Footwear With Reactive Layers
A fastening system for footwear that includes a strap that functions as a restraining element to more tightly secure the footwear to the wearer's foot when the strap is under tension. The strap could be a unitary strap made of a material with a negative Poisson's ratio. The strap can also have a composite structure, with an outer layer and an inner layer, where the inner layer is made of a material with a negative Poisson's ratio. As the strap is placed under tension in a lengthwise direction, the thickness and/or width of the strap may expand to increase support.
Latest NIKE, INC. Patents:
The present embodiments relate generally to an article of footwear, and in particular to restraining elements in articles of footwear intended for use during athletic activities such as running, walking, skating, skiing, bicycling or jumping, and/or during games or sports such as basketball, soccer, volleyball, baseball, football, tennis, field hockey, ice hockey and other games or sports.
Articles of footwear typically have at least two major components, an upper that provides the enclosure for receiving the wearer's foot, and a sole secured to the upper that is the primary contact to the ground or playing surface. The footwear may also use some type of fastening system, for example, laces or straps or a combination of both, to secure the footwear around the wearer's foot. When the footwear is unfastened, the fastening system allows the person wearing the footwear to easily insert his/her foot into the footwear. When the fastening system is fastened, it securely holds the footwear to the foot, and provides stability and support appropriate for the intended activity or sport, while allowing sufficient flexibility.
SUMMARYAs used herein, the term “reactive material” shall mean a material that, when it is placed under tension in a first direction, it increases its dimensions in one or both of the directions orthogonal to the first direction. For example, if the material is in the form of a strap having a length, a width and a thickness, then when the strap is under tension longitudinally (i.e., lengthwise), it increases in width and/or in thickness. Reactive materials may be characterized as having a negative Poisson's ratio. In contrast, conventional materials tend to contract in width and thickness as their length expands. Examples of materials having these reactive properties are auxetic materials.
In one aspect, the article of footwear includes an upper, a sole, and a strap attached at one end to the medial side of the footwear, either at the side of the upper or at the sole, and attached at the other end to the lateral side of the footwear, either at the side of the upper or at the sole. The strap includes a layer made of reactive material. This layer will be referred herein as a “reactive layer.” The reactive layer is constrained from expanding outwards. When the person wearing the footwear engages in an activity, such as leaping or accelerating, that puts the strap under increased longitudinal tension, the reactive layer increases its thickness and/or width and thus more firmly holds the footwear onto the foot.
In another aspect, the article of footwear includes an upper, a sole and a strap made of reactive material. The strap is attached at its medial and lateral ends to the medial and lateral sides, respectively, of the upper, or is attached to the medial and lateral sides, respectively, of the sole. The strap is routed, either partially or entirely within the footwear, such that when the strap is under longitudinal tension, the fabric of the upper constrains the strap so that when it expands in thickness it presses more firmly against the wearer's foot.
In another aspect, the article of footwear includes an upper, a sole and a composite strap attached at one end to the medial side of the footwear and at the other end to the lateral side of the footwear. The composite strap has at least two layers, one layer made of inelastic material and one layer made of a reactive material, i.e., a material that has a negative Poisson's ratio. The inelastic layer functions to prevent the layer made of reactive material from expanding outwards, so that when the strap is under longitudinal tension, it expands in thickness and/or width to hold the footwear more firmly onto the foot.
In another aspect, the article of footwear comprises a composite strap having an inner layer made from reactive material and an outer layer made from inelastic material. When the composite strap is under longitudinal tension, the reactive material increases in its thickness and/or its width, to hold the footwear more firmly on the wearer's foot.
In another aspect, an article of footwear includes an upper having a medial side and a lateral side. The upper further includes a forward portion associated with a forefoot portion of the upper, a rearward portion associated with a heel portion of the upper and an intermediate portion disposed between the forward portion and the rearward portion. The intermediate portion comprises a reactive material that increases in at least one of thickness and width when the intermediate portion is under longitudinal tension.
Other systems, methods, features and advantages of the embodiments will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description and this summary, be within the scope of the embodiments, and be protected by the following claims.
The embodiments can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the embodiments. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
For clarity, the detailed descriptions herein describe certain exemplary embodiments, but the disclosure herein may be applied to any article of footwear comprising certain of the features described herein and recited in the claims. In particular, although the following detailed description discusses exemplary embodiments, in the form of footwear such as running shoes, basketball shoes, sandals and flippers, the disclosures herein may be applied to a wide range of footwear.
For consistency and convenience, directional adjectives are employed throughout this detailed description corresponding to the illustrated embodiments. The term “longitudinal” as used throughout this detailed description and in the claims refers to a direction extending a length (or longest dimension) of a component, such as a strap. Also, the term “lateral” as used throughout this detailed description and in the claims refers to a direction extending along a width of a component, such as a strap. The lateral direction may generally be perpendicular to the longitudinal direction. Furthermore, the term “vertical” as used throughout this detailed description and in the claims refers to a direction generally perpendicular to a lateral and longitudinal direction. The vertical direction may be associated with the thickness or depth of a component, such as a strap.
Article of footwear 100 can include provisions for adaptively tightening to a user's foot. For example, some embodiments may incorporate components that tighten in response to activities such as jumping, running or cutting, thereby minimizing slip between a user's foot and article of footwear 100 during such activities. In some embodiments, article of footwear 100 may include one or more straps comprising reactive materials. As previously discussed, such materials may expand along dimensions perpendicular to the tensioning direction (e.g., expand in width and thickness while undergoing lengthwise tensioning).
As used throughout this detailed description and in the claims, the term “strap” refers to any generally two-dimensional member with a thickness much less than the length and/or width. In some cases, a strap may have an elongated shape, including for example, a rectangular area. However, the term strap is not intended to be limited to a particular shape and could include any member having any shape. For example, in some embodiments, a strap could extend through a large portion of an upper. In some embodiments, a strap may comprise a substantial entirety of the upper.
In some embodiments, article of footwear 100 may include reactive strap 120. In some embodiments, reactive strap 120 may be disposed internally to upper 101. More specifically, in some embodiments, a first end 121 of reactive strap 120 may be attached to the bottom of the interior of the medial side 110 of footwear 100, an intermediate portion 122 of reactive strap 120 may be routed over the arch of the wearer's foot, below tongue 104, and a second end 123 of reactive strap 120 may be attached to the lateral side 111 of article of footwear 100. In other embodiments, the arrangement of reactive strap 120 along article of footwear 100 could vary in any manner. Other possible arrangements or configurations are described in further detail below.
Reactive strap 120 can be attached at the bottom of the interior lateral and medial sides of upper 101 using stitching, stapling, fusion, adhesives or any other type of permanent attachment method. It can alternatively be attached to the top surface of the sole on both sides of the footwear, instead of to the interior sides of the footwear. Reactive strap 120 is shown in phantom in
The current embodiment describes a generally unitary reactive strap 120. In other words, reactive strap 120 may comprise a single layer. However, in other embodiments, a strap including a reactive material could incorporate two or more layers or portions having distinct material properties. An example of a composite strap including a reactive layer and an additional layer with different material properties from the reactive layer is described in further detail below.
In different embodiments, reactive strap 120 may be made from various materials. In some embodiments, reactive strap 120 may be made from any materials having a negative Poisson's ratio, including, for example, auxetic materials. Such materials are available, for example, from Advanced Fabric Technologies, Houston, Tex. and from Auxetic Technologies Ltd., Bolton, UK.
The call-out in
Although
In some cases, there may be a linear relationship between the increase in thickness and/or width of strap 120 and an increase in length of strap 120 under longitudinal tension. In the general case, however, there need not be such a relationship. In other embodiments, for example, there could be a nonlinear relationship between the increase in thickness and/or width of strap 120 and the increase in length of strap 120 under longitudinal tension.
The embodiment shown in
When reactive strap 220 is under tension, for example because the wearer is jumping, its thickness and width increase, thus tightening the footwear around the foot and providing improved stability. In this embodiment, reactive strap 220 functions to press tongue 204 down against the top of the wearer's foot, thus spreading the stress over a larger area. Such an embodiment could be selected in situations where it may be desirable to spread out the stresses applied by a strap.
Using the configuration shown in
Depending on the particular footwear, a strap (including a reactive strap) may be routed either entirely within the upper, as in the embodiment shown in
Although in many embodiments a strap is generally rectangular, it may have any shape that is suitable for the particular footwear, as long as it can be characterized as having a length, a width and a thickness. For example, the strap may be roughly rectangular, oval, triangular or trapezoidal, or a combination of such shapes. Moreover, the shape of the strap could be regular or irregular.
Embodiments of the article of footwear may use a composite strap instead of a unitary strap. A composite strap may include two or more layers or portions of distinct material. In some cases, a composite strap may include at least two layers, where at least one of the two layers is made of a reactive material. The composite strap could be routed within the upper, as in the examples shown in
Some embodiments of article of footwear 300 may include composite strap 320. Composite strap 320, as shown in
Any materials or combination of materials can be used to achieve the above discussed material properties for reactive layer 321 and/or inelastic layer 322. Inelastic layer 322 can be made from materials including, but not limited to: canvas, nylon, Dacron®, denim, EVA or other materials that do not stretch substantially when under tension. Reactive layer 321 may be made from any materials having a negative Poisson's ratio, including, for example, auxetic materials. Such materials are available, for example, from Advanced Fabric Technologies, Houston, Tex. and from Auxetic Technologies Ltd., Bolton, UK. However, it will be understood that a reactive layer may generally be made of any materials that exhibit the material properties described above, including expansion in a direction orthogonal to the direction of applied tension.
In some embodiments, reactive layer 321 may be attached to inelastic layer 322 only at its two longitudinal ends, for example by stitching or stapling, or by using adhesives. In other embodiments, reactive layer 321 and inelastic layer 322 could be joined at any other regions. In still other embodiments, reactive layer 321 may be disposed adjacent to inelastic layer 322, but not directly joined to inelastic layer 322.
Composite strap 320 may be routed within article of footwear 300, or over the footwear, as described below. Depending on the particular footwear and the specific application, the two ends of composite strap 320 may be attached to the medial and lateral sides of upper 301, for example. In other embodiments, for example, they could also be attached to sole 302 or at the interface of upper 301 to sole 302. The attachment method may be fixed, such as stitching, stapling, fusing or using adhesives, or detachable, such as by using buckles, buttons, hook and loop fasteners such as Velcro®, snaps or laces.
In the exemplary embodiment shown in
To be clear, in the composite strap embodiments shown in
In the example shown in
The composite strap may be attached to any part of the footwear using any kind of attachment mechanism, including both permanent attachment mechanisms such as stitching, stapling, using adhesives or fusing, or a detachable mechanism such as a buckle, a hook and loop fastener, a snap or laces. In some embodiments, a permanent attachment method could be used on the medial side and either a permanent or detachable method could be used on the lateral side. However, other embodiments could include fasteners on the lateral side.
The footwear shown generically in FIGS. 9 and 13-14 is representative of many kinds of footwear, including for example, running shoes, walking shoes, hiking boots, work boots, tennis shoes, jogging shoes, basketball shoes, soccer shoes, baseball shoes, skates, ski boots and other types of footwear.
Straps (including unitary and composite straps) with reactive materials could be disposed on any portion of an article of footwear. In some embodiments, a strap can be positioned at the instep, as shown in
In different embodiments, straps could have any kinds of shapes. Although the strap is shown in the figures as having a generally rectangular shape, in other embodiments a strap could have an oval shape or any other shape that allows the material to be held under tension in one direction. Examples of other possible shapes for a strap include, but are not limited to: round, triangular rectangular, polygonal, regular and irregular shapes.
In some embodiments, reactive material may be integrated within an upper. In particular, in some embodiments, a reactive material can comprise one or more portions or sections of the upper. These portions of a reactive material may be disposed adjacent portions of more conventional upper materials.
Referring to
Thus, it will be understood that embodiments can include uppers having various different portions comprising a reactive material. The size, shape and location of these portions (also referred to as straps) can vary according to factors including, but not limited to: type of footwear, desired support during inactivity, desired support during various kinds of activity, desired locations for support as well as other factors.
Composite strap 521, composite strap 522 and composite strap 523 are generally similar to the composite strap shown in
In the embodiment of
In the embodiment of
In addition to the articles of footwear described above, unitary reactive straps or composite straps including a reactive layer may be used in many other types of footwear, such as boots, skates, ski boots, ballet shoes, football shoes, bicycle shoes, soccer shoes and volleyball shoes. These articles of footwear may include one or several unitary or composite straps, at any one or more different locations, such as at the instep, the heel, the ankle and the forefoot.
The descriptions above have described reactive materials that increase in both thickness and width when under longitudinal tension. However, the disclosure herein can be used with reactive materials that only increase in thickness, or only increase in width. Either of these dimensional changes would improve the ability of the strap to securely hold the footwear on the foot.
While various embodiments have been described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the embodiments. Accordingly, the embodiments are not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.
Claims
1. An article of footwear comprising:
- an upper having a medial side and a lateral side;
- a sole having a medial side and a lateral side; and
- a strap attached at a medial end to at least one of the medial side of the upper and the medial side of the sole, and at a lateral end to at least one of the lateral side of the upper and the lateral side of the sole;
- wherein the strap comprises a reactive material that increases in at least one of thickness and width when the strap is under longitudinal tension.
2. The article of footwear of claim 1, wherein the strap is a composite strap having one inelastic layer at the outward side of the strap and one reactive layer at the inward side of the strap.
3. The article of footwear of claim 2, wherein the reactive layer is permanently attached to the inelastic layer at each end of the strap.
4. The article of footwear of claim 2, wherein the strap is routed over the arch of the footwear.
5. The article of footwear of claim 1, wherein the strap is a unitary strap comprised of reactive material.
6. The article of footwear of claim 5, wherein the strap is configured to be routed within the footwear over the arch of a wearer's foot.
7. The article of footwear of claim of claim 5, wherein the strap is configured to be routed over the tongue of the footwear.
8. The article of footwear of claim 1, wherein the strap is a heel strap.
9. The article of footwear of claim 1, wherein the strap is a forefoot strap.
10. The article of footwear of claim 1, wherein the footwear is one of a shoe, a boot, a slipper, a flipper, a sandal and a skate.
11. An article of footwear comprising:
- an upper having a medial side and a lateral side;
- a sole having a medial side and a lateral side; and
- a unitary strap attached at a medial end to at least one of the medial side of the upper and the medial side of the sole, and at a lateral end to at least one of the lateral side of the upper and the lateral side of the sole;
- wherein the unitary strap comprises a layer of reactive material; and
- wherein the layer of reactive material increases in at least one of thickness and width when the strap is under longitudinal tension.
12. The article of footwear of claim 11, wherein the unitary strap is routed wholly within the upper.
13. The article of footwear of claim 11, wherein the upper comprises a slot on the lateral side of the upper, and wherein the unitary strap is attached to the interior of the medial side of the footwear, is routed up the medial side of the footwear and across to the lateral side, down the lateral side to a slot, is routed through the slot and is detachably attached to the exterior of the upper.
14. An article of footwear comprising:
- a composite strap having an inner layer formed from reactive material and an outer layer formed from inelastic material such that when the composite strap is under longitudinal tension the reactive material increases in at least one of thickness and width.
15. The article of footwear of claim 14, wherein the footwear is one of a slipper and a sandal, and the composite strap is one of a heel strap, an arch strap and a forefoot strap.
16. The article of footwear of claim 14, wherein the footwear is a flipper and the composite strap is a heel strap.
17. An article of footwear comprising:
- an upper having a medial side and a lateral side;
- a sole having a medial side and a lateral side; and
- a composite strap attached at a medial end to at least one of the medial side of the upper and the medial side of the sole, and at a lateral end to at least one of the lateral side of the upper and the lateral side of the sole;
- wherein the composite strap comprises at least one layer of inelastic material and at least one layer of reactive material; and
- wherein the at least one layer of reactive material increases in at least one of thickness and width when the strap is under longitudinal tension.
18. The article of footwear of claim 11, wherein the composite strap is attached to the lateral side of the upper by a detachable device.
19. The article of footwear of claim 11, further comprising a unitary reactive strap that is permanently attached at the medial side and at the lateral side to the interior of the footwear.
20. The article of footwear of claim 11, wherein the layer of reactive material comprises an auxetic material.
21. An article of footwear comprising:
- an upper having a medial side and a lateral side;
- the upper further including a forward portion associated with a forefoot portion of the upper, a rearward portion associated with a heel portion of the upper and an intermediate portion disposed between the forward portion and the rearward portion; and
- wherein the intermediate portion comprises a reactive material that increases in at least one of thickness and width when the intermediate portion is under longitudinal tension.
22. The article of footwear according to claim 21, wherein the intermediate portion extends from the medial side of the upper to the lateral side of the upper.
23. The article of footwear according to claim 21, wherein the intermediate portion extends from either side of a throat opening of the upper towards a sole of the article of footwear.
Type: Application
Filed: Feb 22, 2013
Publication Date: Aug 28, 2014
Applicant: NIKE, INC. (Beaverton, OR)
Inventor: N. Scot Hull (Vancouver, WA)
Application Number: 13/774,186
International Classification: A43C 11/00 (20060101);