COOPERATION OF PLATEN AND PUMP CASSETTE FOR PUMP DEVICE
A pumping mechanism includes a housing containing the pumping mechanism, the housing defining a seat configured to receive a pump cassette having a fluid lumen that can be acted upon by the pumping mechanism so as to pump fluid through the fluid lumen of the pump cassette. A platen pad is movably attached to the housing mechanism, wherein the platen pad can movably adjust in position relative to the pump cassette as the pump cassette is secured in the seat of the housing.
Latest CAREFUSION 303, INC. Patents:
Infusion pump and sensing device systems are widely used in the medical field for infusing a fluid, such as a medication, to a patient in the environment of intensive care units, cardiac care units, operating rooms or trauma centers. Several types of infusion pump systems permit the infusion of several medications using pumps that are modularly coupled to one another, as it may often be necessary to simultaneously infuse into the patient several different kinds of fluids. Some of the several types of fluids, such as drugs, may not be directly compatible with each other and therefore need to be infused into the patient at different points of the body or at different times.
In this regard, there exist modular systems in which pump and monitoring modules can be selectively attached, both physically and electrically, to a central management unit. The central management unit controls the operation of pump modules attached to it, and receives and displays information regarding the pump modules. Each module may include a modular pump that is configured to be removably coupled to a corresponding pump cassette that enables the pumping of fluid. The pump cassette may include a platen portion that is positioned relative to a pump segment of a fluid lumen so act as a platen for pumping of fluid through the fluid lumen. It can be important for the platen portion to be properly positioned relative to the fluid lumen to achieve proper pumping of fluid.
In view of the foregoing, there is a need for infusion pump systems that facilitate the proper positioning and alignment of a pump platen relative to a fluid lumen through which fluid is pumped.
SUMMARYDisclosed is a pump device, comprising: a pumping mechanism; a housing containing the pumping mechanism, the housing defining a seat configured to receive a pump cassette having a fluid lumen that can be acted upon by the pumping mechanism so as to pump fluid through the fluid lumen of the pump cassette; and a platen pad movably attached to the housing mechanism, wherein the platen pad can movably adjust in position relative to the pump cassette as the pump cassette is secured in the seat of the housing.
Further disclosed is a method of coupling a pump cassette with a pump device, comprising: inserting the pump cassette into a seat of the pump device; and closing a door of the pump device to secure the pump cassette in the seat, wherein the door includes a platen pad that adjusts in position relative to the pump as the door is closed.
The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
DETAILED DESCRIPTIONDisclosed is a medical fluid infusion system configured for pumping a fluid to a patient, such as in a hospital environment. The system includes one or more modular pump devices each of which is configured to be removably coupled to a pump cassette. When coupled to one another, the modular pump device and pump cassette can collectively pump a fluid to a patient. The pump cassette is configured to be coupled to the modular pump device such as by inserting the pump cassette into a seat of the pump device.
The pump cassette forms a platen that is coupled mounted to a door of the modular pump device. The door includes a pad that can translate and rotate relative to the pump cassette as the door is closed. This permits the door to automatically adjust in position relative to the pump cassette as the door is closed so that the platen of the pump cassette automatically achieves a proper position relative to a fluid lumen of the pump cassette.
With reference still to
As mentioned, the pump cassette 110 may be particularly adapted for coupling only to a particular type of modular pump device. For example, the pump cassette may be adapted to be coupled only to a modular pump device having a particular type of pumping mechanism (such as a peristaltic pump) or to a pump that pumps a particular type of fluid, such as a particular type of drug.
For such circumstances, an identifier may be associated with the pump cassette wherein the identifier matches with a corresponding or complementary identifier on the particular modular pump device to which the pump cassette matches. The identifier may be any type of identifier that uniquely identifies the pump cassette and that can be associated with a corresponding identifier on the modular pump device. For example, the identifier may be a color code on the pump cassette that is identical to or otherwise matches with a corresponding color code on the modular pump device. Any type of identifier may be used, such as, for example, a symbol, sound, or color. The identifier may be used to, for example, to facilitate quick and accurate installation of the pump cassette into the device.
Any of a variety of structures may be used to form the fluid lumen 205 of the pump cassette 110. For example, with reference to
The fluid lumen 205 has a cross-sectional shape along a plane generally normal to the direction of fluid flow through which fluid can flow. The cross-sectional shape may vary along the interior or exterior of the fluid lumen. For example, the cross-sectional shape may be circular. Or, the cross-sectional shape may be a non-circular shape that facilitates compression of the outer walls of the fluid lumen when a pump mechanism is acting on the fluid lumen. The pump mechanism may achieve pumping through the fluid lumen 205 such as by compressing and/or deforming one or more portions of the fluid lumen to achieve fluid flow through the lumen. The non-circular cross-sectional shape may be, for example, a generally flattened shape, such as oval shape, eye, or diamond shape, that facilitates further flattening of the fluid lumen when a pump mechanism acts on the fluid lumen.
A proximal end of the fluid lumen tubular structure is fluidly and/or mechanically attached to the tube 115, such as via a valve assembly 210. A distal end of the fluid lumen tubular structure is attached to the tube 120, such as via a connector 220. The fluid lumen 205 may also be formed of two or more structures that collectively define the fluid lumen 205 therebetween.
With reference still to
In addition, the relatively rigid structure of the frame 225 can be used to secure the fluid lumen 205 in a fixed position and/or shape relative to the frame 225, such as to eliminate or reduce the risk of the fluid lumen 205 being unintentionally stretched or moved during positioning of the frame 225 into the modular pump device.
As best shown in
With reference again to
In the version of
As mentioned, the pump cassette 110 includes a valve assembly 210. The valve assembly 210 includes a valve coupled to the fluid lumen 205 for controlling fluid flow through the fluid lumen 205. The valve can function in a variety of manners relative to the fluid lumen. For example, the valve can function as a flow stop in that it has an “on” (flow) state that permits flow through the fluid lumen 205 and an “off” (no flow) state that stops or blocks flow through the fluid lumen 205. Or, the valve can function as flow regulator that permits various levels of flow rate through the fluid lumen 205 based upon various, corresponding states of the valve.
In the version shown in
The valve assembly 210 may also functional as a “dial-a-flow.” That is, the valve assembly 210 is able to be utilized to control the flow rate (e.g., mL/hr). For example, the valve handle 250 may have markings that indicate flow rates. A user may actuate the valve handle 250 (e.g., manually or automatically) and indicate the desired flow rate based on the markings/indications on valve handle 250. The valve assembly 210 may be shipped to a customer in a closed or open position based on the customer's desires.
Due to the use of a rotary valve, fluid flow is able to be consistent because it is difficult to unintentionally actuate the rotary valve during use. In contrast, during use, tubing wants to relax to its original form. As such, pinch clamps or roller clamps are unintentionally urged to open up which may unintentionally change flow rate.
The valve assembly 210 may be configured to be actuated to an open position when a pumping mechanism (e.g., pumping fingers) occludes the fluid lumen. For example, the pump cassette may be properly seated in the modular pump device but the valve assembly 210 is not allowed to open because the pumping mechanism is not occluding the fluid lumen. However, once the pumping segment is occluded, the valve assembly 210 is allowed to be actuated into an open position.
With reference to
With reference still to
In the example shown in
With reference to
The platen pad 1005 is disposed on or in the door 720 such that the platen pad 1005 may move relative to the door and relative to the pump cassette 110 seated in the pump device 705. That is, the platen pad 1005 is movably disposed in the door 720 such that the platen pad 1005 may move along an axis parallel and/or normal to the surface 1010 and may also rotate relative to the door. This permits the platen pad 1005 to “give” as a force is exerted onto the platen pad, such as onto the surface 1010. This permissible movement of the platen pad 1005 enables the platen pad 1005 to self-adjust in position relative to the pump cassette 110 as the door 720 so as to achieve an optimal position relative to the pump cassette 110. In this manner, the platen pad 1005 is essentially pliable so that it automatically achieves proper positioning relative to the pump cassette 110 as the door of the pump device is closed.
One or more biasing members, such as springs, may be disposed within the door 720 and coupled to the platen pad 1005 to bias the platen pad toward a certain position. The spring may vary and may be, for example, a non-linear spring. That is, the spring may be “soft” as the door 720 is initially closing. However, as the door 720 is fully seated and locked, the compression force of the spring may increase in order to provide sufficient force for proper seating of the platen pad 1005 relative to the pump cassette 110.
As best shown in
As will be described in more detail below, the actuation of the knob 805 to the locked state also automatically transitions the valve assembly of the pump cassette 110 to the “on” state to permit fluid flow through the pump cassette 110. In addition, actuation of the knob 805 to the unlocked state automatically transitions the valve assembly of the pump cassette 110, when mounted in the modular pump device 705, to the “off” state. This acts as a safeguard to ensure that the valve of the pump cassette is always closed upon removal of the pump cassette from the modular pump device and that the valve opens automatically upon being seated and secured (with the door 720 closed) in the modular pump device 700.
The operation of the knob 805 and its interaction with the pump cassette 110 is now described in more detail with reference to
For example,
The tabs 905 and slots 305 do not have to be initially aligned when the pump cassette is positioned in the seat 700 of the modular pump device 705. Rather, the valve handle 250 may be in any position (open, closed, or between the two) and the tabs 905 will automatically engage the valve handle 250 upon rotation of the knob 805. If not aligned, when the door 720 is closed the tabs 905 will just be pushed inward of the door. When the knob 805 is rotated, the tabs 905 will eventually align with the slots 305 and spring into the slots by virtue of their spring loading. In this manner, the locking of the door 720 will automatically transition the valve assembly to the on position. Likewise, unlocking of the door automatically transition the valve assembly to the off position.
One or more aspects or features of the subject matter described herein may be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations may include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device (e.g., mouse, touch screen, etc.), and at least one output device.
These computer programs, which can also be referred to as programs, software, software applications, applications, components, or code, include machine instructions for a programmable processor, and can be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the term “machine-readable medium” refers to any computer program product, apparatus and/or device, such as for example magnetic discs, optical disks, memory, and Programmable Logic Devices (PLDs), used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor. The machine-readable medium can store such machine instructions non-transitorily, such as for example as would a non-transient solid state memory or a magnetic hard drive or any equivalent storage medium. The machine-readable medium can alternatively or additionally store such machine instructions in a transient manner, such as for example as would a processor cache or other random access memory associated with one or more physical processor cores.
To provide for interaction with a user, the subject matter described herein can be implemented on a computer having a display device, such as for example a cathode ray tube (CRT) or a liquid crystal display (LCD) monitor for displaying information to the user and a keyboard and a pointing device, such as for example a mouse or a trackball, by which the user may provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well. For example, feedback provided to the user can be any form of sensory feedback, such as for example visual feedback, auditory feedback, or tactile feedback; and input from the user may be received in any form, including, but not limited to, acoustic, speech, or tactile input. Other possible input devices include, but are not limited to, touch screens or other touch-sensitive devices such as single or multi-point resistive or capacitive trackpads, voice recognition hardware and software, optical scanners, optical pointers, digital image capture devices and associated interpretation software, and the like.
The subject matter described herein can be embodied in systems, apparatus, methods, and/or articles depending on the desired configuration. The implementations set forth in the foregoing description do not represent all implementations consistent with the subject matter described herein. Instead, they are merely some examples consistent with aspects related to the described subject matter. Although a few variations have been described in detail above, other modifications or additions are possible. In particular, further features and/or variations can be provided in addition to those set forth herein. For example, the implementations described above can be directed to various combinations and subcombinations of the disclosed features and/or combinations and subcombinations of several further features disclosed above. In addition, the logic flow(s) when depicted in the accompanying figures and/or described herein do not necessarily require the particular order shown, or sequential order, to achieve desirable results. Other implementations may be within the scope of the following claims.
Claims
1. A pump device, comprising:
- a pumping mechanism;
- a housing containing the pumping mechanism, the housing defining a seat configured to receive a pump cassette having a fluid lumen that can be acted upon by the pumping mechanism so as to pump fluid through the fluid lumen of the pump cassette;
- a platen pad movably attached to the housing mechanism, wherein the platen pad can movably adjust in position relative to the pump cassette as the pump cassette is secured in the seat of the housing.
2. A pump device as in claim 1, further comprising a door movably attached to the housing, wherein the platen pad is movably mounted in the door.
3. A pump device as in claim 2, wherein the door is rotatably attached to the housing.
4. A pump device as in claim 2, wherein the platen pad is spring-mounted in the door.
5. A pump device as in claim 1, wherein the pump cassette defines a platen.
6. A pump device as in claim 1, wherein the pumping mechanism is a peristaltic pumping mechanism.
7. A pump device as in claim 1, further comprising:
- the pump cassette for coupling with the pump device, the pump cassette comprising: a fluid lumen adapted for passage of an infusion fluid toward a patient; a valve assembly that can be actuated to regulate fluid flow through the fluid lumen; and a frame coupled to the fluid lumen and the valve assembly, the frame adapted to be inserted into a seat of a pump device.
8. A pump device as in claim 2, wherein the door transitions between an open position wherein the seat is exposed for receipt of the pump cassette and a closed position wherein the door secures the pump cassette within the seat.
9. A pump device as in claim 8, further comprising a door actuator configured to transitioned to a locked state that locks the door in the closed position, wherein the door actuator is configured to automatically transition a valve assembly of the pump cassette to the open state when the door actuator is transitioned to the locked state.
10. A pump device as in claim 9, wherein the door actuator automatically transitions the valve assembly to the off state when the door actuator is transitioned to the unlocked state.
11. A device as in claim 7, wherein the pump cassette can only be inserted into the seat when the pump cassette is aligned in a predetermined orientation relative to the seat.
12. A method of coupling a pump cassette with a pump device, comprising:
- inserting the pump cassette into a seat of the pump device;
- closing a door of the pump device to secure the pump cassette in the seat, wherein the door includes a platen pad that adjusts in position relative to the pump as the door is closed.
13. A method as in claim 12, further comprising locking the door, wherein locking the door automatically causes a valve of the pump cassette to open.
14. A method as in claim 12, further comprising unlocking the door, wherein locking the door automatically causes a valve of the pump cassette to close.
15. A method as in claim 12, further comprising activating a pump mechanism of the pump device such that the pump mechanism cooperates with the pump cassette and the platen pad to pump fluid through the pump device.
16. A method as in claim 12, wherein closing the door comprises rotating the door from an open position to a closed position.
17. A method as in claim 12, wherein the pump cassette comprises a fluid lumen adapted for passage of an infusion fluid toward a patient; a valve assembly that can be actuated to regulate fluid flow through the fluid lumen; and a frame coupled to the fluid lumen and the valve assembly, the frame adapted to be inserted into a seat of a pump device.
Type: Application
Filed: Mar 14, 2013
Publication Date: Sep 18, 2014
Applicant: CAREFUSION 303, INC. (San Diego, CA)
Inventors: Chris Zollinger (San Diego, CA), Daniel Abal (San Diego, CA)
Application Number: 13/828,777
International Classification: F04B 43/12 (20060101);