INVERTED BOTTLE ASSEMBLY
An inverted bottle assembly includes a bottle, a tip insert, and a cap. The bottle may include: 1) a rounded top portion engaged with or adjacent to a sidewall portion, 2) a base portion engaged with or adjacent to the sidewall portion, 3) a conical flange engaged with or adjacent to the base portion, and 4) a neck portion engaged with or adjacent to the conical flange. Additionally, the bottle may include a non-round cross-sectional shape. The tip insert may engage with the neck portion of the bottle. The tip insert may also have a nozzle with a nozzle passageway with an opening. The cap may cover the tip insert and the neck portion. The bottle assembly may also include first and second sealing structures within the cap.
This application is a continuation application of U.S. patent application Ser. No. 12/788,600 titled “Inverted Bottle Assembly” which was filed May 27, 2010 and which is hereby incorporated by reference in its entirety as though fully and completely set forth herein.
FIELD OF THE INVENTIONThe invention relates generally to bottle assemblies used to dispense fluids. More specifically, the invention provides an inverted droptainer bottle assembly for dispensing eye drops or fluids with improved squeezability, ease of evacuation, and sealability.
BACKGROUND OF THE INVENTIONDropper bottle assemblies are used to dispense a variety of liquids one drop at a time. For example, dropper bottle assemblies are used for dispensing liquid reagents in laboratories, dispensing eye medication, dispensing ear medication, or in any other environment where dispensing of a liquid in controlled drop increments is desired.
Existing dropper bottle assemblies include cylindrical containers with a circular cross-sectional shape. Round containers have an increased hoop strength, which makes them more difficult to “squeeze” or collapse. Additionally, these containers include a flat bottom with square corners. These flat bottom and square corner containers also tend to increase the associated stiffening structure of the container and thus require more force to “squeeze” the container.
Additionally, these bottle assemblies and dropper bottle assemblies have used low-density polyethylene (LDPE) due to the plastic's softness and squeezability. However, while appropriate for some uses and in some applications, LDPE is not compatible with all products or liquids. A barrier grade of resin like PET is generally much more stiffer.
SUMMARY OF THE INVENTIONThe following presents a simplified summary of the disclosure in order to provide a basic understanding of some aspects of the invention by way of exemplary embodiments. This summary is not intended to define key or critical elements of the invention or to delineate the scope of the invention. Rather, the following summary merely presents some of the concepts of the disclosure in a simplified form as a prelude to the more detailed description of aspects of the invention provided below.
Aspects of the invention relate to an inverted bottle assembly comprising a bottle, a tip insert, and a cap. The bottle may comprise: 1) a rounded top portion adjacent to a sidewall portion that extends from the top portion, 2) a base portion adjacent to the sidewall portion, 3) a conical flange adjacent to the base portion, and 4) a neck portion adjacent to the conical flange. The neck portion may include external threads extending radially around at least a portion of the circumference of the neck portion. Additionally, the bottle may include a non-round cross-sectional shape. The tip insert may have a tip insert base that is engaged with the neck portion of the bottle. The tip insert may also have a nozzle that extends away from the tip insert base. The nozzle may have a nozzle passageway therethrough with an opening distal to the tip insert base. The cap may cover the tip insert and the neck portion, wherein the cap is defined by a cap sidewall extending from a flat portion. The cap may include a closure extending inward from an interior side of the flat portion. When the cap is in a closed position on the bottle, the closure may engage the nozzle and the opening on the tip insert. The closure also may include internal threads for complimentary engagement with the external threads on the neck portion.
In some example aspects of this invention, the bottle assembly may also include a first sealing structure and a second sealing structure. The first sealing structure may include a cap pintel extending away from the interior side of the flat portion of the cap. When the closure is in the closed position, the cap pintel may frictionally fit into the opening of the nozzle, thereby sealing the nozzle passageway. The second sealing structure may include a cap ring plug extending away from the interior side of the flat portion of the cap. When the closure is in the closed position, the cap ring plug may frictionally fit around the outside of the opening of the nozzle, thereby sealing the outside of the opening of the nozzle.
These and other features and advantages of the present invention will become apparent from the description of the preferred embodiments, with reference to the accompanying drawing figures.
The present disclosure is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
The reader is advised that the attached drawings are not necessarily drawn to scale.
DETAILED DESCRIPTION OF THE INVENTIONIn the following description of various examples of the invention, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example structures, systems, and steps in which aspects of the invention may be practiced. It is to be understood that other specific arrangements of parts, structures, example devices, systems, and steps may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Also, while the terms “top,” “bottom,” “front,” “back,” “side,” and the like may be used in this specification to describe various example features and elements of the invention, these terms are used herein as a matter of convenience, e.g., based on the example orientations shown in the figures. Nothing in this specification should be construed as requiring a specific three dimensional orientation of structures in order to fall within the scope of this invention.
An exemplary inverted bottle assembly 10 may comprise one or more components illustrated in
As illustrated in
As illustrated in
In accordance with at least some aspects of this invention, the base portion 24 may include a non-round cross-sectional shape. For example, the base portion 24 may be a flat plane in the shape of an oval. The term “oval” is not limited to shapes or cross-sectional shapes that satisfy the mathematical definition of an “oval.” Rather, the term “oval”, as used herein, means any continuously curved, non-round, shape or cross-sectional shape. It is understood that where the shape is described as non-round in the below description, the shape may also be “oval” as defined below.
The base portion 24 may be located or adjacent to the sidewall portion 22, with the sidewall portion 22 disposed around and extending from the base portion 24. As illustrated in
The volume and size of the container 21 may be defined, at least in part, by the length of the sidewall portion 22. As illustrated in
As illustrated in
The bottle 20 also may contain a neck portion 30 that may be engaged, attached, or adjacent to the base portion 24. The neck portion 30 may be circular, or cylindrical. The neck portion 30 may extend away from the base portion 24. As illustrated in
As illustrated in
In some example structures according to this invention, as illustrated in
Additionally, as illustrated in
In the above description, each of the parts of the bottle 20 (such as the base portion 24, the sidewall portion 22, the top portion 26, the neck portion 30, the conical flange 28, etc.) are described as being engaged, attached, or adjacent to each other. The bottle 20 may also have a unitary one-piece construction, wherein each of these parts of the bottle 20 is not a separate individualized part (but rather the various parts are integrally formed as a single piece). For example, the bottle 20 may be manufactured using one injection blow-molded plastic process to create the unitary one-piece construction. The terms “adjacent to” or “extending from” and the like, when used in this specification and the claims in this context, generically refer a bottle construction whether made from multiple parts that are fixed together (e.g., by adhesives or cements, by mechanical connectors, by fusing techniques, etc.) or whether made as a single, unitary, one-piece construction.
The bottle 20 as described above may be made of differing wall thicknesses. For example, the bottle 20 may include a wall thickness of approximately 20-25 mil throughout the entire bottle 20. In other example structures according to this invention, the bottle 20 may have a sidewall portion 22 and top portion 26 with an ultra-thin thickness, such as approximately as thin as 8-10 mil, while the base portion 24 thickness remains at approximately 20-25 mil. The bottle 20 thickness may be decreased to levels of 8-10 mil for lightweight and easily squeezable applications.
The inverted bottle assembly 10 may also include a tip insert 40 as illustrated in
As illustrated in
The nozzle 42 may also include a rim 54 and a nozzle ring 56, as illustrated in
Additionally, in aspects in accordance with this invention and as illustrated in
Additionally, in another aspect in accordance with this invention, some of the features of the neck portion 30 as described above may be included on the tip insert 40 and vice versa. For example, the tip insert 40 may include the external threads 32, the rib bead 34, and/or the rib stop 36 instead of being located on the neck portion 30.
The tip insert 40 is preferably made of molded plastic and will be generally compatible with the liquid to be contained therein. Examples of materials that may be utilized for the tip insert 40 include, but are not limited to: low-density polyethylene (LDPE) including linear low-density polyethylene (LLDPE)), polyethylene terephthalate (PET), high-density polyethylene (HDPE), polypropylene (PP), or polyvinyl chloride (PVC).
In the above description, each of the parts of the tip insert 40 (such as the tip insert base 44, the nozzle 42, and the shoulder 46, etc.) are described as being engaged, attached, or adjacent to each other. The tip insert 40 may also have a unitary one-piece construction, wherein each of these parts of the tip insert 40 is not a separate individualized part (but rather, the various parts are integrally formed as a single piece). For example, the tip insert 40 may be manufactured using one injection blow-molded plastic process to create the unitary one-piece construction. The terms “adjacent to” or “extending from” and the like, when used in this specification and the claims in this context, generically refer to a tip insert construction whether made from multiple parts that are fixed together (e.g., by adhesives or cements, by mechanical connectors, by fusing techniques, etc.) or whether made as a single, unitary, one-piece construction.
The inverted bottle assembly 10 may also include a cap 60 as illustrated in
As illustrated in
As illustrated in
As further illustrated in
When the cap 60 is in a closed position on the bottle 20, the second sealing structure may seal or at least enclose the exterior of the opening 52 and the nozzle 42. The second sealing structure may include a cap ring plug 74. The cap ring plug 74 may be located on the interior surface of the flat portion 64 and may extend away from the interior surface of the flat portion 64. The cap ring plug 74 may be sized and shaped, such that the cap ring plug 74 frictionally fits around the outside of the opening 52 on the nozzle 42, thereby effectively closing and sealing the outside of the nozzle 42 when the cap 60 is placed on the bottle 20. When the cap 60 is placed on the bottle 20, the cap ring plug 74 engages the nozzle ring 56 in combination with the rim 54 to seal or close off the exterior portion of the nozzle 42. The first sealing structure and the second sealing structure are illustrated in
The cap 60 is preferably made of molded plastic and will be generally compatible with the liquid to be contained therein. Examples of suitable materials that may be utilized for the cap 60 include, but are not limited to: low-density polyethylene (LDPE), polyethylene terephthalate (PET), high-density polyethylene (HDPE), polypropylene (PP), or polyvinyl chloride (PVC).
In the above description, each of the parts of the cap 60 (such as the cap sidewall 62, the flat portion 64, and the closure 68, etc.) are described as being engaged, attached, or adjacent to each other. The cap 60 may also have a unitary one-piece construction, wherein each of these parts of the cap 60 is not a separate individualized part of the cap 60 (but rather, the various parts are integrally formed as a single piece). For example, the cap 60 may be manufactured using one injection blow-molded plastic process to create the unitary one-piece construction. The terms “adjacent to” or “extending from” and the like, when used in this specification and the claims in this context, generically refer a cap construction whether made from multiple parts that are fixed together (e.g., by adhesives or cements, by mechanical connectors, by fusing techniques, etc.) or whether made as a single, unitary, one-piece construction.
In accordance with this invention, the non-round shape and/or the non-round cross-sectional shape as described above may also include an oval track shape. The oval track shape may include flat or straight sides connected by radiused or arced ends. This oval track shape may be used in place of the oval shape or oval cross-sectional shape as described above for the container 21, the sidewall portion 22, the base portion 24, the top portion 26, and/or the flange 28.
In another example inverted bottle assembly in accordance with this invention, the inverted bottle assembly 510 as illustrated in
As illustrated in
As further illustrated in
As described above, the container 521 includes a curved portion 524. As can be seen when comparing
As further illustrated in
Additionally, the container 521 could include a cylindrical sidewall portion as is illustrated
As illustrated in
In the above description, each of the parts of the bottle 520 (such as the curved portion 524, the top portion 526, the conical flange 528, and the neck portion 530, etc.) are described as being engaged, attached, or adjacent to each other. The bottle 520 may also have a unitary one-piece construction, wherein each of these parts of the bottle 520 is not a separate individualized part of the bottle 520 (but rather, the various parts are integrally formed as a single piece). For example, the bottle 520 may be manufactured using one injection blow-molded plastic process to create the unitary one-piece construction. The terms “adjacent to” or “extending from” and the like, when used in this specification and the claims in this context, generically refer a bottle construction whether made from multiple parts that are fixed together (e.g., by adhesives or cements, by mechanical connectors, by fusing techniques, etc.) or whether made as a single, unitary, one-piece construction.
The remainder of the inverted bottle assembly 510 as illustrated in
In another aspect of this invention, the length L1 of the major axis 627 may be at least approximately 2 times larger than the length L2 of the minor axis 629. In yet another aspect of this invention, the length L1 of the major axis 627 may be at least approximately 1.25 times larger than the length L2 of the minor axis 629. Additionally, the top portion includes a radius, R, of the top portion 626 along the major axis 627. In accordance with an aspect of this invention, the major axis 627 may be at least approximately 2 times larger than the radius, R. The lengths L1 and L2 of the major and minor axes 627 and 629, respectively, decrease as one moves up the top portion 626 toward the bottle's free end.
As illustrated in
The advantages and benefits of bottle assemblies in accordance with this invention may be readily apparent to those of skill in the art. For example, one advantage of the inverted bottle assemblies may be improved squeezability of the container. First, the elimination of the flat bottom and square corners from the bottom, using rounded top portions for the container decreases or eliminates the associated stiffening structure and thus reduces the force required to “squeeze” the container. Second, the non-round or oval shaped cross-section of the container eliminates the hoop strength of a standard round bottle further decreasing or eliminating the associated stiffening structure and thus reducing the force required to “squeeze” the container. Third, the elimination of the flat bottom and square corners eliminates associated flow restriction of plastic through the corners during bottle manufacturing. This allows the container to be injection blow molded with ultra thin sidewalls. These thinner sidewalls thereby reduce the associated stiffening structure and thus reduce the force required to “squeeze” the container.
Additionally, inverted bottle assemblies in accordance with at least some examples of this invention improve the ease of evacuation of the container. The improved structure, such as the elimination of the flat and square bottoms and the non-round or oval cross-sectional shape of the container, improves the ability of the container to be collapsed. Additionally, the existence of the conical flange on the inverted bottle assembly minimizes any restriction to product flow thus improving evacuation of the bottle.
Further, inverted bottle assemblies in accordance with at least some examples of this invention improve the sealability of existing containers. As described above, these inverted bottle assemblies may include a combination dual seal system. A cap pintel seals the inside of the opening and nozzle of the tip insert, and a cap ring plug seals the outside of the opening and nozzle of the tip insert.
Additionally, because the inverted bottle assemblies may be used by seniors (for example, age 65 and over) and others that may have hand strength issues, inverted bottle assemblies in accordance with at least some examples of this invention include various improved features. First, the larger cap is easier to grip and handle than existing small round caps. This will allow users to more easily grip and open the inverted bottle assembly. Second, the non-round or oval shape of the cap is easier to be gripped, which allows users to more readily apply a twisting force. Additionally, non-round or oval caps require less force to remove than do round caps. Third, the non-round or oval shape of the container is also more easily gripped by users.
Additionally, because of the reduced structure stiffness from the elimination of the flat bottom and square corners and the non-round or oval cross-sectional shape of the container, stronger and stiffer plastics can be used for containers. Typically, bottle assemblies use LDPE due to the softness and squeezability. Using LDPE in the inverted bottle assembly would make it 5 times easier to squeeze, thereby allowing the container to dispense faster if required. However, stronger and stiffer plastics such as PET and polypropylene can be used and still maintain the ease of squeezability because the wall thicknesses can be reduced, as described above. For example, PET provides many benefits over LDPE, such as providing a barrier to products and also providing clarity to the package (as PET can be see-through).
CONCLUSIONThe present invention is disclosed above and in the accompanying drawings with reference to a variety of examples. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to the invention, not to limit the scope of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the aspects described above without departing from the scope of the present invention, as defined by the appended claims.
Claims
1. An inverted bottle assembly comprising:
- a bottle having a rounded top portion, a base portion, and a neck portion adjacent to the base portion, wherein the bottle includes a non-round cross-sectional shape;
- a tip insert having a tip insert base that is engaged with the neck portion of the bottle, the tip insert also having a nozzle that extends away from the tip insert base, the nozzle having a nozzle passageway therethrough with an opening distal to the tip insert base; and
- a non-round cap covering the tip insert and the neck portion, wherein the cap includes a closure that when the cap is in a closed position on the bottle, the closure engages the nozzle and the opening on the tip insert, and engages the neck portion of the bottle.
2. The inverted bottle assembly according to claim 1, wherein the rounded top portion is adjacent to a cylindrical sidewall portion that extends from the top portion.
3. The inverted bottle assembly according to claim 2, wherein the base portion is adjacent to the sidewall portion.
4. The inverted bottle assembly according to claim 1, the bottle further comprising a conical flange adjacent to the base portion, wherein the conical flange extends between the base portion and the neck portion.
5. The inverted bottle assembly according to claim 1, wherein the neck portion includes external threads extending radially around at least a portion of a circumference of the neck portion.
6. The inverted bottle assembly according to claim 5, wherein the closure includes internal threads for complimentary engagement with the external threads on the neck portion.
7. The inverted bottle assembly according to claim 1, wherein the cap is defined by a cap sidewall extending from a flat portion.
8. The inverted bottle assembly according to claim 7, wherein the closure includes a first sealing structure that includes a cap pintel extending away from an interior side of the flat portion of the cap, wherein when the closure is in the closed position, the cap pintel frictionally fits into the opening of the nozzle, thereby sealing the nozzle passageway.
9. The inverted bottle assembly according to claim 8, wherein the closure includes a second sealing structure that includes a cap ring plug extending away from the interior side of the flat portion of the cap, wherein when the closure is in the closed position, the cap ring plug frictionally fits around the outside of the opening of the nozzle, thereby sealing the outside of the opening of the nozzle.
10. The inverted bottle assembly according to claim 2, wherein the top portion and the sidewall portion are up to 10 mil thick.
11. The inverted bottle assembly according to claim 1, wherein at least one of the bottle, the tip insert, and the cap are made from polyethylene terephthalate.
12. A bottle assembly comprising:
- a bottle comprising: an ellipsoidal-shaped top portion having a major axis and a minor axis, wherein a length of the major axis is at least 1.5 times larger than a length of the minor axis, the top portion further having a radius of the top portion along the major axis that is at least 2 times the length of the major axis, a sidewall portion adjacent to and extending from the top portion, wherein the sidewall portion includes a non-round cross-sectional shape; a base portion adjacent to the sidewall portion, a conical flange adjacent to the base portion, and a neck portion adjacent to the conical flange, the neck portion including external threads extending radially around at least a portion of a circumference of the neck portion; a tip insert having a tip insert base that is engaged with the neck portion of the bottle, the tip insert also having a nozzle that extends away from the tip insert base, the nozzle having a nozzle passageway therethrough with an opening distal to the tip insert base; and a cap having a non-round cross-section covering the tip insert and the neck portion, wherein the cap includes a closure that when the cap is in a closed position on the bottle, the closure engages the nozzle and the opening on the tip insert, and engages the neck portion of the bottle.
13. The bottle assembly according to claim 12, wherein the closure includes internal threads for complimentary engagement with the external threads on the neck portion.
14. The bottle assembly according to claim 12, wherein the closure includes a first sealing structure that includes a cap pintel extending away from an interior side of the cap, wherein when the closure is in the closed position, the cap pintel frictionally fits into the opening of the nozzle, thereby sealing the nozzle passageway.
15. The bottle assembly according to claim 14, wherein the closure includes a second sealing structure that includes a cap ring plug extending away from the interior side of the cap, wherein when the closure is in the closed position, the cap ring plug frictionally fits around the outside of the opening of the nozzle, thereby sealing the outside of the opening of the nozzle.
16. The bottle assembly according to claim 12, wherein the top portion and the sidewall portion are up to 10 mil thick.
17. The bottle assembly according to claim 12, wherein at least one of the bottle, the tip insert, and the cap are made from polyethylene terephthalate.
18. A bottle assembly comprising:
- a bottle comprising:
- a rounded top portion adjacent to a sidewall portion that extends from the top portion,
- a base portion adjacent to the sidewall portion,
- a conical flange adjacent to the base portion,
- and a neck portion adjacent to the conical flange, the neck portion including external threads extending radially around at least a portion of a circumference of the neck portion,
- wherein the bottle includes a non-round cross-sectional shape;
- a tip insert having a tip insert base that is engaged with the neck portion of the bottle, the tip insert also having a nozzle that extends away from the tip insert base, the nozzle having a nozzle passageway therethrough with an opening distal to the tip insert base; and
- a cap having a non-round cross section covering the tip insert and the neck portion, wherein the cap is defined by a cap sidewall extending from a flat portion, wherein the cap includes a closure extending inward from an interior side of the flat portion, wherein when the cap is in a closed position on the bottle, the closure engages the nozzle and the opening on the tip insert, with the closure further including internal threads for complimentary engagement with the external threads on the neck portion, wherein the closure includes: a first sealing structure that includes a cap pintel extending away from the interior side of the flat portion of the cap, wherein when the cap is in the closed position, the cap pintel frictionally fits into the opening of the nozzle, thereby sealing the nozzle passageway, and a second sealing structure that includes a cap ring plug extending away from the interior side of the flat portion of the cap, wherein when the cap is in the closed position, the cap ring plug frictionally fits around the outside of the opening of the nozzle, thereby sealing the outside of the opening of the nozzle.
19. The bottle assembly according to claim 18, wherein the top portion and the sidewall portion are up to 10 mil thick.
20. The bottle assembly according to claim 18, wherein at least one of the bottle, the tip insert, and the cap are made from polyethylene terephthalate.
Type: Application
Filed: Mar 4, 2014
Publication Date: Jul 3, 2014
Inventors: Paul H. Andrews (Millville, NJ), Doug Deluke (Bridgeton, NJ), Gregory D. Hamlin (Crowley, TX), Don F. Yeager (Millville, TX)
Application Number: 14/196,214
International Classification: B65D 83/00 (20060101);