HEAT DISSIPATION APPARATUS FOR EXPANSION BASE

A heat dissipation apparatus includes an expansion base, an air duct, a fan, a heat sink, and a portable device. A number of air inlet slots is defined in the expansion base. A first air inlet opening and a number of diagonal air outlet slots are defined in the air duct. A third air inlet opening and a third air outlet opening are defined in the portable device. The fan generates airflow through the portable device in such a manner that airflow flows from the expansion base outside is sucked into and blown out of the air duct via a first airflow passage. The portable device guides airflow in and out of the portable device via a second airflow passage.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND

1. Technical Field

The present disclosure relates to a heat dissipation apparatus for an expansion base in portable devices.

2. Description of Related Art

Panel computers include expansion bases to insert expansion cards. However, panel computers generate large amounts of heat when connected to expansion bases, which may be a hazard and cause a reduction in the life of the panel computers.

Therefore, there is a need for improvement in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.

FIG. 1 is an isometric, exploded view of an embodiment of a heat dissipation apparatus for an expansion base.

FIG. 2 is an enlarged view of a circled portion II of FIG. 1.

FIG. 3 is an assembled view of the heat dissipation apparatus for an expansion base of FIG. 1.

FIG. 4 is a cross-sectional view of the heat dissipation apparatus for an expansion base of FIG. 3, taken along line IV-IV.

DETAILED DESCRIPTION

The disclosure is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean “at least one.”

FIGS. 1 and 2 show a heat dissipation apparatus, which includes an expansion base 10, an air duct 20, a fan 30, and a portable device 40.

The expansion base 10 includes a base body 11. A plurality of air inlet slots 12 is defined in one side of the base body 11. A first inserting slot 13 and a second inserting slot 14 are defined in a top of the base body 11. The first inserting slot 13 is substantially parallel to the second inserting slot 14.

The air duct 20 includes a duct body 21. A first air inlet opening 22 is defined in a bottom of the duct body 21. A plurality of air outlet slots 23 is diagonally defined in a top of the duct body 21. A first air inlet channel defined by the first air inlet opening 22 is substantially parallel to a first air outlet channel defined by the plurality of air outlet slots 23. The first air inlet opening 22 communicates with the plurality of air outlet slots 23. In this embodiment, a length of the first inserting slot 13 is less than a length of the second inserting slot 14. A length of the first inserting slot 13 is substantially equal to a length of the duct body 21, and a width of the first inserting slot 13 is substantially equal to a thickness of the duct body 21. A length of the second inserting slot 14 is substantially equal to a length of the portable device 40, and a width of the second inserting slot 14 is substantially equal to a thickness of the portable device 40.

The fan 30 includes a shell 31 and a rotatable fan blade module 32. A second air inlet opening 311 is defined in one side of the shell 31. The shell 31 further defines a second air outlet opening 312 in a top of the shell 31. The second air inlet opening 311 allows air to flow into the fan 30 along a first direction, which is in line with a rotating axle of the fan blade module 32. The second air outlet opening 312 allows air to flow out of the fan 30 along a second direction, which is substantially perpendicular to the first direction. In this embodiment, a length of the second air outlet opening 312 is substantially equal to a length of the plurality of air outlet slots 23.

The portable device 40 includes a main body 41 and a cover plate 42. The cover plate 42 is mounted on the main body 41. A plurality of third air inlet openings 43 is defined in one side of the main body 41. A plurality of third air outlet openings 44 is defined in a top of the main body 41. A second air inlet channel defined by the plurality of third air inlet openings 43 is substantially perpendicular to a second air outlet channel defined by the plurality of third air outlet openings 44. The plurality of third air inlet openings 43 communicates with the plurality of third air outlet openings 44. A first heat dissipation element 411 and a second heat dissipation element 412 are mounted on the main body 41. A heat sink 413 is mounted on the first heat dissipation element 411 and the second heat dissipation element 412 for transmitting heat. In this embodiment, the first heat dissipation element 411 is a CPU, and the second heat dissipation element 412 is a power control unit.

FIGS. 1 to 3 show that in assembly, the fan 30 is fixed in the duct body 21 of the air duct 20, such that the second air outlet opening 312 of the fan 30 is aligned with the plurality of air outlet slots 23 of the duct body 21. The duct body 21 is received in the first inserting slot 13, such that the first air inlet opening 22 of the air duct 20 communicates with an inside of the first inserting slot 13. The heat sink 413 is mounted on the first heat dissipation element 411 and the second heat dissipation element 412. The cover plate 42 is mounted on the main body 41 to cover the first heat dissipation element 411, the second heat dissipation element 412, and the heat sink 413. The portable device 40 is received in the second inserting slot 14. The cover plate 42 of the portable device 40 abuts against the duct body 21. The plurality of air outlet slots 23 face the cover plate 42.

FIG. 4 shows that in operation, the first heat dissipation element 411 and the second heat dissipation element 412 generate large amounts of heat when the portable device 40 is powered on. The heat generated by the first heat dissipation element 411 and the second heat dissipation element 412 is transmitted to the heat sink 413. A first amount of air from outside the expansion base 10 enters the portable device 40 via the plurality of third air inlet openings 43 or the plurality of third air outlet openings 44. The first amount of air displaces some heat accumulated in the heat sink 413. The heated first amount of air then exits from the portable device 40 through the plurality of third air outlet openings 44 or the plurality of third air inlet openings 43. A second amount of air from outside the expansion base 10 is sucked into the fan 30 via the plurality of air inlet slots 12 and the second air inlet opening 311. A speed of the second amount of air is increased when passing through the fan 30. The second amount of air is blown out of the fan 30 through the second air outlet opening 312 toward the plurality of air outlet slots 23 of the air duct 20. The second amount of air is diagonally blown out of the air duct 20 through the plurality of air outlet slots 23. The second amount of air is blown toward the cover plate 42 of the portable device 40 to remove heat accumulated on the cover plate 42. Therefore, a temperature of the portable device 40 is further decreased.

In this embodiment, the duct body 21 of the air duct 20 is made of heat-conducting material. The heat accumulated on the cover plate 42 of the portable device 40 is partially transmitted to the duct body 21. The second amount of air passes through the duct body 21 and removes the heat accumulated on the duct body 21. Therefore, the three described modes of heat dissipation significantly improve a heat dissipation efficiency of the heat dissipation apparatus.

Using a software application called ICEPAK to simulate the efficiency of the heat dissipation apparatus, the following results of an embodiment shown below were obtained. The simulated conditions were set as follows: a power dissipation of the first heat dissipation element 411 is 2 watts (W). A power dissipation of a memory of the portable device 40 is 1.5 W. A power dissipation of the second heat dissipation element 412 is 0.6 W. The fan 30 has a dimension of 92 millimeters (mm)×92 mm×25 mm (length×width×height). A maximum air flow rate of the fan 30 is 35.32 cubic feet per minute (cfm). A rated speed of the fan 30 is 2000 revolutions per minute (rpm). A maximum static pressure of the fan 30 is 0.084 inch-H2O.

The simulation according to the set conditions shows that when using the heat dissipation apparatus of the disclosure, a maximum temperature of the cover plate 42 of the portable device 40 is 45 degrees Celsius, a maximum temperature of the first heat dissipation element 411 is 46 degrees Celsius, a maximum temperature of the memory is 45.3 degrees Celsius, and a maximum temperature of the second heat dissipation element 412 is 48.2 degrees Celsius. In contrast, when using another heat dissipation apparatus, the back of the portable device 40 has a maximum temperature of 45.9 degrees Celsius, the first heat dissipation element 411 has a maximum temperature of 100.4 degrees Celsius, the memory has a maximum temperature of 100.7 degrees Celsius, and the second heat dissipation element 412 has a maximum temperature of 101.7 degrees Celsius. As can be seen, when using the heat dissipation apparatus of the disclosure, the maximum temperature of the portable device 40 is largely decreased, and heat dissipation efficiency is improved.

Even though numerous characteristics and advantages of the present disclosure have been set forth in the foregoing description, together with details of the structure and function of the disclosure, the disclosure is illustrative only, and changes may be made in detail, especially in the matters of shape, size, and the arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims

1. A heat dissipation apparatus, comprising:

an expansion base comprising a base body, an air inlet slot defined at one side of the base body; a first inserting slot and a second inserting slot defined at a top of the base body;
an air duct inserted in the first inserting slot, the air duct comprising a duct body, a first air inlet opening defined at a bottom of the duct body, a plurality of air outlet slots defined diagonally across a top of the duct body;
a fan fixed in the duct body; and
a portable device configured to be inserted in the second inserting slot, a third air inlet opening and a third air outlet opening defined in the portable device, a first heat dissipation element and a second heat dissipation element mounted on the portable device, and a heat sink mounted on the first heat dissipation element and the second heat dissipation element; wherein a first airflow passage is defined between the air inlet slot, the fan, the first air inlet opening, the air duct, and the plurality of air outlet slots; the fan is adapted to generate airflow through the portable device so that airflow flows from the expansion base outside is sucked into and blown out of the air duct via the first airflow passage; a second airflow passage is defined between the third air inlet opening, the heat sink, and the third air outlet opening; the portable device is configured to guide airflow in and out of the portable device via the second airflow passage.

2. The heat dissipation apparatus of claim 1, wherein the fan comprises a shell and a rotatable fan blade module; a second air inlet opening is defined at one side of the shell; and a second air outlet opening is defined at a top of the shell.

3. The heat dissipation apparatus of claim 2, wherein the second air inlet opening allows air to flow in a first direction which is in line with a rotating axle of the fan blade module; and the second air outlet opening allows air to flow in a second direction which is substantially perpendicularly to the first direction.

4. The heat dissipation apparatus of claim 3, wherein a length of the second air outlet opening is equal to a length of the plurality of air outlet slots.

5. The heat dissipation apparatus of claim 4, wherein the portable device comprises a main body; the third air inlet opening is defined at one side of the main body; and the third air outlet opening is defined at a top of the main body.

6. The heat dissipation apparatus of claim 5, wherein the air duct further comprises a first air inlet channel defined by the first air inlet opening and a first air outlet channel defined by the plurality of air outlet slots, the first air inlet channel being substantially parallel to the first air outlet channel; the portable device further comprises a second air inlet channel defined by the third air inlet opening and a second air outlet channel defined by the third air outlet opening, the second air inlet channel being substantially perpendicularly to the second air outlet channel.

7. The heat dissipation apparatus of claim 5, wherein the first air inlet opening is communicated with the plurality of air outlet slots; and the third air inlet opening is communicated with the third air outlet opening.

8. The heat dissipation apparatus of claim 7, wherein a length of the first inserting slot is less than a length of the second inserting slot; a length of the first inserting slot is equal to a length of the duct body; a width of the first inserting slot is equal to a thickness of the duct body; a length of the second inserting slot is equal to a length of the portable device; and a width of the second inserting slot is equal to a thickness of the portable device.

9. A heat dissipation apparatus, comprising:

an expansion base defining an air inlet slot at one side of the expansion base, a first inserting slot and a second inserting slot being defined at a top of the expansion base;
an air duct inserted in the first inserting slot, the air duct defining a first air inlet opening at a bottom of the air duct and a plurality of air outlet slots diagonally across a top of the air duct;
a fan fixed in the duct body, a second air inlet opening and a second air outlet opening being defined in the fan; and
a portable device configured to be inserted in the second inserting slot, a third air inlet opening and a third air outlet opening defined in the portable device, a first heat dissipation element and a second heat dissipation element mounted on the portable device, and a heat sink mounted on the first heat dissipation element and the second heat dissipation element; wherein a first airflow passage is defined between the air inlet slot, the second air inlet opening, the fan, the second air outlet opening, the first air inlet opening, the air duct, and the plurality of air outlet slots; the fan is configured to generate airflow through the portable device so that airflow flows from the expansion base outside is sucked into and blown out of the air duct via the first airflow passage; a second airflow passage is defined between the third air inlet opening, the heat sink, and the third air outlet opening; the portable device is configured to guide airflow in and out of the portable device via the second airflow passage.

10. The heat dissipation apparatus of claim 9, wherein the fan comprises a shell and a rotatable fan blade module; the second air inlet opening is defined at one side of the shell; and the second air outlet opening is defined at a top of the shell.

11. The heat dissipation apparatus of claim 10, wherein the second air inlet opening allows air to flow in a first direction which is in line with a rotating axle of the fan blade module; and the second air outlet opening allows air to flow in a second direction which is substantially perpendicularly to the first direction.

12. The heat dissipation apparatus of claim 11, wherein a length of the second air outlet opening is equal to a length of the plurality of air outlet slots.

13. The heat dissipation apparatus of claim 12, wherein the portable device comprises a main body; the third air inlet opening is defined at one side of the main body; and the third air outlet opening is defined at a top of the main body.

14. The heat dissipation apparatus of claim 13, wherein the air duct further comprises a first air inlet channel defined by the first air inlet opening and a first air outlet channel defined by the plurality of air outlet slots, the first air inlet channel being substantially parallel to the first air outlet channel; the portable device further comprises a second air inlet channel defined by the third air inlet opening and a second air outlet channel defined by the third air outlet opening, the second air inlet channel being substantially perpendicularly to the second air outlet channel.

15. The heat dissipation apparatus of claim 13, wherein the first air inlet opening is communicated with the plurality of air outlet slots; and the third air inlet opening is communicated with the third air outlet opening.

16. The heat dissipation apparatus of claim 15, wherein a length of the first inserting slot is less than a length of the second inserting slot; a length of the first inserting slot is equal to a length of the duct body; a width of the first inserting slot is equal to a thickness of the duct body; a length of the second inserting slot is equal to a length of the portable device; and a width of the second inserting slot is equal to a thickness of the portable device.

Patent History
Publication number: 20140209283
Type: Application
Filed: Oct 10, 2013
Publication Date: Jul 31, 2014
Applicant: HON HAI PRECISION INDUSTRY CO., LTD. (New Taipei)
Inventors: Chih-Hang CHAO (New Taipei), Wei-Cheng CHENG (New Taipei)
Application Number: 14/050,551
Classifications
Current U.S. Class: Mechanical Gas Pump (165/121)
International Classification: F28F 3/02 (20060101);