PROPELLANT GAS OPERATION/INITIATION OF A NON-PYROTECHNIC PROJECTILE TRACER
The present disclosure is directed to propellant gas initiation of a non-pyrotechnic projectile tracer. In some embodiments, cartridge-propellant gasses act upon a piston to break a frangible chemiluminescent liquid chemical ampoule to initiate a luminous reaction independently of and prior to any projectile motion. The piston may be a distinct piston, a separate component functioning as a piston, or the overall tracer container acting in the manner of a piston. Embodiments of the disclosure are applicable to direct-fire ammunition ranging from small arms through large caliber main battle tank ammunition.
Latest ARMTEC DEFENSE PRODUCTS CO. Patents:
- Assembling and testing ampoules
- Visual and infrared signature powder and preparation methods thereof
- Visual and infrared signature powder and preparation methods thereof
- Method for making pyrotechnic material and related technology
- Visual and infrared signature powder and preparation methods thereof
This application is a continuation of U.S. patent application Ser. No. 13/444,743, filed Apr. 11, 2012, and titled PROPELLANT GAS OPERATION/INITIATION OF A NON-PYROTECHNIC PROJECTILE TRACER, which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/474,582, filed Apr. 12, 2011 and titled PROPELLANT GAS OPERATION/INITIATION OF A NON-PYROTECHNIC PROJECTILE TRACER, both of which are incorporated in their entireties herein by reference thereto.
TECHNICAL FIELDThe present invention is related to projectile tracer assemblies, and more particularly to non-pyrotechnic projectile tracer assemblies and related methods.
BACKGROUNDBase-mounted tracers for gun-launched projectiles have traditionally been characterized by the use of pyrotechnic compounds that are ignited/initiated by the act of firing the projectile. The hot propellant gases come into contact with and ignite the tracer's pyrotechnic compounds. Upon the projectile's exit from the launching gun and for a portion of or all of the projectile's flight, the tracer marks the projectile's trajectory by virtue of the combusting pyrotechnic tracer compound.
Because tracers are pyrotechnic in nature, they present a potential fire hazard during employment, particularly on firing ranges during training operations. This issue is addressed by the use of non-pyrotechnic tracer elements such as liquid bi-chemical chemiluminescent elements (U.S. Pat. No. 6,990,905). Typically, chemiluminescent systems consist of two liquid chemicals that when brought together in intimate contact experience a reaction, the products of which are visible light and infrared energy. Initially, the two chemicals are kept separate by the use of special/frangible containers (transparent or equipped with a transparent section) positioned coaxially one inside the other. Upon activation, one or both of these special/frangible containers is ruptured, thus allowing the two liquid chemicals to come into contact with each other and start the reaction. The rupturing of the container(s) is accomplished by subjecting the projectile to stimulation at the desired time of tracer activation, typically launch and/or target impact. Launch stimuli may be predicated upon acceleration (setback) of the projectile, spin-up of spin-stabilized projectiles in guns that are rifled, and deceleration (set forward) of the projectile as it emerges from the gun's barrel (ending acceleration) and encounters open air. These stimuli act upon designed mechanisms, such as inertia masses (US Patent Application Publication No. 2010/0175577), to rupture the container(s).
SUMMARYThe present invention overcomes drawbacks experienced in the prior art and provides other benefits. Embodiments of the invention provide a non-pyrotechnic projectile tracer, such as an ammunition round with chemiluminescent tracer portion configured for propellant gas operation or initiation of the non-pyrotechnic tracer material upon firing.
The tracer 110 can further include an externally threaded capture ring 136 (threaded to match the designated projectile interface) whose central hole can permit a smooth sliding fit with the stepped closure 126. The capture ring 136 can include an internal sliding seal that bears upon the smaller diameter section of the stepped closure 126. The entire outer ampoule 112 is sized to be a sliding fit in the projectile's tracer cavity 114. The tracer 110 is secured in the projectile 100 by the capture ring 136 external threads mating up with the projectile tracer cavity 114 internal threads. When assembled, the outer ampoule 112 is captured in the projectile tracer cavity 114 by the capture ring 136 with the outer ampoule protrusion 120 bearing against the blind closed end 124 of the projectile tracer cavity 114 and the transparent window 128 exposed and flush with the aft end of the capture ring 136. In some embodiments, the projectile 100 comprises a medium (i.e., 20-75 mm) or large caliber (75 mm and larger) direct fire ammunition.
The tracer 110 activation sequence is as follows: upon firing, the cartridge primer ignites the main propelling charge which generates the propelling gasses. As the cartridge internal pressure rapidly increases, the cartridge internal pressure bears against all exposed surfaces (the cartridge case internal surfaces and the projectile 100 base) including the smaller diameter section of the stepped tracer closure 126 with the tracer transparent window 128. The propelling gas pressure force generated on the stepped tracer closure column 126 loads the tracer outer ampoule 112, which in turn passes the column load against the closed end protrusion 120 that in turn bears against the blind end 124 of the projectile tracer cavity 114. At a predetermined pressure value, the protrusion 120 is loaded to the point where it collapses, crushing the frangible inner ampoule 130. This action frees the two liquid chemiluminescent chemicals to come into contact and react in a luminescent reaction, while maintaining a liquid-tight integrity. The radiation released from this reaction (visible and/or infrared) escapes from the outer ampoule 112 through the transparent window 128 facing aft towards the gunner. The forward sliding motion of the outer ampoule 112 is arrested when the outer ampoule 112 is crushed to the point where the two liquid chemicals are hydraulically compressed, halting the forward motion of the outer ampoule 112. In some embodiments, a physical/mechanical motion limiting/stop feature (not illustrated) can also be utilized. The tracer 110 is accordingly activated independent of the motion of the projectile 100, (including projectile acceleration/setback, spin-up, and deceleration/set-forward/impact).
The piston 240 is positioned in the projectile's aft end or drag cone/fin 252 such that the force of the propellant gasses can push the piston 240 forward a calculated distance after first shearing the shear pins 250. In some operational settings, the propellant gasses provide approximately 82,000 pounds psi of force at launch. The moving piston 240 transmits this force to the tracer ampoule 212 causing it to move forward as well. This forward motion crushes the outer ampoule protrusion 220 and initiates the tracer action in a manner similar to the embodiment described above with reference to
The tracer 310 functions at firing by the lens 328 being moved forward by the propelling gas pressure acting upon it. During this slight forward motion, independent of the projectile 300, the lens 328 first overcomes the cannelure 372 then fractures the internal frangible ampoule 330, allowing the chemiluminescent components to mix and fluoresce. In some embodiments, the lens 328 can make contact with the aft end 368 of the metallic liner 360 shortly before the lens 328 comes into light contact with the aft end 366 of the frangible ampoule 330. The small air space in the annular chemiluminescent component 370 enables the slight forward motion of the lens 328 without the hydraulic resistance should the chemiluminescent components become solidly compressed. The lens' 328 forward motion is halted by the lens 328 outer periphery encountering the annular aft end 368 of the metallic liner 360. The radiation liberated by the chemiluminescent payload escapes rearward from the projectile 300 through the transparent lens 328 to be seen by the weapon's gunner/spotter.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Claims
1. A projectile having a chemiluminescent tracer and being fireable from a launching mechanism, comprising:
- a tracer having a tracer cavity and a threaded stepped closure with a central window substantially transparent to visible and/or infrared radiation, the stepped closure having first threads;
- an outer ampoule positioned within the tracer cavity, the ampoule containing a first chemiluminescent component and being non-frangible when the projectile is fired from a launching mechanism, the outer ampoule has an open end and a closed end opposite the open end, the closed end having a pronounced protrusion, the outer ampoule is positioned on an aft end of the projectile such that the protrusion is bearing against a blind end of the projectile tracer cavity;
- a frangible cylindrical inner ampoule positioned longitudinally within the outer ampoule, the inner ampoule containing a second chemiluminescent component and having a first end bearing against the outer ampoule protrusion and a second end opposite the first end and proximate to the central window;
- an externally threaded capture ring having a central hole that permits a smooth sliding fit with the stepped closure, the capture ring having a internal sliding seal that bears upon a smaller diameter section of the stepped closure, and wherein the entire outer ampoule is sized to be a sliding fit in the projectile's tracer cavity, the tracer having external second threads that mate with the first threads of the stepped closure;
- wherein the outer ampoule protrusion bears against the blind closed end of the projectile tracer cavity and the transparent window is exposed and flush with the aft end of the capture ring such that chemiluminescent light generated upon mixing of the first and second chemiluminescent components after the inner ampoule breaks can be seen through the transparent window.
2. A projectile having a chemiluminescent tracer, comprising:
- a tracer having a tracer cavity and a closure with a central window;
- a first ampoule in the tracer cavity and containing a first chemiluminescent component, the first ampoule being configured to remain in tact when the projectile is fired from a launching mechanism, the first ampoule having a closed end opposite with a protrusion bearing against the tracer cavity;
- a frangible second ampoule positioned longitudinally within the first ampoule, the second ampoule containing a second chemiluminescent component that will generate light when mixed with the first chemiluminescent component, the second ampoule having a first end bearing against the protrusion and a second end opposite the first end and proximate to the central window;
- a capture ring having an internal sliding seal that bears upon a smaller diameter section of the stepped closure, and wherein the entire outer ampoule is sized to be a sliding fit in the tracer cavity;
- wherein the transparent window is exposed and flush with the aft end of the capture ring such that the chemiluminescent light generated upon mixing of the first and second chemiluminescent components after the second ampoule breaks can be seen through the transparent window.
Type: Application
Filed: Mar 11, 2014
Publication Date: Jul 17, 2014
Applicant: ARMTEC DEFENSE PRODUCTS CO. (Coachella, CA)
Inventor: Enrico R. Mutascio (Palm Springs, CA)
Application Number: 14/205,244