Suppressor For Firearm

A firearm noise and recoil suppressor having a plurality of ported channels in fluid contact with the barrel to redirect some of the firing gasses for the purpose of distributing the firing propellant gasses out the discharge end of the firearm. The channels redirect part of the propellent gasses to exit the barrel at times other than when the main projectile discharge occurs thus reducing peak pressure, thus reducing noise and recoil. The channels are contained within the tubular device, being in fluid communication with the projectile passageway through ports that regulate the amount of gas flow. The channels direct gasses to exit the device through apertures at the projectile exit end of the device in at an angle of between parallel to the projectile to up to perpendicularly.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to firearm noise and recoil suppressors. When a firearm is fired, a large sharp pressure front is produced that is the dominate cause of noise and recoil. The invention is a device that attaches to the barrel of a firearm, with the purpose of reducing muzzle noise and recoil by venting gasses through different size ports and different length channels so that the gasses exit the muzzle at different time intervals, so as to reduce the peak muzzle pressure.

2. Related Art

Conventional firearm suppressors are typically generally tubular cylinders, with an inner and an outer wall, with several expansion chambers or baffles between the walls. This assembly is attached to a firearm barrel. Upon discharge of the weapon some of the gasses flow through holes in the inner wall of the suppressor, then through the expansion chambers or baffles, therefore, allow the exhaust gas to expand inside the suppressor, then to be vented through holes in the outside wall. Optionally, conventional devices may include additional material such as washers, screens or “steel wool” type material inside the device to further suppress the noise of the discharge. These devices are typically large in both cross sectional diameter and length.

SUMMARY OF THE INVENTION

When a conventional firearm is fired, cartridge propellent is ignited and then converts to an expanding gas that propels the projectile through the barrel. When the projectile exits the barrel, the largest amount of this gas exits the barrel immediately afterward, causing a large sharp pressure wave. In typical cases, this wave is the dominant contribution to noise and recoil. Distributing this pressure wave over a longer time will reduce the peak pressure, thus suppressing noise and distributing recoil. This can be achieved by bypassing some of the exhaust gas and redirecting it to exit the device before and/or after the projectile has left the device. The end result is that, although the total volume of gas released is unchanged, the distribution of said gas is such that the peak pressure wave is reduced. Thus a longer gas exit time is achieved, and thus lower peak pressure is achieved. With distributed pressure, recoil is likewise distributed so as to deliver more of a “push” than “kick” to the shooter. Unlike traditional suppressors, this is achieved by using variable length channels that redirect the exhaust gasses.

The invented device connects to the muzzle end of a firearm and has a longitudinal passageway adapted to allow a projectile to exit the muzzle through the invented device. The device consists of a longitudinal tube or assembly that includes an inner passageway for the projectile exit. The projectile exit is at the outer (distal) end of the longitudinal passageway. The body of the device typically consists of a tube of some thickness, that within contain the channels. The ports connect the inner projectile passage to the channels. The channels traverse the device, with the channels being fully enclosed within the device, except at the ports and the apertures. The channels connect to the apertures at the projectile exit end of the device. The ports, channels and apertures are all open (hollow) to allow for the flow of gasses. The invented device has a plurality of ports and channels with apertures in fluid communication with the projectile passageway for directing gasses from the weapon discharge in desired directions and desired time intervals. Said ports, channels and apertures are preferably circular, oval, or otherwise-shaped conduit extending from the projectile passageway to open at an upper or forward, outer surface of the device. Said apertures preferably extend in a direction that has a forward component, however said apertures may comprise exits that are slanted at some angle up to perpendicular, relative to the longitudinal axis of the bore of the muzzle/barrel and, hence, the longitudinal axis of the projectile passageway. We define the longitudinal axis of the device and the projectile passageway as being the same. Therefore, one may describe the additional apertures as comprising exits that extend at angles ranging from acute angles to somewhat obtuse angles relative to the forward longitudinal axis. Preferably, the additional apertures comprise surfaces/conduits that extend in a range from forward at an angle of 0 degrees, up to 85 degrees.

Said ports and channels and apertures are integrated into the device in such a way that the gasses are not all released from the projectile passageway opening, but rather they redirect some gas through the additional apertures by means of the channels. This redirection typically, but not necessarily, includes the use of ports, at the inlet of the channels that are sized and formed to allow a calibrated amount of gas to flow through each channel. Each channel is typically of different lengths and/or have a different routing. Multiple ports and channels are typically used, each of which said ports and channels could be of different size, length and direction. The multiple ports and channels allow for multiple differential delays in the exit of the gasses from the device.

The ports and channels and apertures are integrated in an arrangement that is conducive to the desired functionality of the preferred noise suppression and recoil reduction, while minimizing size. The ports are on the surface of the projectile passageway and, opened to the projectile passageway on an inner (lower) end and open to the air above the muzzle brake at an outer (distal) end, they provide the desired suppressor functionality, that is, providing a distributed pressure force on the muzzle end. The gas-directing apertures may be sized, and may have surface curvature, for fine-tuning the forces applied to the muzzle by the gasses, and/or for controlling noise and recoil directed back to the shooter. For example, applying several ports at different locations on the lower end of the device, and connecting the ports to several channels, and routing the channels such that they increase the length of the path of the gas to exit, and connecting those to apertures at the muzzle end of the barrel, will provide a path for some amount of the gasses to exit the barrel at times other than the normal peak firing wavefront, thus providing the said benefit of a reduced pressure wave, which will provide for reduced noise and recoil. Also, depending on the chosen size, shape and radial orientation (perpendicular, or forward, or slanting) of the apertures, additional forces on the muzzle may be created. For example, if said apertures are perpendicular to the longitudinal axis and in an upward orientation, forces from impingement of gases on the perpendicular surfaces are expected to serve as anti-recoil forces, by forcing the muzzle downward by the upward “jet” of gasses, serving as anti-muzzle-climb forces. This sizing and curvature may be determined by one of skill in the art without undue experimentation.

The preferred embodiment does not include baffles or expansion chambers inside the device, but baffles, and/or expansion chambers, or other structure may be added as an option.

The projectile passageway may be a generally tubular or cylindrical surface, or other surface forming a hollow space extending generally from one end of the device to the other, from which the gas-directing ports and channels branch off The preferred embodiment of the projectile passageway is a slightly larger diameter than the bore axis. The projectile passageway may be smooth, or may have some texture, such as lands and groves, or spirals, for example.

The preferred embodiment of the invention is typically of smaller cross sectional area, relative to the bore axis, when compared to conventional baffled suppressors. This is due to the general use of only channels in the invention, instead of baffles or chambers. Channels are smaller in diameter than the bore of the specific firearm application, thus making for a smaller diameter device. This invention should be suitable for use with firearms of .22 caliber to .50 caliber.

Additionally, the ports, channels and gas exit apertures, can be designed with parameters (diameter, shape, routing and length) that are specific to a single applicable firearm and cartridge. For example, a specific high power rifle that is shooting a particular standard rifle cartridge, may be calculated to best benefit from the application of a specific number of channels that are each of a specific lengths, diameter and exit aperture direction.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross sectional view of one embodiment of the invention, showing the projectile exiting the projectile passage and gasses leaving the passage and apertures.

FIG. 2 is a cross sectional view of an alternate embodiment of the invention, showing the projectile exiting the projectile passage and gasses leaving the passage and apertures.

FIG. 3 is a view off the internal portion of the alternate embodiment in FIG. 2 that includes the ports and channels.

FIG. 4 is a view of the hollow cylindrical sleeve that encases the internal portion of the alternative embodiment shown in FIG. 2.

FIG. 5 is a cross sectional view of the alternative embodiment in FIG. 2, with the sleeve of FIG. 4 encasing the internal portion shown in FIG. 3.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In FIG. 1, there is shown one embodiment of the present invention and is designated generally by the number 10. The invention housing is indicated by 11 with the invention being connected to the distal end of the muzzle at the portion 12, by various mean, for example, a threaded connection or a pinned connection or other means, including conventional connections for suppressors. The device may be built already attached or integral with the barrel. The main projectile passageway is 13. The bullet exits the device through the muzzle port 14, with an illustration of the projectile shown 15. The main functions of the invented device comprise exiting of the projectile via a passageway through the device, while exiting and directing some portion of the gasses through the ports 16 and channels 17 and finally through the apertures 18. The channels shown are of different lengths, to represent just one example of the many possible implementations. This embodiment could be manufactured by casting, or by drilling the ports and channels externally then subsequently filling the external openings, by welding or plugging, except leaving the ports and apertures open. In this example only two ports 16, channels 17 and apertures 18 are shown for simplicity, where the preferred embodiment of the invention could include from two to ten of said ports 16, channels 17 and apertures 18.

In FIG. 2 is shown another possible embodiment of the present invention. Again the invention is connected to the distal end of the muzzle at the portion 12, by various mean, for example, a threaded connection or a pinned connection or other means, including conventional connections for suppressors. The main projectile passageway is 13. The bullet exits the device through the muzzle port 14, with an illustration of the projectile shown 15. In this case where the ports 16 and channels 17 are machined into the outside cylindrical section of the inner portion of the device, which could be the barrel itself The channels are lengthened by spiraling them around the inner portion to increase their length, thus increasing the exhaust gas exit delay out the apertures 18. In this example only one port 16, channel 17 and aperture 18 is shown for simplicity, where the preferred embodiment of the invention could include from two to ten of said ports 16, channels 17 and apertures 18.

In FIG. 3 is shown the internal portion 21 of the invention shown in FIG. 2. This portion could be the barrel itself In this case the ports 16 and channels 17 are machined into the outside cylindrical section of the inner portion 21 of the device. The channels 17 are lengthened by spiraling them around the inner portion to increase their length, thus increasing the exhaust gas exit delay out the apertures 18.

In FIG. 4 is the cylindrical sleeve 20 that will encase the internal portion 21 of FIG. 3 which will provide an external containment of the channels.

In FIG. 5 is shown a partial cross sectional the inner portion 21 of the second embodiment encased within the cylindrical sleeve 20, such that the sleeve 20 is cross sectioned. These two portions assembled show the encased embodiment shown in FIG. 2. This embodiment allows for the internal portion that includes the ports to be drilled and the channels to be machined on the exterior of a sleeve, or the barrel itself. This portion is then encased with the sleeve to complete the containment of the channels. This method allows for simple construction and customization of the port size and channel lengths, as well as the apertures.

Claims

1. An suppressor for connection to a distal end of a muzzle of a weapon, the device comprising:

a main body having a distal end, a proximal end for connection to, or integration into, the muzzle, a longitudinal projectile passageway extending through the main body from the proximal end to the distal end so that the passageway is an aperture for allowing a weapon projectile to exit from muzzle through the main body; and
a plurality of smaller channels in the main body comprising conduits extending from, and in fluid communication with the projectile passageway, to the outer surface of the main body at the distal end;
wherein the additional channels of said main body are drilled or cast to redirect some discharge gasses through additional apertures at the distal end of the device in a manner that disperses the discharge pressure wave of said weapon over a greater time than normal.

2. An accessory as in claim 1, wherein said plural channels connect to the projectile passage through open ports of equal or smaller diameter than that of the channel.

3. An accessory as in claim 1, wherein said plural ports may connect to the projectile passageway at different locations relative to each other.

4. An accessory as in claim 1, wherein said plural channels may traverse the device in differentiable length paths relative to each other.

5. An accessory as in claim 1, wherein each aperture extends generally forward from said projectile passageway at an angle to said longitudinal axis, said angle being in the range of 0-85 degrees.

6. An accessory as in claim 1, wherein the said exhaust apertures are capable of being oriented for directing gasses from discharge of the weapon generally upward relative to the muzzle so that the muzzle is forced downward.

7. An accessory as in claim 1, wherein the said exhaust apertures are capable of being oriented for directing gasses from discharge of the weapon in a generally circular motion, radially relative to the axis of the muzzle so that the muzzle is forced to rotate in a direction opposite that of the radial forces of the discharge.

8. An accessory as in claim 1, wherein a method of manufacture would be formed by drilling all ports, channels and apertures from an external direction to the center of the invention, then plugging by welding or use of plugs, the resulting external passage holes, with the exception of the ports and apertures.

9. An accessory to claim 1, wherein a method of manufacture would by lost wax casting.

10. An suppressor for connection to a distal end of a muzzle of a weapon, the device comprising:

a main body having a distal end, a proximal end for connection to, or integration into, the muzzle, a longitudinal projectile passageway extending through the main body from the proximal end to the distal end so that the passageway is an aperture for allowing a weapon projectile to exit from muzzle through the main body; and
a plurality of smaller channels in the main body comprising conduits extending from, and in fluid communication with the projectile passageway, to the outer surface of the main body at the distal end;
wherein the additional channels of said main body are formed by a combination of two pieces, an internal tube or barrel and an encasement sleeve, to redirect some discharge gasses through additional apertures at the distal end of the device in a manner that disperses the discharge pressure wave of said weapon over a greater time than normal.

11. An accessory as in claim 10, wherein said plural channels connect to the projectile passage through open ports of equal or smaller diameter than that of the channel.

12. An accessory as in claim 10, wherein said plural ports may connect to the projectile passageway at different locations relative to each other.

13. An accessory as in claim 10, wherein said plural channels may traverse the device in differentiable length paths relative to each other.

14. An accessory as in claim 10, wherein each aperture extends generally forward from said projectile passageway at an angle to said longitudinal axis, said angle being in the range of 0-85 degrees.

15. An accessory as in claim 10, wherein the said exhaust apertures are capable of being oriented for directing gasses from discharge of the weapon generally upward relative to the muzzle so that the muzzle is forced downward.

16. An accessory as in claim 10, wherein the said exhaust apertures are capable of being oriented for directing gasses from discharge of the weapon in a generally circular motion relative to the axis of the muzzle so that the muzzle is forced to rotate in a direction opposite that of the radial forces of the discharge.

17. An accessory as in claim 10, wherein a method of manufacture would be by machining all ports, channels and apertures in the internal portion, or barrel. Then the sleeves is attached to encase the inner portion, or barrel, wherein the internal diameter of the sleeve is equal to the exterior diameter of the inner portion or barrel. The sleeve is attached to the inner portion, or barrel, by means of welding or treading.

Patent History
Publication number: 20140216237
Type: Application
Filed: Feb 5, 2013
Publication Date: Aug 7, 2014
Inventor: David Larry Butler (Nampa, ID)
Application Number: 13/760,011
Classifications
Current U.S. Class: Silencers (89/14.4)
International Classification: F41A 21/30 (20060101);