rHC19 hMAK195 VL.1 hMAK195-AM16 rHC22 hMAK195 rHC22 hMAK195 VL.1 hMAK195-AM17 rHC34 hMAK195 rHC34 hMAK195 VL.1 hMAK195-AM18 rHC60 hMAK195 rHC60 hMAK195 VL.1 hMAK195-AM19 S4-6 hMAK195 S4-6 hMAK195 S4-6 hMAK195-AM20 S4-12 hMAK195 S4-12 hMAK195 S4-12 hMAK195-AM21 S4-17 hMAK195 S4-17 hMAK195 S4-17 hMAK195-AM22 S4-18 hMAK195 S4-18 hMAK195 S4-18 hMAK195-AM23 S4-19 hMAK195 S4-19 hMAK195 S4-19 hMAK195-AM24 S4-24 hMAK195 S4-24 hMAK195 S4-24 hMAK195-AM25 S4-34 hMAK195 S4-34 hMAK195 S4-34 hMAK195-AM26

2.1 TNF Enzyme-Linked Immunosorbent Assay Result

TABLE 25 IgG Name EC50 in hTNFa ELISA (nM) hMAK195-AM11 0.2 hMAK195-AM13 0.2 hMAK195-AM14 0.051 hMAK195-AM15 0.052 hMAK195-AM16 0.056 hMAK195-AM17 0.056 hMAK195-AM18 0.052 hMAK195-AM19 0.057 hMAK195-AM20 0.043 hMAK195-AM21 0.042 hMAK195-AM22 0.052 hMAK195-AM23 0.055 hMAK195-AM24 0.053 hMAK195-AM25 0.052 hMAK195-AM26 0.061

2.2 TNF Neutralization Potency of TNF Antibodies by L929 Bioassay

TABLE 26 hu TNF neutralization IC50 rhesus TNF IgG Name (nM) neutralization IC50 (nM) hMAK195-AM11 0.259 >25 hMAK195-AM13 1.218 4.64 hMAK195-AM14 0.0401 4.61 hMAK195-AM15 0.036 >150 hMAK195-AM16 0.0105 0.803 hMAK195-AM17 0.0031 >25 hMAK195-AM18 0.0145 0.4412 hMAK195-AM19 0.0126 1.206 hMAK195-AM20 0.0037 0.596 hMAK195-AM21 0.009 0.09 hMAK195-AM22 0.00345 0.2705 hMAK195-AM23 0.0468 2.627 hMAK195-AM24 0.015 0.557 hMAK195-AM25 0.0114 0.262 hMAK195-AM26 0.0061 0.2495

Example 3 Affinity Maturation of a Humanized Anti-Human TNF Antibody hMAK-199

The mouse anti-human TNF antibody MAK-199 was humanized and affinity-matured to generate a panel of humanized MAK195 variants that have improved affinity and binding kinetics against both human and cyno TNF. Several libraries were made according to specifications below:

Three HC libraries were made after the V2I back-mutation was first introduced and confirmed that it did not impact scFv affinity to TNF.
H1+H2 (DDK) library:

Limited mutagenesis at 7 residues (T30, N31, N35, T52a, T54, E56, T58)

Germline toggle: M34I and F63L

H1+H2 (QKQ) library:

Limited mutagenesis at 7 residues (T30, N31, N35, T52a, T54, E56, T58)

Germline toggle: M34I and F63L

Germline back-mutations: D61Q, D62K, K64Q, F67V, F69M, L71T

H3 library:

Limited mutagenesis at 12 residues 95-100, 100a-100f

Germline toggle: F91Y

LC library: library

Limited mutagenesis at 11 residues 28, 30-32, 50, 53, 91-94, 96

Germline toggles: T51A, Y71F, F87Y, and T43A/V44P (these two co-evolve)

Recombined libraries:
VH libraries will be recombined with and without VL library after library diversity is reduced after at least 3 rounds of selection.

All four libraries were selected separately for the ability to bind human or cynomolgus monkey TNF in the presence of decreasing concentrations of biotinylated human or cynomolgus monkey TNF antigens. All mutated CDR sequences recovered from library selections were recombined into additional libraries and the recombined libraries were subjected to more stringent selection conditions before individual antibodies are identified.

Table 27 provides a list of amino acid sequences of VH of the hMAK-199 antibody which were subjected to the affinity maturation selection protocol Amino acid residues of individual CDRs of each VH sequence are indicated in bold.

TABLE 27 List of amino acid sequences of affinity matured hMAK199 VH variants Clone SEQ ID NO: VH J644M2S1-10VH 778 EVQLVQSGAEVKKPGASVKVSCKASGYTFNDYGITWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-11VH 779 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-12VH 780 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGISWVRQ APGQGLEWMGWINTYTGEPHYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-13VH 781 EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGIQWVRQ APGQGLEWMGWINTYTGAPSYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-14VH 782 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-15VH 783 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGMNWVRQ APGQGLEWMGWINTYTGESTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-16VH 784 EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGMTWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-17VH 785 EVQLVQSGAEVKKPGASVKVSCKASGYAFTDYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-18VH 786 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGEPAYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-1VH 787 EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGINWVRQ APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-22VH 788 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-23VH 789 EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGIIWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-24VH 790 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-25VH 791 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-27VH 792 EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-28VH 793 EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGINWVRQ APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-2VH 794 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIXWVRQ APGQGLEWMGWINTYXGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-31VH 795 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGEPHYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-33VH 796 EVQLVQSGAEVKKPGASVKVSCKASGYTFTHYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-34VH 797 EVQLVQSGAEVKKPGASVKVSCKASGYTFTHYGINWVRQ APGQGLEWMGWINTYTGQPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-35VH 798 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGITWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-36VH 799 EVQLVQSGAEVKKPGASVKVSCKASGYTFGNYGINWVRQ APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-37VH 800 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ APGQGLEWMGWINTYTGRPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-38VH 801 EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGINWVRQ APGQGLEWMGWINTYTGEPHYAQGFTGRVTMTTDTSTST AYIELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-3VH 802 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGEPSYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-40VH 803 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGMNWVRQ APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-41VH 804 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIGWVRQ APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-43VH 805 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGVPSYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-44VH 806 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIAWVRQ APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-45VH 807 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGVPHYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-46VH 808 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIXWVRQ APGQGLEWMGWINTYTGEPXYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-47VH 809 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGVPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-48VH 810 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-4VH 811 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGITWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-50VH 812 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGVPQYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-51VH 813 EVQLVQSGAEVKKPGASVKVSCKASGYTFQNYGINWVRQ APGQGLEWMGWINTYTGVPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-53VH 814 EVQLVQSGAEVKKPGASVKVSCKASGYTFTQYGINWVRQ APGQGLEWMGWINTYTGDPHYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-54VH 815 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ APGQGLEWMGWINTYTGLPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-55VH 816 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYNGKPMYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-56VH 817 EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGITWVRQ APGQGLEWMGWINTYTGEPAYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-59VH 818 EVQLVQSGAEVKKPGASVKVSCKASGYTFNHYGINWVRQ APGQGLEWMGWINTYTGRPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-5VH 819 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-60VH 820 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-64VH 821 EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGINWVRQ APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-65VH 822 EVQLVQSGAEVKKPGASVKVSCKASGYTFNDYGIIWVRQ APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-66VH 823 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-67VH 824 EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGMNWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-68VH 825 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGEPSYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-6VH 826 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGVPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-71VH 827 EVQLVQSGAEVKKPGASVKVSCKASGYTFDHYGMNWVRQ APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-72VH 828 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIGWVRQ APGQGLEWMGWINTYTGKPSYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-73VH 829 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-74VH 830 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGMNWVRQ APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-75VH 831 EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGMNWVRQ APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-76VH 832 EVQLVQSGAEVKKPGASVKVSCKASGYTFNSYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-77VH 833 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGITWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-79VH 834 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYNGQPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-7VH 835 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIIWVRQ APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-81VH 836 EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-82VH 837 EVQLVQSGAEVKKPGASVKVSCKASGYTFSDYGIQWVRQ APGQGLEWMGWINTYTGRPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-83VH 838 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGISWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-84VH 839 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIQWVRQ APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-85VH 840 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-87VH 841 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYSGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-88VH 842 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-8VH 843 EVQLVQSGAEVKKPGASVKVSCKASGYTFPNYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-90VH 844 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGKTNYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-91VH 845 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGEPNYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-92VH 846 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGITWVRQ APGQGLEWMGWINTYTGEPHYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-93VH 847 EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGINWVRQ APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-94VH 848 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGIPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-95VH 849 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-96VH 850 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ APGQGLEWMGWINTYSGVPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J644M2S1-9VH 851 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2-11VH 852 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFWRTVVGTDNAMDYWGQG TTVTVSS J647M2-12VH 853 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKYSTTVVVTDYAMDYWGQG TTVTVSS J647M2-13VH 854 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDSAMDYWGQG TTVTVSS J647M2-15VH 855 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFMTTMAVTDFAMDYWGQG TTVTVSS J647M2-16VH 856 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLLTTVVATDNAMDYWGQG TTVTVSS J647M2-17VH 857 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLTTVIVTDNAMDYWGQG TTVTVSS J647M2-19VH 858 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFFTPVVVTDNAMDYWGQG TTVTVSS J647M2-1VH 859 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLMTTVVVTDHAMDYWGQG TTVTVSS J647M2-20VH 860 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKYLTTVVVTDSAMDYWGQG TTVTVSS J647M2-21VH 861 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFRSSVAVTDNAMDYWGQG TTVTVSS J647M2-22VH 862 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLFTTVVVTDSAMDYWGQG TTVTVSS J647M2-23VH 863 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKYLMPVVVTDYAMDYWGQG TTVTVSS J647M2-24VH 864 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKLLDAVMVTDYAMDYWGQG TTVTVSS J647M2-26VH 865 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLTTVVVNDYAMDYWGQG TTVTVSS J647M2-44VH 866 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLLTTVAVTDYAMDYWGQG TTVTVSS J647M2-45VH 867 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFLKTVVATDDAMDYWGQG TTVTVSS J647M2-47VH 868 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLNTAVVTDYAMDYWGQG TTVTVSS J647M2-48VH 869 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARRFLTTVDVTDNAMDYWGQG TTVTVSS J647M2-4VH 870 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKYLTPVVATDFAMDYWGQG TTVTVSS J647M2-51VH 871 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKCMTTIVETDNAMDYWGQG TTVTVSS J647M2-52VH 872 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFMNTVDVTDNAMDYWGQG TTVTVSS J647M2-53VH 873 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLFTTVVVTDDAMDYWGQG TTVTVSS J647M2-54VH 874 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLMTTVVVTDYAMDYWGQG TTVTVSS J647M2-55VH 875 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLPTVVVTDYAMDYWGQG TTVTVSS J647M2-56VH 876 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKLLTTVVVTDNAMDYWGQG TTVTVSS J647M2-58VH 877 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKILTTVVVTDNAMDYWGQG TTVTVSS J647M2-70VH 878 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKVMATEVVTDYAMDYWGQG TTVTVSS J647M2-71VH 879 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLVTTVVVTDYAMDYWGQG TTVTVSS J647M2-72VH 880 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFRKPVSVTDYAMDYWGQG TTVTVSS J647M2-73VH 881 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLWTTVVVTDNAMDYWGQG TTVTVSS J647M2-74VH 882 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLLTPVVVTDYAMDYWGQG TTVTVSS J647M2-75VH 883 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFRTTVVETDYCMDYWGQG TTVTVSS J647M2-76VH 884 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKYFTTVAVTDYAMDYWGQG TTVTVSS J647M2-78VH 885 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARRFLTTVEVTDLAMDYWGQG TTVTVSS J647M2-79VH 886 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLRTEVMTDYAMDYWGQG TTVTVSS J647M2-7VH 887 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFLSTVAVTDSAMDYWGQG TTVTVSS J647M2-80VH 888 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKVLNTVVVTDYAMDYWGQG TTVTVSS J647M2-83VH 889 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFMNTAMVTDYAMDYWGQG TTVTVSS J647M2-84VH 890 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFSTTVVVTDYAMDYWGQG TTVTVSS J647M2-85VH 891 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKYFTTVVVTDYAMDYWGQG TTVTVSS J647M2-86VH 892 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFLNTVVVTDYAMDYWGQG TTVTVSS J647M2S1-12VH 893 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFMPTVVETDYAMDYWGQG TTVTVSS J647M2S1-13VH 894 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGNPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-14VH 895 EVQLVQSGAEVKKPGASVKVSCKASGYTFADYGMNWVRQ APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-15VH 896 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLTTVVVTDCAMDYWGQG TTVTVSS J647M2S1-17VH 897 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-18VH 898 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLTTVVVTDNAMDYWGQG TTVTVSS J647M2S1-19VH 899 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLLNTVVGTDYAMDYWGQG TTVTVSS J647M2S1-21VH 900 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKLLTTEAVTDYAMDYWGQG TTVTVSS J647M2S1-22VH 901 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKYSTPVVVTDYAMDYWGQG TTVTVSS J647M2S1-23VH 902 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGEPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-26VH 903 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKCLNTVAVTEHRMDYWGQG TTVTVSS J647M2S1-28VH 904 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLTTVVHTDYAMDYWGQG TTVTVSS J647M2S1-30VH 905 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-31VH 906 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-32VH 907 EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGINWVRQ APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-33VH 908 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFRTTVVLTDSAMDYWGQG TTVTVSS J647M2S1-35VH 909 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ APGQGLEWMGWINTYTGEPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-36VH 910 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFQTPVVDTDYAMDYWGQG TTVTVSS J647M2S1-39VH 911 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFMKTRVVTDNAMDYWGQG TTVTVSS J647M2S1-40VH 912 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIVWVRQ APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-41VH 913 EVQLVQSGAEVKKPGASVKVSCKASGYTFPNYGISWVRQ APGQGLEWMGWINTYTGEPSYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-43VH 914 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGEPSYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-45VH 915 EVQLVQSGAEVKKPGASVKVSCKASGYTFTKYGINWVRQ APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-47VH 916 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKYLTTVVATDYAMDYWGQG TTVTVSS J647M2S1-48VH 917 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLLNTVVVTDYAMDYWGQG TTVTVSS J647M2S1-65VH 918 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLTPVVVTDCAMDYWGQG TTVTVSS J647M2S1-66VH 919 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGEPRYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-67VH 920 EVQLVQSGAEVKKPGASVKVSCKASGYTFRDYGINWVRQ APGQGLEWMGWINTYTGLPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-69VH 921 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFWTTIVVTDYAMDYWGQG TTVTVSS J647M2S1-6VH 922 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKLLTTVSATDNAMDYWGQG TTVTVSS J647M2S1-70VH 923 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLNTVVVTDYAMDYWGQG TTVTVSS J647M2S1-72VH 924 EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ APGQGLEWMGWINTYNGEPSYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-75VH 925 EVQLVQSGAEVKKPGASVKVSCKASGYTFATYGIAWVRQ APGQGLEWMGWINTYSGVPKYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-76VH 926 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFRTTAVPTDNAMDYWGQG TTVTVSS J647M2S1-77VH 927 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFLTTVVNTDSAMDYWGQG TTVTVSS J647M2S1-78VH 928 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGRG TTVTVSS J647M2S1-79VH 929 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLLKTRVVTDYAMDYWGQG TTVTVSS J647M2S1-7VH 930 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-80VH 931 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLLTTVVATDYAMDYWGQG TTVTVSS J647M2S1-84VH 932 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-85VH 933 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-87VH 934 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFFPTMVVTDYAMDYWGQG TTVTVSS J647M2S1-88VH 935 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKFVTTMVVTDYAMDYWGQG TTVTVSS J647M2S1-8VH 936 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYAQGLTGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG TTVTVSS J647M2S1-92VH 937 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYFCARKLLTTIVATDNAMDYWGQG TTVTVSS J647M2S1-93VH 938 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLMSTVVETDNAMDYWGQG TTVTVSS J647M2S1-94VH 939 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLLFTVVQTDYAMDYWGQG TTVTVSS J647M2S1-96VH 940 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST AYMELSSLRSEDTAVYYCARKLLNTVVDTDYAMDYWGQG TTVTVSS J662M2S3-14VH 941 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIIWVRQ APGQGLEWMGWINTYTGEPHYAQKLQGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKLFTVEDVTDCAMDYWGQG TTVTVSS J662M2S3-18VH 942 EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGMNWVRQ APGQGLEWMGWINTYNGKPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKLFLVEAVTDYAMDYWGQG TTVTVSS J662M2S3-28VH 943 EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGIIWVRQ APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKLFTTVDVTDNAMDYWGQG TTVTVSS J662M2S3-29VH 944 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ APGQGLEWMGWINTYTGVPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYYCARKLFNTVDVTDNAMDYWGQG TTVTVSS J662M2S3-30VH 945 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ APGQGLEWMGWINTYTGEPHYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYYCARKLFKTMAVTDAAMDYWGQG TTVTVSS J662M2S3-34VH 946 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFRNTVAVTDYAMDYWGQG TTVTVSS J662M2S3-3VH 947 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYYCARKLFNTVAVTDNAMDYWGQG TTVTVSS J662M2S3-41VH 948 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYYCARKLFFTEDVTDYAMDYWGQG TTVTVSS J662M2S3-45VH 949 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKFFTPVVVTDNAMDYWGQG TTVTVSS J662M2S3-55VH 950 EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGITWVRQ APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKLFTTMDVTDNAMDYWGQG TTVTVSS J662M2S3-5VH 951 EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGIIWVRQ APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYYCARKLFTTMDVTDNAMDYWGQG TTVTVSS J662M2S3-65VH 952 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ APGQGLEWMGWINTYTGKPTYAQKLQGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKLFNTVDVTDNAMDYWGQG TTVTVSS J662M2S3-78VH 953 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIIWVRQ APGQGLEWMGWINTYTGKPSYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYYCARKLFNTVDVTDNAMDYWGQG TTVTVSS J662M2S3-84VH 954 EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ APGQGLEWMGWINTYTGQPSYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYYCARKLFKTEAVTDYAMDYWGQG TTVTVSS J662M2S3-87VH 955 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ APGQGLEWMGWINTYSGKPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYFCARKLFTTMDVTDNAMDYWGQG TTVTVSS J662M2S3-96VH 956 EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST AYMELSSLRSEDTAVYYCARKFFTTMAVTDNAMDYWGQG TTVTVSS

Table 28 provides a list of amino acid sequences of VL regions of affinity matured fully human TNF antibodies derived from hMAK199 Amino acid residues of individual CDRs of each VL sequence are indicated in bold.

TABLE 28 List of amino acid sequences of affinity matured hMAK199 VL variants Clone SEQ ID NO: VL J644M2S1-11Vk 957 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTLPPTFGQGTKLEIK J644M2S1-73Vk 958 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J647M2-11Vk 959 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKTVKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J647M2S1-10Vk 960 DIQMTQSPSSLSASVGDRVTITCRASQDIWNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNRYPPTFGQGTKLEIK J647M2S1-16Vk 961 DIQMTQSPSSLSASVGDRVTITCRASQDICTYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNSPPPTFGQGTKLEIK J647M2S1-1Vk 962 DIQMTQSPSSLSASVGDRVTITCRASQAIGNYLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J647M2S1-20Vk 963 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTRPPTFGQGTKLEIK J647M2S1-24Vk 964 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSLLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTGPPTFGQGTKLEIK J647M2S1-25Vk 965 DIQMTQSPSSLSASVGDRVTITCRASQDIYNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J647M2S1-29Vk 966 DIQMTQSPSSLSASVGDRVTITCRASQDISHYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTLPATFGQGTKLEIK J647M2S1-2Vk 967 DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK PGKTVKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTPPPTFGQGTKLEIK J647M2S1-34Vk 968 DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTLPPTFGQGTKLEIK J647M2S1-37Vk 969 DIQMTQSPSSLSASVGDRVTITCRASQEISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTMPTTFGQGTKLEIK J647M2S1-38Vk 970 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYFASRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTPPTTFGQGTKLEIK J647M2S1-3Vk 971 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTLPSTFGQGTKLEIK J647M2S1-42Vk 972 DIQMTQSPSSLSASVGDRVTITCRASQVISNTLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNALPPTFGQGTKLEIK J647M2S1-44Vk 973 DIQMTQSPSSLSASVGDRVTITCRASQDISTYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTPPPTFGQGTKLEIK J647M2S1-46Vk 974 DIQMTQSPSSLSASVGDRVTITCRASQDISQYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTLPPTFGQGTKLEIK J647M2S1-50Vk 975 DIQMTQSPSSLSASVGDRVTITCRASQDITNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTAPPTFGQGTKLEIK J647M2S1-52Vk 976 DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTMPPTFGQGTKLEIK J647M2S1-56Vk 977 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J647M2S1-59Vk 978 DIQMTQSPSSLSASVGDRVTITCRASQDISKYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTRPPTFGQGTKLEIK J647M2S1-71Vk 979 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSLLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTQPPTFGQGTKLEIK J647M2S1-74Vk 980 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNSQPPTFGQGTKLEIK J647M2S1-78Vk 981 DIQMTQSPSSLSASVGDRVTITCRASQDISKYLNWYQQK PGKAPKLLIYNASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J647M2S1-7Vk 982 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSLLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNIWPPTFGQGTKLEIK J647M2S1-9Vk 983 DIQMTQSPSSLSASVGDRVTITCRASQDISHYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J652M2S1-10Vk 984 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTFPPTFGQGTKLEIK J652M2S1-13Vk 985 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTQPPTFGQGTKLEIK J652M2S1-14Vk 986 DIQMTQSPSSLSASVGDRVTITCRASQDISNVLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTLPPTFGQGTKLEIK J652M2S1-15Vk 987 DIQMTQSPSSLSASVGDRVTITCRASQDIYKYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTMPPTFGQGTKLEIK J652M2S1-17Vk 988 DIQMTQSPSSLSASVGDRVTITCRASQEIFSYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNMGPPTFGQGTKLEIK J652M2S1-18Vk 989 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTQPPTFGQGTKLEIK J652M2S1-1Vk 990 DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTWPPTFGQGTKLEIK J652M2S1-22Vk 991 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTRPPTFGQGTKLEIK J652M2S1-23Vk 992 DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTFPPTFGQGTKLEIK J652M2S1-25Vk 993 DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTRPPTFGQGTKLEIK J652M2S1-26Vk 994 DIQMTQSPSSLSASVGDRVTITCRASQDINNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTQPPTFGQGTKLEIK J652M2S1-27Vk 995 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYASGLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTWPPTFGQGTKLEIK J652M2S1-28Vk 996 DIQMTQSPSSLSASVGDRVTITCRASQDISRYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTQPPTFGQGTKLEIK J652M2S1-29Vk 997 DIQMTQSPSSLSASVGDRVTITCRASQDIATYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTMPPTFGQGTKLEIK J652M2S1-31Vk 998 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTFPPTFGQGTKLEIK J652M2S1-33Vk 999 DIQMTQSPSSLSASVGDRVTITCRASQRIGNYLNWYQQK PGKTVKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J652M2S1-34Vk 1000 DIQMTQSPSSLSASVGDRVTITCRASQEISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNSQPPTFGQGTKLEIK J652M2S1-35Vk 1001 DIQMTQSPSSLSASVGDRVTITCRASQDIANYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTLPPTFGQGTKLEIK J652M2S1-37Vk 1002 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTFPPTFGQGTKLEIK J652M2S1-38Vk 1003 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTQPPTFGQGTKLEIK J652M2S1-3Vk 1004 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTPPPTFGQGTKLEIK J652M2S1-40Vk 1005 DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTLPPTFGQGTKLEIK J652M2S1-41Vk 1006 DIQMTQSPSSLSASVGDRVTITCRASQDIGNFLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTRPPTFGQGTKLEIK J652M2S1-42Vk 1007 DIQMTQSPSSLSASVGDRVTITCRASQDITNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTPPPTFGQGTKLEIK J652M2S1-45Vk 1008 DIQMTQSPSSLSASVGDRVTITCRASQDISDYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNMWPPTFGQGTKLEIK J652M2S1-47Vk 1009 DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTMPPTFGQGTKLEIK J652M2S1-48Vk 1010 DIQMTQSPSSLSASVGDRVTITCRASQDISHYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTLPPTFGQGTKLEIK J652M2S1-49Vk 1011 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTMPPTFGQGTKLEIK J652M2S1-51Vk 1012 DIQMTQSPSSLSASVGDRVTITCRASQDISQYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTRPPTFGQGTKLEIK J652M2S1-52Vk 1013 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNMRPPTFGQGTKLEIK J652M2S1-53Vk 1014 DIQMTQSPSSLSASVGDRVTITCRASQDISTYLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J652M2S1-55Vk 1015 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTGPPTFGQGTKLEIK J652M2S1-56Vk 1016 DIQMTQSPSSLSASVGDRVTITCRASQNINNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTMPPTFGQGTKLEIK J652M2S1-57Vk 1017 DIQMTQSPSSLSASVGDRVTITCRASQDISKYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTPPPTFGQGTKLEIK J652M2S1-61Vk 1018 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTVPPTFGQGTKLEIK J652M2S1-62Vk 1019 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSKLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNIFPPTFGQGTKLEIK J652M2S1-64Vk 1020 DIQMTQSPSSLSASVGDRVTITCRASQGIYNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J652M2S1-67Vk 1021 DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTLPPTFGQGTKLEIK J652M2S1-69Vk 1022 DIQMTQSPSSLSASVGDRVTITCRASQEISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTGPPTFGQGTKLEIK J652M2S1-6Vk 1023 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTPPPTFGQGTKLEIK J652M2S1-71Vk 1024 DIQMTQSPSSLSASVGDRVTITCRASQDISDYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTWPPTFGQGTKLEIK J652M2S1-73Vk 1025 DIQMTQSPSSLSASVGDRVTITCRASQDIWKYLNWYQQK PGKAPKLLIYYASRLQSVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTLPPTFGQGTKLEIK J652M2S1-75Vk 1026 DIQMTQSPSSLSASVGDRVTITCRASQDISTYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTWPPTFGQGTKLEIK J652M2S1-77Vk 1027 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTPPPTFGQGTKLEIK J652M2S1-78Vk 1028 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNAPPPTFGQGTKLEIK J652M2S1-79Vk 1029 DIQMTQSPSSLSASVGDRVTITCRASQDIYKFLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J652M2S1-80Vk 1030 DIQMTQSPSSLSASVGDRVTITCRASQDIFNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J652M2S1-82Vk 1031 DIQMTQSPSSLSASVGDRVTITCRASQDISNTLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTLPPTFGQGTKLEIK J652M2S1-84Vk 1032 DIQMTQSPSSLSASVGDRVTITCRASQHISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTQPPTFGQGTKLEIK J652M2S1-86Vk 1033 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNMPPPTFGQGTKLEIK J652M2S1-87Vk 1034 DIQMTQSPSSLSASVGDRVTITCRASQDITNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTVPPTFGQGTKLEIK J652M2S1-8Vk 1035 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYFTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGNTQPPTFGQGTKLEIK J652M2S1-90Vk 1036 DIQMTQSPSSLSASVGDRVTITCRASQDISKFLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYYCQQGNTRPPTFGQGTKLEIK J652M2S1-91Vk 1037 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTFPPTFGQGTKLEIK J652M2S1-92Vk 1038 DIQMTQSPSSLSASVGDRVTITCRASQDIYNVLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGITLPPTFGQGTKLEIK J652M2S1-93Vk 1039 DIQMTQSPSSLSASVGDRVTITCRASQHISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTWPPTFGQGTKLEIK J652M2S1-95Vk 1040 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTQPSTFGQGTKLEIK J652M2S1-9Vk 1041 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTQPPTFGQGTKLEIK J662M2S3-13Vk 1042 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNSWPPTFGQGTKLEIK J662M2S3-15Vk 1043 DIQMTQSPSSLSASVGDRVTITCRASQDIYNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTQPPTFGQGTKLEIK J662M2S3-21Vk 1044 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTWPPTFGQGTKLEIK J662M2S3-22Vk 1045 DIQMTQSPSSLSASVGDRVTITCRASQDISQYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTWPPTFGQGTKLEIK J662M2S3-34Vk 1046 DIQMTQSPSSLSASVGDRVTITCRASQDIYDVLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYYCQQGITLPPTFGQGTKLEIK J662M2S3-3Vk 1047 DIQMTQSPSSLSASVGDRVTITCRASQDIENYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTQPPTFGQGTKLEIK J662M2S3-41Vk 1048 DIQMTQSPSSLSASVGDRVTITCRASQNIENFLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTWPPTFGQGTKLEIK J662M2S3-56Vk 1049 DIQMTQSPSSLSASVGDRVTITCRASQDIYNYLNWYQQK PGKAPKLLIYYTSRLQGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTPPPTFGQGTKLEIK J662M2S3-64Vk 1050 DIQMTQSPSSLSASVGDRVTITCRASQDIASYLNWYQQK PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTQPPTFGQGTKLEIK J662M2S3-78Vk 1051 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK PGKVPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL QPEDFATYFCQQGNTQPPTFGQGTKLEIK J662M2S3-84Vk 1052 DIQMTQSPSSLSASVGDRVTITCRASQNIYNVLNWYQQK PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL QPEDFATYFCQQGNTMPPTFGQGTKLEIK

TABLE 29 Amino acid residues observed in affinity matured hMAK-199 antibodies MAK199 Heavy chain variable region (SEQ ID NO: 1077) MAK199VH.2a 1234567890123456789012345678901234567890123456789012a345678901 EIQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQAPGQGLEWMGWINTYTGEPTYAD  V                           ND  II                   N K S  Q                              AH   T                   S V H                              ST   Q                     Q N                              RS   S                     R M                              DQ   G                     L K                              KK   A                     S A                              P    V                     N R                              Q                          I Q                              M                          D D                              G                          A                              E 234567890123456789012abc345678901234567890abcdefg1234567890123 DFKGRFTFTLDTSTSTAYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQGTTVTVSS GLT  V M T                      Y   RLFNPMDASENT K Q                                 NYMKVEAEM SR                                      IRSSAEMN CC                                      VSRARSD  H                                      CWL IMG  D                                       QP QII  I                                       VF GPQ  F                                       ND D P  V                                       GM   N  L                                       CA   L  A                                            H Mak199 Light chain variable region (SEQ ID NO: 1078) Mak199Vk.1a 1234567890123456789012345678901234567890123456789012345678901 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKTVKLLIYYTSRLQSGVPSR                            N YQV          AP     FA L                            E ESF          V      N  K                            H AKT                    G                            G TT                            V WH                            R GD                            A NR                              F                              C 234567890123456789012345678901234567890123456a FSGSGSGTDYTLTISSLQPEDFATYFCQQGNTLPPTFGQGTKLEIK          F               Y    ISW T                                MQ S                                IP A                                AM                                RR                                 F                                 G                                 V                                 Y                                 A

TABLE 30 Individual hMAK-199 VH sequences from converted clones Protein Sequence region SEQ ID NO: 123456789012345678901234567890 J662M2S3 1053 EVQLVQSGAEVKKPGASVKVSCKASGYTFA #10 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYYCARKLFTTMDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 10 VH of SEQ ID NO.: 1053 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 10 VH of SEQ ID NO.: 1053 J662M2S3# CDR-H3 Residues 99-112 RASQDISQYLN 10 VH of SEQ ID NO.: 1053 J662M2S3# 1054 EVQLVQSGAEVKKPGASVKVSCKASGYTFN 13 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY AQKLQGRVTMTTDTSTSTAYMELSSLRSED TAVYFCARKLFNTVDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 13 VH of SEQ ID NO.: 1054 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKLQG 13 VH of SEQ ID NO.: 1054 J662M2S3# CDR-H3 Residues 99-112 KLFNTVDVTDNAMD 13 VH of SEQ ID NO.: 1054 J662M2S3# 1055 EVQLVQSGAEVKKPGASVKVSCKASGYTFN 15 VH NYGIIWVRQAPGQGLEWMGWINTYTGVPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYYCARKLFNTVDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 15 VH of SEQ ID NO.: 1055 J662M2S3# CDR-H2 Residues 50-66 WINTYTGVPTYAQKFQG 15 VH of SEQ ID NO.: 1055 J662M2S3# CDR-H3 Residues 99-112 KLFNTVDVTDNAMD 15 VH of SEQ ID NO.: 1055 J662M2S3# 1056 EVQLVQSGAEVKKPGASVKVSCKASGYTFN 16 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYYCARKLFNTVAVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 16 VH of SEQ ID NO.: 1056 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 16 VH of SEQ ID NO.: 1056 J662M2S3# CDR-H3 Residues 99-112 KLFNTVAVTDNAMD 16 VH of SEQ ID NO.: 1056 J662M2S3# 1057 EVQLVQSGAEVKKPGASVKVSCKASGYTFR 21 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYFCARKLFTTVDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 21 VH of SEQ ID NO.: 1057 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 21 VH of SEQ ID NO.: 1057 J662M2S3# CDR-H3 Residues 99-112 KLFTTVDVTDNAMD 21 VH of SEQ ID NO.: 1057 J662M2S3# 1058 EVQLVQSGAEVKKPGASVKVSCKASGYTFN 34 VH NYGINWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYFCARKFRNTVAVTDYAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGIN 34 VH of SEQ ID NO.: 1058 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 34 VH of SEQ ID NO.: 1058 J662M2S3# CDR-H3 Residues 99-112 KFRNTVAVTDYAMD 34 VH of SEQ ID NO.: 1058 J662M2S3# 1059 EVQLVQSGAEVKKPGASVKVSCKASGYTFR 36 VH NYGITWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYFCARKLFTTMDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGIT 36 VH of SEQ ID NO.: 1059 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 36 VH of SEQ ID NO.: 1059 J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD 36 VH of SEQ ID NO.: 1059 J662M2S3# 1060 EVQLVQSGAEVKKPGASVKVSCKASGYTFA 45 VH NYGIIWVRQAPGQGLEWMGWINTYTGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYYCARKLFTTMDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 45 VH of SEQ ID NO.: 1060 J662M2S3# CDR-H2 Residues 50-66 WINTYTGKPTYAQKFQG 45 VH of SEQ ID NO.: 1060 J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD 45 VH of SEQ ID NO.: 1060 J662M2S3# 1061 EVQLVQSGAEVKKPGASVKVSCKASGYTFS 58 VH NYGINWVRQAPGQGLEWMGWINTYTGQPSY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYYCARKLFKTEAVTDYAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGIN 58 VH of SEQ ID NO.: 1061 J662M2S3# CDR-H2 Residues 50-66 WINTYTGQPSYAQKFQG 58 VH of SEQ ID NO.: 1061 J662M2S3# CDR-H3 Residues 99-112 KLFKTEAVTDYAMD 58 VH of SEQ ID NO.: 1061 J662M2S3# 1062 EVQLVQSGAEVKKPGASVKVSCKASGYTFN 72 VH NYGIIWVRQAPGQGLEWMGWINTYSGKPTY AQKFQGRVTMTTDTSTSTAYMELSSLRSED TAVYFCARKLFTTMDVTDNAMDYWGQGTTV TVSS J662M2S3# CDR-H1 Residues 31-35 NYGII 72 VH of SEQ ID NO.: 1062 J662M2S3# CDR-H2 Residues 50-66 WINTYSGKPTYAQKFQG 72 VH of SEQ ID NO.: 1062 J662M2S3# CDR-H3 Residues 99-112 KLFTTMDVTDNAMD 72 VH of SEQ ID NO.: 1062

TABLE 31 Individual hMAK-199 clones VL sequences Protein Sequence region SEQ ID NO: 123456789012345678901234567890 J662M2S3# 1063 DIQMTQSPSSLSASVGDRVTITCRASQDIS 10 VL QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYFCQQ GNTWPPTFGQGTKLEIK J662M2S3#10 CDR-L1 Residues 24-34 RASQDISQYLN VL of SEQ ID NO.: 1063 J662M2S3#10 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 1063 J662M2S3#10 CDR-L3 Residues 89-97 QQGNTWPPT VL of SEQ ID NO.: 1063 J662M2S3#13 1064 DIQMTQSPSSLSASVGDRVTITCRASQDIS VL NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDYTLTISSLQPEDFATYFCQQ GNSWPPTFGQGTKLEIK J662M2S3#13 CDR-L1 Residues 24-34 RASQDISNYLN VL of SEQ ID NO.: 1064 J662M2S3#13 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 1064 J662M2S3#13 CDR-L3 Residues 89-97 QQGNSWPPT VL of SEQ ID NO.: 1064 J662M2S3#15 1065 DIQMTQSPSSLSASVGDRVTITCRASQDIY VL NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDYTLTISSLQPEDFATYFCQQ GNTQPPTFGQGTKLEIK J662M2S3#15 CDR-L1 Residues 24-34 RASQDIYNYLN VL of SEQ ID NO.: 1065 J662M2S3#15 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 1065 J662M2S3#15 CDR-L3 Residues 89-97 QQGNTQPPT VL of SEQ ID NO.: 1065 J662M2S3#16 1066 DIQMTQSPSSLSASVGDRVTITCRASQDIE VL NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYFCQQ GNTQPPTFGQGTKLEIK J662M2S3#16 CDR-L1 Residues 24-34 RASQDIENYLN VL of SEQ ID NO.: 1066 J662M2S3#16 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 1066 J662M2S3#16 CDR-L3 Residues 89-97 QQGNTQPPT VL of SEQ ID NO.: 1066 J662M2S3#21 1067 DIQMTQSPSSLSASVGDRVTITCRASQDIS VL NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDYTLTISSLQPEDFATYFCQQ GNTWPPTFGQGTKLEIK J662M2S3#21 CDR-L1 Residues 24-34 RASQDISNYLN VL of SEQ ID NO.: 1067 J662M2S3#21 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 1067 J662M2S3#21 CDR-L3 Residues 89-97 QQGNTWPPT VL of SEQ ID NO.: 1067 J662M2S3#34 1068 DIQMTQSPSSLSASVGDRVTITCRASQDIY VL DVLNWYQQKPGKAPKLLIYYASRLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQ GITLPPTFGQGTKLEIK J662M2S3#34 CDR-L1 Residues 24-34 RASQDIYDVLN VL of SEQ ID NO.: 1068 J662M2S3#34 CDR-L2 Residues 50-56 YASRLQS 4 VL of SEQ ID NO.: 1068 J662M2S3#34 CDR-L3 Residues 89-97 QQGITLPPT VL of SEQ ID NO.: 1068 J662M2S3#36 1069 DIQMTQSPSSLSASVGDRVTITSRASQDIS VL NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDYTLTISSLQPEDFATYFCQQ GNTWPPTFGQGTKLEIK J662M2S3#36 CDR-L1 Residues 24-34 RASQDISNYLN VL of SEQ ID NO.: 1069 J662M2S3#36 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 1069 J662M2S3#36 CDR-L3 Residues 89-97 QQGNTWPPT VL of SEQ ID NO.: 1069 J662M2S3#45 1070 DIQMTQSPSSLSASVGDRVTITSRASQDIS VL QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYFCQQ GNTWPPTFGQGTKLEIK J662M2S3#45 CDR-L1 Residues 24-34 RASQDISQYLN VL of SEQ ID NO.: 1070 J662M2S3#45 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 1070 J662M2S3#45 CDR-L3 Residues 89-97 QQGNTWPPT VL of SEQ ID NO.: 1070 J662M2S3#58 1071 DIQMTQSPSSLSASVGDRVTITSRASQNIY VL NVLNWYQQKPGKAPKLLIYYASRLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYFCQQ GNTMPPTFGQGTKLEIK J662M2S3#58 CDR-L1 Residues 24-34 RASQNIYNVLN VL of SEQ ID NO.: 1071 J662M2S3#58 CDR-L2 Residues 50-56 YASRLQS VL of SEQ ID NO.: 1071 J662M2S3#58 CDR-L3 Residues 89-97 QQGNTMPPT VL of SEQ ID NO.: 1071 J662M2S3#72 1072 DIQMTQSPSSLSASVGDRVTITSRASQDIS VL NFLNWYQQKPGKAPKLLIYYTSRLQSGVPS RFSGSGSGTDYTLTISSLQPEDFATYFCQQ GNTQPPTFGQGTKLEIK J662M2S3#72 CDR-L1 Residues 24-34 RASQDISNFLN VL of SEQ ID NO.: 1072 J662M2S3#72 CDR-L2 Residues 50-56 YTSRLQS VL of SEQ ID NO.: 1072 J662M2S3#72 CDR-L3 Residues 89-97 QQGNTQPPT VL of SEQ ID NO.: 1072

TABLE 32 hMAK199 affinity matured scFv clones converted to full length IgG ScFv Full length IgG clone name HC plasmid LC plasmid (protein) name J662M2S3#10 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM1 J662M2S3#10 M2S3#10 J662M2S3#13 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM2 J662M2S3#13 M2S3#13 J662M2S3#15 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM3 J662M2S3#15 M2S3#15 J662M2S3#16 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM4 J662M2S3#16 M2S3#16 J662M2S3#21 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM5 J662M2S3#21 M2S3#21 J662M2S3#34 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM6 J662M2S3#34 M2S3#34 J662M2S3#36 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM7 J662M2S3#36 M2S3#36 J662M2S3#45 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM8 J662M2S3#45 M2S3#45 J662M2S3#58 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM9 J662M2S3#58 M2S3#58 J662M2S3#72 pHybE-hCg1,z,non-a V2 pHybE-hCk V3 J662 hMAK199-AM10 J662M2S3#72 M2S3#72

3.1 TNF Enzyme-Linked Immunosorbent Assay Result

TABLE 33 hMAK199 affinity matured full length IgG IgG Name EC50 in hTNFa ELISA (nM) hMAK199-AM1 0.016 hMAK199-AM2 0.016 hMAK199-AM3 0.019 hMAK199-AM4 0.050 hMAK199-AM5 0.078 hMAK199-AM6 0.035 hMAK199-AM7 0.100 hMAK199-AM8 0.219 hMAK199-AM9 0.032 hMAK199-AM10 0.014

3.2 TNF Neutralization Potency of TNF Antibodies by L929 Bioassay

TABLE 34 hu TNF rhesus TNF neutralization IgG Name neutralization IC50 (nM) IC50 (nM) hMAK199-AM1 0.054 0.012 hMAK199-AM2 0.029 0.010 hMAK199-AM3 0.051 0.019 hMAK199-AM4 0.028 0.005 hMAK199-AM5 0.087 0.020 hMAK199-AM6 0.033 0.004 hMAK199-AM7 0.095 0.051 hMAK199-AM8 0.247 0.204 hMAK199-AM9 0.163 0.089 hMAK199-AM10 0.048 0.034

Example 4 Example 4.4 Affinity Determination Using BIACORE Technology

TABLE 35 Reagent for Biacore Analyses Antigen Vendor Designation Vendor Catalog # TNFα Recombinant Human TNF- R&D 210-TA α/TNFSF1A systems

BIACORE Methods:

The BIACORE assay (Biacore, Inc. Piscataway, N.J.) determines the affinity of binding proteins with kinetic measurements of on-rate and off-rate constants. Binding of binding proteins to a target antigen (for example, a purified recombinant target antigen) is determined by surface plasmon resonance-based measurements with a Biacore® 1000 or 3000 instrument (Biacore®AB, Uppsala, Sweden) using running HBS-EP (10 mM HEPES [pH 7.4], 150 mM NaCl, 3 mM EDTA, and 0.005% surfactant P20) at 25° C. All chemicals are obtained from Biacore® AB (Uppsala, Sweden) or otherwise from a different source as described in the text. For example, approximately 5000 RU of goat anti-mouse IgG, (Fey), fragment specific polyclonal antibody (Pierce Biotechnology Inc, Rockford, Ill., US) diluted in 10 mM sodium acetate (pH 4.5) is directly immobilized across a CM5 research grade biosensor chip using a standard amine coupling kit according to manufacturer's instructions and procedures at 25 μg/ml. Unreacted moieties on the biosensor surface are blocked with ethanolamine. Modified carboxymethyl dextran surface in flowcell 2 and 4 is used as a reaction surface. Unmodified carboxymethyl dextran without goat anti-mouse IgG in flow cell 1 and 3 is used as the reference surface. For kinetic analysis, rate equations derived from the 1:1 Langmuir binding model are fitted simultaneously to association and dissociation phases of all eight injections (using global fit analysis) with the use of Biaevaluation 4.0.1 software. Purified antibodies are diluted in HEPES-buffered saline for capture across goat anti-mouse IgG specific reaction surfaces. Antibodies to be captured as a ligand (25 μg/ml) are injected over reaction matrices at a flow rate of 5 μl/minute. The association and dissociation rate constants, kon (M1 s1) and koff (s−1), are determined under a continuous flow rate of 25 μl/minute. Rate constants are derived by making kinetic binding measurements at different antigen concentrations ranging from 10-200 nM. The equilibrium dissociation constant (M) of the reaction between antibodies and the target antigen is then calculated from the kinetic rate constants by the following formula: KD=koff/kon. Binding is recorded as a function of time and kinetic rate constants are calculated. In this assay, on-rates as fast as 106M−1 s−1 and off-rates as slow as 10−6 s−1 can be measured.

The binding proteins herein are expected to have beneficial properties in this regard, including high affinity, slow off rate, and high neutralizing capacity.

Example 4.5 Neutralization of Human TNF-α

L929 cells are grown to a semi-confluent density and harvested using 0.25% trypsin

(Gibco#25300). The cells are washed with PBS, counted and resuspended at 1E6 cells/mL in assay media containing 4 μg/mL actinomycin D. The cells are seeded in a 96-well plate (Costar#3599) at a volume of 100 μL and 5E4 cells/well. The binding proteins and control IgG are diluted to a 4× concentration in assay media and serial 1:4 dilutions are performed. The huTNF-α is diluted to 400 pg/mL in assay media. Binding protein sample (200 μL) is added to the huTNF-α (200 μL) in a 1:2 dilution scheme and allowed to incubate for 0.5 hour at room temperature.

The binding protein/human TNF-α solution is added to the plated cells at 100 μL for a final concentration of 100 pg/mL huTNF-α and 150 nM-0.0001 nM binding protein. The plates are incubated for 20 hours at 37° C., 5% CO2. To quantitate viability, 100 μL is removed from the wells and 10 μL of WST-1 reagent (Roche cat#11644807001) is added. Plates are incubated under assay conditions for 3.5 hours. The plates are read at OD 420-600 nm on a Spectromax 190 ELISA plate reader.

The binding proteins herein are expected to have beneficial properties in this regard, including high affinity, slow off rate, and high neutralizing capacity.

Example 4.6 Treatment

A patient requiring treatment with a TNF-α binding protein may have a disease with immune and inflammatory elements, such as autoimmune diseases, particularly those associated with inflammation, including Crohn's disease, psoriasis (including plaque psoriasis), arthritis (including rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis), multiple sclerosis, and ankylosing spondylitis. Therefore, the binding proteins herein may be used to treat these disorders.

Administration of the TNF-α binding protein may occur by subcutaneous injection. If the patient has rheumatoid arthritis, psoratic arthritis, or ankylosing spondyitis, the patient may receive 40 mg every other week as a starting dose and 40 mg every week, if necessary to achieve treatment goals. If the patient has juvenile idiopathic arthritis and weighs from 15 kg to <30 kg, the patient may receive 20 mg every other week, and if >30 kg, 40 mg every other week. If the patient has Crohn's disease, the patient may receive an initial dose of 160 mg (four 40 mg injections in one day or two 40 mg injections per day for two consecutive days) followed by 80 mg two weeks later, and another two weeks later begin a maintenance dose of 40 mg every other week. If the patient has plaque psoriasis, the patient may receive an 80 mg initial dose, followed by 40 mg every other week starting one week after initial dose.

The binding protein may be provided in a single-use prefilled pen (40 mg/0.8 mL), a single-use prefilled glass syringe (40 mg/0.8 mL or 20 mg/0.4 mL).

INCORPORATION BY REFERENCE

The contents of all cited references (including literature references, patents, patent applications, and websites) that are cited throughout this application are hereby expressly incorporated by reference in their entirety, as are the references cited therein. The practice disclosed herein will employ, unless otherwise indicated, conventional techniques of immunology, molecular biology and cell biology, which are well known in the art.

EQUIVALENTS

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced herein.

Claims

1-18. (canceled)

19. A method for treating a mammal comprising administering to the mammal an effective amount of a pharmaceutical composition comprising a binding protein that binds human TNFα, the binding protein comprising at least one heavy chain variable region (VH region) and at least one light chain variable region (VL region),

wherein the VH region comprises the amino acid sequences of the three complementarity determining regions (CDRs) from SEQ ID NO: 1077 or the amino acid sequence of SEQ ID NO: 1077,
wherein the VL region comprises the amino acid sequence of the three CDRs from SEQ ID NO: 1078 or the amino acid sequence of SEQ ID NO: 1078.

20. (canceled)

21. A method for reducing human TNF-α activity in a human subject suffering from a disorder in which TNF-α activity is detrimental, the method comprising administering to the human subject a binding protein of claim 19 such that human TNF-α activity in the human subject is reduced and/or treatment is achieved.

22. A method for treating a patient suffering from a disorder in which TNF-α is detrimental comprising administering to the patient the binding protein of claim 19 either before, concurrent, or after the administration to the patient of a second agent, wherein the second agent is selected from the group consisting of an antibody, or fragment thereof, capable of binding human IL-12; PGE2; LPA; NGF; CGRP; SubP; RAGE; histamine; a histamine receptor blocker; bradykinin; IL-1alpha; IL-1beta; VEGF; PLGF; methotrexate; a corticosteroid, a glucocorticoid receptor modulator; cyclosporin, rapamycin, FK506, and a non-steroidal anti-inflammatory agent.

23. The method of claim 21, wherein the disorder is an autoimmune and/or inflammatory disorder.

24. The method of claim 23, wherein the disorder is selected from the group consisting of Crohn's disease, psoriasis, plaque psoriasis, arthritis, rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis, multiple sclerosis, and ankylo sing spondylitis.

25. The method of claim 23, wherein the disorder is selected from the group consisting of a respiratory disorder; asthma; allergic and nonallergic asthma; asthma due to infection; asthma due to infection with respiratory syncytial virus (RSV); chronic obstructive pulmonary disease (COPD); a condition involving airway inflammation; eosinophilia; fibrosis and excess mucus production; cystic fibrosis; pulmonary fibrosis; an atopic disorder; atopic dermatitis; urticaria; eczema; allergic rhinitis; allergic enterogastritis; an inflammatory and/or autoimmune condition of the skin; an inflammatory and/or autoimmune condition of gastrointestinal organs; inflammatory bowel diseases (IBD); ulcerative colitis; Crohn's disease; an inflammatory and/or autoimmune condition of the liver; liver cirrhosis; liver fibrosis; liver fibrosis caused by hepatitis B and/or C virus; scleroderma; tumors or cancers; hepatocellular carcinoma; glioblastoma; lymphoma; Hodgkin's lymphoma; a viral infection; a bacterial infection; a parasitic infection; HTLV-1 infection; suppression of expression of protective type 1 immune responses, and suppression of expression of a protective type 1 immune response during vaccination.

26-29. (canceled)

30. The method of claim 22, wherein the disorder is an autoimmune and/or inflammatory disorder.

31. The method of claim 30, wherein the disorder is selected from the group consisting of Crohn's disease, psoriasis, plaque psoriasis, arthritis, rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis, multiple sclerosis, and ankylo sing spondylitis.

32. The method of claim 30, wherein the disorder is selected from the group consisting of a respiratory disorder; asthma; allergic and nonallergic asthma; asthma due to infection; asthma due to infection with respiratory syncytial virus (RSV); chronic obstructive pulmonary disease (COPD); a condition involving airway inflammation; eosinophilia; fibrosis and excess mucus production; cystic fibrosis; pulmonary fibrosis; an atopic disorder; atopic dermatitis; urticaria; eczema; allergic rhinitis; allergic enterogastritis; an inflammatory and/or autoimmune condition of the skin; an inflammatory and/or autoimmune condition of gastrointestinal organs; inflammatory bowel diseases (IBD); ulcerative colitis; Crohn's disease; an inflammatory and/or autoimmune condition of the liver; liver cirrhosis; liver fibrosis; liver fibrosis caused by hepatitis B and/or C virus; scleroderma; tumors or cancers; hepatocellular carcinoma; glioblastoma; lymphoma; Hodgkin's lymphoma; a viral infection; a bacterial infection; a parasitic infection; HTLV-1 infection; suppression of expression of protective type 1 immune responses, and suppression of expression of a protective type 1 immune response during vaccination.

33. A method for treating a mammal comprising administering to the mammal an effective amount of a pharmaceutical composition comprising a binding protein that binds human TNFα, the binding protein comprising at least one heavy chain variable region (VH region), wherein the VH region comprises the amino acid sequences of the three complementarity determining regions (CDRs) from SEQ ID NO: 1077 or the amino acid sequence of SEQ ID NO: 1077.

34. A method for reducing human TNF-α activity in a human subject suffering from a disorder in which TNF-α activity is detrimental, the method comprising administering to the human subject the binding protein of claim 33 such that human TNF-α activity in the human subject is reduced and/or treatment is achieved.

35. A method for treating a patient suffering from a disorder in which TNF-α is detrimental comprising administering to the patient the binding protein of claim 33 either before, concurrent, or after the administration to the patient of a second agent, wherein the second agent is selected from the group consisting of an antibody, or fragment thereof, capable of binding human IL-12; PGE2; LPA; NGF; CGRP; SubP; RAGE; histamine; a histamine receptor blocker; bradykinin; IL-1alpha; IL-1beta; VEGF; PLGF; methotrexate; a corticosteroid, a glucocorticoid receptor modulator; cyclosporin, rapamycin, FK506, and a non-steroidal anti-inflammatory agent.

36. The method of claim 34, wherein the disorder is an autoimmune and/or inflammatory disorder.

37. The method of claim 36, wherein the disorder is selected from the group consisting of Crohn's disease, psoriasis, plaque psoriasis, arthritis, rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis, multiple sclerosis, and ankylo sing spondylitis.

38. The method of claim 36, wherein the disorder is selected from the group consisting of a respiratory disorder; asthma; allergic and nonallergic asthma; asthma due to infection; asthma due to infection with respiratory syncytial virus (RSV); chronic obstructive pulmonary disease (COPD); a condition involving airway inflammation; eosinophilia; fibrosis and excess mucus production; cystic fibrosis; pulmonary fibrosis; an atopic disorder; atopic dermatitis; urticaria; eczema; allergic rhinitis; allergic enterogastritis; an inflammatory and/or autoimmune condition of the skin; an inflammatory and/or autoimmune condition of gastrointestinal organs; inflammatory bowel diseases (IBD); ulcerative colitis; Crohn's disease; an inflammatory and/or autoimmune condition of the liver; liver cirrhosis; liver fibrosis; liver fibrosis caused by hepatitis B and/or C virus; scleroderma; tumors or cancers; hepatocellular carcinoma; glioblastoma; lymphoma; Hodgkin's lymphoma; a viral infection; a bacterial infection; a parasitic infection; HTLV-1 infection; suppression of expression of protective type 1 immune responses, and suppression of expression of a protective type 1 immune response during vaccination.

39. The method of claim 35, wherein the disorder is an autoimmune and/or inflammatory disorder.

40. The method of claim 39, wherein the disorder is selected from the group consisting of Crohn's disease, psoriasis, plaque psoriasis, arthritis, rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis, multiple sclerosis, and ankylo sing spondylitis.

41. The method of claim 39, wherein the disorder is selected from the group consisting of a respiratory disorder; asthma; allergic and nonallergic asthma; asthma due to infection; asthma due to infection with respiratory syncytial virus (RSV); chronic obstructive pulmonary disease (COPD); a condition involving airway inflammation; eosinophilia; fibrosis and excess mucus production; cystic fibrosis; pulmonary fibrosis; an atopic disorder; atopic dermatitis; urticaria; eczema; allergic rhinitis; allergic enterogastritis; an inflammatory and/or autoimmune condition of the skin; an inflammatory and/or autoimmune condition of gastrointestinal organs; inflammatory bowel diseases (IBD); ulcerative colitis; Crohn's disease; an inflammatory and/or autoimmune condition of the liver; liver cirrhosis; liver fibrosis; liver fibrosis caused by hepatitis B and/or C virus; scleroderma; tumors or cancers; hepatocellular carcinoma; glioblastoma; lymphoma; Hodgkin's lymphoma; a viral infection; a bacterial infection; a parasitic infection; HTLV-1 infection; suppression of expression of protective type 1 immune responses, and suppression of expression of a protective type 1 immune response during vaccination.

42. A method for treating a mammal comprising administering to the mammal an effective amount of a pharmaceutical composition comprising a binding protein that binds human TNFα, the binding protein comprising at least one light chain variable region (VL region), wherein the VL region comprises the amino acid sequences of the three complementarity determining regions (CDRs) from SEQ ID NO: 1078 or the amino acid sequence of SEQ ID NO: 1078.

43. A method for reducing human TNF-α activity in a human subject suffering from a disorder in which TNF-α activity is detrimental, the method comprising administering to the human subject the binding protein of claim 40 such that human TNF-α activity in the human subject is reduced and/or treatment is achieved.

44. A method for treating a patient suffering from a disorder in which TNF-α is detrimental comprising administering to the patient the binding protein of claim 40 either before, concurrent, or after the administration to the patient of a second agent, wherein the second agent is selected from the group consisting of an antibody, or fragment thereof, capable of binding human IL-12; PGE2; LPA; NGF; CGRP; SubP; RAGE; histamine; a histamine receptor blocker; bradykinin; IL-1alpha; IL-1beta; VEGF; PLGF; methotrexate; a corticosteroid, a glucocorticoid receptor modulator; cyclosporin, rapamycin, FK506, and a non-steroidal anti-inflammatory agent.

45. The method of claim 43, wherein the disorder is an autoimmune and/or inflammatory disorder.

46. The method of claim 45, wherein the disorder is selected from the group consisting of Crohn's disease, psoriasis, plaque psoriasis, arthritis, rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis, multiple sclerosis, and ankylo sing spondylitis.

47. The method of claim 45, wherein the disorder is selected from the group consisting of a respiratory disorder; asthma; allergic and nonallergic asthma; asthma due to infection; asthma due to infection with respiratory syncytial virus (RSV); chronic obstructive pulmonary disease (COPD); a condition involving airway inflammation; eosinophilia; fibrosis and excess mucus production; cystic fibrosis; pulmonary fibrosis; an atopic disorder; atopic dermatitis; urticaria; eczema; allergic rhinitis; allergic enterogastritis; an inflammatory and/or autoimmune condition of the skin; an inflammatory and/or autoimmune condition of gastrointestinal organs; inflammatory bowel diseases (IBD); ulcerative colitis; Crohn's disease; an inflammatory and/or autoimmune condition of the liver; liver cirrhosis; liver fibrosis; liver fibrosis caused by hepatitis B and/or C virus; scleroderma; tumors or cancers; hepatocellular carcinoma; glioblastoma; lymphoma; Hodgkin's lymphoma; a viral infection; a bacterial infection; a parasitic infection; HTLV-1 infection; suppression of expression of protective type 1 immune responses, and suppression of expression of a protective type 1 immune response during vaccination.

48. The method of claim 44, wherein the disorder is an autoimmune and/or inflammatory disorder.

49. The method of claim 48, wherein the disorder is selected from the group consisting of Crohn's disease, psoriasis, plaque psoriasis, arthritis, rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis, multiple sclerosis, and ankylo sing spondylitis.

50. The method of claim 48, wherein the disorder is selected from the group consisting of a respiratory disorder; asthma; allergic and nonallergic asthma; asthma due to infection; asthma due to infection with respiratory syncytial virus (RSV); chronic obstructive pulmonary disease (COPD); a condition involving airway inflammation; eosinophilia; fibrosis and excess mucus production; cystic fibrosis; pulmonary fibrosis; an atopic disorder; atopic dermatitis; urticaria; eczema; allergic rhinitis; allergic enterogastritis; an inflammatory and/or autoimmune condition of the skin; an inflammatory and/or autoimmune condition of gastrointestinal organs; inflammatory bowel diseases (IBD); ulcerative colitis; Crohn's disease; an inflammatory and/or autoimmune condition of the liver; liver cirrhosis; liver fibrosis; liver fibrosis caused by hepatitis B and/or C virus; scleroderma; tumors or cancers; hepatocellular carcinoma; glioblastoma; lymphoma; Hodgkin's lymphoma; a viral infection; a bacterial infection; a parasitic infection; HTLV-1 infection; suppression of expression of protective type 1 immune responses, and suppression of expression of a protective type 1 immune response during vaccination.

51. The method of claim 19, wherein the binding protein:

(a) modulates a biological function of the TNF-α;
(b) neutralizes the TNF-α;
(c) diminishes the ability of the TNF-α to bind to its receptor;
(d) diminishes the ability of pro-human TNF-α, mature-human TNF-α, or truncated-human TNF-α to bind to its receptor; and/or
(e) reduces one or more of TNF-dependent cytokine production, TNF-dependent cell killing, TNF-dependent inflammation, TNF-dependent bone erosion, and TNF-dependent cartilage damage.

52. The method of claim 19, wherein the binding protein comprises:

(a) a heavy chain constant region comprising an amino acid sequence of SEQ ID NO:2 or SEQ ID NO: 3; and
(b) a light chain constant region comprising an amino acid sequence of SEQ ID NO:4 or SEQ ID NO: 5.

53. The method of claim 19, the at least one heavy chain variable region (VH region) comprising: (a) three CDRs from any one of SEQ ID NOs: 74-83 and 778-956; or (b) any one of SEQ ID NOs: 74-83 and 778-956.

54. The method of claim 19, the at least one light chain variable region (VL region) comprising: (a) three CDRs from any one of SEQ ID NOs: 84-93 and 957-1052; or (b) any one of SEQ ID NOs: 84-93 and 957-1052.

55. The method of claim 19, the at least one heavy chain variable region (VH region) comprising: (a) three CDRs from any one of SEQ ID NOs: 74-83, 778-956; or (b) the sequence of any one of SEQ ID NOs: 74-83 and 778-956; and the at least one light chain variable region (VL region) comprising: (c) three CDRs from any one of SEQ ID NOs: 84-93 and 957-1052; or

(d) the sequence of any one of SEQ ID NOs: 84-93 and 957-1052.

56. The method of claim 55, wherein the VH region comprises the sequence of SEQ ID NO: 74 and the VL region comprises the sequence of SEQ ID NO: 84.

Patent History
Publication number: 20140170152
Type: Application
Filed: Nov 6, 2013
Publication Date: Jun 19, 2014
Inventors: Chung-ming Hsieh (Newton, MA), Lorenzo Benatuil (Northborough, MA), Yuliya Kutskova (Northborough, MA), John Memmott (Framingham, MA), Jennifer Perez (Worcester, MA), Suju Zhong (Shrewsbury, MA), Carrie Goodreau (Ludlow, MA), Anca Clabbers (Rutland, MA)
Application Number: 14/073,479
Classifications
Current U.S. Class: Binds Antigen Or Epitope Whose Amino Acid Sequence Is Disclosed In Whole Or In Part (e.g., Binds Specifically-identified Amino Acid Sequence, Etc.) (424/139.1)
International Classification: C07K 16/24 (20060101); A61K 45/06 (20060101); A61K 39/395 (20060101);