FINE FILTRATION FOR A DISHWASHER APPLIANCE USING POWERED DIVERTER

- General Electric

A filtering system for a dishwashing appliance that can remove fine particles from the wash and rinse fluids is provided. A filter cartridge is provided with different filter media for the removal of different particulate sizes depending upon e.g., the cycle or stage of the cleaning process and/or anticipated particle size. The filter cartridge is positioned upstream from the pump inlet. A mechanism for diverting flow between filter media is provided. In certain embodiments, the filter cartridge can be removable for servicing.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The subject matter of the present disclosure relates generally to filtration of the wash and/or rinse fluids in a dishwashing appliance.

BACKGROUND OF THE INVENTION

During wash and rinse cycles, dishwashers typically circulate a fluid through a wash chamber over articles such as pots, pans, silverware, and other cooking utensils. The fluid can be e.g., various combinations of water and detergent during the wash cycle or water (which may include additives) during the rinse cycle. Typically the fluid is recirculated during a given cycle using a pump. Fluid is collected at or near the bottom of the wash chamber and pumped back into the chamber through e.g., nozzles in the spray arms and other openings that direct the fluid against the articles to be cleaned or rinsed. Fluids used in e.g., the wash or rinse cycles may be heated. For example, hot water may be supplied to the dishwasher and/or the dishwasher may include one or more heat sources (e.g., electrically-resistant heating elements) for heating fluids used in wash or rinse cycle and for providing heat during a drying cycle.

Depending upon the level of soil upon the articles, fluids used during wash and rinse cycles will become contaminated with soils in the form of debris or particles that are carried with the fluid. In order to protect the pump and recirculate the fluid through the wash chamber, it is beneficial to filter the fluid so that relatively clean fluid is applied to the articles in the wash chamber and materials are removed or reduced from the fluid supplied to the pump.

For mechanical filtration, the selectivity of the filter to remove soil particles of different sizes is typically determined by providing fluid paths (such as pores or apertures) through a filter media that are smaller than the particles for which filtration is desired. Particles having a dimension larger than the width of the fluid paths will be trapped or prevented from passing through the filter while particles smaller than the width of the fluid path will generally pass through. Some particle sizes and/or types may be not harmful to the pump or spray assemblies and, therefore, can be allowed to pass into the pump inlet. However, while some smaller particles may not be harmful to the pump, leaving such particles in the wash or rinse fluid may not be acceptable as these particles may become deposited on the articles being washed/rinsed and thereby affect the user's perception of the cleanliness and/or appearance.

While larger particles can generally be readily removed from the fluid circulated through the wash chamber, challenges are presented in removing smaller particles—particularly as the particle size targeted for removal decreases. For example, if a dishwashing appliance is provided with a fine particle filter—such as one for removing particles 200 microns or larger—the filter can be prone to clogging particularly during the early stages of the cleaning process. During a pre-wash cycle or early stage of a wash cycle, a greater amount of larger food particles may be present on the articles placed in the wash chamber. A fine particle filter—such as one for removing particles 200 microns are larger—may become substantially clogged.

To unclog the filter, a conventional approach has been to drain the dirty fluid from the wash chamber to remove the particles clogging the filter. New—i.e. clean fluid—is then reintroduced for cycling again. Depending on the level of soil still present on the articles, yet another cycle of draining and refilling may have to be repeated. Unfortunately, this run, drain, and refill approach for unclogging a filter is inefficient as it requires the use of additional fluid (i.e. water) and, when the fluid is heated, additional energy is consumed as the fluid is drained and the new water is reheated. Of course, a filter media can be selected that only captures larger particles so that it clogs less, such as e.g., 0.30″ or larger, but this comes at the expense of losing the ability to remove smaller particles from the fluid and an associated effect on the resulting cleanliness of the articles.

Another challenge with filtration of the wash fluid is servicing of the filter and, more particularly, the filter media. Sometimes, for example, food particles can become lodged in the filter requiring that the filter be removed and either manually cleaned or replaced. Certain conventional dishwashing appliances do not have a filter that is readily accessible to the user and/or otherwise readily cleanable or serviceable.

Accordingly, a dishwasher appliance having filtering system for the removal of particles from the wash fluid would be useful. More particularly, a filtering system that can remove both large and fine particles (e.g., 50 to 100 micron or larger) without repeated draining and refilling to unclog the filter would be particularly beneficial. Such a filtering system using a filter that can also be readily accessed and serviced would also be useful.

BRIEF DESCRIPTION OF THE INVENTION

The present invention provides a filtering system for a dishwashing appliance that can remove fine particles from the wash and rinse fluids. A filter cartridge is provided with different filter media for the removal of different particulate sizes depending upon e.g., the cycle or stage of the cleaning process and/or anticipated particle size. The filter cartridge is positioned upstream from the pump inlet. A mechanism for diverting flow between filter media is provided. In certain embodiments, the filter cartridge can be removable for servicing. Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.

In one exemplary embodiment, the present invention provides a dishwashing appliance that includes a wash chamber having a sump portion; at least one spray arm assembly for providing fluid onto articles placed in the wash chamber; a pump in fluid communication with the spray arm assembly, the pump having a pump inlet; and a filter system positioned at the sump portion of the wash chamber. The filter system is in fluid communication with, and upstream from, the pump inlet. The filter system includes a removable filter cartridge having a plurality of filter media positioned about the filter cartridge, each of the filter media configured for removing different sized particulates than the other filter media; a plurality of fluid channels, each fluid channel having a fluid inlet positioned to receive filtered fluid from one of the plurality of filter media, and a fluid outlet positioned downstream of the fluid inlet; and a diverter mechanism positioned downstream of the filter cartridge and upstream of the pump inlet, the diverter mechanism configured to selectively place any one of the fluid outlets of the fluid channels in fluid communication with the pump inlet.

In another exemplary embodiment, the present invention provides a dishwashing appliance that includes a wash chamber having a sump portion. The sump portion includes a filter receptacle having a plurality of openings for the egress of filter fluid. A pump is provided for circulating fluid through the wash chamber, the pump having a pump inlet whereby the pump may receive filtered fluid from the filter receptacle. A filter cartridge is removably received into the filter receptacle. The filter cartridge defines a cylindrically-shaped wall surrounding an internal cavity and defines axial and circumferential directions. The cylindrically-shaped wall includes a plurality of filter media positioned proximate to each other along the circumferential direction. Each of the filter media is configured for removing different sized particulates than the other filter media. Each one of filter media is positioned adjacent to one of the openings of the filter receptacle. A diverter mechanism is positioned downstream of the filter cartridge and upstream of the pump inlet. The diverter mechanism is configured to selectively place any one of the openings of the filter receptacle in fluid communication with the pump inlet.

These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:

FIG. 1 provides a front view of an exemplary dishwashing appliance of the present invention.

FIG. 2 provides a cross-sectional side view of the exemplary dishwashing appliance of FIG. 1 showing components of a wash chamber.

FIG. 3 is a front perspective view of the floor of wash chamber from FIGS. 1 and 2.

FIGS. 4, 5, and 6 provide schematic views of an exemplary diverter mechanism of the present invention.

FIG. 7 provides an exploded view an exemplary filter receptacle and filter of the present invention.

FIG. 8 is a perspective and partial cross-sectional view of the exemplary filter receptacle of FIG. 7.

FIG. 9 is another perspective and partial cross-sectional view of the exemplary filter receptacle of FIG. 7.

FIG. 10 provides a cross-sectional view from the top of the exemplary filter receptacle of FIG. 7.

FIG. 11 is another cross-sectional view of the exemplary filter receptacle of FIG. 7.

DETAILED DESCRIPTION OF THE INVENTION

Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.

As used herein, the term “article” may refer to, but need not be limited to, dishes, pots, pans, silverware, and other cooking utensils and items that can be cleaned in a dishwashing appliance. The term “wash cycle” is intended to refer to one or more periods of time during the cleaning process where a dishwashing appliance operates while containing articles to be washed and uses a detergent and water, preferably with agitation, to e.g., remove soil particles including food and other undesirable elements from the articles. The term “rinse cycle” is intended to refer to one or more periods of time during the cleaning process in which the dishwashing appliance operates to remove residual soil, detergents, and other undesirable elements that were retained by the articles after completion of the wash cycle. The term ‘drying cycle” is intended to refer to one or more periods of time in which the dishwashing appliance is operated to dry the articles by removing fluids from the wash chamber. The term “fluid” refers to a liquid used for washing and/or rinsing the articles and is typically made up of water that may include other additives such as detergent or other treatments.

FIGS. 1 and 2 depict an exemplary domestic dishwasher 100 that may be configured in accordance with aspects of the present disclosure. For the particular embodiment of FIGS. 1 and 2, the dishwasher 100 includes a cabinet 102 having a tub 104 therein that defines a wash chamber 106. The tub 104 includes a front opening (not shown) and a door 120 hinged at its bottom 122 for movement between a normally closed vertical position (shown in FIGS. 1 and 2), wherein the wash chamber 106 is sealed shut for washing operation, and a horizontal open position for loading and unloading of articles from the dishwasher. Latch 123 is used to lock and unlock door 120 for access to chamber 106.

Upper and lower guide rails 124, 126 are mounted on tub side walls 128 and accommodate roller-equipped rack assemblies 130 and 132. Each of the rack assemblies 130, 132 is fabricated into lattice structures including a plurality of elongated members 134 (for clarity of illustration, not all elongated members making up assemblies 130 and 132 are shown in FIG. 2). Each rack 130, 132 is adapted for movement between an extended loading position (not shown) in which the rack is substantially positioned outside the wash chamber 106, and a retracted position (shown in FIGS. 1 and 2) in which the rack is located inside the wash chamber 106. This is facilitated by rollers 135 and 139, for example, mounted onto racks 130 and 132, respectively. A silverware basket (not shown) may be removably attached to rack assembly 132 for placement of silverware, utensils, and the like, that are otherwise too small to be accommodated by the racks 130, 132.

The dishwasher 100 further includes a lower spray-arm assembly 144 that is rotatably mounted within a lower region 146 of the wash chamber 106 and above a tub sump portion 142 so as to rotate in relatively close proximity to rack assembly 132. A mid-level spray-arm assembly 148 is located in an upper region of the wash chamber 106 and may be located in close proximity to upper rack 130. Additionally, an upper spray assembly 150 may be located above the upper rack 130.

The lower and mid-level spray-arm assemblies 144, 148 and the upper spray assembly 150 are part of a fluid circulation assembly 152 for circulating water and dishwasher fluid in the tub 104. The fluid circulation assembly 152 may also include a pump 154 located in a machinery compartment 140 located below the bottom sump portion 142 (i.e. bottom wall) of the tub 104, as generally recognized in the art. Each spray-arm assembly 144, 148 includes an arrangement of discharge ports or orifices for directing washing liquid onto dishes or other articles located in rack assemblies 130 and 132. The arrangement of the discharge ports in spray-arm assemblies 144, 148 provides a rotational force by virtue of washing fluid flowing through the discharge ports. The resultant rotation of the lower spray-arm assembly 144 provides coverage of dishes and other dishwasher contents with a washing spray.

The dishwasher 100 is further equipped with a controller 137 to regulate operation of the dishwasher 100. The controller may include one or more memory devices and one or more microprocessors, such as a general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with a cleaning cycle. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor.

The controller 137 may be positioned in a variety of locations throughout dishwasher 100. In the illustrated embodiment, the controller 137 may be located within a control panel area 121 of door 120 as shown in FIG. 1. In such an embodiment, input/output (“I/O”) signals may be routed between the control system and various operational components of dishwasher 100 along wiring harnesses that may be routed through the bottom 122 of door 120. Typically, the controller 137 includes a user interface panel/controls 136 through which a user may select various operational features and modes and monitor progress of the dishwasher 100. In one embodiment, the user interface 136 may represent a general purpose I/O (“GPIO”) device or functional block. In one embodiment, the user interface 136 may include input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, and touch pads. The user interface 136 may include a display component, such as a digital or analog display device designed to provide operational feedback to a user. The user interface 136 may be in communication with the controller 137 via one or more signal lines or shared communication busses.

It should be appreciated that the invention is not limited to any particular style, model, or configuration of dishwasher. The exemplary embodiment depicted in FIGS. 1 and 2 is for illustrative purposes only. For example, different locations may be provided for user interface 136, different configurations may be provided for racks 130, 132, and other differences may be applied as well.

As shown in FIGS. 2 and 3, an elongated heating element 170 is located in wash chamber 106 and is positioned above sump portion 142. Heating element 170 may be e.g., an electrically resistant heating element such as a type sold under the name CALROD®. Heating element 170 provides heat energy during a wash, rinse, and/or drying cycle to e.g., heat a fluid introduced into wash chamber 106 and/or to assist with drying articles.

Referring now specifically to FIGS. 2, 3, and 4, an exemplary embodiment of a filtering system 200 is located near front 202 and in sump portion 142. As shown, sump portion 142 includes a filter receptacle 204 into which a filter cartridge 206 is removably received. Filter cartridge 206 has a top 208 that the user can grasp to remove filter cartridge 206 from receptacle 204 in sump portion 142 whereby e.g., filter cartridge 206 may be cleaned or replaced. A coarse filter 212 covers a recess 214 in sump portion 142. Filter cartridge 206 can be removed from receptacle 204 by sliding along axial direction A (FIG. 7).

Filtering system 200 removes soiled particles from the fluid that is recirculated through the wash chamber 106 during operation of dishwasher 100. After the fluid is filtered by passing through filter media of filter cartridge 206, it is fed to the inlet 155 of pump 154 for return to the wash chamber 106 by way of fluid recirculation assembly 152. After being sprayed onto articles in the dishwashing appliance using one or more of spray elements 144, 148, and 150, the fluid eventually flows to sump portion 142. Based on the shape of sump portion 142 (see FIG. 2), fluid flows through into an internal chamber 216 of filter cartridge 206 defined by a cylindrically-shaped wall 219 of filter cartridge 206.

FIGS. 4, 5, and 6 provide schematic views of the operation of an exemplary filter system 200 as may be used with system 200 shown in FIGS. 2 and 3. Filter system 200 is in fluid communication with pump inlet 155 and is located upstream of pump inlet 155. As shown by arrows F, fluid can flow from chamber 216 and through one of the plurality of filter media 218, 220, or 222 of filter cartridge 206 whereby particulates are removed from the fluid as will be further described. Although three filter media are shown for this exemplary embodiment, the present invention includes filter systems having 2, 4 or more filter media as well.

After passing through one the filter media 218, 220, or 222, filtered fluid eventually travels to pump inlet 155 to be returned to the wash chamber by pump 154 which is in fluid communication with spray arm assemblies 144 and 148 as previously described. Filtering system 200 acts to clean soil particles from the fluid and protect pump 154 from clogging as the fluid is recirculated during the cleaning process of the dishwashing appliance 100 such as e.g., a wash or rinse cycle of appliance 100.

In order to avoid clogging of filter cartridge 206 during operation of appliance 100, filter system 200 includes a diverter mechanism 224 positioned downstream of the filter cartridge 206 and upstream of pump inlet 155. Diverter mechanism 224 is configured to selectively determine through which of the filter media 218, 220, or 222 the fluid will flow as illustrated by the different fluid paths in FIGS. 4, 5, and 6.

As shown, filter cartridge 206 defines an axial direction A (FIG. 7), radial direction R, and circumferential direction C. Filter media 218, 220, and 222 are positioned proximate or adjacent to each other along circumferential direction C. Each one of the filter media is configured for removing different sized and/or types of particulates than the other filter media.

Filter system 200 also includes a plurality of fluid channels 228, 234, and 240—each with a fluid outlet positioned downstream of a fluid inlet. For example, fluid channel 228 has a fluid inlet 226 and a fluid outlet 230. Fluid channel 234 has a fluid inlet 232 and a fluid outlet 236. Fluid channel 240 has a fluid inlet 238 and a fluid outlet 242.

Each fluid inlet is positioned to receive filtered fluid from one of the plurality of filter media 218, 220, and 222. For example, referring to FIG. 4, fluid inlet 226 of fluid channel 228 is positioned to receive filtered fluid from first filter media 218. Referring to FIG. 5, fluid inlet 232 of fluid channel 234 is positioned to receive filtered fluid from second filter media 220. As shown in FIG. 6, fluid inlet 238 of fluid channel 240 is positioned to receive filtered fluid from third filter media 222.

Diverter mechanism 224 selectively places the fluid outlet of each fluid channel in fluid communication with pump inlet 155 depending upon which filter media is desired for use. FIG. 4 shows a flow of filtered fluid to pump inlet 155 from first filter media 218, FIG. 5 shows a flow of filtered fluid to pump inlet 155 from second filter media 220, and FIG. 6 shows a flow of filtered fluid to pump inlet 155 from third filter media 222.

By choosing the filter media so that each removes different sizes of particles from the fluid, filtering system 200 can be used to adjust the degree of filtration to the amount and size of particles present at different times during the cleaning process. For example, the filter media can be chosen using diverter mechanism 224 such that progressively finer filtration can be used—i.e. filtering of smaller and smaller particles by selecting between filter media 218, 220, and 222—as the cleaning process for articles placed in appliance 100 progresses.

Accordingly, in one exemplary aspect of the present invention, first filter media 218 is configured for removing particles in the size range of about 0.030″ to about 0.060″ or equipped with holes of this size. For example, the filter media may be a screen or mesh having holes in the size range of about 0.030″ to about 0.060″. Second filter media 220 is configured for removing particles in the size range of about 300 micron to about 600 micron or e.g., is equipped with holes of this size. Third filter media 222 is configured for removing particles in the size range of about 50 micron to about 150 micron or equipped with holes of this size. These size ranges are provided by way of example only. Other ranges may be used in certain exemplary embodiments of the invention as well.

By way of example, controller 137 can provide a signal that causes diverter mechanism 224 to place fluid outlet 230 into fluid communication with pump inlet 155 to provide filtered fluid from first filter media 218. Controller 137 then causes appliance 100 to execute a pre-wash cycle where only larger particles are removed (about 0.030″ to about 0.060″ or larger) without necessarily clogging filter cartridge 206. Next, in a main wash cycle, controller 137 provides a signal that causes diverter mechanism 224 to place fluid outlet 236 into fluid communication with pump inlet 155 to provide filtered fluid from second filter media 220 such that smaller particles are removed (about 300 micron to about 600 micron or larger) without necessarily clogging filter cartridge 206. Finally, in a rinse cycle, controller 137 provides a signal that causes diverter mechanism 224 to place fluid outlet 242 into fluid communication with pump inlet 155 to provide filtered fluid from third filter media 222 such that finest of particles are removed (about 50 micron to about 150 micron or larger) while avoiding clogs of filter cartridge 206. Other methods of operation including different steps and cycles may be used with the present invention as well.

Pressure drop in the fluid flowing through filter cartridge 206 is affected by e.g., hole size in the filter media as well as the percent of open area of the filter media. In certain exemplary embodiments of the invention, a percent of open area of about 30 percent may be used. In another embodiment, a percent of open area of about 40 percent may be used. In still another embodiment, a percent of open area of about 50 percent may be used.

Tests were conducted to determine the effect of different filter media on a user's ability to perceive soils or particles on dishes. Soiled dishes were washed with fluid filtration using different media as indicated in Table I below. Three test subjects were asked to evaluate the cleanliness of the dishes based on the grades shown in Table II. The results indicate that users can detect particles as small as 150 microns on dishes and may be able to detect particles smaller than 100 microns on dishes. Accordingly, a filtering system that can remove particles in the range of about 50 micron to about 150 microns without clogging is advantageous.

TABLE I CU Grading for Grits (0, 1, 2) Oper #1 Oper #2 Oper #3 Grit/Sieve Size Dish #1 to 10 Dish #11 to 20 Dish #21 to 30 No soil 0 0 0  45μ 0 0 0  88μ 1 1 0 150μ 1 1 1 250μ 2 2 2

TABLE II # Grades Grits 0 NONE 1 LIGHT 2 HEAVY

FIGS. 7, 8, 9, 10, and 11 provide views of another exemplary embodiment of filter system 200 located upstream of pump inlet 155 and with a diverter mechanism 224. As shown, sump portion 142 of wash chamber 106 includes a filter receptacle 204 having an internal cavity 244 into which filter cartridge 206 is removably received. Filter receptacle 204 defines a plurality of openings 246 and 248 configured to allow fluid to flow from cavity 244, through opening 246 or 248, and through one of the filter media 218 or 220. More specifically, openings 246 and 248 are spaced apart from each other about the filter receptacle 204 with each opening 246 positioned adjacent to filter media 218 and opening 248 positioned adjacent to filter media 220. As previously indicated, the use of only two filter media is by way of example and more than two filter media may be used as well.

Filter system 200 includes fluid channels 228 and 234 positioned about filter cartridge 206 and radially outward thereof. More particularly, for this exemplary embodiment, filter cartridge 206 is cylindrically-shaped as shown in FIG. 7, cavity 206 is also cylindrically-shaped, and fluid channels 228 and 234 are concentric with, and radially outward of, filter cartridge 206. Channel 228 has a fluid inlet 226 and a fluid outlet 230 while channel 234 has a fluid inlet 232 and a fluid outlet 236.

Filter media 218 is positioned at or adjacent to fluid inlet 226 while filter media 220 is positioned at or adjacent to fluid inlet 232. Accordingly, channel 228 provides fluid communication between opening 246 and fluid outlet 230 while channel 234 provides fluid communication between opening 248 and fluid outlet 236.

Diverter mechanism 224 is positioned downstream of filter cartridge 206 and upstream of pump inlet 155. Mechanism 224 is configured to selectively place any one of the openings 246 or 248 into fluid communication with pump inlet 155. More particularly, for this exemplary embodiment, diverter mechanism 224 includes a gate 250 that is slidably received into a slot 252. Gate 250 can move along slot 252 to block the flow of filtered fluid through either fluid channel 228 or fluid channel 234 depending on which filter media 218 of 220 is selected.

For example, in FIGS. 10 and 11, gate 250 is blocking fluid outlet 230 so that fluid flows only from fluid outlet 236 as shown by arrows F. Gate 250 can be operated by e.g., a linear actuator (not shown) connected to shaft 254 so that gate 250 can be manipulated by e.g., controller 137 during various cycles as previously described.

This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims

1. A dishwashing appliance, comprising:

a wash chamber having a sump portion;
at least one spray arm assembly for providing fluid onto articles placed in the wash chamber;
a pump in fluid communication with the spray arm assembly, the pump having a pump inlet;
a filter system positioned at the sump portion of the wash chamber, the filter system and in fluid communication with, and upstream from, the pump inlet, the filter system comprising a removable filter cartridge having a plurality of filter media positioned about the filter cartridge, each of the filter media configured for removing different sized particulates than the other filter media; a plurality of fluid channels, each fluid channel having a fluid inlet positioned to receive filtered fluid from one of the plurality of filter media, and a fluid outlet positioned downstream of the fluid inlet; a diverter mechanism positioned downstream of the filter cartridge and upstream of the pump inlet, the diverter mechanism configured to selectively place any one of the fluid outlets of the fluid channels in fluid communication with the pump inlet.

2. A dishwashing appliance as in claim 1, wherein the filter system further comprises a filter receptacle, the filter receptacle comprising:

a cavity for the removable receipt of the filter cartridge; and
a plurality of openings spaced apart from each other about the filter receptacle, each opening positioned adjacent to one of the filter media and configured to allow fluid to flow from the chamber, through the opening, through the filter media, and into one of the fluid channels.

3. A dishwashing appliance as in claim 2, wherein each filter media of the plurality of filter media is positioned at one of the plurality of openings and one of the fluid inlets of the plurality of fluid channels.

4. A dishwashing appliance as in claim 1, wherein the diverter defines a slot positioned proximate to the outlets of each of the plurality of fluid channels, and wherein the diverter further comprises a gate that is slidably received into the slot and is configured to move along the slot so that the flow of fluid through all but one of the plurality of fluid channels is blocked based on the position of the gate.

5. The dishwashing appliance of claim 1, wherein the plurality of filter media comprises a first filter media, a second filter media, and a third filter media positioned beside each other along a circumferential direction of the filter cartridge.

6. The dishwashing appliance of claim 5, wherein the third filter media is configured for the removal of particles of about 50 microns in size or larger from a fluid circulated through the filter system.

7. The dishwashing appliance of claim 6, wherein the second filter media is configured for the removal of particles of about 300 microns in size or larger from a fluid circulated through the filter system.

8. The dishwashing appliance of claim 7, wherein the first filter media is configured for the removal of particles of about 0.030 inches in size or larger from a fluid circulated through the filter system.

9. The dishwashing appliance of claim 1, wherein the sump portion defines a receptacle into which the filter cartridge is received.

10. A dishwashing appliance, comprising:

a wash chamber having a sump portion, the sump portion including a filter receptacle having a plurality of openings for the egress of filter fluid;
a pump for circulating fluid through the wash chamber, the pump having a pump inlet whereby the pump may receive filtered fluid from the filter receptacle; and
a filter cartridge removably received into the filter receptacle, the filter cartridge defining a cylindrically-shaped wall surrounding an internal cavity and defining axial and circumferential directions, wherein the cylindrically-shaped wall comprises a plurality of filter media positioned proximate to each other along the circumferential direction, each of the filter media configured for removing different sized particulates than the other filter media, each one of filter media positioned adjacent to one of the openings of the filter receptacle; and
a diverter mechanism positioned downstream of the filter cartridge and upstream of the pump inlet, the diverter mechanism configured to selectively place any one of the openings of the filter receptacle in fluid communication with the pump inlet.

11. A dishwashing appliance as in claim 10, further comprising:

a plurality of fluid channels, each fluid channel having a fluid outlet, each fluid channel providing fluid communication between one of the openings of the filter receptacle and the fluid outlet of such fluid channel;
wherein the diverter mechanism is configured to selectively place the fluid outlet of each fluid channel in fluid communication with the pump inlet.

12. A dishwashing appliance as in claim 11, wherein the filter cartridge defines a radial direction, and wherein the fluid channels are positioned radially outward of the filter cartridge.

13. The dishwashing appliance of claim 10, wherein at least one of the filter media is configured for removal of particles of about 50 microns in size and larger.

14. The dishwashing appliance of claim 10, wherein the plurality of filter media comprises a first filter media, a second filter media, and a third filter media positioned beside each other along a circumferential direction of the filter cartridge.

15. The dishwashing appliance of claim 14, wherein the third filter media is configured for the removal of particles of about 50 microns in size and larger from a fluid circulated through the filter cartridge.

16. The dishwashing appliance of claim 15, wherein the second filter media is configured for the removal of particles of about 300 microns in size and larger from a fluid circulated through the filter cartridge.

17. The dishwashing appliance of claim 16, wherein the first filter media is configured for the removal of particles of about 0.030 inches in size and larger from a fluid circulated through the filter cartridge.

18. The dishwashing appliance of claim 10, wherein the filter cartridge is removable from the receptacle by sliding along the axial direction.

19. The dishwashing appliance of claim 10, further comprising a controller configured to cause the diverter mechanism to place any one of the openings of the filter receptacle in fluid communication with the pump inlet based on different portions of a cleaning process of the dishwashing appliance.

20. The dishwashing appliance of claim 10, wherein the plurality of filter media comprises a first filter media, a second filter media, and a third filter media positioned beside each other along a circumferential direction of the filter cartridge; and

wherein the dishwashing appliance further comprises a controller configured for causing the diverter mechanism to place either the first filter media, the second filter media, or the third filter media in fluid communication with the pump inlet at different times during a cleaning process of the dishwashing appliance.
Patent History
Publication number: 20140238447
Type: Application
Filed: Feb 27, 2013
Publication Date: Aug 28, 2014
Applicant: GENERAL ELECTRIC COMPANY (Schenectady, NY)
Inventors: Adam Christopher Hofmann (Louisville, KY), Ramasamy Thiyagarajan (Louisville, KY)
Application Number: 13/778,236
Classifications
Current U.S. Class: By Filter Or Strainer Only (except Work-spraying Head) (134/110)
International Classification: A47L 15/42 (20060101);