Aluminum Tube-and-Fin Assembly Geometry

- Caterpillar Inc.

A tube-and-fin assembly comprises a generally elliptical, cylindrical, elongated aluminum tube and a plurality of aluminum fins. Each fin extends outward from a side of the tube body to an apex. The aluminum assembly has a ratio of fin height to fin density (Mokire ratio) of between about 0.3200 and about 0.4125. The fin height is about 6.4 mm to about 6.6 mm and the fin density is about 16 to 20 fins per inch (FPI). The fins may be part of a corrugated sheet affixed to either side of the tube. The aluminum assembly achieves heat transfer performance similar to that of copper assemblies while maintaining a similar space claim.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

This disclosure relates generally to tube-and-fin style heat exchangers. More particularly, this disclosure relates to a tube-and-fin style assembly for use in an aluminum grommetted tube (AGT) radiator.

BACKGROUND

Large heavy duty machines such as track-type tractors, loaders, off highway trucks and excavators require large radiators for engine cooling. One common radiator design is the tube-and-fin structure, where numerous tube-and-fin assemblies are mounted to coolant manifolds and arranged in columns and rows. One example of a tube-and-fin assembly is disclosed in U.S. Pat. No. 6,357,513 by L&M Radiator, Inc. (“Support for Heat Exchanger Tubes”). The '513 patent discloses fins fitted to a flattened tube . Copper grommetted tube (CGT) radiators, in which copper tube-and-fin assemblies are secured to a coolant manifold or other radiator component, are expensive, which has led to the development of aluminum grommetted tube (AGT) radiators.

Aluminum is less expensive than copper, but copper has better heat transfer performance. Aluminum is also lighter than copper but not as strong. To compensate for aluminum's relative weakness and reduced heat transfer capability compared to copper, an aluminum grommetted tube radiator requires different geometry. The present disclosure is directed toward providing an aluminum tube-and-fin assembly that delivers the same heat transfer performance as a copper tube-and-fin assembly but maintains a similar space claim (and thus fits within the same space) and so can be used either as original equipment or to replace copper tube-and-fin assemblies in the field.

SUMMARY OF THE DISCLOSURE

In one aspect of the disclosure, an aluminum tube-and-fin assembly is provided having a geometry that delivers the same heat transfer performance as copper tube-and-fin assemblies but maintains a similar space claim. The aluminum fin-and-tube assembly comprises an aluminum tube having a tube body and a plurality of aluminum fins disposed on the body. The Mokire ratio, i.e., the ratio of fin height, expressed in millimeters, to fin density, expressed in fins per inch of the tube, is greater than about 0.3200.

In another aspect of the disclosure an aluminum tube-and-fin assembly for a heat exchanger is provided comprising a generally cylindrical, elongated aluminum tube having a body with flat sides connected by ends and a plurality of aluminum fins extending outward from one or both sides of the tube, each fin terminating in an apex. The assembly has a fin density of about 16 to about 20 FPI and a fin height of about 6.4 to about 6.6 mm.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a tube-and-fin assembly for use in an aluminum grommetted tube radiator;

FIG. 2 is a partial side view of the tube-and-fin assembly of FIG. 1;

FIG. 3 is a partial close up view of the tube-and-fin assembly of FIG. 2; and

FIG. 4 is a partial side view of an alternative embodiment of a tube-and-fin assembly.

DETAILED DESCRIPTION

While a tube-and fin assembly according to this disclosure may be embodied in many forms, there is shown in the drawings and will herein be described in detail one or more embodiments of a tube-and-fin assembly, with the understanding that this disclosure is to be considered an exemplification of the principles of the tube-and-fin assembly and is not intended to limit the tube-and-fin assembly to the illustrated embodiments.

In the description that follows, the following terms are used:

    • Fin height (H) is the distance from the surface of the tube side 18 to the fin apex 32.
    • Fin density (D) is the number of fins 14 per unit length of the tube 12 on each side 18 of the tube 12.
    • Fin thickness (T) is the thickness of the fin wall, e.g., the thickness of the corrugated sheet 30 that forms the fins 14.
    • Mokire ratio (MR) is the ratio of fin height (H), expressed in millimeters, to fin density (D), expressed in fins per inch of the tube 12 on each side 18 of the tube 12.

Turning to the drawings, there is shown in FIG. 1 a perspective view of a tube-and-fin assembly 10 of the kind used in a radiator for a large heavy duty machine. The assembly 10 comprises a tube 12 and a plurality of fins 14.

The tube 12 comprises a generally elliptical, cylindrical and elongated body 16 having flattened sides 18 connected by rounded ends 20 and defining an axis A. The tube 12 may further comprise a generally cylindrical top end 22 and a generally cylindrical bottom end 24 for attachment to coolant manifolds. Each fin 14 extends outward from a side 18 of the body 16. A plastic clip 28 enclosing the fins 14 may connect adjacent tube-and-fin assemblies 10 to each other for improved stability.

The fins 14 may be an indivisible, unitary part of a corrugated sheet 30 affixed to either side 18 of the tube 12. The corrugated sheet 30, and thus the fins 14, may be welded, brazed or otherwise affixed to the sides 18 of the tube 12.

As best shown in FIGS. 2 and 3, each fin 14 extends outward from a side 18 of the tube 12 and terminates in an apex 32. In copper grommetted tube (CGT) assemblies the tube 12 and the fins 14 are both made of copper. CGT assemblies typically have a fin density D of 22 fins per inch (FPI) and a typical fin thickness T of about 0.1 mm. The tube thickness in CGT assemblies is also very small.

The present disclosure describes an aluminum tube-and-fin assembly for an aluminum grommetted tube (AGT) radiator having a geometry that allows the aluminum tube-and-fin assembly to approximate the heat transfer performance of a copper tube-and-fin assembly while maintaining a substantially similar space claim. This has been accomplished by researching and developing an algorithm for determining the fin thickness T, fin density D and fin height H that allows for the aluminum tube-and-fin assembly to have approximately the same heat transfer performance as a copper tube-and-fin assembly while maintaining a substantially similar space claim, despite the decreased heat transfer efficiency of aluminum as compared to copper.

The relationship between fin height (H) and fin density (D) was deemed critical to the success of an aluminum tube-and-fin assembly, so ratio of fin height (H) to fin density (D) (“Mokire ratio”) was developed from the data that accomplished the dual objectives of achieving approximately the same heat transfer performance as a copper tube-and-fin assembly while maintaining a substantially similar space claim.

The following table summarizes the differences between geometry in a copper tube-and-fin assembly and the aluminum tube-and fin assembly of the present disclosure:

Copper tube-and-fin Aluminum tube-and-fin assembly assembly Fin Thickness (T), mm 0.1 0.2 Fin Density (D), fins 22 16-20 per inch Fin Height (H), mm 6.15 6.4 to 6.6 Mokire 0.2795 0.3200 to 0.4125 Ratio (MR) (H/D)

For a typical copper tube-and-fin assembly, fin thickness T is about 0.1 mm, fin density D is about 22 FPI and fin height H is about 6.15 mm.

In an aluminum tube-and-fin assembly according to the present disclosure, the fin thickness (and tube thickness) is increased over that used in a typical copper tube-and-fin assembly because aluminum is weaker than copper and to improve heat transfer performance. Further, to maintain proper airflow around the aluminum fins, fin density is reduced. But since reducing fin density can cause a drop in heat transfer performance, fin height is increased to improve performance.

After research and development, a suitable fin thickness T for an aluminum tube-and-fin assembly was determined to be about 0.2 mm. The fin density D for the aluminum tube-and-fin assembly was determined to be less than or equal to about 20 FPI and as low as about 16 FPI. Fin height H for the aluminum tube-and-fin assembly was determined to be between about 6.4 and about 6.6 mm. The Mokire ratio (MR) was determined to be between about 0.3200 (6.4 mm/20 FPI) and about 0.4125 (6.6 mm/16 FPI). The newly configured aluminum tube-and-fin assembly was determined to come close to matching the heat transfer performance of a copper tube-and-fin assembly while maintaining a substantially similar space claim.

For example, in one example a suitable aluminum tube-and-fin assembly was developed having a fin thickness (T) of 0.2 mm, a fin density (D) of 20 FPI and a fin height (H) of 6.55 mm. The Mokire ration (MR) was 0.3275.

FIG. 4 is a partial side cross-sectional view of an alternative embodiment of a tube-and-fin assembly 40 in which substantially planar fins 42 extend outwardly from a fin base plate 44 adjacent the tube 46. A tube-and-fin geometry similar to that used in the previous embodiment 10 may be used.

INDUSTRIAL APPLICABILITY

The aluminum tube-and-fin assembly described herein is less expensive than traditional copper tube-and-fin assemblies while maintaining similar heat transfer performance and space claim. The aluminum tube-and-fin assembly may be used as a component of large radiators used in heavy duty machines, especially where cost and performance are design factors. The aluminum tube-and-fin assembly 10 may also be used an after-market, drop-in, replacement for existing copper tube-and-fin assemblies.

It is understood that the embodiments of the disclosure described above are only particular examples which serve to illustrate the principles of the disclosure. Modifications and alternative embodiments of the disclosure are contemplated which do not depart from the scope of the disclosure as defined by the foregoing teachings and appended claims. It is intended that the claims cover all such modifications and alternative embodiments that fall within their scope.

Claims

1. An aluminum tube-and-fin assembly for a heat exchanger, the assembly comprising:

an aluminum tube having a body; and
a plurality of aluminum fins disposed on the body;
wherein the Mokire ratio is greater than about 0.3200.

2. The aluminum tube-and-fin assembly of claim 1 wherein:

the Mokire ratio is about 0.3200 to about 0.4125.

3. The aluminum tube-and-fin assembly of claim 1 wherein:

the fin height is about 6.4 mm to about 6.6 mm; and
the fin density is about 16 FPI to about 20 FPI.

4. The aluminum tube-and-fin assembly of claim 1 wherein:

the fin thickness is about 0.2 mm.

5. The aluminum tube-and-fin assembly of claim 1 wherein:

the aluminum tube is a generally cylindrical, elongated structure having a body with flat sides connected by ends; and
each aluminum fin extends outward from a side of the tube and terminates in an apex.

6. The aluminum tube-and-fin assembly of claim 1 wherein:

the fins are an indivisible unitary part of a corrugated sheet affixed to either side of the tube.

7. The aluminum tube-and-fin assembly of claim 1 wherein:

the fins are substantially planar and extend outwardly from the tube.

8. The aluminum tube-and-fin assembly of claim 1 wherein:

the fins are substantially planar and extend outwardly from a fin plate adjacent the tube.

8. The aluminum tube-and-fin assembly of claim 1 wherein:

the Mokire ratio is about 0.3275.

9. The aluminum tube-and-fin assembly of claim 8 wherein:

the fin thickness is about 0.2 mm.

10. The aluminum tube-and-fin assembly of claim 9 wherein:

the aluminum tube is a generally cylindrical, elongated structure having a body with flat sides connected by ends; and
each aluminum fin extends outward from a side of the tube and terminates in an apex.

11. The aluminum tube-and-fin assembly of claim 10 wherein:

the fins are an indivisible unitary part of a corrugated sheet affixed to either side of the tube.

12. An aluminum tube-and-fin assembly for a heat exchanger, the assembly comprising:

a generally cylindrical, elongated aluminum tube having a body with flat sides connected by ends; and
a plurality of aluminum fins, each fin extending outward from a side of the tube to an apex;
wherein the assembly has a fin density of 16 to 20 FPI and a fin height of 6.4 to 6.6 mm.

13. The aluminum tube-and-fin assembly of claim 12 wherein:

the fins have a thickness of about 0.2 mm.

14. The aluminum tube-and-fin assembly of claim 12 wherein:

the fins are an indivisible unitary part of a corrugated sheet affixed to either side of the tube.
Patent History
Publication number: 20140284037
Type: Application
Filed: Mar 20, 2013
Publication Date: Sep 25, 2014
Applicant: Caterpillar Inc. (Peoria, IL)
Inventors: Mahesh Kumar Mokire (Dunlap, IL), Neil Alan Terry (Edelstein, IL), Sudhakara Reddy Gopireddy (Dunlap, IL), Sumeeth Sivangere (Dunlap, IL)
Application Number: 13/847,867
Classifications
Current U.S. Class: Longitudinal Extending (165/183)
International Classification: F28F 1/02 (20060101); F28F 1/10 (20060101);