STORING USER GESTURES IN A USER PROFILE DATA TEMPLATE
Methods and systems for a complete vehicle ecosystem are provided. Specifically, systems that when taken alone, or together, provide an individual or group of individuals with an intuitive and comfortable vehicular environment. The present disclosure includes a system to create, modify, and maintain profiles associated with users. The user profiles are generated based on selectively collecting data associated with the users. Although each user profile may include settings, preferences, habits, and content associated with an individual user and/or vehicle, some user profiles may represent multiple users. These user profiles can change a configuration of a vehicle to match settings for a user, such as a driver and/or passenger. The configurations may also include the recognition of a unique set of gestures for a user. Further, the user profiles can be transferred from vehicle-to-vehicle and/or user-to-user.
Latest Flextronics AP, LLC Patents:
The present application claims the benefits of and priority, under 35 U.S.C. §119(e), to U.S. Provisional Application Ser. Nos. 61/811,981, filed on Apr. 15, 2013, entitled “Functional Specification for a Next Generation Automobile”; 61/865,954, filed on Aug. 14, 2013, entitled “Gesture Control of Vehicle Features”; 61/870,698, filed on Aug. 27, 2013, entitled “Gesture Control and User Profiles Associated with Vehicle Features”; 61/891,217, filed on Oct. 15, 2013, entitled “Gesture Control and User Profiles Associated with Vehicle Features”; 61/904,205, filed on Nov. 14, 2013, entitled “Gesture Control and User Profiles Associated with Vehicle Features”; 61/924,572, filed on Jan. 7, 2014, entitled “Gesture Control and User Profiles Associated with Vehicle Features”; and 61/926,749, filed on Jan. 13, 2014, entitled “Method and System for Providing Infotainment in a Vehicle.” The entire disclosures of the applications listed above are hereby incorporated by reference, in their entirety, for all that they teach and for all purposes.
This application is also related to U.S. patent application Ser. No. 13/420,236, filed on Mar. 14, 2012, entitled, “Configurable Vehicle Console”; Ser. No. 13/420,240, filed on Mar. 14, 2012, entitled “Removable, Configurable Vehicle Console”; Ser. No. 13/462,593, filed on May 2, 2012, entitled “Configurable Dash Display”; Ser. No. 13/462,596, filed on May 2, 2012, entitled “Configurable Heads-Up Dash Display”; Ser. No. 13/679,459, filed on Nov. 16, 2012, entitled “Vehicle Comprising Multi-Operating System” (Attorney Docket No. 6583-228); Ser. No. 13/679,234, filed on Nov. 16, 2012, entitled “Gesture Recognition for On-Board Display” (Attorney Docket No. 6583-229); Ser. No. 13/679,412, filed on Nov. 16, 2012, entitled “Vehicle Application Store for Console” (Attorney Docket No. 6583-230); Ser. No. 13/679,857, filed on Nov. 16, 2012, entitled “Sharing Applications/Media Between Car and Phone (Hydroid)” (Attorney Docket No. 6583-231); Ser. No. 13/679,878, filed on Nov. 16, 2012, entitled “In-Cloud Connection for Car Multimedia” (Attorney Docket No. 6583-232); Ser. No. 13/679,875, filed on Nov. 16, 2012, entitled “Music Streaming” (Attorney Docket No. 6583-233); Ser. No. 13/679,676, filed on Nov. 16, 2012, entitled “Control of Device Features Based on Vehicle State” (Attorney Docket No. 6583-234); Ser. No. 13/678,673, filed on Nov. 16, 2012, entitled “Insurance Tracking” (Attorney Docket No. 6583-235); Ser. No. 13/678,691, filed on Nov. 16, 2012, entitled “Law Breaking/Behavior Sensor” (Attorney Docket No. 6583-236); Ser. No. 13/678,699, filed on Nov. 16, 2012, entitled “Etiquette Suggestion” (Attorney Docket No. 6583-237); Ser. No. 13/678,710, filed on Nov. 16, 2012, entitled “Parking Space Finder Based on Parking Meter Data” (Attorney Docket No. 6583-238); Ser. No. 13/678,722, filed on Nov. 16, 2012, entitled “Parking Meter Expired Alert” (Attorney Docket No. 6583-239); Ser. No. 13/678,726, filed on Nov. 16, 2012, entitled “Object Sensing (Pedestrian Avoidance/Accident Avoidance)” (Attorney Docket No. 6583-240); Ser. No. 13/678,735, filed on Nov. 16, 2012, entitled “Proximity Warning Relative to Other Cars” (Attorney Docket No. 6583-241); Ser. No. 13/678,745, filed on Nov. 16, 2012, entitled “Street Side Sensors” (Attorney Docket No. 6583-242); Ser. No. 13/678,753, filed on Nov. 16, 2012, entitled “Car Location” (Attorney Docket No. 6583-243); Ser. No. 13/679,441, filed on Nov. 16, 2012, entitled “Universal Bus in the Car” (Attorney Docket No. 6583-244); Ser. No. 13/679,864, filed on Nov. 16, 2012, entitled “Mobile Hot Spot/Router/Application Share Site or Network” (Attorney Docket No. 6583-245); Ser. No. 13/679,815, filed on Nov. 16, 2012, entitled “Universal Console Chassis for the Car” (Attorney Docket No. 6583-246); Ser. No. 13/679,476, filed on Nov. 16, 2012, entitled “Vehicle Middleware” (Attorney Docket No. 6583-247); Ser. No. 13/679,306, filed on Nov. 16, 2012, entitled “Method and System for Vehicle Data Collection Regarding Traffic” (Attorney Docket No. 6583-248); Ser. No. 13/679,369, filed on Nov. 16, 2012, entitled “Method and System for Vehicle Data Collection” (Attorney Docket No. 6583-249); Ser. No. 13/679,680, filed on Nov. 16, 2012, entitled “Communications Based on Vehicle Diagnostics and Indications” (Attorney Docket No. 6583-250); Ser. No. 13/679,443, filed on Nov. 16, 2012, entitled “Method and System for Maintaining and Reporting Vehicle Occupant Information” (Attorney Docket No. 6583-251); Ser. No. 13/678,762, filed on Nov. 16, 2012, entitled “Behavioral Tracking and Vehicle Applications” (Attorney Docket No. 6583-252); Ser. No. 13/679,292, filed Nov. 16, 2012, entitled “Branding of Electrically Propelled Vehicles Via the Generation of Specific Operating Output” (Attorney Docket No. 6583-258); Ser. No. 13/679,400, filed Nov. 16, 2012, entitled “Vehicle Climate Control” (Attorney Docket No. 6583-313); Ser. No. 13/840,240, filed on Mar. 15, 2013, entitled “Improvements to Controller Area Network Bus” (Attorney Docket No. 6583-314); Ser. No. 13/678,773, filed on Nov. 16, 2012, entitled “Location Information Exchange Between Vehicle and Device” (Attorney Docket No. 6583-315); Ser. No. 13/679,887, filed on Nov. 16, 2012, entitled “In Car Communication Between Devices” (Attorney Docket No. 6583-316); Ser. No. 13/679,842, filed on Nov. 16, 2012, entitled “Configurable Hardware Unit for Car Systems” (Attorney Docket No. 6583-317); Ser. No. 13/679,204, filed on Nov. 16, 2012, entitled “Feature Recognition for Configuring a Vehicle Console and Associated Devices” (Attorney Docket No. 6583-318); Ser. No. 13/679,350, filed on Nov. 16, 2012, entitled “Configurable Vehicle Console” (Attorney Docket No. 6583-412); Ser. No. 13/679,358, filed on Nov. 16, 2012, entitled “Configurable Dash Display” (Attorney Docket No. 6583-413); Ser. No. 13/679,363, filed on Nov. 16, 2012, entitled “Configurable Heads-Up Dash Display” (Attorney Docket No. 6583-414); and Ser. No. 13/679,368, filed on Nov. 16, 2012, entitled “Removable, Configurable Vehicle Console” (Attorney Docket No. 6583-415). The entire disclosures of the applications listed above are hereby incorporated by reference, in their entirety, for all that they teach and for all purposes.
BACKGROUNDWhether using private, commercial, or public transport, the movement of people and/or cargo has become a major industry. In today's interconnected world, daily travel is essential to engaging in commerce. Commuting to and from work can account for a significant portion of a traveler's day. As a result, vehicle manufacturers have begun to focus on making this commute, and other journeys, more enjoyable.
Currently, vehicle manufacturers attempt to entice travelers to use a specific conveyance based on any number of features. Most of these features focus on vehicle safety or efficiency. From the addition of safety-restraints, air-bags, and warning systems to more efficient engines, motors, and designs, the vehicle industry has worked to appease the supposed needs of the traveler. Recently, however, vehicle manufactures have shifted their focus to user and passenger comfort as a primary concern. Making an individual more comfortable while traveling instills confidence and pleasure in using a given vehicle, increasing an individual's preference for a given manufacturer and/or vehicle type.
One way to instill comfort in a vehicle is to create an environment within the vehicle similar to that of an individual's home. Integrating features in a vehicle that are associated with comfort found in an individual's home can ease a traveler's transition from home to vehicle. Several manufacturers have added comfort features in vehicles such as the following: leather seats, adaptive and/or personal climate control systems, music and media players, ergonomic controls, and, in some cases, Internet connectivity. However, because these manufacturers have added features to a conveyance, they have built comfort around a vehicle and failed to build a vehicle around comfort.
SUMMARYThere is a need for a vehicle ecosystem, which can integrate both physical and mental comforts, while seamlessly communicating with current electronic devices to result in a totally intuitive and immersive user experience. These and other needs are addressed by the various aspects, embodiments, and/or configurations of the present disclosure. Also, while the disclosure is presented in terms of exemplary and optional embodiments, it should be appreciated that individual aspects of the disclosure can be separately claimed.
Embodiments include a method, comprising: receiving information associated with a user; determining whether at least some of the received information qualifies as user profile data; and storing, based at least partially on determining that the at least some of the received information qualifies as user profile data, the user profile data in a profile data memory associated with the user. Aspects of the above method include wherein the information associated with the user includes input received at a device associated with a vehicle. Aspects of the above method include wherein the user profile data includes at least one of vehicle settings, user preferences, user speech, data input at a device associated with a vehicle, and stored information. Aspects of the above method include wherein determining whether at least some of the received information qualifies as user profile data further comprises: referring to rules stored in a memory, wherein the rules include matching information corresponding to user profile data; determining, based at least partially on the rules, whether a match exists between the received information and the matching information corresponding to user profile data; and indicating, when the match exists, that the received information qualifies as user profile data. Aspects of the above method further comprise receiving a request to access the user profile data associated with the user from the profile data memory; determining whether the request is made by an authorized source; and providing access to the user profile data stored in the profile data memory when the request is made by the authorized source. Aspects of the above method further comprise receiving modifying information associated with the user; modifying the user profile data in the profile data memory associated with the user to include the modifying information associated with the user; and storing the modified user profile data in the profile data memory associated with the user. Aspects of the above method include wherein modifying the user profile data includes at least one of overwriting data, deleting data, and adding data. Aspects of the above method include wherein prior to storing the user profile data the method further comprises: determining at least one category associated with information in the user profile data; and selecting, based at least partially on the determined at least one category, a specific data field in the profile data memory for storing the user profile data, wherein the specific data field corresponds to the determined at least one category. Aspects of the above method further comprise recognizing the user via one or more sensors associated with a vehicle; and retrieving, from the profile data memory and based on the recognition, information in the user profile data associated with the user. Aspects of the above method further comprise configuring at least one setting of the vehicle based on the information retrieved from the profile data memory.
Embodiments include a non-transitory computer readable medium having instructions stored thereon that, when executed by a processor, perform operations comprising the above methods. Embodiments include a device, means, and/or system configured to perform the above methods.
Embodiments include a user profile system, comprising: a profile identification module contained in a memory and executed by a processor of the user profile system, the profile identification module configured to receive information associated with a user, determine whether at least some of the received information qualifies as user profile data, and store, based at least partially on determining that the at least some of the received information qualifies as user profile data, the user profile data in a profile data memory associated with the user. Aspects of the above system include wherein the information associated with the user includes input received at a device associated with a vehicle, and wherein the profile identification module is further configured to receive modifying information associated with the user, modify the user profile data in the profile data memory associated with the user to include the modifying information associated with the user, and store the modified user profile data in the profile data memory associated with the user.
Embodiments include a method, comprising: retrieving a vehicle template from a memory, the vehicle template having information corresponding to at least one of a state and an arrangement of a feature associated with a vehicle; adjusting, based at least partially on the information in the vehicle template, the at least one of the state and the arrangement of the feature associated with the vehicle; and storing at least some of the information of the vehicle template in a user profile memory associated with a user of the vehicle. Aspects of the above method include wherein prior to retrieving the vehicle template the method further comprises: detecting the user associated with the vehicle; determining whether the user of the vehicle is authorized to retrieve the vehicle template from a template memory; and providing user access to the vehicle template when it is determined that the user is authorized to retrieve the vehicle template. Aspects of the above method include wherein prior to detecting the user associated with the vehicle, the method further comprises: creating a vehicle template, wherein the vehicle template is created by at least one of a vehicle manufacturer, an agency, and a company; and storing the vehicle template in the template memory. Aspects of the above method further comprise associating the user of the vehicle with the vehicle, wherein the association is at least configured to authorize the user in retrieving the vehicle template. Aspects of the above method further comprise receiving an adjustment input provided by the user of the vehicle, wherein the adjustment input is configured to adjust the at least one of the state and the arrangement of the feature associated with the vehicle, and wherein the adjustment input includes adjustment information different from the information in the vehicle template; determining whether the user is authorized to adjust the at least one of the state and the arrangement of the feature associated with the vehicle; providing an adjustment output when the user is authorized to adjust the at least one of the state and the arrangement of the feature associated with the vehicle; and preventing the adjustment output when the user is not authorized to adjust the at least one of the state and the arrangement of the feature associated with the vehicle. Aspects of the above method include wherein the adjustment input provided by the user includes altering the at least one of the state and the arrangement of the feature associated with the vehicle adjusted based at least partially on the information in the vehicle template. Aspects of the above method further comprise storing adjusted vehicle template information in the user profile associated with the user of the vehicle; transferring the adjusted vehicle template information from a first vehicle to a second vehicle, the second vehicle having at least one feature; and adjusting, based at least partially on the adjusted vehicle template information in the user profile, at least one of a state and an arrangement of the at least one feature of the second vehicle. Aspects of the above method further comprise receiving a vehicle template modification input provided by the user associated with the vehicle; determining whether the vehicle template allows for user modification; providing a vehicle template modification output when the vehicle template allows for user modification; and preventing the vehicle template modification output when the vehicle template does not allow for user modification Aspects of the above method include wherein the memory is located across a communication network separate and apart from the vehicle. Aspects of the above method further comprise transferring the at least some of the information of the vehicle template from the user profile memory to a different vehicle; converting the at least some of the information of the vehicle template to match characteristics associated with the different vehicle; and adjusting, based at least partially on the conversion, at least one of a state and an arrangement of a feature associated with the different vehicle.
Embodiments include a non-transitory computer readable medium having instructions stored thereon that, when executed by a processor, perform operations comprising the above methods. Embodiments include a device, means, and/or system configured to perform the above methods.
Embodiments include a vehicle template control system, comprising: a template module contained in a memory and executed by a processor of the vehicle template control system, the template module configured to create a vehicle template, wherein the vehicle template is created by at least one of a vehicle manufacturer, an agency, and a company, and store the vehicle template in a template memory; and a profile identification module contained in the memory and executed by the processor of the vehicle template control system, the profile identification module configured to retrieve the vehicle template from the template memory, the vehicle template having information corresponding to at least one of a state and an arrangement of a feature associated with a vehicle, adjust, based at least partially on the information in the vehicle template, the at least one of the state and the arrangement of the feature associated with the vehicle, and store at least some of the information of the vehicle template in a user profile memory associated with a user of the vehicle. Aspects of the above system include wherein the profile identification module is further configured to detect the user associated with the vehicle, determine whether the user of the vehicle is authorized to retrieve the vehicle template from the template memory; and wherein the template module is further configured to provide user access to the vehicle template when it is determined that the user is authorized to retrieve the vehicle template.
Embodiments include a method, comprising collecting data associated with a user, wherein the collected data is stored in a user profile memory associated with the user; receiving an input to suspend the collection of data associated with the user; determining at least one condition associated with the input to suspend the collection of data; and suspending the collection of data based at least partially on the input to suspend the collection of data and the at least one condition associated with the input to suspend the collection of data. Aspects of the above method further comprise storing the determined at least one condition associated with the input to suspend the collection of data in a memory apart from the user profile memory; and associating the determined at least one condition with a suspension initiation prompt. Aspects of the above method further comprise detecting the suspension initiation prompt; and prompting, based on detecting the suspension initiation prompt, the user with a selectable suspension option, wherein one option of the selectable suspension option includes suspending the collection of data associated with the user. Aspects of the above method further comprise receiving an input to reinstate the collection of data associated with the user; determining at least one condition associated with the input to reinstate the collection of data; and reinstating the collection of data based at least partially on the input to reinstate the collection of data and the at least one condition associated with the input to reinstate the collection of data. Aspects of the above method further comprise storing the determined at least one condition associated with the input to reinstate the collection of data in a memory apart from the user profile memory; and associating the determined at least one condition associated with the input to reinstate the collection of data with a reinstatement initiation prompt. Aspects of the above method further comprise detecting the reinstatement initiation prompt; and prompting, based on detecting the reinstatement initiation prompt, the user with a selectable reinstatement option, wherein one option of the selectable reinstatement option includes reinstating the collection of data associated with the user. Aspects of the above method include wherein the at least one condition associated with the input to suspend the collection of data includes at least one of a geographical location of the user, a geographical location of a vehicle associated with the user, a keyword spoken by the user, a gesture made by the user, and an indication provided by a member of a group in the vehicle. Aspects of the above method include wherein the input to suspend the collection of data associated with the user is received in response to detecting a change in a personality associated with the user. Aspects of the above method include wherein suspending the collection of data suspends the collection of data associated with a first user personality of the user and in response to detecting the change in the personality associated with the user the method further comprises collecting data associated with the user in a second user personality different from the first user personality.
Embodiments include a non-transitory computer readable medium having instructions stored thereon that, when executed by a processor, perform operations comprising the above methods. Embodiments include a device, means, and/or system configured to perform the above methods.
Embodiments include a user profile system, comprising: a profile identification module contained in a memory and executed by a processor of the user profile system, the profile identification module configured to collect data associated with a user, wherein the collected data is stored in a user profile memory associated with the user, receive an input to suspend the collection of data associated with the user, determine at least one condition associated with the input to suspend the collection of data, and suspend the collection of data based at least partially on the input to suspend the collection of data and the at least one condition associated with the input to suspend the collection of data. Aspects of the above system include wherein the input to suspend the collection of data associated with the user is received in response to detecting a change in a personality associated with the user, wherein suspending the collection of data suspends the collection of data associated with a first user personality of the user and in response to detecting the change in the personality associated with the user the method further comprises collecting data associated with the user in a second user personality different from the first user personality.
Embodiments include a method, comprising: referring to a user profile memory associated with a user for gesture information; determining that the gesture information includes at least one custom gesture, wherein the at least one custom gesture is associated with a vehicle feature function; determining whether a capability of a vehicle associated with the user includes the vehicle feature function; and mapping, in response to determining that the capability of the vehicle includes the vehicle feature function, the custom gesture with the vehicle feature function of the vehicle. Aspects of the above method further comprise associating the mapped custom gesture with the user of the vehicle; and storing the mapped custom gesture in the user profile memory. Aspects of the above method further comprise recognizing the user of the vehicle via at least one recognition sensor associated with the vehicle; providing, in response to recognizing the user, access to the stored mapped custom gesture; and manipulating the vehicle feature function of the vehicle in response to receiving the custom gesture provided by the user inside the vehicle. Aspects of the above method further comprise determining that the capability of the vehicle lacks the vehicle feature function; and sending a message to the user of the vehicle corresponding to the lack of the vehicle feature function. Aspects of the above method include wherein determining whether the capability of the vehicle associated with the user includes the vehicle feature function further comprises: determining an identification type of the vehicle; referring to a memory having stored thereon at least one vehicle feature associated with the identification type of the vehicle; and determining whether a match exists between the vehicle feature function and the at least one vehicle feature. Aspects of the above method include wherein the identification type includes at least one of a vehicle manufacturer, make, year, and model. Aspects of the above method further comprise determining, when the match exists, whether the matched at least one vehicle feature is associated with an authorization lock, wherein the authorization lock prevents an unauthorized user from accessing the matched at least one vehicle feature, and wherein the authorization lock grants an authorized user access to the matched at least one vehicle feature. Aspects of the above method further comprise determining, when the matched at least one vehicle feature is associated with the authorization lock, whether the user is the authorized user. Aspects of the above method include wherein determining whether the user is the authorized user, further comprises: referring to an authorization memory having authorizing information configured to identify at least one authorized user. Aspects of the above method include wherein the custom gesture is stored in a memory of the vehicle.
Embodiments include a non-transitory computer readable medium having instructions stored thereon that, when executed by a processor, perform operations comprising the above methods. Embodiments include a device, means, and/or system configured to perform the above methods.
Embodiments include a vehicle control system, comprising: a profile identification module contained in a memory and executed by a processor of the vehicle control system, the profile identification module configured to refer to a user profile memory associated with a user for gesture information, determine that the gesture information includes at least one custom gesture, wherein the at least one custom gesture is associated with a vehicle feature function, determine whether a capability of a vehicle associated with the user includes the vehicle feature function, and map, in response to determining that the capability of the vehicle includes the vehicle feature function, the custom gesture with the vehicle feature function of the vehicle. Aspects of the above system include wherein the profile identification module is further configured to associate the mapped custom gesture with the user of the vehicle, and store the mapped custom gesture in the user profile memory.
Embodiments include a method, comprising: determining at least one contact in a social connection associated with a user of a vehicle; retrieving, based on the determined at least one contact, image information associated with the at least one contact from an image data source; and storing the retrieved image information in a memory associated with the vehicle. Aspects of the above method include wherein the image data source is a social networking site. Aspects of the above method include wherein the image information includes at least one identifying characteristic of the at least one contact. Aspects of the above method further comprise detecting a person via at least one image sensor associated with the vehicle; identifying facial features associated with the person detected via the at least one sensor; and determining whether the identified facial features associated with the person match the at least one identifying characteristic of the at least one contact in the image information. Aspects of the above method include wherein identifying the facial features associated with the person further comprises: determining a measurement between at least one eye, eyebrow, nose, mouth, lip, chin, ear, and distinguishing facial mark, of the person. Aspects of the above method include wherein the identified facial features are determined not to match the at least one identifying characteristic of the at least one contact, the method further comprising: determining to store information associated with the person in a recognition memory, wherein the information includes at least one of a geographical location of the person, a time of detecting the person, and the facial features of the person. Aspects of the above method include wherein the identified facial features are determined to match the at least one identifying characteristic of the at least one contact, the method further comprising: providing, an output to the user of the vehicle based on the determined match, wherein the output is configured to present an identification of the person to the user. Aspects of the above method include wherein the output is provided to a display device of the vehicle, and wherein the identification of the person includes a name of the person and a relationship associated with the social connection. Aspects of the above method include wherein the person detected is inside the vehicle and wherein the identified facial features are determined to match the at least one identifying characteristic of the at least one contact, the method further comprising: determining at least one vehicle setting associated with the person detected inside the vehicle; and storing the determined at least one vehicle setting associated with the person in the memory associated with the vehicle. Aspects of the above method include wherein the person detected is inside the vehicle and wherein the identified facial features are determined not to match the at least one identifying characteristic of the at least one contact, the method further comprising: prompting the person for identification information; receiving identification information provided by the person; and storing the received identification information the memory associated with the vehicle.
Embodiments include a non-transitory computer readable medium having instructions stored thereon that, when executed by a processor, perform operations comprising the above methods. Embodiments include a device, means, and/or system configured to perform the above methods.
Embodiments include a vehicle control system, comprising: a facial recognition module contained in a memory and executed by a processor of the vehicle control system, the facial recognition module configured to determine at least one contact in a social connection associated with a user of a vehicle, retrieve, based on the determined at least one contact, image information associated with the at least one contact from an image data source, wherein the image information includes at least one identifying characteristic of the at least one contact, store the retrieved image information in a memory associated with the vehicle, detect a person via at least one image sensor associated with the vehicle, identify facial features associated with the person detected via the at least one sensor, determine whether the identified facial features associated with the person match the at least one identifying characteristic of the at least one contact in the image information, and when the identified facial features are determined to match the at least one identifying characteristic of the at least one contact, provide, an output to the user of the vehicle based on the determined match, wherein the output is configured to present an identification of the person to the user.
The present disclosure can provide a number of advantages depending on the particular aspect, embodiment, and/or configuration. One advantage includes the creation and maintenance of user profiles associated with users of a vehicle. Among other things, the user profiles can act as a repository for user information. This user information can be used by any number of entities and/or devices in tracking a user, providing an output, manipulating controls of a vehicle, and/or creating custom control interfaces (e.g., gestures, etc.). The user profile may be transferred between at least one of vehicles, users, companies, groups, etc., and combinations thereof. Another advantage includes providing standard vehicle templates for use by a user in a vehicle. The vehicle templates can allow for a setup and configuration of a vehicle based on information in the vehicle template. At least one benefit of using vehicle templates is that users can move from vehicle to vehicle and be presented with the same, or similar, configuration based on the vehicle template. These and other advantages will be apparent from the disclosure.
The phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.
The term “automatic” and variations thereof, as used herein, refer to any process or operation done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before the performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be “material.”
The term “automotive navigation system” can refer to a satellite navigation system designed for use in vehicles. It typically uses a GPS navigation device to acquire position data to locate the user on a road in the unit's map database. Using the road database, the unit can give directions to other locations along roads also in its database. Dead reckoning using distance data from sensors attached to the drivetrain, a gyroscope and an accelerometer can be used for greater reliability, as GPS signal loss and/or multipath can occur due to urban canyons or tunnels.
The term “bus” and variations thereof, as used herein, can refer to a subsystem that transfers information and/or data between various components. A bus generally refers to the collection communication hardware interface, interconnects, bus architecture, standard, and/or protocol defining the communication scheme for a communication system and/or communication network. A bus may also refer to a part of a communication hardware that interfaces the communication hardware with the interconnects that connect to other components of the corresponding communication network. The bus may be for a wired network, such as a physical bus, or wireless network, such as part of an antenna or hardware that couples the communication hardware with the antenna. A bus architecture supports a defined format in which information and/or data is arranged when sent and received through a communication network. A protocol may define the format and rules of communication of a bus architecture.
The terms “communication device,” “smartphone,” and “mobile device,” and variations thereof, as used herein, can be used interchangeably and may include any type of device capable of communicating with one or more of another device and/or across a communications network, via a communications protocol, and the like. Exemplary communication devices may include but are not limited to smartphones, handheld computers, laptops, netbooks, notebook computers, subnotebooks, tablet computers, scanners, portable gaming devices, phones, pagers, GPS modules, portable music players, and other Internet-enabled and/or network-connected devices.
A “communication modality” can refer to any protocol- or standard defined or specific communication session or interaction, such as Voice-Over-Internet-Protocol (“VoIP), cellular communications (e.g., IS-95, 1G, 2G, 3G, 3.5G, 4G, 4G/IMT-Advanced standards, 3GPP, WIMAX™, GSM, CDMA, CDMA2000, EDGE, 1xEVDO, iDEN, GPRS, HSPDA, TDMA, UMA, UMTS, ITU-R, and 5G), Bluetooth™, text or instant messaging (e.g., AIM, Blauk, eBuddy, Gadu-Gadu, IBM Lotus Sametime, ICQ, iMessage, IMVU, Lync, MXit, Paltalk, Skype, Tencent QQ, Windows Live Messenger™ or MSN Messenger™, Wireclub, Xfire, and Yahoo! Messenger™), email, Twitter (e.g., tweeting), Digital Service Protocol (DSP), and the like.
The term “communication system” or “communication network” and variations thereof, as used herein, can refer to a collection of communication components capable of one or more of transmission, relay, interconnect, control, or otherwise manipulate information or data from at least one transmitter to at least one receiver. As such, the communication may include a range of systems supporting point-to-point or broadcasting of the information or data. A communication system may refer to the collection individual communication hardware as well as the interconnects associated with and connecting the individual communication hardware. Communication hardware may refer to dedicated communication hardware or may refer a processor coupled with a communication means (i.e., an antenna) and running software capable of using the communication means to send and/or receive a signal within the communication system. Interconnect refers some type of wired or wireless communication link that connects various components, such as communication hardware, within a communication system. A communication network may refer to a specific setup of a communication system with the collection of individual communication hardware and interconnects having some definable network topography. A communication network may include wired and/or wireless network having a pre-set to an ad hoc network structure.
The term “computer-readable medium,” as used herein refers to any tangible storage and/or transmission medium that participates in providing instructions to a processor for execution. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, non-volatile random access memory (NVRAM), or magnetic or optical disks. Volatile media includes dynamic memory, such as main memory. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, magneto-optical medium, a compact disc read only memory (CD-ROM), any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a random access memory (RAM), a programmable read only memory (PROM), and erasable programmable read only memory EPROM, a FLASH-EPROM, a solid state medium like a memory card, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read. A digital file attachment to an e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. When the computer-readable media is configured as a database, it is to be understood that the database may be any type of database, such as relational, hierarchical, object-oriented, and/or the like. Accordingly, the disclosure is considered to include a tangible storage medium or distribution medium and prior art-recognized equivalents and successor media, in which the software implementations of the present disclosure are stored. It should be noted that any computer readable medium that is not a signal transmission may be considered non-transitory.
The terms dash and dashboard and variations thereof, as used herein, may be used interchangeably and can be any panel and/or area of a vehicle disposed adjacent to an operator, user, and/or passenger. Dashboards may include, but are not limited to, one or more control panel(s), instrument housing(s), head unit(s), indicator(s), gauge(s), meter(s), light(s), audio equipment, computer(s), screen(s), display(s), HUD unit(s), and graphical user interface(s).
The term “module” as used herein refers to any known or later developed hardware, software, firmware, artificial intelligence, fuzzy logic, or combination of hardware and software that is capable of performing the functionality associated with that element.
The term “desktop” refers to a metaphor used to portray systems. A desktop is generally considered a “surface” that may include pictures, called icons, widgets, folders, etc. that can activate and/or show applications, windows, cabinets, files, folders, documents, and other graphical items. The icons are generally selectable to initiate a task through user interface interaction to allow a user to execute applications and/or conduct other operations.
The term “display” refers to a portion of a physical screen used to display the output of a computer to a user.
The term “displayed image” refers to an image produced on the display. A typical displayed image is a window or desktop. The displayed image may occupy all or a portion of the display.
The term “display orientation” refers to the way in which a rectangular display is oriented for viewing. The two most common types of display orientations are portrait and landscape. In landscape mode, the display is oriented such that the width of the display is greater than the height of the display (such as a 4:3 ratio, which is 4 units wide and 3 units tall, or a 16:9 ratio, which is 16 units wide and 9 units tall). Stated differently, the longer dimension of the display is oriented substantially horizontal in landscape mode while the shorter dimension of the display is oriented substantially vertical. In the portrait mode, by contrast, the display is oriented such that the width of the display is less than the height of the display. Stated differently, the shorter dimension of the display is oriented substantially horizontal in the portrait mode while the longer dimension of the display is oriented substantially vertical. A multi-screen display can have one composite display that encompasses all the screens. The composite display can have different display characteristics based on the various orientations of the device.
The term “electronic address” can refer to any contactable address, including a telephone number, instant message handle, e-mail address, Uniform Resource Locator (“URL”), Global Universal Identifier (“GUID”), Universal Resource Identifier (“URI”), Address of Record (“AOR”), electronic alias in a database, etc., combinations thereof.
The term “gesture” refers to a user action that expresses an intended idea, action, meaning, result, and/or outcome. The user action can include manipulating a device (e.g., opening or closing a device, changing a device orientation, moving a trackball or wheel, etc.), movement of a body part in relation to the device, movement of an implement or tool in relation to the device, audio inputs, etc. A gesture may be made on a device (such as on the screen) or with the device to interact with the device.
The term “gesture capture” refers to a sense or otherwise a detection of an instance and/or type of user gesture. The gesture capture can be received by sensors in three-dimensional space. Further, the gesture capture can occur in one or more areas of a screen, for example, on a touch-sensitive display or a gesture capture region. A gesture region can be on the display, where it may be referred to as a touch sensitive display, or off the display, where it may be referred to as a gesture capture area.
The terms “infotainment” and “infotainment system” may be used interchangeably and can refer to the hardware/software products, data, content, information, and/or systems, which can be built into or added to vehicles to enhance driver and/or passenger experience. Infotainment may provide media and/or multimedia content. An example is information-based media content or programming that also includes entertainment content.
A “multi-screen application” refers to an application that is capable of producing one or more windows that may simultaneously occupy one or more screens. A multi-screen application commonly can operate in single-screen mode in which one or more windows of the application are displayed only on one screen or in multi-screen mode in which one or more windows are displayed simultaneously on multiple screens.
A “single-screen application” refers to an application that is capable of producing one or more windows that may occupy only a single screen at a time.
The terms “online community,” “e-community,” or “virtual community” can mean a group of people that interact via a computer network, for social, professional, educational, and/or other purposes. The interaction can use a variety of media formats, including wikis, blogs, chat rooms, Internet forums, instant messaging, email, and other forms of electronic media. Many media formats may be used in social software separately and/or in combination, including text-based chat rooms and forums that use voice, video text or avatars.
The term “satellite positioning system receiver” can refer to a wireless receiver or transceiver to receive and/or send location signals from and/or to a satellite positioning system (SPS), such as the Global Positioning System (“GPS”) (US), GLONASS (Russia), Galileo positioning system (EU), Compass navigation system (China), and Regional Navigational Satellite System (India).
The term “social network service” may include a service provider that builds online communities of people, who share interests and/or activities, or who are interested in exploring the interests and/or activities of others. Social network services can be network-based and may provide a variety of ways for users to interact, such as e-mail and instant messaging services.
The term “social network” can refer to a network-based social network.
The term “screen,” “touch screen,” “touchscreen,” or “touch-sensitive display” refers to a physical structure that enables the user to interact with the computer by touching areas on the screen and provides information to a user through a display. The touch screen may sense user contact in a number of different ways, such as by a change in an electrical parameter (e.g., resistance or capacitance), acoustic wave variations, infrared radiation proximity detection, light variation detection, and the like. In a resistive touch screen, for example, normally separated conductive and resistive metallic layers in the screen pass an electrical current. When a user touches the screen, the two layers make contact in the contacted location, whereby a change in electrical field is noted and the coordinates of the contacted location calculated. In a capacitive touch screen, a capacitive layer stores electrical charge, which is discharged to the user upon contact with the touch screen, causing a decrease in the charge of the capacitive layer. The decrease is measured, and the contacted location coordinates determined. In a surface acoustic wave touch screen, an acoustic wave is transmitted through the screen, and the acoustic wave is disturbed by user contact. A receiving transducer detects the user contact instance and determines the contacted location coordinates.
The term “window” refers to a, typically rectangular, displayed image on at least part of a display that contains or provides content different from the rest of the screen. The window may obscure the desktop. The dimensions and orientation of the window may be configurable either by another module or by a user. When the window is expanded, the window can occupy substantially all of the display space on a screen or screens.
The terms “determine,” “calculate,” and “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation, or technique.
It shall be understood that the term “means,” as used herein, shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112, Paragraph 6 or other applicable law. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the invention, brief description of the drawings, detailed description, abstract, and claims themselves.
The terms “vehicle,” “car,” “automobile,” and variations thereof may be used interchangeably herein and can refer to a device or structure for transporting animate and/or inanimate or tangible objects (e.g., persons and/or things), such as a self-propelled conveyance. A vehicle as used herein can include any conveyance or model of a conveyance, where the conveyance was originally designed for the purpose of moving one or more tangible objects, such as people, animals, cargo, and the like. The term “vehicle” does not require that a conveyance moves or is capable of movement. Typical vehicles may include but are in no way limited to cars, trucks, motorcycles, busses, automobiles, trains, railed conveyances, boats, ships, marine conveyances, submarine conveyances, airplanes, space craft, flying machines, human-powered conveyances, and the like.
The term “profile,” as used herein, can refer to any data structure, data store, and/or database that includes one or more items of information associated with a vehicle, a vehicle system, a device (e.g., a mobile device, laptop, mobile phone, etc.), or a person.
The term “in communication with,” as used herein, refers to any coupling, connection, or interaction using electrical signals to exchange information or data, using any system, hardware, software, protocol, or format, regardless of whether the exchange occurs wirelessly or over a wired connection.
The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and/or configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and/or configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference letter or label.
DETAILED DESCRIPTIONPresented herein are embodiments of systems, devices, processes, data structures, user interfaces, etc. The embodiments may relate to an automobile and/or an automobile environment. The automobile environment can include systems associated with the automobile and devices or other systems in communication with the automobile and/or automobile systems. Furthermore, the systems can relate to communications systems and/or devices and may be capable of communicating with other devices and/or to an individual or group of individuals. Further, the systems can receive user input in unique ways. The overall design and functionality of the systems provide for an enhanced user experience making the automobile more useful and more efficient. As described herein, the automobile systems may be electrical, mechanical, electro-mechanical, software-based, and/or combinations thereof.
A vehicle environment 100 that may contain a vehicle ecosystem is shown in
A second zone 112 may be delineated by line 120. The zone 112 is created by a range of one or more sensors associated with the vehicle 104. Thus, the area 112 is exemplary of the range of those sensors and what can be detected by those sensors associated with the vehicle 104. Although sensor range is shown as a fixed and continuous oval, the sensor range may be dynamic and/or discontinuous. For example, a ranging sensor (e.g., radar, lidar, ladar, etc.) may provide a variable range depending on output power, signal characteristics, or environmental conditions (e.g., rain, fog, clear, etc.). The rest of the environment includes all space beyond the range of the sensors and is represented by space 116. Thus, the environment 100 may have an area 116 that includes all areas beyond the sensor range 112. The area 116 may include locations of travel that the vehicle 104 may proceed to in the future.
An embodiment of a vehicle system 200 is shown in
The vehicle control system 204 may interact with a memory or storage system 208 that stores system data. System data 208 may be any type of data needed for the vehicle control system 204 to control effectively the vehicle 104. The system data 208 can represent any type of database or other storage system. Thus, the system data 208 can be a flat file data system, an object-oriented data system, or some other data system that may interface with the vehicle control system 204.
The vehicle control system 204 may communicate with a device or user interface 212, 248. The user interface 212, 248 may be operable to receive user input either through touch input, on one or more user interface buttons, via voice command, via one or more image sensors, or through a graphical user interface that may include a gesture capture region, as described in conjunction with the other figures provided herein. Further, the symbol 212, 248 can represent a device that is located or associated with the vehicle 104. The device 212, 248 can be a mobile device, including, but not limited to, a mobile telephone, a mobile computer, or other type of computing system or device that is either permanently located in or temporarily associated with, but not necessarily connected to, the vehicle 104. Thus, the vehicle control system 204 can interface with the device 212, 248 and leverage the device's computing capability to provide one or more of the features or functions as described herein.
The device or user interface 212, 248 can receive input or provide information to a user 216. The user 216 may thus interact with the vehicle control system 204 through the interface or device 212, 248. Further, the device 212, 248 may include or have access to device data 220 and/or profile data 252. The device data 220 can be any type of data that is used in conjunction with the device 212, 248 including, but not limited to, multimedia data, preferences data, device identification information, or other types of data. The profile data 252 can be any type of data associated with at least one user 216 including, but in no way limited to, bioinformatics, medical information, driving history, personal information (e.g., home physical address, business physical address, contact addresses, likes, dislikes, hobbies, size, weight, occupation, business contacts—including physical and/or electronic addresses, personal contacts—including physical and/or electronic addresses, family members, and personal information related thereto, etc.), other user characteristics, advertising information, user settings and feature preferences, travel information, associated vehicle preferences, communication preferences, historical information (e.g., including historical, current, and/or future travel destinations), Internet browsing history, or other types of data. In any event, the data may be stored as device data 220 and/or profile data 252 in a storage system similar to that described in conjunction with
As an example, the profile data 252 may include one or more user profiles. User profiles may be generated based on data gathered from one or more of vehicle preferences (e.g., seat settings, HVAC settings, dash configurations, and the like), recorded settings, geographic location information (e.g., provided by a satellite positioning system (e.g., GPS), Wi-Fi hotspot, cell tower data, etc.), mobile device information (such as mobile device electronic addresses, Internet browsing history and content, application store selections, user settings and enabled and disabled features, and the like), private information (such as user information from a social network, user presence information, user business account, and the like), secure data, biometric information, audio information from on board microphones, video information from on board cameras, Internet browsing history and browsed content using an on board computer and/or the local area network enabled by the vehicle 104, geographic location information (e.g., a vendor storefront, roadway name, city name, etc.), and the like.
The profile data 252 may include one or more user accounts. User accounts may include access and permissions to one or more settings and/or feature preferences associated with the vehicle 104, communications, infotainment, content, etc. In one example, a user account may allow access to certain settings for a particular user, while another user account may deny access to the settings for another user, and vice versa. The access controlled by the user account may be based on at least one of a user account priority, role, permission, age, family status, a group priority (e.g., the user account priority of one or more users, etc.), a group age (e.g., the average age of users in the group, a minimum age of the users in the group, a maximum age of the users in the group, and/or combinations thereof, etc.).
For example, a user 216 may be allowed to purchase applications (e.g., software, etc.) for the vehicle 104 and/or a device associated with the vehicle 104 based on information associated with the user account. This user account information may include a preferred payment method, permissions, and/or other account information. As provided herein, the user account information may be part of the user profile and/or other data stored in the profile data 252.
As another example, an adult user (e.g., a user with an age of 18 years old and/or over, etc.) may be located in an area of a vehicle 104, such as a rear passenger area. Continuing this example a child user (e.g., a user with an age of 17 years old and/or less, etc.) may be located in the same, or close, area. In this example, the user account information in the profile data 252 associated with both the adult user and the child user may be used by the vehicle 104 in determining whether content is appropriate for the area given the age of the child user. For instance, a graphic movie containing violence (e.g., a movie associated with a mature rating, such as a Motion Picture Association of America (MPAA) rating of “R,” “NC-17,” etc.) may be suitable to present to a display device associated with the adult user but may not be acceptable to present to the display device if a 12-year old child user may see and/or hear the content of the movie.
The vehicle control system 204 may also communicate with or through a communication network 224. The communication network 224 can represent any type of wireless and/or wired communication system that may be included within the vehicle 104 or operable to communicate outside the vehicle 104. Thus, the communication network 224 can include a local area communication capability and a wide area communication capability. For example, the communication network 224 can include a Bluetooth® wireless system, an 802.11x (e.g., 802.11G/802.11N/802.11AC, or the like, wireless system), a CAN bus, an Ethernet network within the vehicle 104, or other types of communication networks that may function with or be associated with the vehicle 104. Further, the communication network 224 can also include wide area communication capabilities, including one or more of, but not limited to, a cellular communication capability, satellite telephone communication capability, a wireless wide area network communication capability, or other types of communication capabilities that allow for the vehicle control system 204 to communicate outside the vehicle 104.
The vehicle control system 204 may communicate through the communication network 224 to a server 228 that may be located in a facility that is not within physical proximity to the vehicle 104. Thus, the server 228 may represent a cloud computing system or cloud storage that allows the vehicle control system 204 to either gain access to further computing capabilities or to storage at a location outside of the vehicle 104. The server 228 can include a computer processor and memory and be similar to any computing system as understood to one skilled in the art.
Further, the server 228 may be associated with stored data 232. The stored data 232 may be stored in any system or by any method, as described in conjunction with system data 208, device data 220, and/or profile data 252. The stored data 232 can include information that may be associated with one or more users 216 or associated with one or more vehicles 104. The stored data 232, being stored in a cloud or in a distant facility, may be exchanged among vehicles 104 or may be used by a user 216 in different locations or with different vehicles 104. Additionally or alternatively, the server may be associated with profile data 252 as provided herein. It is anticipated that the profile data 252 may be accessed across the communication network 224 by one or more components of the system 200. Similar to the stored data 232, the profile data 252, being stored in a cloud or in a distant facility, may be exchanged among vehicles 104 or may be used by a user 216 in different locations or with different vehicles 104.
The vehicle control system 204 may also communicate with one or more sensors 236, 242, which are either associated with the vehicle 104 or communicate with the vehicle 104. Vehicle sensors 242 may include one or more sensors for providing information to the vehicle control system 204 that determine or provide information about the environment 100 in which the vehicle 104 is operating. Embodiments of these sensors may be as described in conjunction with
The various sensors 236, 242 may include one or more sensor memory 244. Embodiments of the sensor memory 244 may be configured to store data collected by the sensors 236, 242. For example, a temperature sensor may collect temperature data associated with a vehicle 104, user 216, and/or environment, over time. The temperature data may be collected incrementally, in response to a condition, or at specific time periods. In this example, as the temperature data is collected, it may be stored in the sensor memory 244. In some cases, the data may be stored along with an identification of the sensor and a collection time associated with the data. Among other things, this stored data may include multiple data points and may be used to track changes in sensor measurements over time. As can be appreciated, the sensor memory 244 can represent any type of database or other storage system.
The diagnostic communications module 256 may be configured to receive and transmit diagnostic signals and information associated with the vehicle 104. Examples of diagnostics signals and information may include, but is in no way limited to, vehicle system warnings, sensor data, vehicle component status, service information, component health, maintenance alerts, recall notifications, predictive analysis, and the like. Embodiments of the diagnostic communications module 256 may handle warning/error signals in a predetermined manner. The signals, for instance, can be presented to one or more of a third party, occupant, vehicle control system 204, and a service provider (e.g., manufacturer, repair facility, etc.).
Optionally, the diagnostic communications module 256 may be utilized by a third party (i.e., a party other than the user 216, etc.) in communicating vehicle diagnostic information. For instance, a manufacturer may send a signal to a vehicle 104 to determine a status associated with one or more components associated with the vehicle 104. In response to receiving the signal, the diagnostic communications module 256 may communicate with the vehicle control system 204 to initiate a diagnostic status check. Once the diagnostic status check is performed, the information may be sent via the diagnostic communications module 256 to the manufacturer. This example may be especially useful in determining whether a component recall should be issued based on the status check responses returned from a certain number of vehicles.
Wired/wireless transceiver/communications ports 260 may be included. The wired/wireless transceiver/communications ports 260 may be included to support communications over wired networks or links, for example with other communication devices, server devices, and/or peripheral devices. Examples of wired/wireless transceiver/communications ports 260 include Ethernet ports, Universal Serial Bus (USB) ports, Institute of Electrical and Electronics Engineers (IEEE) 1594, or other interface ports.
An embodiment of a vehicle control environment 300 including a vehicle control system 204 may be as shown in
The vehicle control system 204 can include a processor 304, memory 308, and/or an input/output (I/O) module 312. Thus, the vehicle control system 204 may be a computer system, which can comprise hardware elements that may be electrically coupled. The hardware elements may include one or more central processing units (CPUs) 304; one or more components of the I/O module 312 including input devices (e.g., a mouse, a keyboard, etc.) and/or one or more output devices (e.g., a display device, a printer, etc.).
The processor 304 may comprise a general purpose programmable processor or controller for executing application programming or instructions. The processor 304 may, optionally, include multiple processor cores, and/or implement multiple virtual processors. Additionally or alternatively, the processor 304 may include multiple physical processors. As a particular example, the processor 304 may comprise a specially configured application specific integrated circuit (ASIC) or other integrated circuit, a digital signal processor, a controller, a hardwired electronic or logic circuit, a programmable logic device or gate array, a special purpose computer, or the like. The processor 304 generally functions to run programming code or instructions implementing various functions of the vehicle control system 204.
The input/output module 312 and associated ports may be included to support communications over wired or wireless networks or links, for example with other communication devices, server devices, and/or peripheral devices. Examples of an input/output module 312 include an Ethernet port, a Universal Serial Bus (USB) port, Institute of Electrical and Electronics Engineers (IEEE) 1594, or other interface.
The vehicle control system 204 may also include one or more storage devices 308. By way of example, storage devices 308 may be disk drives, optical storage devices, solid-state storage devices such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable and/or the like. The vehicle control system 204 may additionally include a computer-readable storage media reader; a communications system (e.g., a modem, a network card (wireless or wired), an infra-red communication device, etc.); and working memory 308, which may include RAM and ROM devices as described above. The vehicle control system 204 may also include a processing acceleration unit, which can include a digital signal processor (DSP), a special-purpose processor, and/or the like.
The computer-readable storage media reader can further be connected to a computer-readable storage medium, together (and, optionally, in combination with storage device(s)) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. The communications system may permit data to be exchanged with an external or internal network and/or any other computer or device described herein. Moreover, as disclosed herein, the term “storage medium” may represent one or more devices for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices, and/or other machine readable mediums for storing information.
The vehicle control system 204 may also comprise software elements including an operating system and/or other code, as described in conjunction with
The power source and/or power control module 316 can include any type of power source, including, but not limited to, batteries, alternating current sources (from connections to a building power system or power line), solar cell arrays, etc. One or more components or modules may also be included to control the power source or change the characteristics of the provided power signal. Such modules can include one or more of, but is not limited to, power regulators, power filters, alternating current (AC) to direct current (DC) converters, DC to AC converters, receptacles, wiring, other converters, etc. The power source and/or power control module 316 functions to provide the vehicle control system 204 and any other system with power.
The data storage 320 can include any module for storing, retrieving, and/or managing data in one or more data stores and/or databases. The database or data stores may reside on a storage medium local to (and/or resident in) the vehicle control system 204 or in the vehicle 104. Alternatively, some of the data storage capability may be remote from the vehicle control system 204 or automobile, and in communication (e.g., via a network) to the vehicle control system 204. The database or data stores may reside in a storage-area network (“SAN”) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to the vehicle control system 204 may be stored locally on the respective vehicle control system 204 and/or remotely, as appropriate. The databases or data stores may be a relational database, and the data storage module 320 may be adapted to store, update, and retrieve data in response to specifically-formatted commands. The data storage module 320 may also perform data management functions for any flat file, object oriented, or other type of database or data store.
A first data store that may be part of the vehicle control environment 300 is a profile data store 252 for storing data about user profiles and data associated with the users. A system data store 208 can include data used by the vehicle control system 204 and/or one or more of the components 324-352 to facilitate the functionality described herein. The data stores 208 and/or 252 may be as described in conjunction with
The user interface/input interfaces 324 may be as described herein for providing information or data and/or for receiving input or data from a user. Vehicle systems 328 can include any of the mechanical, electrical, electromechanical, computer, or other systems associated with the function of the vehicle 100. For example, vehicle systems 328 can include one or more of, but is not limited to, the steering system, the braking system, the engine and engine control systems, the electrical system, the suspension, the drive train, the cruise control system, the radio, the heating, ventilation, air conditioning (HVAC) system, the windows and/or doors, etc. These systems are well known in the art and will not be described further.
Examples of the other systems and subsystems 324-352 may be as described further herein. For example, the user interface(s)/input interface(s) 324 may be as described in
This optional environment 400 can also include an IP router 420, an operator cluster 424, one or more storage devices 428, one or more blades, such as master blade 432, and computational blades 436 and 440. Additionally, the communications channels/zones 404 can interconnect one or more displays, such as, remote display 1 444, remote display N 448, and console display 452. The communications channels/zones 404 also interconnect an access point 456, a Bluetooth® access point/USB hub 460, a Femtocell 464, a storage controller 468, that is connected to one or more of USB devices 472, DVDs 476, or other storage devices 480. To assist with managing communications within the communication channel, the environment 400 optionally includes a firewall 484 which will be discussed hereinafter in greater detail. Other components that could also share the communications channel/zones 404 include GPS 488, media controller 492, which is connected to one or more media sources 496, and one or more subsystems, such as subsystem switches 498.
Optionally, the communications channels/zones 404 can be viewed as an I/O network or bus where the communications channels are carried on the same physical media. Optionally, the communication channels 404 can be split amongst one or more physical media and/or combined with one or more wireless communications protocols. Optionally, the communications channels 404 can be based on wireless protocols with no physical media interconnecting the various elements described herein.
The environment 400 shown in
Various other functional elements illustrated in
The red zone 417 only needs to go from the modular connector to the input side of the backplane connector of the firewall 484. While
The green zone 413 goes from the output side of the firewall 484 and generally defines the trusted Ethernet. The Ethernet on the backplane 408 essentially implements an Ethernet switch for the entire system, defining the Ethernet backbone of the vehicle 104. All other modules, e.g., blades, etc., can connect to a standard backplane bus and the trusted Ethernet. Some number of switch ports can be reserved to connect to an output modular connector panel to distribute the Ethernet throughout the vehicle 104, e.g., connecting such elements as the console display 452, remote displays 444, 448, GPS 488, etc. Optionally, only trusted components, either provided or approved by the manufacturer after testing, can be attached to the green zone 413, which is by definition in the trusted Ethernet environment.
Optionally, the environment 400, shown in
As illustrated in
-
- The red zone 417—the untrusted Ethernet environment. This zone 417 may be used to connect network devices and customer provided devices to the vehicle information system with these devices being on the untrusted side of the firewall 484.
- The green zone 413—the trusted Ethernet environment, this zone 413 can be used to connect manufacturer certified devices such as GPS units, remote displays, subsystem switches, and the like, to the vehicle network 404. Manufacturer certified devices can be implemented by vendors that allow the vehicle software system to validate whether or not a device is certified to operate with the vehicle 100. Optionally, only certified devices are allowed to connect to the trusted side of the network.
- The I/O bus 409—the I/O bus may be used to provide power and data transmission to bus-based devices such as the vehicle solid state drive, the media controller blade 492, the computational blades 436, 440, and the like.
As an example, the split-bus structure can have the following minimum configuration:
-
- Two slots for the red zone Ethernet;
- One slot for built-in LTE/WiMax access 420 from the car to other network resources such as the cloud/Internet;
- One slot for user devices or bring-your-own device access, this slot can implement, for example, WiFi, Bluetooth®, and/or USB connectivity 456, which can be provided in, for example, the customer crate;
- One slot for combined red zone and green zone Ethernet, this slot can be reserved for the firewall controller;
- Two slots for computational blades. Here the two computation blades are illustratively as shown the optional master blade and the multimedia blade or controller 492 which can be provided as standard equipment; and
- The expansion controller that allows the I/O bus to be extended and provides additional Ethernet switch ports for one or more of the red or green zones, which may require that the basic green zone Ethernet switch implementation will support additional ports beyond the initial three that are needed for the basic exemplary system.
- It should be possible to build 8 or 16 or more Ethernet switches that allow for the expansion with existing component(s) in a straight-forward manner.
The red zone 417 can be implemented as an 8-port Ethernet switch that has three actual bus ports within the crate with the remaining five ports being available on the customer crate. The crate implements red zone slots for the firewall controller 484, the combo controller which includes WiFi, Bluetooth®, USB hub (456, 460) and the IP router 420.
The firewall controller 484 can have a dedicated slot that bridges the red zone 417, green zone 413, and uses the I/O bus for power connections. In accordance with an optional low cost implementation, the firewall 484 can be implemented by a dummy module that simply bridges the red zone 417 and the green zone 413 without necessarily providing any firewall functionality. The combo controller 460 that includes the WiFi, Bluetooth®, and USB hub can be provided for consumer device connections. This controller can also implement the IPv6 (un-routable) protocol to insure that all information is packetized for transmission via IP over the Ethernet in the I/O network/bus 408.
The combo controller 460 with the USB hub can have ports in the customer crate. The combo controller 460 can implement USB discovery functions and packetizes the information for transmission via IP over Ethernet. The combo controller 460 can also facilitate installation of the correct USB driver for the discovered device, such as a BYOD from the user. The combo controller 460 and USB hub can then map the USB address to a “local” IPv6 address for interaction with one or more of the computational blades which is generally going to be the media controller 492.
The IP router 420 can implement Internet access through a manufacturer provided service. This service can allow, for example, a manufacturer to offer value-added services to be integrated into the vehicle information systems. The existence of the manufacturer provided Internet access can also allow the “e-Call” function and other vehicle data recorder functions to be implemented. IP router 420 also allows, for example, WiMax, 4G LTE, and other connections to the Internet through a service provider that can be, for example, contracted by the manufacturer. Internally, the IP router 420 can allow cellular handset connections to the Internet through a Femtocell 464 that is part of the IP router implementation. The IP router 420, with the Femtocell 464, can also allow a cone of silence functionality to be implemented. The IP router 420 can be an optional component for a vehicle provided by, for example, the manufacturer, a dealer, or installed by a user. In the absence of the IP router 420, it is possible to connect a consumer handheld device to the I/O network/bus 408 using, for example, either WiFi or Bluetooth® 456, 460. While functionality may be somewhat reduced when using a handheld device instead of a built-in Ethernet connection, systems and methods of this invention can also work utilizing this consumer handheld device which then connects to the Internet via, for example, WiMax, 4G, 4G LTE, or the like.
An arrangement or configuration for sensors within a vehicle 104 is as shown in
Each area 508 may be further separated into one or more zones 512 within the area 508. For example, area 1 508A may be separated into zone A 512A, and zone B 512B. Each zone 512 may be associated with a particular portion of the interior occupied by a passenger. For example, zone A 512A may be associated with a driver. Zone B 512B, may be associated with a front passenger. Each zone 512 may include one or more sensors that are positioned or configured to collect information about the environment or ecosystem associated with that zone or person.
A passenger area 508B may include more than two zones as described in conjunction with area 508A. For example, area 508B may include three zones, 512C, 512D, and 512E. These three separate zones 512C, 512D, and 512E may be associated with three passenger seats typically found in the rear passenger area of a vehicle 104. An area 508N and may include a single zone 512N as there may be no separate passenger areas but may include a single trunk area within the vehicle 104. The number of zones 512 is unlimited within the areas as the areas are also unlimited inside the vehicle 104. Further, it should be noted that there may be one or areas 508 or zones 512 that may be located outside the vehicle 104 that may have a specific set of sensors associated therewith.
Optionally, each area/access point 508, 456, 516, 520, and/or zone 512, associated with a vehicle 104, may comprise one or more sensors to determine a presence of a user 216 and/or device 212, 248 in and/or adjacent to each area 508, 456, 516, 520, and/or zone 512. The sensors may include vehicle sensors 242 and/or non-vehicle sensors 236 as described herein. It is anticipated that the sensors may be configured to communicate with a vehicle control system 204 and/or the diagnostic communications module 256. Additionally or alternatively, the sensors may communicate with a device 212, 248. The communication of sensors with the vehicle 104 may initiate and/or terminate the control of device 212, 248 features. For example, a vehicle operator may be located in a second outside area 520 associated with a vehicle 104. As the operator approaches the first outside area 516, associated with the vehicle 104, the vehicle control system 204 may determine to control features associated with one or more device 212, 248 and diagnostic communications module 256.
Optionally, the location of the device 212, 248 relative to the vehicle 104 may determine vehicle functionality and/or features to be provided and/or restricted to a user 216. By way of example, a device 212, 248 associated with a user 216 may be located at a second outside area 520 from the vehicle 104. In this case, and based at least partially on the distance of the device 212, 248 from the vehicle 104 (e.g., provided by detecting the device 212, 248 at or beyond the second outside area 520) the vehicle 104 may lock one or more features (e.g., ignition access, vehicle access, communications ability, etc.) associated with the vehicle 104. Optionally, the vehicle 104 may provide an alert based on the distance of the device 212, 248 from the vehicle 104. Continuing the example above, once the device 212, 248 reaches the first outside area 516 of the vehicle 104 at least one of the vehicle features may be unlocked. For instance, by reaching the first outside area 516, the vehicle 104 may unlock a door of the vehicle 104. In some cases, when the device is detected to be inside the vehicle 104, the various sensors 236, 242 may determine that the user 216 is in an area 508 and/or zone 512. As is further described herein, features of the vehicle 104, device 212, 248, and/or other components may be controlled based on rules stored in a memory.
Optionally, various types of internal vehicle communications can be facilitated using an access point 456 that utilizes one or more of Bluetooth®, NFC, WiFi, wireless Ethernet, mobile hot spot technology, or the like. Upon being connected with, and optionally authenticated to the access point 456, the connected device is able to communicate with one or more of the vehicle and one or more other devices that are connected to the access point 456. The type of connection to the access point 456 can be based on, for example, the zone 512, in which the device is located.
The user may identify their zone 512 in conjunction with an authentication procedure to the access point 456. For example, a driver in zone A 512A, upon authenticating to the access point 456, can cause the access point 456 to send a query to the device asking the device user in which zone 512 they are located. As discussed hereinafter, the zone 512 the user device is located in may have an impact on the type of communications, available bandwidth, the types of other devices or vehicle systems or subsystems the device could communicate with, and the like. As a brief introduction, internal communications with zone A 512A may be given preferential treatment over those communications originating from area 2 508B, which could have in itself, preferential treatment over communications originating within area N 508N.
Moreover, the device in zone A 512A can include profile information that governs the other devices that are allowed to connect to the access point 456 and what those devices have access to, how they can communicate, how much bandwidth they are allocated, and the like. While, optionally, the device associated with zone A 512A will be considered the “master” controller of the profile that governs the internal vehicle communications, it should be appreciated that this was arbitrarily chosen since it is assumed that there will always be a driver in a car that is present in zone A 512A. However, it should be appreciated the driver in zone A 512A, for example, may not have a communications device in which case a device associated with one of the other areas or zones, such as zone B 512B, area 2 508B, or area N 508N could also be associated with or control this master profile.
Optionally, various devices located within the various zones 512 can connect using, for example, ports provided by access point 456 or Bluetooth® access point/USB hub 460 as illustrated in
As discussed, each one of the areas, area 1 508A, area 2 508B, and area N 508N, can each have associated therewith a profile that governs, for example, how many and what types of devices can connect from that area 508, bandwidth allocated to that area 508, the types of media or content available to device(s) within that area 508, the interconnection of devices within that area 508 or between areas 508, or, in general, can control any aspect of communication of an associated device with any one or more other associated devices/vehicle systems within the vehicle 104.
Optionally, area 2 508B devices can be provided with full access to multimedia and infotainment available within the vehicle 104, however, devices in area 2 508B may be restricted from any access to vehicle functions. Only devices in area 1 508A may be able to access vehicle control functions such as when “parents” are located in area 1 508A and the children are located in area 2 508B. Optionally, devices found in zone E 512E of area 2 508B may be able to access limited vehicle control functionality such as climate control within area 2. Similarly, devices in area N 508N may be able to control climate features within zone N 512N.
As will be appreciated, profiles can be established that allow management of communications within each of the areas 508, and further optionally within each of the zones 512. The profile can be granular in nature controlling not only what type of devices can connect within each zone 512, but how those devices can communicate with other devices and/or the vehicle and types of information that can be communicated.
To assist with identifying a location of a device within a zone 512, a number of different techniques can be utilized. One optional technique involves one or more of the vehicle sensors detecting the presence of an individual within one of the zones 512. Upon detection of an individual in a zone 512, communications subsystems 344 and the access point 456 can cooperate to not only associate the device within the zone 512 with the access point 456 but to also determine the location of the device within an area, and optionally within a zone 512. Once the device is established within a zone 512, a profile associated with the vehicle 104 can store information identifying that device and/or a person and optionally associating it with a particular zone 512 as a default. As discussed, there can be a master profile optionally associated with the device in zone A 512A, this master profile can govern communications with the communications subsystems 340 and where communications within vehicle 104 are to occur.
Some optional profiles are illustrated below where the Master Profile governs other device connectivity:
Master Profile:
Some optional profiles are illustrated below where the Area/Zone governs device connectivity:
Area 2 508B Profile:
Optionally, a user's device, such as a SmartPhone, can store in, for example a profile, with which zone 512 the user's device is associated. Then, assuming the user sits in the same zone 512 and area 508 as previously, the user's device can re-establish the same communications protocols with the access point 456 as were previously established.
In addition or in the alternative, the areas 508 and zones 512 can have associated therewith restrictions as to which one or more other user's devices with which users' devices can connect. For example, a first user's device can connect with any other user device in area 2 508B or area N 508N, however is restricted from connecting with a user device in area 1 508A, zone A 512A. However, the first user device may be able to communicate with another user's device that is located in area 1 508A, zone B 512B. These communications can include any type of standard communications such as sharing content, exchanging messages, forwarding or sharing multimedia or infotainment, or in general can include any communications that would ordinarily be available between two devices and/or the vehicle and vehicle systems. As discussed, there may be restrictions on the type of communications that can be sent to the device in area 1 508A, zone A 512A. For example, the user's device in area 1 508A, zone A 512A may be restricted from receiving one or more of text messages, multimedia, infotainment, or in general anything that can be envisioned as a potential distraction to the driver. Moreover, it should be appreciated that the communications between the various devices and the various zones 512 need not necessarily occur with the assistance of access point 456, but the communications could also occur directly between the device(s).
Optionally, and as discussed above, one or more user devices can connect to the access point 456. This access point 456 is equipped to handle communications routing to not only the communication network/buses 224 for intra-vehicle communications, but optionally can also communicate with, for example, the Internet or the cloud, in cooperation with transceiver 260. Optionally included is a firewall 484 that has the capability of not only blocking certain types of content, such as a malicious content, but can also operate to exclude certain type of communications from emanating from the vehicle 104 and transceiver 260. As will be appreciated, various profiles could be established in the firewall 484 that controls not only the type of communications that can be received at the vehicle 104, but the type of communications that can be sent from the vehicle 104.
The transceiver 260 can be any type of well-known wireless transceiver that communicates using a known communications protocol such as WiMax, 4G, 4G LTE, 3G, or the like. The user devices can communicate via, for example, WiFi link 248 with the access point 456, with the transceiver 260 providing Internet connectivity to the various user devices. As will be appreciated, there may need to be an account associated with transceiver 260 with a wireless carrier to provide data and/or voice connectivity to enable the user devices to communicate with the Internet. Typically, the account is established on a month-to-month basis with an associated fee but could also be performed based on the amount of data to be transmitted, received, or in any other manner.
Moreover, one or more of the user's devices and access point 456 can maintain profile information that governs how the user's devices are able to communicate with other devices, and optionally the Internet. Optionally, a profile can exist that only allows the user's devices to communicate with other user's devices and/or the vehicle, multimedia and/or the vehicle infotainment system, and may not be allowed access to the Internet via transceiver 260. The profile can stipulate that the user's device could connect to the Internet via transceiver 260 for a specified period of time and/or up to a certain amount of data usage. The user's device can have full access to the Internet via transceiver 260 with no limit on time or data usage which would reduce the data usage of the user's device since it is connected via WiFi to the access point 456, but however, would increase the data usage by transceiver 260, and therefore, shift the billing for that data usage to the transceiver 260 instead of the user's device. Still further, and as previously discussed, the various profiles may stipulate which user's device has priority for use of the bandwidth provided by the transceiver 260. For example, a user's device located area 1 508A, zone A 512A may be given preferential routing treatment of data above that of a user's device in zone N 512N. In this manner, for example, a driver would be given priority for Internet access above that of the passengers. This could become important, for example, when the driver is trying to obtain traffic or direction information or, for example, when the vehicle is performing a download to update various software features.
As will be appreciated, the optional firewall 484 can cooperate with the access point 456 and the various profiles that area 508 associated with the various devices within the vehicle 104 and can fully implement communications restrictions, control bandwidth limits, Internet accessibility, malicious software blocking, and the like. Moreover, the optional firewall 484 can be accessed by an administrator with one or more of these configuration settings edited through an administrator's control panel. For example, in a scenario where parents are always in area 1 508A, it may be appropriate to give all of the user's devices in area 1 508A full access to the Internet utilizing transceiver 260, however, while restricting access and/or bandwidth to any other user devices within the vehicle 104. As the user's device and profile would be known by the firewall 484, upon the user's device being associated with the access point 456, the firewall 484 and transceiver 260 can be configured to allow communications in accordance with the stored profile.
A set of sensors or vehicle components 600 associated with the vehicle 104 may be as shown in
The vehicle 104 can include a number of sensors in wireless or wired communication with the vehicle control system 204 and/or display device 212, 248 to collect sensed information regarding the vehicle state, configuration, and/or operation. Exemplary sensors may include one or more of, but are not limited to, wheel state sensor 660 to sense one or more of vehicle speed, acceleration, deceleration, wheel rotation, wheel speed (e.g., wheel revolutions-per-minute), wheel slip, and the like, a power source energy output sensor 664 to sense a power output of the power source 609 by measuring one or more of current engine speed (e.g., revolutions-per-minute), energy input and/or output (e.g., voltage, current, fuel consumption, and torque) (e.g., turbine speed sensor, input speed sensor, crankshaft position sensor, manifold absolute pressure sensor, mass flow sensor, and the like), and the like, a switch state sensor 668 to determine a current activation or deactivation state of the power source activation/deactivation switch 644, a transmission setting sensor 670 to determine a current setting of the transmission (e.g., gear selection or setting), a gear controller sensor 672 to determine a current setting of the gear controller 616, a power controller sensor 674 to determine a current setting of the power controller 620, a brake sensor 676 to determine a current state (braking or non-braking) of the braking system 636, a seating system sensor 678 to determine a seat setting and current weight of seated occupant, if any) in a selected seat of the seating system 648, exterior and interior sound receivers 690 and 692 (e.g., a microphone, sonar, and other type of acoustic-to-electric transducer or sensor) to receive and convert sound waves into an equivalent analog or digital signal. Examples of other sensors (not shown) that may be employed include safety system state sensors to determine a current state of a vehicular safety system (e.g., air bag setting (deployed or undeployed) and/or seat belt setting (engaged or not engaged)), light setting sensor (e.g., current headlight, emergency light, brake light, parking light, fog light, interior or passenger compartment light, and/or tail light state (on or off)), brake control (e.g., pedal) setting sensor, accelerator pedal setting or angle sensor, clutch pedal setting sensor, emergency brake pedal setting sensor, door setting (e.g., open, closed, locked or unlocked) sensor, engine temperature sensor, passenger compartment or cabin temperature sensor, window setting (open or closed) sensor, one or more interior-facing or exterior-facing cameras or other imaging sensors (which commonly convert an optical image into an electronic signal but may include other devices for detection objects such as an electromagnetic radiation emitter/receiver that emits electromagnetic radiation and receives electromagnetic waves reflected by the object) to sense objects, such as other vehicles and pedestrians and optionally determine the distance, trajectory and speed of such objects, in the vicinity or path of the vehicle, odometer reading sensor, trip mileage reading sensor, wind speed sensor, radar transmitter/receiver output, brake wear sensor, steering/torque sensor, oxygen sensor, ambient lighting sensor, vision system sensor, ranging sensor, parking sensor, heating, venting, and air conditioning (HVAC) sensor, water sensor, air-fuel ratio meter, blind spot monitor, hall effect sensor, microphone, radio frequency (RF) sensor, infrared (IR) sensor, vehicle control system sensors, wireless network sensor (e.g., Wi-Fi and/or Bluetooth® sensor), cellular data sensor, and other sensors either future-developed or known to those of skill in the vehicle art.
In the depicted vehicle embodiment, the various sensors can be in communication with the display device 212, 248 and vehicle control system 204 via signal carrier network 224. As noted, the signal carrier network 224 can be a network of signal conductors, a wireless network (e.g., a radio frequency, microwave, or infrared communication system using a communications protocol, such as Wi-Fi), or a combination thereof. The vehicle control system 204 may also provide signal processing of one or more sensors, sensor fusion of similar and/or dissimilar sensors, signal smoothing in the case of erroneous “wild point” signals, and/or sensor fault detection. For example, ranging measurements provided by one or more RF sensors may be combined with ranging measurements from one or more IR sensors to determine one fused estimate of vehicle range to an obstacle target.
The control system 204 may receive and read sensor signals, such as wheel and engine speed signals, as a digital input comprising, for example, a pulse width modulated (PWM) signal. The processor 304 can be configured, for example, to read each of the signals into a port configured as a counter or configured to generate an interrupt on receipt of a pulse, such that the processor 304 can determine, for example, the engine speed in revolutions per minute (RPM) and the speed of the vehicle in miles per hour (MPH) and/or kilometers per hour (KPH). One skilled in the art will recognize that the two signals can be received from existing sensors in a vehicle comprising a tachometer and a speedometer, respectively. Alternatively, the current engine speed and vehicle speed can be received in a communication packet as numeric values from a conventional dashboard subsystem comprising a tachometer and a speedometer. The transmission speed sensor signal can be similarly received as a digital input comprising a signal coupled to a counter or interrupt signal of the processor 304 or received as a value in a communication packet on a network or port interface from an existing subsystem of the vehicle 104. The ignition sensor signal can be configured as a digital input, wherein a HIGH value represents that the ignition is on and a LOW value represents that the ignition is OFF. Three bits of the port interface can be configured as a digital input to receive the gear shift position signal, representing eight possible gear shift positions. Alternatively, the gear shift position signal can be received in a communication packet as a numeric value on the port interface. The throttle position signal can be received as an analog input value, typically in the range 0-5 volts. Alternatively, the throttle position signal can be received in a communication packet as a numeric value on the port interface. The output of other sensors can be processed in a similar fashion.
Other sensors may be included and positioned in the interior space 108 of the vehicle 104. Generally, these interior sensors obtain data about the health of the driver and/or passenger(s), data about the safety of the driver and/or passenger(s), and/or data about the comfort of the driver and/or passenger(s). The health data sensors can include sensors in the steering wheel that can measure various health telemetry for the person (e.g., heart rate, temperature, blood pressure, blood presence, blood composition, etc.). Sensors in the seats may also provide for health telemetry (e.g., presence of liquid, weight, weight shifts, etc.). Infrared sensors could detect a person's temperature; optical sensors can determine a person's position and whether the person has become unconscious. Other health sensors are possible and included herein.
Safety sensors can measure whether the person is acting safely. Optical sensors can determine a person's position and focus. If the person stops looking at the road ahead, the optical sensor can detect the lack of focus. Sensors in the seats may detect if a person is leaning forward or may be injured by a seat belt in a collision. Other sensors can detect that the driver has at least one hand on a steering wheel. Other safety sensors are possible and contemplated as if included herein.
Comfort sensors can collect information about a person's comfort. Temperature sensors may detect a temperature of the interior cabin. Moisture sensors can determine a relative humidity. Audio sensors can detect loud sounds or other distractions. Audio sensors may also receive input from a person through voice data. Other comfort sensors are possible and contemplated as if included herein.
Optionally, the sensors may include one or more of optical, or image, sensors 622A-B (e.g., cameras, etc.), motion sensors 624A-B (e.g., utilizing RF, IR, and/or other sound/image sensing, etc.), steering wheel user sensors 642 (e.g., heart rate, temperature, blood pressure, sweat, health, etc.), seat sensors 677 (e.g., weight, load cell, moisture, electrical, force transducer, etc.), safety restraint sensors 679 (e.g., seatbelt, airbag, load cell, force transducer, etc.), interior sound receivers 692A-B, environmental sensors 694 (e.g., temperature, humidity, air, oxygen, etc.), and the like.
The image sensors 622A-B may be used alone or in combination to identify objects, users 216, and/or other features, inside the vehicle 104. Optionally, a first image sensor 622A may be located in a different position within a vehicle 104 from a second image sensor 622B. When used in combination, the image sensors 622A-B may combine captured images to form, among other things, stereo and/or three-dimensional (3D) images. The stereo images can be recorded and/or used to determine depth associated with objects and/or users 216 in a vehicle 104. Optionally, the image sensors 622A-B used in combination may determine the complex geometry associated with identifying characteristics of a user 216. For instance, the image sensors 622A-B may be used to determine dimensions between various features of a user's face (e.g., the depth/distance from a user's nose to a user's cheeks, a linear distance between the center of a user's eyes, and more). These dimensions may be used to verify, record, and even modify characteristics that serve to identify a user 216. As can be appreciated, utilizing stereo images can allow for a user 216 to provide complex gestures in a 3D space of the vehicle 104. These gestures may be interpreted via one or more of the subsystems as disclosed herein. Optionally, the image sensors 622A-B may be used to determine movement associated with objects and/or users 216 within the vehicle 104. It should be appreciated that the number of image sensors used in a vehicle 104 may be increased to provide greater dimensional accuracy and/or views of a detected image in the vehicle 104.
The vehicle 104 may include one or more motion sensors 624A-B. These motion sensors 624A-B may detect motion and/or movement of objects inside the vehicle 104. Optionally, the motion sensors 624A-B may be used alone or in combination to detect movement. For example, a user 216 may be operating a vehicle 104 (e.g., while driving, etc.) when a passenger in the rear of the vehicle 104 unbuckles a safety belt and proceeds to move about the vehicle 104. In this example, the movement of the passenger could be detected by the motion sensors 624A-B. Optionally, the user 216 could be alerted of this movement by one or more of the devices 212, 248 in the vehicle 104. In another example, a passenger may attempt to reach for one of the vehicle control features (e.g., the steering wheel 640, the console, icons displayed on the head unit and/or device 212, 248, etc.). In this case, the movement (i.e., reaching) of the passenger may be detected by the motion sensors 624A-B. Optionally, the path, trajectory, anticipated path, and/or some other direction of movement/motion may be determined using the motion sensors 624A-B. In response to detecting the movement and/or the direction associated with the movement, the passenger may be prevented from interfacing with and/or accessing at least some of the vehicle control features (e.g., the features represented by icons may be hidden from a user interface, the features may be locked from use by the passenger, combinations thereof, etc.). As can be appreciated, the user 216 may be alerted of the movement/motion such that the user 216 can act to prevent the passenger from interfering with the vehicle 104 controls. Optionally, the number of motion sensors in a vehicle 104, or areas of a vehicle 104, may be increased to increase an accuracy associated with motion detected in the vehicle 104.
The interior sound receivers 692A-B may include, but are not limited to, microphones and other types of acoustic-to-electric transducers or sensors. Optionally, the interior sound receivers 692A-B may be configured to receive and convert sound waves into an equivalent analog or digital signal. The interior sound receivers 692A-B may serve to determine one or more locations associated with various sounds in the vehicle 104. The location of the sounds may be determined based on a comparison of volume levels, intensity, and the like, between sounds detected by two or more interior sound receivers 692A-B. For instance, a first interior sound receiver 692A may be located in a first area of the vehicle 104 and a second interior sound receiver 692B may be located in a second area of the vehicle 104. If a sound is detected at a first volume level by the first interior sound receiver 692A and a second, higher, volume level by the second interior sound receiver 692B in the second area of the vehicle 104, the sound may be determined to be closer to the second area of the vehicle 104. As can be appreciated, the number of sound receivers used in a vehicle 104 may be increased (e.g., more than two, etc.) to increase measurement accuracy surrounding sound detection and location, or source, of the sound (e.g., via triangulation, etc.).
Seat sensors 677 may be included in the vehicle 104. The seat sensors 677 may be associated with each seat and/or zone 512 in the vehicle 104. Optionally, the seat sensors 677 may provide health telemetry and/or identification via one or more of load cells, force transducers, weight sensors, moisture detection sensor, electrical conductivity/resistance sensor, and the like. For example, the seat sensors 677 may determine that a user 216 weighs 180 lbs. This value may be compared to user data stored in memory to determine whether a match exists between the detected weight and a user 216 associated with the vehicle 104. In another example, if the seat sensors 677 detect that a user 216 is fidgeting, or moving, in a seemingly uncontrollable manner, the system may determine that the user 216 has suffered a nervous and/or muscular system issue (e.g., seizure, etc.). The vehicle control system 204 may then cause the vehicle 104 to slow down and in addition or alternatively the automobile controller 8104 (described below) can safely take control of the vehicle 104 and bring the vehicle 104 to a stop in a safe location (e.g., out of traffic, off a freeway, etc).
Health telemetry and other data may be collected via the steering wheel user sensors 642. Optionally, the steering wheel user sensors 642 may collect heart rate, temperature, blood pressure, and the like, associated with a user 216 via at least one contact disposed on or about the steering wheel 640.
The safety restraint sensors 679 may be employed to determine a state associated with one or more safety restraint devices in a vehicle 104. The state associated with one or more safety restraint devices may serve to indicate a force observed at the safety restraint device, a state of activity (e.g., retracted, extended, various ranges of extension and/or retraction, deployment, buckled, unbuckled, etc.), damage to the safety restraint device, and more.
Environmental sensors 694, including one or more of temperature, humidity, air, oxygen, carbon monoxide, smoke, and other environmental condition sensors may be used in a vehicle 104. These environmental sensors 694 may be used to collect data relating to the safety, comfort, and/or condition of the interior space 108 of the vehicle 104. Among other things, the data collected by the environmental sensors 694 may be used by the vehicle control system 204 to alter functions of a vehicle. The environment may correspond to an interior space 108 of a vehicle 104 and/or specific areas 508 and/or zones 512 of the vehicle 104. It should be appreciate that an environment may correspond to a user 216. For example, a low oxygen environment may be detected by the environmental sensors 694 and associated with a user 216 who is operating the vehicle 104 in a particular zone 512. In response to detecting the low oxygen environment, at least one of the subsystems of the vehicle 104, as provided herein, may alter the environment, especially in the particular zone 512, to increase the amount of oxygen in the zone 512. Additionally or alternatively, the environmental sensors 694 may be used to report conditions associated with a vehicle (e.g., fire detected, low oxygen, low humidity, high carbon monoxide, etc.). The conditions may be reported to a user 216 and/or a third party via at least one communications module as provided herein.
Among other things, the sensors as disclosed herein may communicate with each other, with devices 212, 248, and/or with the vehicle control system 204 via the signal carrier network 224. Additionally or alternatively, the sensors disclosed herein may serve to provide data relevant to more than one category of sensor information including, but not limited to, combinations of environmental information, user information, and safety information to name a few.
The environmental group 708 may comprise sensors configured to collect data relating to the internal environment of a vehicle 104. It is anticipated that the environment of the vehicle 104 may be subdivided into areas 508 and zones 512 in an interior space 108 of a vehicle 104. In this case, each area 508 and/or zone 512 may include one or more of the environmental sensors. Examples of environmental sensors associated with the environmental group 708 may include, but are not limited to, oxygen/air sensors 724, temperature sensors 728, humidity sensors 732, light/photo sensors 736, and more. The oxygen/air sensors 724 may be configured to detect a quality of the air in the interior space 108 of the vehicle 104 (e.g., ratios and/or types of gasses comprising the air inside the vehicle 104, dangerous gas levels, safe gas levels, etc.). Temperature sensors 728 may be configured to detect temperature readings of one or more objects, users 216, and/or areas 508 of a vehicle 104. Humidity sensors 732 may detect an amount of water vapor present in the air inside the vehicle 104. The light/photo sensors 736 can detect an amount of light present in the vehicle 104. Further, the light/photo sensors 736 may be configured to detect various levels of light intensity associated with light in the vehicle 104.
The user interface group 712 may comprise sensors configured to collect data relating to one or more users 216 in a vehicle 104. As can be appreciated, the user interface group 712 may include sensors that are configured to collect data from users 216 in one or more areas 508 and zones 512 of the vehicle 104. For example, each area 508 and/or zone 512 of the vehicle 104 may include one or more of the sensors in the user interface group 712. Examples of user interface sensors associated with the user interface group 712 may include, but are not limited to, infrared sensors 740, motion sensors 744, weight sensors 748, wireless network sensors 752, biometric sensors 756, camera (or image) sensors 760, audio sensors 764, and more.
Infrared sensors 740 may be used to measure IR light irradiating from at least one surface, user 216, or other object in the vehicle 104. Among other things, the Infrared sensors 740 may be used to measure temperatures, form images (especially in low light conditions), identify users 216, and even detect motion in the vehicle 104.
The motion sensors 744 may be similar to the motion detectors 624A-B, as described in conjunction with
Optionally, the vehicle 104 may include a wireless network sensor 752. This sensor 752 may be configured to detect one or more wireless network(s) inside the vehicle 104. Examples of wireless networks may include, but are not limited to, wireless communications utilizing Bluetooth®, Wi-Fi™, ZigBee, IEEE 802.11, and other wireless technology standards. For example, a mobile hotspot may be detected inside the vehicle 104 via the wireless network sensor 752. In this case, the vehicle 104 may determine to utilize and/or share the mobile hotspot detected via/with one or more other devices 212, 248 and/or components associated with the vehicle 104.
Biometric sensors 756 may be employed to identify and/or record characteristics associated with a user 216. It is anticipated that biometric sensors 756 can include at least one of image sensors, IR sensors, fingerprint readers, weight sensors, load cells, force transducers, heart rate monitors, blood pressure monitors, and the like as provided herein.
The camera sensors 760 may be similar to image sensors 622A-B, as described in conjunction with
The safety group 716 may comprise sensors configured to collect data relating to the safety of a user 216 and/or one or more components of a vehicle 104. The vehicle 104 may be subdivided into areas 508 and/or zones 512 in an interior space 108 of a vehicle 104 where each area 508 and/or zone 512 may include one or more of the safety sensors provided herein. Examples of safety sensors associated with the safety group 716 may include, but are not limited to, force sensors 768, mechanical motion sensors 772, orientation sensors 776, restraint sensors 780, and more.
The force sensors 768 may include one or more sensors inside the vehicle 104 configured to detect a force observed in the vehicle 104. One example of a force sensor 768 may include a force transducer that converts measured forces (e.g., force, weight, pressure, etc.) into output signals.
Mechanical motion sensors 772 may correspond to encoders, accelerometers, damped masses, and the like. Optionally, the mechanical motion sensors 772 may be adapted to measure the force of gravity (i.e., G-force) as observed inside the vehicle 104. Measuring the G-force observed inside a vehicle 104 can provide valuable information related to a vehicle's acceleration, deceleration, collisions, and/or forces that may have been suffered by one or more users 216 in the vehicle 104. As can be appreciated, the mechanical motion sensors 772 can be located in an interior space 108 or an exterior of the vehicle 104.
Orientation sensors 776 can include accelerometers, gyroscopes, magnetic sensors, and the like that are configured to detect an orientation associated with the vehicle 104. Similar to the mechanical motion sensors 772, the orientation sensors 776 can be located in an interior space 108 or an exterior of the vehicle 104.
The restraint sensors 780 may be similar to the safety restraint sensors 679 as described in conjunction with
The associated device sensors 720 can include any sensors that are associated with a device 212, 248 in the vehicle 104. As previously stated, typical devices 212, 248 may include smart phones, tablets, laptops, mobile computers, and the like. It is anticipated that the various sensors associated with these devices 212, 248 can be employed by the vehicle control system 204. For example, a typical smart phone can include, an image sensor, an IR sensor, audio sensor, gyroscope, accelerometer, wireless network sensor, fingerprint reader, and more. It is an aspect of the present disclosure that one or more of these associated device sensors 720 may be used by one or more subsystems of the vehicle system 200.
In
The external environmental group 708E may comprise sensors configured to collect data relating to the external environment of a vehicle 104. In addition to including one or more of the sensors previously described, the external environmental group 708E may include additional sensors, such as, vehicle sensors 750, biological sensors, and wireless signal sensors 758. Vehicle sensors 750 can detect vehicles that are in an environment surrounding the vehicle 104. For example, the vehicle sensors 750 may detect vehicles in a first outside area 516, a second outside area 520, and/or combinations of the first and second outside areas 516, 520. Optionally, the vehicle sensors 750 may include one or more of RF sensors, IR sensors, image sensors, and the like to detect vehicles, people, hazards, etc. that are in an environment exterior to the vehicle 104. Additionally or alternatively, the vehicle sensors 750 can provide distance/directional information relating to a distance (e.g., distance from the vehicle 104 to the detected object) and/or a direction (e.g., direction of travel, etc.) associated with the detected object.
The biological sensors 754 may determine whether one or more biological entities (e.g., an animal, a person, a user 216, etc.) is in an external environment of the vehicle 104. Additionally or alternatively, the biological sensors 754 may provide distance information relating to a distance of the biological entity from the vehicle 104. Biological sensors 754 may include at least one of RF sensors, IR sensors, image sensors and the like that are configured to detect biological entities. For example, an IR sensor may be used to determine that an object, or biological entity, has a specific temperature, temperature pattern, or heat signature. Continuing this example, a comparison of the determined heat signature may be compared to known heat signatures associated with recognized biological entities (e.g., based on shape, locations of temperature, and combinations thereof, etc.) to determine whether the heat signature is associated with a biological entity or an inanimate, or non-biological, object.
The wireless signal sensors 758 may include one or more sensors configured to receive wireless signals from signal sources such as Wi-Fi™ hotspots, cell towers, roadside beacons, other electronic roadside devices, and satellite positioning systems. Optionally, the wireless signal sensors 758 may detect wireless signals from one or more of a mobile phone, mobile computer, keyless entry device, RFID device, near field communications (NFC) device, and the like.
The external safety group 716E may comprise sensors configured to collect data relating to the safety of a user 216 and/or one or more components of a vehicle 104. Examples of safety sensors associated with the external safety group 716E may include, but are not limited to, force sensors 768, mechanical motion sensors 772, orientation sensors 776, vehicle body sensors 782, and more. Optionally, the exterior safety sensors 716E may be configured to collect data relating to one or more conditions, objects, vehicle components, and other events that are external to the vehicle 104. For instance, the force sensors 768 in the external safety group 716E may detect and/or record force information associated with the outside of a vehicle 104. For instance, if an object strikes the exterior of the vehicle 104, the force sensors 768 from the exterior safety group 716E may determine a magnitude, location, and/or time associated with the strike.
The vehicle 104 may include a number of vehicle body sensors 782. The vehicle body sensors 782 may be configured to measure characteristics associated with the body (e.g., body panels, components, chassis, windows, etc.) of a vehicle 104. For example, two vehicle body sensors 782, including a first body sensor and a second body sensor, may be located at some distance apart. Continuing this example, the first body sensor may be configured to send an electrical signal across the body of the vehicle 104 to the second body sensor, or vice versa. Upon receiving the electrical signal from the first body sensor, the second body sensor may record a detected current, voltage, resistance, and/or combinations thereof associated with the received electrical signal. Values (e.g., current, voltage, resistance, etc.) for the sent and received electrical signal may be stored in a memory. These values can be compared to determine whether subsequent electrical signals sent and received between vehicle body sensors 782 deviate from the stored values. When the subsequent signal values deviate from the stored values, the difference may serve to indicate damage and/or loss of a body component. Additionally or alternatively, the deviation may indicate a problem with the vehicle body sensors 782. The vehicle body sensors 782 may communicate with each other, a vehicle control system 204, and/or systems of the vehicle system 200 via a communications channel 356. Although described using electrical signals, it should be appreciated that alternative embodiments of the vehicle body sensors 782 may use sound waves and/or light to perform a similar function.
Optionally, the media controller subsystem 348 may include a local IP address (e.g., IPv4, IPv6, combinations thereof, etc.) and even a routable, global unicast address. The routable, global unicast address may allow for direct addressing of the media controller subsystem 348 for streaming data from Internet resources (e.g., cloud storage, user accounts, etc.). It is anticipated, that the media controller subsystem 348 can provide multimedia via at least one Internet connection, or wireless network communications module, associated with the vehicle 104. Moreover, the media controller subsystem 348 may be configured to service multiple independent clients simultaneously.
The media processor 808 may comprise a general purpose programmable processor or controller for executing application programming or instructions related to the media subsystem 348. The media processor 808 may include multiple processor cores, and/or implement multiple virtual processors. Optionally, the media processor 808 may include multiple physical processors. By way of example, the media processor 808 may comprise a specially configured application specific integrated circuit (ASIC) or other integrated circuit, a digital signal processor, a controller, a hardwired electronic or logic circuit, a programmable logic device or gate array, a special purpose computer, or the like. The media processor 808 generally functions to run programming code or instructions implementing various functions of the media controller 804.
The match engine 812 can receive input from one or more components of the vehicle system 800 and perform matching functions. Optionally, the match engine 812 may receive audio input provided via a microphone 886 of the system 800. The audio input may be provided to the media controller subsystem 348 where the audio input can be decoded and matched, via the match engine 812, to one or more functions available to the vehicle 104. Similar matching operations may be performed by the match engine 812 relating to video input received via one or more image sensors, cameras 878, and the like.
The media controller subsystem 348 may include a speech synthesis module 820 configured to provide audio output to one or more speakers 880, or audio output devices, associated with the vehicle 104. Optionally, the speech synthesis module 820 may be configured to provide audio output based at least partially on the matching functions performed by the match engine 812.
As can be appreciated, the coding/decoding, the analysis of audio input/output, and/or other operations associated with the match engine 812 and speech synthesis module 820, may be performed by the media processor 808 and/or a dedicated audio processor 816. The audio processor 816 may comprise a general purpose programmable processor or controller for executing application programming or instructions related to audio processing. Further, the audio processor 816 may be similar to the media processor 808 described herein.
The network transceiver 824 can include any device configured to transmit and receive analog and/or digital signals. Optionally, the media controller subsystem 348 may utilize a network transceiver 824 in one or more communication networks associated with the vehicle 104 to receive and transmit signals via the communications channel 356. Additionally or alternatively, the network transceiver 824 may accept requests from one or more devices 212, 248 to access the media controller subsystem 348. One example of the communication network is a local-area network (LAN). As can be appreciated, the functionality associated with the network transceiver 824 may be built into at least one other component of the vehicle 104 (e.g., a network interface card, communications module, etc.).
The signal processing module 828 may be configured to alter audio/multimedia signals received from one or more input sources (e.g., microphones 886, etc.) via the communications channel 356. Among other things, the signal processing module 828 may alter the signals received electrically, mathematically, combinations thereof, and the like.
The media controller 804 may also include memory 832 for use in connection with the execution of application programming or instructions by the media processor 808, and for the temporary or long term storage of program instructions and/or data. As examples, the memory 832 may comprise RAM, DRAM, SDRAM, or other solid state memory.
The language database 836 may include the data and/or libraries for one or more languages, as are used to provide the language functionality as provided herein. In one case, the language database 836 may be loaded on the media controller 804 at the point of manufacture. Optionally, the language database 836 can be modified, updated, and/or otherwise changed to alter the data stored therein. For instance, additional languages may be supported by adding the language data to the language database 836. In some cases, this addition of languages can be performed via accessing administrative functions on the media controller 804 and loading the new language modules via wired (e.g., USB, etc.) or wireless communication. In some cases, the administrative functions may be available via a vehicle console device 248, a user device 212, 248, and/or other mobile computing device that is authorized to access administrative functions (e.g., based at least partially on the device's address, identification, etc.).
One or more video controllers 840 may be provided for controlling the video operation of the devices 212, 248, 882 associated with the vehicle. Optionally, the video controller 840 may include a display controller for controlling the operation of touch sensitive screens, including input (touch sensing) and output (display) functions. Video data may include data received in a stream and unpacked by a processor and loaded into a display buffer. In this example, the processor and video controller 840 can optimize the display based on the characteristics of a screen of a display device 212, 248, 882. The functions of a touch screen controller may be incorporated into other components, such as a media processor 808 or display subsystem.
The audio controller 844 can provide control of the audio entertainment system (e.g., radio, subscription music service, multimedia entertainment, etc.), and other audio associated with the vehicle 104 (e.g., navigation systems, vehicle comfort systems, convenience systems, etc.). Optionally, the audio controller 844 may be configured to translate digital signals to analog signals and vice versa. As can be appreciated, the audio controller 844 may include device drivers that allow the audio controller 844 to communicate with other components of the system 800 (e.g., processors 816, 808, audio I/O 874, and the like).
The system 800 may include a profile identification module 848 to determine whether a user profile is associated with the vehicle 104. Among other things, the profile identification module 848 may receive requests from a user 216, or device 212, 228, 248, to access a profile stored in a profile database 856 or profile data 252. Additionally or alternatively, the profile identification module 848 may request profile information from a user 216 and/or a device 212, 228, 248, to access a profile stored in a profile database 856 or profile data 252. In any event, the profile identification module 848 may be configured to create, modify, retrieve, and/or store user profiles in the profile database 856 and/or profile data 252. The profile identification module 848 may include rules for profile identification, profile information retrieval, creation, modification, and/or control of components in the system 800.
By way of example, a user 216 may enter the vehicle 104 with a smart phone or other device 212. In response to determining that a user 216 is inside the vehicle 104, the profile identification module 848 may determine that a user profile is associated with the user's smart phone 212. As another example, the system 800 may receive information about a user 216 (e.g., from a camera 878, microphone 886, etc.), and, in response to receiving the user information, the profile identification module 848 may refer to the profile database 856 to determine whether the user information matches a user profile stored in the database 856. It is anticipated that the profile identification module 848 may communicate with the other components of the system to load one or more preferences, settings, and/or conditions based on the user profile. Further, the profile identification module 848 may be configured to control components of the system 800 based on user profile information.
Optionally, data storage 852 may be provided. Like the memory 832, the data storage 852 may comprise a solid state memory device or devices. Alternatively or in addition, the data storage 852 may comprise a hard disk drive or other random access memory. Similar to the data storage 852, the profile database 856 may comprise a solid state memory device or devices.
An input/output module 860 and associated ports may be included to support communications over wired networks or links, for example with other communication devices, server devices, and/or peripheral devices. Examples of an input/output module 860 include an Ethernet port, a Universal Serial Bus (USB) port, CAN Bus, Institute of Electrical and Electronics Engineers (IEEE) 1594, or other interface. Users may bring their own devices (e.g., Bring Your Own Device (BYOD), device 212, etc.) into the vehicle 104 for use with the various systems disclosed. Although most BYOD devices can connect to the vehicle systems (e.g., the media controller subsystem 348, etc.) via wireless communications protocols (e.g., Wi-Fi™, Bluetooth®, etc.) many devices may require a direct connection via USB, or similar. In any event, the input/output module 860 can provide the necessary connection of one or more devices to the vehicle systems described herein.
A video input/output interface 864 can be included to receive and transmit video signals between the various components in the system 800. Optionally, the video input/output interface 864 can operate with compressed and uncompressed video signals. The video input/output interface 864 can support high data rates associated with image capture devices. Additionally or alternatively, the video input/output interface 864 may convert analog video signals to digital signals.
The infotainment system 870 may include information media content and/or entertainment content, informational devices, entertainment devices, and the associated programming therefor. Optionally, the infotainment system 870 may be configured to handle the control of one or more components of the system 800 including, but in no way limited to, radio, streaming audio/video devices, audio devices 880, 882, 886, video devices 878, 882, travel devices (e.g., GPS, navigational systems, etc.), wireless communication devices, network devices, and the like. Further, the infotainment system 870 can provide the functionality associated with other infotainment features as provided herein.
An audio input/output interface 874 can be included to provide analog audio to an interconnected speaker 880 or other device, and to receive analog audio input from a connected microphone 886 or other device. As an example, the audio input/output interface 874 may comprise an associated amplifier and analog to digital converter. Alternatively or in addition, the devices 212, 248 can include integrated audio input/output devices 880, 886 and/or an audio jack for interconnecting an external speaker 880 or microphone 886. For example, an integrated speaker 880 and an integrated microphone 886 can be provided, to support near talk, voice commands, spoken information exchange, and/or speaker phone operations.
Among other things, the system 800 may include devices that are part of the vehicle 104 and/or part of a device 212, 248 that is associated with the vehicle 104. For instance, these devices may be configured to capture images, display images, capture sound, and present sound. Optionally, the system 800 may include at least one of image sensors/cameras 878, display devices 882, audio input devices/microphones 886, and audio output devices/speakers 880. The cameras 878 can be included for capturing still and/or video images. Alternatively or in addition, image sensors 878 can include a scanner or code reader. An image sensor/camera 878 can include or be associated with additional elements, such as a flash or other light source. In some cases, the display device 882 may include an audio input device and/or an audio output device in addition to providing video functions. For instance, the display device 882 may be a console, monitor, a tablet computing device, and/or some other mobile computing device.
Optionally, the user/device interaction subsystem 817 can include one or more of the components and modules provided herein. For instance, the user/device interaction subsystem 817 can include one or more of a video input/output interface 864, an audio input/output interface 874, a sensor module 814, a device interaction module 818, a user identification module 822, a vehicle control module 826, an environmental control module 830, and a gesture control module 834. The user/device interaction subsystem 817 may be in communication with other devices, modules, and components of the system 800 via the communications channel 356.
The user/device interaction subsystem 817 may be configured to receive input from a user 216 and/or device via one or more components of the system. By way of example, a user 216 may provide input to the user/device interaction subsystem 817 via wearable devices 802, 806, 810, video input (e.g., via at least one image sensor/camera 878, etc.) audio input (e.g., via the microphone, audio input source, etc.), gestures (e.g., via at least one image sensor 878, motion sensor 888, etc.), device input (e.g., via a device 212, 248 associated with the user, etc.), combinations thereof, and the like.
The wearable devices 802, 806, 810 can include heart rate monitors, blood pressure monitors, glucose monitors, pedometers, movement sensors, wearable computers, and the like. Examples of wearable computers may be worn by a user 216 and configured to measure user activity, determine energy spent based on the measured activity, track user sleep habits, determine user oxygen levels, monitor heart rate, provide alarm functions, and more. It is anticipated that the wearable devices 802, 806, 810 can communicate with the user/device interaction subsystem 817 via wireless communications channels or direct connection (e.g., where the device docks, or connects, with a USB port or similar interface of the vehicle 104).
A sensor module 814 may be configured to receive and/or interpret input provided by one or more sensors in the vehicle 104. In some cases, the sensors may be associated with one or more user devices (e.g., wearable devices 802, 806, 810, smart phones 212, mobile computing devices 212, 248, and the like). Optionally, the sensors may be associated with the vehicle 104, as described in conjunction with
The device interaction module 818 may communicate with the various devices as provided herein. Optionally, the device interaction module 818 can provide content, information, data, and/or media associated with the various subsystems of the vehicle system 800 to one or more devices 212, 248, 802, 806, 810, 882, etc. Additionally or alternatively, the device interaction module 818 may receive content, information, data, and/or media associated with the various devices provided herein.
The user identification module 822 may be configured to identify a user 216 associated with the vehicle 104. The identification may be based on user profile information that is stored in profile data 252. For instance, the user identification module 822 may receive characteristic information about a user 216 via a device, a camera, and/or some other input. The received characteristics may be compared to data stored in the profile data 252. Where the characteristics match, the user 216 is identified. As can be appreciated, where the characteristics do not match a user profile, the user identification module 822 may communicate with other subsystems in the vehicle 104 to obtain and/or record profile information about the user 216. This information may be stored in a memory and/or the profile data storage 252.
The vehicle control module 826 may be configured to control settings, features, and/or the functionality of a vehicle 104. In some cases, the vehicle control module 826 can communicate with the vehicle control system 204 to control critical functions (e.g., driving system controls, braking, accelerating, etc.) and/or noncritical functions (e.g., driving signals, indicator/hazard lights, mirror controls, window actuation, etc.) based at least partially on user/device input received by the user/device interaction subsystem 817.
The environmental control module 830 may be configured to control settings, features, and/or other conditions associated with the environment, especially the interior environment, of a vehicle 104. Optionally, the environmental control module 830 may communicate with the climate control system (e.g. changing cabin temperatures, fan speeds, air direction, etc.), oxygen and/or air quality control system (e.g., increase/decrease oxygen in the environment, etc.), interior lighting (e.g., changing intensity of lighting, color of lighting, etc.), an occupant seating system 648 (e.g., adjusting seat position, firmness, height, etc.), steering wheel 640 (e.g., position adjustment, etc.), infotainment/entertainment system (e.g., adjust volume levels, display intensity adjustment, change content, etc.), and/or other systems associated with the vehicle environment. Additionally or alternatively, these systems can provide input, set-points, and/or responses, to the environmental control module 830. As can be appreciated, the environmental control module 830 may control the environment based at least partially on user/device input received by the user/device interaction subsystem 817.
The gesture control module 834 is configured to interpret gestures provided by a user 216 in the vehicle 104. Optionally, the gesture control module 834 may provide control signals to one or more of the vehicle systems 300 disclosed herein. For example, a user 216 may provide gestures to control the environment, critical and/or noncritical vehicle functions, the infotainment system, communications, networking, and more. Optionally, gestures may be provided by a user 216 and detected via one or more of the sensors as described in conjunction with
A GPS Antenna/receiver 892 can be any antenna, GPS puck, and/or receiver capable of receiving signals from a GPS satellite or other navigation system, as mentioned hereinbefore. The signals may be demodulated, converted, interpreted, etc. by the GPS Antenna/receiver 892 and provided to the location module 896. Thus, the GPS Antenna/receiver 892 may convert the time signals from the GPS system and provide a location (e.g., coordinates on a map) to the location module 896. Alternatively, the location module 896 can interpret the time signals into coordinates or other location information.
The location module 896 can be the controller of the satellite navigation system designed for use in automobiles. The location module 896 can acquire position data, as from the GPS Antenna/receiver 892, to locate the user or vehicle 104 on a road in the unit's map database 8100. Using the road database 8100, the location module 896 can give directions to other locations along roads also in the database 8100. When a GPS signal is not available, the location module 896 may apply dead reckoning to estimate distance data from sensors 242 including one or more of, but not limited to, a speed sensor attached to the drive train of the vehicle 104, a gyroscope, an accelerometer, etc. GPS signal loss and/or multipath can occur due to urban canyons, tunnels, and other obstructions. Additionally or alternatively, the location module 896 may use known locations of Wi-Fi hotspots, cell tower data, etc. to determine the position of the vehicle 104, such as by using time difference of arrival (TDOA) and/or frequency difference of arrival (FDOA) techniques.
The maps database 8100 can include any hardware and/or software to store information about maps, geographical information system information, location information, etc. The maps database 8100 can include any data definition or other structure to store the information. Generally, the maps database 8100 can include a road database that may include one or more vector maps of areas of interest. Street names, street numbers, house numbers, and other information can be encoded as geographic coordinates so that the user can find some desired destination by street address. Points of interest (waypoints) can also be stored with their geographic coordinates. For example, a point of interest may include speed cameras, fuel stations, public parking, and “parked here” (or “you parked here”) information. The map database contents can be produced or updated by a server connected through a wireless system in communication with the Internet, even as the vehicle 104 is driven along existing streets, yielding an up-to-date map.
An automobile controller 8104 can be any hardware and/or software that can receive instructions from the location module 896 or the traffic controller 8112 and operate the vehicle 104. The automobile controller 8104 receives this information and data from the sensors 242 to operate the vehicle 104 without driver input. Thus, the automobile controller 8104 can drive the vehicle 104 along a route provided by the location module 896. The route may be adjusted by information sent from the traffic controller 8112. Discrete and real-time driving can occur with data from the sensors 242. To operate the vehicle 104, the automobile controller 8104 can communicate with a vehicle systems transceiver 8108.
The vehicle systems transceiver 8108 can be any present or future-developed device that can comprise a transmitter and/or a receiver, which may be combined and can share common circuitry or a single housing. The vehicle systems transceiver 8108 may communicate or instruct one or more of the vehicle control subsystems 328. For example, the vehicle systems transceiver 8108 may send steering commands, as received from the automobile controller 8104, to an electronic steering system, to adjust the steering of the vehicle 100 in real time. The automobile controller 8104 can determine the effect of the commands based on received sensor data 242 and can adjust the commands as need be. The vehicle systems transceiver 8108 can also communicate with the braking system, the engine and drive train to speed or slow the car, the signals (e.g., turn signals and brake lights), the headlights, the windshield wipers, etc. Any of these communications may occur over the components or function as described in conjunction with
A traffic controller 8112 can be any hardware and/or software that can communicate with an automated traffic system and adjust the function of the vehicle 104 based on instructions from the automated traffic system. An automated traffic system is a system that manages the traffic in a given area. This automated traffic system can instruct cars to drive in certain lanes, instruct cars to raise or lower their speed, instruct a car to change their route of travel, instruct cars to communicate with other cars, etc. To perform these functions, the traffic controller 8112 may register the vehicle 104 with the automated traffic system and then provide other information including the route of travel. The automated traffic system can return registration information and any required instructions. The communications between the automated traffic system and the traffic controller 8112 may be received and sent through a network traffic transceiver 8116.
The network traffic transceiver 8116 can be any present or future-developed device that can comprise a transmitter and/or a receiver, which may be combined and can share common circuitry or a single housing. The network traffic transceiver 8116 may communicate with the automated traffic system using any known or future-developed, protocol, standard, frequency, bandwidth range, etc. The network traffic transceiver 8116 enables the sending of information between the traffic controller 8112 and the automated traffic system.
The traffic controller 8112 can also communicate with another vehicle, which may be in physical proximity (i.e., within range of a wireless signal), using the vehicle-to-vehicle transceiver 8120. As with the network traffic transceiver 8116, the vehicle-to-vehicle transceiver 8120 can be any present or future-developed device that can comprise a transmitter and/or a receiver, which may be combined and can share common circuitry or a single housing. Generally, the vehicle-to-vehicle transceiver 8120 enables communication between the vehicle 104 and any other vehicle. These communications allow the vehicle 104 to receive traffic or safety information, control or be controlled by another vehicle, establish an alternative communication path to communicate with the automated traffic system, establish a node including two or more vehicle that can function as a unit, etc. The vehicle-to-vehicle transceiver 8120 may communicate with the other vehicles using any known or future-developed, protocol standard, frequency, bandwidth range, etc.
The traffic controller 8112 can control functions of the automobile controller 8104 and communicate with the location module 896. The location module 896 can provide current location information and route information that the traffic controller 8112 may then provide to the automated traffic system. The traffic controller 8112 may receive route adjustments from the automated traffic system that are then sent to the location module 896 to change the route. Further, the traffic controller 8112 can also send driving instructions to the automobile controller 8104 to change the driving characteristics of the vehicle 104. For example, the traffic controller 8112 can instruct the automobile controller 8104 to accelerate or decelerate to a different speed, change lanes, or perform another driving maneuver. The traffic controller 8112 can also manage vehicle-to-vehicle communications and store information about the communications or other information in the traffic information database 8124.
The traffic information database 8124 can be any type of database, such as relational, hierarchical, object-oriented, and/or the like. The traffic information database 8124 may reside on a storage medium local to (and/or resident in) the vehicle control system 204 or in the vehicle 104. The traffic information database 8124 may be adapted to store, update, and retrieve information about communications with other vehicles or any active instructions from the automated traffic system. This information may be used by the traffic controller 8112 to instruct or adjust the performance of driving maneuvers.
As will be appreciated, there could be alternative host devices, such as, host 904 which could also act as, for example, a co-host in association with device 908. Optionally, one or more of the routing profile, permission information, and rules could be shared between the co-host devices 904, 908, both of those devices being usable for Internet access for one or more of the other devices, 912-924. As will be appreciated, the other devices 912-924 need not necessarily connect to one or more of host device 908 and the other device 904 via a direct communications link, but could also interface with those devices 904, 908 utilizing the network/communications buses 224/404 associated with the vehicle 100. As previously discussed, one or more of the other devices can connect to the network/communications buses 224/404 utilizing the various networks and/or buses discussed herein which would therefore enable, for example, regulation of the various communications based on the Ethernet zone that the other device 912 is associated with.
An embodiment of one or more modules that may be associated with the vehicle control system 204 may be as shown in
In some situations, the firewall 1044 may establish security zones that are implemented by running system services and/or applications in restricted user groups and accounts. A set of configuration files and callbacks may then be linked to an IP table firewall. The IP table firewall can be configured to notify a custom filter application at any of the layers of the Ethernet packet. The different users/group rights to access the system may include: system users, which may have exclusive right over all device firewall rules and running software; a big-brother user, which may have access to on board device (OBD) control data and may be able to communicate with the vehicle subsystem 328 and may be able to alter the parameters in the vehicle control system 204; a dealer user, which can have rights to read OBD data for diagnostics and repairs; a dashboard user, which can have rights to launch dashboard applications and/or authenticate guest users and change their permissions to trusted/friend/family, and can read but cannot write into OBD diagnostic data; a world wide web (WWW) data user, which can have HTTP rights to respond to HTTP requests (the HTTP requests also can target different user data, but may be filtered by default user accounts); a guest user, which may have no rights; a family/friend user, which may have rights to play media from the media subsystem 348 and/or to stream media to the media subsystem 348.
The operating system 1004 can be a collection of software that manages computer hardware resources and provides common services for applications and other programs. The operating system 1004 may schedule time-sharing for efficient use of the system. For hardware functions, such as input, output, and memory allocation, the operating system 1004 can act as an intermediary between applications or programs and the computer hardware. Examples of operating systems that may be deployed as operating system 1004 include Android, BSD, iOS, Linux, OS X, QNX, Microsoft Windows, Windows Phone, IBM z/OS, etc.
The operating system 1004 can include one or more sub-modules. For example, a desktop manager 1012 can manage one or more graphical user interfaces (GUI) in a desktop environment. Desktop GUIs can help the user to easily access and edit files. A command-line interface (CLI) may be used if full control over the operating system (OS) 1004 is required. The desktop manager 1012 is described further hereinafter.
A kernel 1028 can be a computer program that manages input/output requests from software and translates them into data processing instructions for the processor 304 and other components of the vehicle control system 204. The kernel 1028 is the fundamental component of the operating system 1004 that can execute many of the functions associated with the OS 1004.
The kernel 1028 can include other software functions, including, but not limited to, driver(s) 1056, communication software 1052, and/or Internet Protocol software 1048. A driver 1056 can be any computer program that operates or controls a particular type of device that is attached to a vehicle control system 204. A driver 1056 can communicate with the device through the bus 356 or communications subsystem 1008 to which the hardware connects. When a calling program invokes a routine in the driver 1056, the driver 1056 may issue one or more commands to the device. Once the device sends data back to the driver 1056, the driver 1056 may invoke routines in the original calling program. Drivers can be hardware-dependent and operating-system-specific. Driver(s) 1056 can provide the interrupt handling required for any necessary asynchronous time-dependent hardware interface.
The IP module 1048 can conduct any IP addressing, which may include the assignment of IP addresses and associated parameters to host interfaces. The address space may include networks and sub-networks. The IP module 1048 can perform the designation of network or routing prefixes and may conduct IP routing, which transports packets across network boundaries. Thus, the IP module 1048 may perform all functions required for IP multicast operations.
The communications module 1052 may conduct all functions for communicating over other systems or using other protocols not serviced by the IP module 1048. Thus, the communications module 1052 can manage multicast operations over other busses or networks not serviced by the IP module 1048. Further, the communications module 1052 may perform or manage communications to one or more devices, systems, data stores, services, etc. that are in communication with the vehicle control system 204 or other subsystems through the firewall 1044. Thus, the communications module 1052 can conduct communications through the communication subsystem interface 1008.
A file system 1016 may be any data handling software that can control how data is stored and retrieved. The file system 1016 can separate the stored data into individual pieces, and giving each piece a name, can easily separate and identify the pieces of data. Each piece of data may be considered a “file”. The file system 1016 can construct data structure and logic rules used to manage the information and the identifiers for the information. The structure and logic rules can be considered a “file system.”
A device discovery daemon 1020 may be a computer program that runs as a background process that can discover new devices that connect with the network 356 or communication subsystem 1008 or devices that disconnect from the network 356 or communication subsystem 1008. The device discovery daemon 1020 can ping the network 356 (the local subnet) when the vehicle 104 starts, when a vehicle door opens or closes, or upon the occurrence of other events. Additionally or alternatively, the device discovery daemon 1020 may force Bluetooth®, USB, and/or wireless detection. For each device that responds to the ping, the device discovery daemon 1020 can populate the system data 208 with device information and capabilities, using any of one or more protocols, including one or more of, but not limited to, IPv6 Hop-by-Hop Option (HOPOPT), Internet Control Message Protocol (ICMP), Internet Group Management Protocol (IGMP), Gateway-to-Gateway Protocol (GGP), Internet Protocol (IP), Internet Stream Protocol (ST), Transmission Control Protocol (TCP), Exterior Gateway Protocol (EGP), CHAOS, User Datagram Protocol (UDP), etc.
For example, the device discovery daemon 1020 can determine device capabilities based on the opened ports the device exposes. If a camera exposes port 80, then the device discovery daemon 1020 can determine that the camera is using a Hypertext Transfer Protocol (HTTP). Alternatively, if a device is supporting Universal Plug and Play (UPnP), the system data 208 can include more information, for example, a camera control universal resource locator (URL), a camera zoom URL, etc. When a scan stops, the device discovery daemon 1020 can trigger a dashboard refresh to ensure the user interface reflects the new devices on the desktop.
A desktop manager 1012 may be a computer program that manages the user interface of the vehicle control system 204. The desktop environment may be designed to be customizable and allow the definition of the desktop configuration look-and-feel for a wide range of appliances or devices from computer desktops, mobile devices, computer tablets, etc. Launcher(s), panels, desktop areas, the desktop background, notifications, panes, etc., can be configured from a dashboard configuration file managed by the desktop manager 1012. The graphical elements in which the desktop manager 1012 controls can include launchers, the desktop, notification bars, etc.
The desktop may be an area of the display where the applications are running The desktop can have a custom background. Further, the desktop may be divided into two or more areas. For example, the desktop may be divided into an upper half of a display and a lower half of the display. Each application can be configured to run in a portion of the desktop. Extended settings can be added to the desktop configuration file, such that, some objects may be displayed over the whole desktop or in custom size out of the context of the divided areas.
The notification bar may be a part of a bar display system, which may provide notifications by displaying, for example, icons and/or pop-up windows that may be associated with sound notifications. The notification mechanism can be designed for separate plug-ins, which run in separate processes and may subscribe to a system Intelligent Input Bus (IBUS)/D-BUS event service. The icons on the notifications bar can be accompanied with application short-cuts to associated applications, for example, a Bluetooth® manager, a USB manager, radio volume and or tone control, a security firewall, etc.
The desktop manager 1012 may include a windows manager 1032, an application launcher 1036, and/or a panel launcher 1040. Each of these components can control a different aspect of the user interface. The desktop manager 1012 can use a root window to create panels that can include functionality for one or more of, but not limited to: launching applications, managing applications, providing notifications, etc.
The windows manager 1032 may be software that controls the placement and appearance of windows within a graphical user interface presented to the user. Generally, the windows manager 1032 can provide the desktop environment used by the vehicle control system 204. The windows manager 1032 can communicate with the kernel 1028 to interface with the graphical system that provides the user interface(s) and supports the graphics hardware, pointing devices, keyboard, touch-sensitive screens, etc. The windows manager 1032 may be a tiling window manager (i.e., a window manager with an organization of the screen into mutually non-overlapping frames, as opposed to a coordinate-based stacking of overlapping objects (windows) that attempts to fully emulate the desktop metaphor). The windows manager 1032 may read and store configuration files, in the system data 208, which can control the position of the application windows at precise positions.
An application manager 1036 can control the function of any application over the lifetime of the process. The process or application can be launched from a panel launcher 1040 or from a remote console. The application manager 1036 can intercept the process name and may take appropriate action to manage that process. If the process is not running, the application manager 1036 can load the process and may bring the process to a foreground in a display. The application manager 1036 may also notify the windows manager 1032 to bring the associated window(s) to a top of a window stack for the display. When a process starts from a shell or a notification out of the context of the desktop, the application manager 1036 can scan files to match the process name with the entry name provided. When a match is found, the application manager 1036 can configure the process according to a settings file.
In some situations, the application manager 1036 may restrict an application as singleton (i.e., restricts the instantiation of a class to one object). If an application is already running and the application manager 1036 is asked to run the application again, the application manager 1036 can bring the running process to a foreground on a display. There can be a notification event exchange between the windows manager 1032 and the application manager 1036 for activating the appropriate window for the foreground process. Once an application is launched, the application may not be terminated or killed. The application can be sent to the background, except, possibly, for some applications (e.g., media player, Bluetooth®, notifications, etc.), which may be given a lowest process priority.
The panel launcher 1040 can be a widget configured to be placed along a portion of the display. The panel launcher 1040 may be built from desktop files from a desktop folder. The desktop folder location can be configured by a configuration file stored in system data 208. The panel launcher 1040 can allow for the launching or executing of applications or processes by receiving inputs from a user interface to launch programs.
A desktop plugin 1024 may be a software component that allows for customization of the desktop or software interface through the initiation of plug-in applications.
One or more gestures used to interface with the vehicle control system 204 may be as described in conjunction with
With reference to
With reference to
With reference to
With reference to
With reference to
The above gestures may be combined in any manner, such as those shown by
The functional result of receiving a gesture can vary depending on a number of factors, including a state of the vehicle 104, display, or screen of a device, a context associated with the gesture, or sensed location of the gesture, etc. The state of the vehicle 104 commonly refers to one or more of a configuration of the vehicle 104, a display orientation, and user and other inputs received by the vehicle 104. Context commonly refers to one or more of the particular application(s) selected by the gesture and the portion(s) of the application currently executing, whether the application is a single- or multi-screen application, and whether the application is a multi-screen application displaying one or more windows. A sensed location of the gesture commonly refers to whether the sensed set(s) of gesture location coordinates are on a touch sensitive display or a gesture capture region of a device 212, 248, whether the sensed set(s) of gesture location coordinates are associated with a common or different display, or screen, or device 212, 248, and/or what portion of the gesture capture region contains the sensed set(s) of gesture location coordinates.
A tap, when received by a touch sensitive display of a device 212, 248, can be used, for instance, to select an icon to initiate or terminate execution of a corresponding application, to maximize or minimize a window, to reorder windows in a stack, and/or to provide user input such as by keyboard display or other displayed image. A drag, when received by a touch sensitive display of a device 212, 248, can be used, for instance, to relocate an icon or window to a desired location within a display, to reorder a stack on a display, or to span both displays (such that the selected window occupies a portion of each display simultaneously). A flick, when received by a touch sensitive display of a device 212, 248 or a gesture capture region, can be used to relocate a window from a first display to a second display or to span both displays (such that the selected window occupies a portion of each display simultaneously). Unlike the drag gesture, however, the flick gesture is generally not used to move the displayed image to a specific user-selected location but to a default location that is not configurable by the user.
The pinch gesture, when received by a touch sensitive display or a gesture capture region of a device 212, 248, can be used to minimize or otherwise increase the displayed area or size of a window (typically when received entirely by a common display), to switch windows displayed at the top of the stack on each display to the top of the stack of the other display (typically when received by different displays or screens), or to display an application manager (a “pop-up window” that displays the windows in the stack). The spread gesture, when received by a touch sensitive display or a gesture capture region of a device 212, 248, can be used to maximize or otherwise decrease the displayed area or size of a window, to switch windows displayed at the top of the stack on each display to the top of the stack of the other display (typically when received by different displays or screens), or to display an application manager (typically when received by an off-screen gesture capture region on the same or different screens).
The combined gestures of
Gestures that may be completed in three-dimensional space and not on a touch sensitive screen or gesture capture region of a device 212, 248 may be as shown in
In another example of a gesture 1152 in
The gestures 1140, 1152, 1160, as shown in
Referring to
There may be one or more user records 1240 and associated data stored within the data file 1204. As provided herein, the user can be any person that uses or rides within the vehicle or conveyance 104. The user may be identified in portion 1212. For the vehicle 104, the user may include a set of one or more features that may identify the user. These features may be the physical characteristics of the person that may be identified by facial recognition or some other type of system. In other situations, the user may provide a unique code to the vehicle control system 204 or provide some other type of data that allows the vehicle control system 204 to identify the user. The features or characteristics of the user are then stored in portion 1212.
Each user, identified in portion 1208, may have a different set of settings for each area 508 and/or each zone 512 within the vehicle 104. Thus, each set of settings may also be associated with a predetermined zone 512 or area 508. The zone 512 is stored in portion 1220, and the area 508 is stored in portion 1216.
One or more settings may be stored in portion 1224. These settings 1224 may be the configurations of different functions within the vehicle 104 that are specified by or for that user. For example, the settings 1224 may be the position of a seat, the position of a steering wheel, the position of accelerator and/or brake pedals, positions of mirrors, a heating/cooling setting, a radio setting, a cruise control setting, or some other type of setting associated with the vehicle 104. Further, in vehicles adapted to have a configurable console or a configurable dash or heads-up display, the settings 1224 may also provide for how that heads-up display, dash, or console are configured for this particular user.
Each setting 1224 may be associated with a different area 508 or zone 512. Thus, there may be more settings 1224 for when the user is the driver and in zone A 512A, 512A, of area 1, 508A. However, there may be similar settings 1224 among the different zones 512 or areas 508 as shown in portion 1224. For example, the heating or radio settings for the user may be similar in every zone 512.
The sensors 242 within the vehicle 104 may be able to either obtain or track health data in portion 1228. Health data 1228 may include any type of physical characteristic associated with the user. For example, a heart rate, a blood pressure, a temperature, or other types of heath data may be obtained and stored in portion 1228. The user may have this health data tracked over a period of time to allow for statistical analysis of the user's health while operating the vehicle 104. In this way, if some function of the user's health deviates from a norm (e.g., a baseline measurement, average measurements taken over time, and the like), the vehicle 104 may be able to determine there is a problem with the person and react to that data.
One or more gestures may be stored in portion 1232. Thus, the gestures used and described in conjunction
One or more sets of safety parameters may be stored in portion 1236. Safety parameters 1236 may be common operating characteristics for this driver/passenger or for all drivers/passengers that if deviated from may determine there is a problem with the driver/passenger or the vehicle 104. For example, a certain route may be taken repeatedly and an average speed or mean speed may be determined. If the mean speed deviates by some number of standard deviations, a problem with the vehicle 104 or the user may be determined. In another example, the health characteristics or driving experience of the user may be determined. If the user drives in a certain position where their head occupies a certain portion of three-dimensional space within the vehicle 104, the vehicle control system 204 may determine that the safety parameter includes the users face or head being within this certain portion of the vehicle interior space. If the user's head deviates from that interior space for some amount of time, the vehicle control system 204 can determine that something is wrong with the driver and change the function or operation of the vehicle 104 to assist the driver. This may happen, for example, when a user falls asleep at the wheel. If the user's head droops and no longer occupies a certain three dimensional space, the vehicle control system 204 can determine that the driver has fallen asleep and may take control of the operation of the vehicle 204 and the automobile controller 8104 may steer the vehicle 204 to the side of the road. In other examples, if the user's reaction time is too slow or some other safety parameter is not nominal, the vehicle control system 204 may determine that the user is inebriated or having some other medical problem. The vehicle control system 204 may then assume control of the vehicle to ensure that the driver is safe.
Information corresponding to a user and/or a user profile may be stored in the profile information portion 1238. For example, the profile information 1238 may include data relating to at least one of current data, historical data, a user preference, user habit, user routine, observation, location data (e.g., programmed and/or requested destinations, locations of parking, routes traveled, average driving time, etc.), social media connections, contacts, brand recognition (e.g., determined via one or more sensors associated with the vehicle 104, a device 212, 248, etc.), audible recording data, text data, email data, political affiliation, preferred retail locations/sites (e.g., physical locations, web-based locations, etc.), recent purchases, behavior associated with the aforementioned data, and the like. The data in the profile information portion 1238 may be stored in one or more of the data structures 1200 provided herein. As can be appreciated, these one or more data structures may be stored in one or more memory locations. Examples of various memory locations are described in conjunction with
One or more additional data fields may be stored in the linked data portion 1242 as data and/or locations of data. The linked data 1242 may include at least one of pointers, addresses, location identification, data source information, and other information corresponding to additional data associated with the data structure 1200. Optionally, the linked data portion 1242 may refer to data stored outside of a particular data structure 1200. For example, the linked data portion 1242 may include a link/locator to the external data. Continuing this example, the link/locator may be resolved (e.g., via one or more of the methods and/or systems provided herein, etc.) to access the data stored outside of the data structure 1200. Additionally or alternatively, the linked data portion 1242 may include information configured to link the data objects 1204 to other data files or data objects 1250, 1270, 1280. For instance, the data object 1204 relating to a user may be linked to at least one of a device data object 1250, a vehicle system data object 1270, and a vehicle data object 1280, to name a few.
An embodiment of a data structure 1200 to store information associated with one or more devices is shown in
There may be one or more device records 1250 and associated data stored within the data file 1250. As provided herein, the device may be any device that is associated with the vehicle 104. For example, a device may be associated with a vehicle 104 when that device is physically located within the interior space 108 of the vehicle 104. As another example, a device may be associated with a vehicle 104 when the device registers with the vehicle 104. Registration may include pairing the device with the vehicle 104 and/or one or more of the vehicle systems (e.g., as provided in
The device may be identified in portion 1256. Among other things, the device identification may be based on the hardware associated with the device (e.g., Media Access Control (MAC) address, Burned-In Address (BIM, Ethernet Hardware Address (EHA), physical address, hardware address, and the like).
Optionally, a device may be associated with one or more users. For example, a tablet and/or graphical user interface (GUI) associated with the vehicle 104 may be used by multiple members of a family. For instance, the GUI may be located in a particular area 508 and/or zone 512 of the vehicle 104. Continuing this example, when a family member is located in the particular area 508 and/or zone 512, the device may include various settings, features, priorities, capabilities, and the like, based on an identification of the family member. The user may be identified in portion 1254. For the device, the user identification portion 1254 may include a set of one or more features that may identify a particular user. These features may be the physical characteristics of the person that may be identified by facial recognition, or some other type of system, associated with the device and/or the vehicle 104. Optionally, the user may provide a unique code to the device, or provide some other type of data, that allows the device to identify the user. The features or characteristics of the user are then stored in portion 1254.
Each device identified in the device identification portion 1256 may have a different set of settings for each area 508 and/or each zone 512, and/or each user of the device. Thus, each set of settings may also be associated with a predetermined zone 512, area 508, and/or user. The zone 512 is stored in portion 1220 and the area 508 is stored in portion 1216.
One or more settings may be stored in portion 1224. These settings 1224 may be similar and/or identical to those previously described. Further, the settings 1224 may also provide for how a device is configured for a particular user. Each setting 1224 may be associated with a different area 508 or zone 512. Thus, there may be more restrictive settings 1224 (e.g., restricted multimedia, texting, limited access to device functions, and the like) for the device when the user is the driver and in zone A 512A, 512A, of area 1, 508A. However, when the user is in another zone 512 or area 508, for example, where the user is not operating a vehicle 104, the settings 1224 may provide unrestricted access to one or more features of the device (e.g., allowing texting, multimedia, etc.).
Optionally, the capabilities of a device may be stored in portion 1258. Examples of device capabilities may include, but are not limited to, a communications ability (e.g., via wireless network, EDGE, 3G, 4G, LTE, wired, Bluetooth®, Near Field Communications (NFC), Infrared (IR), etc.), hardware associated with the device (e.g., cameras, gyroscopes, accelerometers, touch interface, processor, memory, display, etc.), software (e.g., installed, available, revision, release date, etc.), firmware (e.g., type, revision, etc.), operating system, system status, and the like. Optionally, the various capabilities associated with a device may be controlled by one or more of the vehicle systems provided herein. Among other things, this control allows the vehicle 104 to leverage the power and features of various devices to collect, transmit, and/or receive data.
One or more priorities may be stored in portion 1260. The priority may correspond to a value, or combination of values, configured to determine how a device interacts with the vehicle 104 and/or its various systems. The priority may be based on a location of the device (e.g., as stored in portions 1216, 1220). A default priority can be associated with each area 508 and/or zone 512 of a vehicle 104. For example, the default priority associated with a device found in zone 1 512A of area 1 508A (e.g., a vehicle operator position) may be set higher than an (or the highest of any) alternative zone 512 or area 508 of the vehicle 104. Continuing this example, the vehicle 104 may determine that, although other devices are found in the vehicle, the device, having the highest priority, controls features associated with the vehicle 104. These features may include vehicle control features, critical and/or non-critical systems, communications, and the like. Additionally or alternatively, the priority may be based on a particular user associated with the device. Optionally, the priority may be used to determine which device will control a particular signal in the event of a conflict.
Registration data may be stored in portion 1262. As described above, when a particular device registers with a vehicle 104, data related to the registration may be stored in the registration data portion 1262. Such data may include, but is not limited to, registration information, registration codes, initial registration time, expiration of registration, registration timers, and the like. Optionally, one or more systems of the vehicle 104 may refer to the registration data portion 1262 to determine whether a device has been previously registered with the vehicle 104. As shown in
Additionally or alternatively, the data structure 1200 may include a profile information portion 1238 and/or a linked data portion 1242. Although the profile information portion 1238 and/or the linked data portion 1242 may include different information from that described above, it should be appreciated that the portions 1238, 1242 may be similar, or identical, to those as previously disclosed.
An embodiment of a data structure 1200 to store information associated with one or more vehicle systems is shown in
There may be one or more system records 1270 and associated data stored within the data file 1270. As provided herein, the vehicle systems may be any system and/or subsystem that is associated with the vehicle 104. Examples of various systems are described in conjunction with
Each system may include one or more components. The components may be identified in portion 1274. Identification of the one or more components may be based on hardware associated with the component. This identification may include hardware addresses similar to those described in conjunction with the devices of
Each system and/or component may include priority type information in portion 1276. Among other things, the priority type information stored in portion 1276 may be used by the various methods and systems provided herein to differentiate between critical and non-critical systems. Non-limiting examples of critical systems may correspond to those systems used to control the vehicle 104, such as, steering control, engine control, throttle control, braking control, and/or navigation informational control (e.g., speed measurement, fuel measurement, etc.) Non-critical systems may include other systems that are not directly related to the control of the vehicle 104. By way of example, non-critical systems may include media presentation, wireless communications, comfort settings systems (e.g., climate control, seat position, seat warmers, etc.), and the like. Although examples of critical and/or non-critical systems are provided above, it should be appreciated that the priority type of a system may change (e.g., from critical to non-critical, from non-critical to critical, etc.) depending on the scenario. For instance, although the interior climate control system may be classified as a non-critical system at a first point in time, it may be subsequently classified as a critical system when a temperature inside/outside of the vehicle 104 is measured at a dangerous level (e.g., sub-zero Fahrenheit, greater than 90-degrees Fahrenheit, etc.). As such, the priority type may be associated with temperature conditions, air quality, times of the day, condition of the vehicle 104, and the like.
Each system may be associated with a particular area 508 and/or zone 512 of a vehicle 104. Among other things, the location of a system may be used to assess a state of the system and/or provide how the system interacts with one or more users of the vehicle 104. As can be appreciated each system may have a different set of settings for each area 508 and/or each zone 512, and/or each user of the system. Thus, each set of settings may also be associated with a predetermined zone 512, area 508, system, and/or user. The zone 512 is stored in portion 1220 and the area 508 is stored in portion 1216.
One or more settings may be stored in portion 1224. These settings 1224 may be similar and/or identical to those previously described. Further, the settings 1224 may also provide for how a system is configured for a particular user. Each setting 1224 may be associated with a different area 508 or zone 512. For instance, a climate control system may be associated with more than one area 508 and/or zone 512. As such, a first user seated in zone 1 512A of area 1 508A may store settings related to the climate control of that zone 512A that are different from other users and/or zones 512 of the vehicle 104. Optionally, the settings may not be dependent on a user. For instance, specific areas 508 and/or zones 512 of a vehicle 104 may include different, default, or the same settings based on the information stored in portion 1224.
The various systems and/or components may be able to obtain or track health status data of the systems and/or components in portion 1278. The health status 1278 may include any type of information related to a state of the systems. For instance, an operational condition, manufacturing date, update status, revision information, time in operation, fault status, state of damage detected, inaccurate data reporting, and other types of component/system health status data may be obtained and stored in portion 1278.
Each component and/or system may be configured to communicate with users, systems, servers, vehicles, third parties, and/or other endpoints via one or more communication type. At least one communication ability and/or type associated with a system may be stored in the communication type portion 1279. Optionally, the communication types contained in this portion 1279 may be ordered in a preferential order of communication types. For instance, a system may be configured to preferably communicate via a wired communication protocol over one or more wired communication channels (e.g., due to information transfer speeds, reliability, and the like). However, in this instance, if the one or more wired communication channels fail, the system may transfer information via an alternative communication protocol and channel (e.g., a wireless communication protocol and wireless communication channel, etc.). Among other things, the methods and systems provided herein may take advantage of the information stored in the communication type portion 1279 to open available communication channels in the event of a communication channel failure, listen on other ports for information transmitted from the systems, provide a reliability rating based on the number of redundant communication types for each component, and more. Optionally, a component or system may be restricted from communicating via a particular communication type (e.g., based on rules, traffic, critical/non-critical priority type, and the like). In this example, the component or system may be forced by the vehicle control system 204 to use an alternate communication type where available, cease communications, or store communications for later transfer.
Additionally or alternatively, the data structure 1200 may include a profile information portion 1238 and/or a linked data portion 1242. Although the profile information portion 1238 and/or the linked data portion 1242 may include different information from that described above, it should be appreciated that the portions 1238, 1242 may be similar, or identical, to those as previously disclosed.
Referring now to
There may be one or more vehicle records 1280 and associated data stored within the data file 1282. As provided herein, the vehicle 104 can be any vehicle or conveyance 104 as provided herein. The vehicle 104 may be identified in portion 1282. Additionally or alternatively, the vehicle 104 may be identified by one or more systems and/or subsystems. The various systems of a vehicle 104 may be identified in portion 1284. For example, various features or characteristics of the vehicle 104 and/or its systems may be stored in portion 1284. Optionally, the vehicle 104 may be identified via a unique code or some other type of data that allows the vehicle 104 to be identified.
Each system may be associated with a particular area 508 and/or zone 512 of a vehicle 104. Among other things, the location of a system may be used to assess a state of the system and/or provide how the system interacts with one or more users of the vehicle 104. As can be appreciated each system may have a different set of settings for each area 508 and/or each zone 512, and/or each user of the system. Thus, each set of settings may also be associated with a predetermined zone 512, area 508, system, and/or user. The zone 512 is stored in portion 1220 and the area 508 is stored in portion 1216.
One or more settings may be stored in portion 1224. These settings 1224 may be similar and/or identical to those previously described. Further, the settings 1224 may also provide for how a vehicle and/or its systems are configured for one or more users. Each setting 1224 may be associated with a different area 508 or zone 512. Optionally, the settings may not be dependent on a particular user. For instance, specific areas 508 and/or zones 512 of a vehicle 104 may include different, default, or the same settings based on the information stored in portion 1224.
The various systems and/or components may be able to obtain or track health status data of the systems and/or components in portion 1278. The health status 1278 may include any type of information related to a state of the systems. For instance, an operational condition, manufacturing date, update status, revision information, time in operation, fault status, state of damage detected, inaccurate data reporting, and other types of component/system health status data may be obtained and stored in portion 1278.
One or more warnings may be stored in portion 1286. The warnings data 1286 may include warning generated by the vehicle 104, systems of the vehicle 104, manufacturer of the vehicle, federal agency, third party, and/or a user associated with the vehicle. For example, several components of the vehicle may provide health status information (e.g., stored in portion 1278) that, when considered together, may suggest that the vehicle 104 has suffered some type of damage and/or failure. Recognition of this damage and/or failure may be stored in the warnings data portion 1286. The data in portion 1286 may be communicated to one or more parties (e.g., a manufacturer, maintenance facility, user, etc.). In another example, a manufacturer may issue a recall notification for a specific vehicle 104, system of a vehicle 104, and/or a component of a vehicle 104. It is anticipated that the recall notification may be stored in the warning data field 1286. Continuing this example, the recall notification may then be communicated to the user of the vehicle 104 notifying the user of the recall issued by the manufacturer.
Additionally or alternatively, the data structure 1200 may include a profile information portion 1238 and/or a linked data portion 1242. Although the profile information portion 1238 and/or the linked data portion 1242 may include different information from that described above, it should be appreciated that the portions 1238, 1242 may be similar, or identical, to those as previously disclosed.
An embodiment of a method 1300 for storing settings for a user 216 associated with vehicle 104 is shown in
A person may enter the vehicle space 108. One or more sensors 242 may then identify that a person is sitting within the vehicle 104, in step 1308. For example, sensors 242 in a seat, may determine that some new amount of weight has been registered. The amount of weight may fall within predetermined parameters (e.g., over a threshold, in a specific range, etc.). This weight may then be determined to be a person by one or more optical or other sensors 242. The vehicle control system 204 may then determine that a person is in a certain zone 512 or area 508. For example, the sensors 242 may send signals to the vehicle controls system 204 that an event has occurred. This information may be sent to the vehicle control system processor 304 to determine the zone 512 and area 508 where the event occurred. Further, the vehicle control system 204 may then identify the person, in step 1312.
The vehicle control system 204 can receive the information from the sensors 242 and use that information to search the database 1200 that may be stored within the system data 208. The sensor data may be compared to ID characteristics 1212 to determine if the person has already been identified. The vehicle control system 204 may also send the characteristic data from the sensors to the communication network 224 to a server 228 to compare the sensor data to stored data 232 that may be stored in a cloud system. The person's features can be compared to stored features 1212 to determine if the person in the vehicle 104 can be identified.
If the person has been identified previously and their characteristics stored in portion 1212, the method 1300 proceeds YES to step 1316 where that person may be identified. In identifying a person, the information associated with that person 1240 may be retrieved and provided to the vehicle control system 204 for further action. If a person cannot be identified by finding their sensor characteristics in portion 1212, the method 1300 proceeds NO to step 1320. In step 1320, the vehicle control system 204, using an application, may create a new record in table 1200 for the user. This new record may store a user identifier and their characteristics 1212. It may also store the area 508 and zone 512 in data portions 1216 and 1220. The new record may then be capable of receiving new settings data for this particular user. In this way, the vehicle 104 can automatically identify or characterize a person so that settings may be established for the person in the vehicle 104.
The input module 312 may then determine if settings are to be stored, in step 1324. Settings might be any configuration of the vehicle 104 that may be associated with the user. The determination may be made after receiving a user input from the user. For example, the user may make a selection on a touch sensitive display indicating that settings currently made are to be stored. In other situations, a period of time may elapse after the user has made a configuration. After determining that the user is finished making changes to the settings, based on the length of the period of time since the setting was established, the vehicle control system 204 can save the setting. Thus, the vehicle control system 204 can make settings automatically based on reaching a steady state for settings for user.
The vehicle control system 204 may then store the settings for the person, in step 1328. The user interaction subsystem 332 can make a new entry for the user 1208 in data structure 1204. The new entry may be either a new user or a new settings listed in 1224. The settings may be stored based on the area 508 and zone 512. As explained previously, the settings can be any kind of configuration of the vehicle 104 that may be associated with the user in that area 508 and the zone 512.
The settings may also be stored in cloud storage, in step 1332. Thus, the vehicle control system 204 can send the new settings to the server 228 to be stored in storage 232. In this way, these new settings may be ported to other vehicles for the user. Further, the settings in storage system 232 may be retrieved, if local storage does not include the settings in storage system 208.
Additionally or alternatively, the settings may be stored in profile data 252. As provided herein, the profile data 252 may be associated with one or more devices 212, 248, servers 228, vehicle control systems 204, and the like. Optionally, the settings in profile data 252 may be retrieved in response to conditions. For instance, the settings may be retrieved from at least one source having the profile data if local storage does not include the settings in storage system 208. As another example, a user 216 may wish to transfer settings stored in profile data 252 to the system data 208. In any event, the retrieval and transfer of settings may be performed automatically via one or more devices 204, 212, 248, associated with the vehicle 104.
An embodiment of a method 1400 to configure the vehicle 104 based on stored settings is shown in
The vehicle control system 204 can determine if a person is in a zone 512 or area 508, in step 1408. This determination may be made by receiving data from one or more sensors 242. The vehicle 104 can use facial recognition, weight sensors, heat sensors, or other sensors to determine whether a person is occupying a certain zone 512.
Using the information from the sensors 242, the vehicle control system 204 can identify the person, in step 1412. The vehicle control system 204 can obtain characteristics for the user currently occupying the zone 512 and compare those characteristics to the identifying features in portion 1212 of data structure 1204. Thus, the settings in portion 1224 may be retrieved by identifying the correct zone 512, area 508, and characteristics for the user.
The vehicle control system 204 can first determine if there are settings associated with the identified person for that zone 512 and/or area 508, in step 1416. After identifying the user by matching characteristics with the features in portion 1212, the vehicle control system 204 can determine if there are settings for the user for the area 1216 and zone 1220 the user currently occupies. If there are settings, then the vehicle control system 204 can make the determination that there are settings in portion 1224, and the vehicle control system 204 may then read and retrieve those settings, in step 1420. The settings may be then used to configure or react to the presence of the user, in step 1424. Thus, these settings may be obtained to change the configuration of the vehicle 104, for example, how the position of the seats or mirrors are set, how the dash, console, or heads up display is configured, how the heat or cooling is configured, how the radio is configured, or how other different configurations are made.
Embodiments of a method 1500 for storing settings in cloud storage are shown in
The vehicle control system 204 can determine if a person is in a zone 512 or area 508, in step 1508. As explained previously, the vehicle control system 204 can receive vehicle sensor data from vehicle sensors 242 that show a person has occupied a zone 512 or an area 508 of the vehicle 104. Using the vehicle sensor data, the vehicle control system 204 can determine characteristics of the person, in step 1512. These characteristics are compared to the features in portion 1212 of the data structure 1204. From this comparison, the vehicle control system 204 can determine if the person is identified within the data structure 1204, in step 1516. If there is a comparison and the person can be identified, the method 1500 proceeds YES to step 1520. However, if the person cannot be identified, the method 1500 proceeds NO, to step 1524.
In step 1520, the person is identified in portion 1208 by the successful comparison of the characteristics and the features. It should be noted that there may be a degree of variability between the characteristics and the features in portion 1212. Thus, the comparison may not be an exact comparison but may use methods known in the art to make a statistically significant comparison between the characteristics received from the sensors 242 and the features stored in portion 1212. In step 1524, the characteristics received from sensors 242 are used to characterize the person. In this way, the received characteristics may be used as an ID, in portion 1212, for a new entry for a new user in portion 1208.
The user may make one or more settings for the vehicle 104. The vehicle control system 204 may determine if the settings are to be stored, in step 1528. If the settings are to be stored, the method 1500 proceeds YES to step 1536. If the settings are not to be stored or if there are no settings to be stored, the method 1500 proceeds NO to step 1532. In step 1532, the vehicle control system 204 can retrieve the settings in the portion 1224 of the data structure 1204. Retrieval of the settings may be as described in conjunction with
An embodiment of a method 1600 for storing gestures associated with the user is shown in
Vehicle control system 204 may receive sensor data from sensors 242 to determine a person is occupying a zone 512 in an area 508 of the vehicle 104, in step 1608. The sensor data may provide characteristics for the person, in step 1612. The vehicle control system 204 may then use the characteristics to determine if the person can be identified, in step 1616. The vehicle control system 204 may compare the characteristics to the features in portion 1212 for the people having been recognized and having data associated therewith. If a comparison is made between the characteristics and the features in portion 1212, the person can be identified, and the method 1600 proceeds YES to step 1620. If there is no comparison, the method 1600 may proceed NO to step 1624. In step 1620, the person may be identified by the vehicle control system 204. Thus, the person's features and associated data record 1240 may be determined and the user identified in portion 1208. If the person is not identified, the vehicle control system 204 can characterize the person in step 1624 by establishing a new record in data structure 1204 using the characteristics, received from the sensors 242, for the features in portion 1212.
Thereinafter, the vehicle control system 204 may determine if gestures are to be stored and associated with the user, in step 1628. The vehicle control system 204 may receive user input on a touch sensitive display or some other type of gesture capture region which acknowledges that the user wishes to store one or more gestures. Thus, the user may create their own gestures such as those described in conjunction with
In step 1632, the vehicle control system 204 can retrieve current gestures from portion 1232, which are associated with user 1240. These gestures may be used then to configure how the vehicle 104 will react if a gesture is received. If gestures are to be stored, the vehicle control system 204 may store characteristics, in step 1636, as received from sensor 242 or from one more user interface inputs. These characteristics may then be used to create the stored gestures 1232, in data structure 1204. The characteristics may include what the gesture looks like or appears and also what affect the gesture should have. This information may then be used to change the configuration or operation of the vehicle 104 based on the gesture if it is received at a later time.
An embodiment of a method 1700 for receiving a gesture and configuring the vehicle 104 based on the gesture may be as provided in
A vehicle control system 204 can receive sensor data from vehicle sensors 242. The vehicle sensor data can be used by the vehicle control system 204 to determine that a person is in a zone 512 or area 508, in step 1708. The vehicle sensor data may then be used to compare against feature characteristics 1212 to identify a person, in step 1712. The vehicle control system 204 thereinafter may receive a gesture, in step 1716. The gesture may be perceived by vehicle sensors 242 or received in a gesture capture region. The gesture may be as described in conjunction with
An embodiment of a method 1800 for storing health data may be as shown in
Vehicle control system 204 can receive sensor data from sensors 242. The sensor data may be used to determine that a person is in a zone 512 or area 508, in step 1808. The sensor data may then be used to determine characteristics of the person, in step 1812. From the characteristics, the vehicle control system 204 can determine if a person may be identified in data structure 1204, in step 1816. If it is determined that the person can be identified in step 1816, the method 1800 proceeds YES to step 1820. If the person cannot be identified, the method 1800 proceeds NO to step 1824. A person may be identified by matching the characteristics of a person from the sensor data to the features shown in portion 1212. If these comparisons are statistically significant, the person may be identified in portion 1208, in step 1820. However, if the person is not identified in portion 1208, the vehicle control system 204 can characterize the person using the vehicle sensor data, in step 1824. In this way, the vehicle control system 204 can create a new record for a new user in data structure 1204.
Thereinafter, the vehicle control system 204 may receive health and/or safety data from the vehicle sensors 242, in step 1828. The vehicle control system 204 can determine if the health or safety data is to be stored, in step 1832. The determination is made as to whether or not there is sufficient health data or safety parameters, in portion 1228 and 1236, to provide a reasonable baseline data pattern for the user 1240. If there is data to be received and stored, the vehicle control system 204 can store the data for the person in portions 1228 and 1236 of the data structure 1204, in step 1832.
The vehicle control system 204 may then wait a period of time, in step 1836. The period of time may be any amount of time from seconds to minutes to days. Thereinafter, the vehicle control system 204 can receive new data from vehicle sensors 242, in step 1828. Thus, the vehicle control system 204 can receive data periodically and update or continue to refine the health data and safety parameters in data structure 1204. Thereinafter, the vehicle control system 204 may optionally store the health and safety data in cloud storage 232 by sending it through the communication network 224 to the server 228, in step 1840.
An embodiment of a method 1900 for monitoring the health of a user may be as shown in
The vehicle control system 204 can receive health data from sensors 242. The health data may be received in step 1908. The vehicle control system 204 may then compare the received health data to stored health parameters in portion 1228 or portion 1236, in step 1912. The comparison may check if there is statistically significant separation or disagreement between the received health data and the stored health data. Thus, the vehicle control system 204 can make a health comparison of the user based on a baseline of health data previously stored. A statistically significant comparison may include determining if there are any parameters more than three standard deviations from the average or norm, any parameter that is increasing or decreasing over a period of eight different measurements, a measurement that is more than two standard deviations from the norm more than three measurements consecutively, or other types of statistical comparisons.
If the vehicle control system 204 determines that measured health parameter does deviate from the norm, the vehicle control system 204 can determine whether the health data is within acceptable limits, in step 1916. If the health data is within acceptable limits, the method 1900 proceeds YES back to receiving new health data, in step 1908. In this way, the health data is periodically or continually monitored to ensure that the driver is in a healthy state and able to operate the vehicle. If the health data is not within acceptable parameters, the method 1900 may proceed NO to step 1924 where the vehicle control system 204 may react to the change in the health data. The reaction may include any measure to provide for the safety of the user, such as stopping the vehicle, beginning to drive the vehicle, driving the vehicle to a new location, such as a hospital, waking the driver with an alarm or other noise, or performing some other function that may help maintain the health or safety of the user.
The health data received may be a reaction from the driver. For example, the driver may call for help or ask the vehicle for assistance. For example, the driver or passenger may say that they are having a medical emergency and ask the car to perform some function to help. The function to help may include driving the person to a hospital or stopping the car and calling for emergency assistance.
An embodiment of a method 2000 for building a user profile associated with a user 216 is shown in
User profiles can be compiled and/or modified based on a number of factors and/or information/input received by one or more sensors. In some embodiments, these sensors can be associated with a user 216, a user device 212, and/or a vehicle 104. The sensors may include at least one of environmental sensors 708, user interface sensors 712, associated device sensors 720, and the like. In one example, the associated device sensors 720 can include any sensors of a mobile device (e.g., a smart phone, tablet, mobile computer, etc.) that is connected, either wired or wirelessly, to a vehicle 104 and/or vehicle control system 204.
Information received by the one or more sensors may include inquiries made and/or input provided by a user (e.g., web browsing history, stored data cookies, voice commands, gesture input, intelligent personal assistant history, knowledge navigator, etc.), geographic location data (e.g., satellite positioning system, Wi-Fi hotspot, cell tower data, indoor positioning system, etc.) associated with a user 216 and/or a vehicle 104, and the like. In some cases, the information may be evaluated to determine whether the received information qualifies as user profile data. This evaluation may include referring to rules stored in a memory and/or comparing terms in the received information to a list of key terms associated with user profile data.
In any event, the method 2000 shown in
In some cases, the user 216 may be identified by a user identification module 822. This identification may be based on information received from the user 216. For example, a user 216 may be recognized based on information detected by at least one image sensor, such as the camera sensors 760 of a vehicle 104. Where a user 216 is recognized, a user profile associated with the user 216 can be accessed and/or created. In the event that a user 216 is not identified/recognized, the user identification module 822 may gather identification characteristics and/or identification registration from the user 216.
The method 2000 continues by determining whether any of the information received qualifies as user profile data (step 2012). In some embodiments, the profile identification module 848 may perform this determination. For instance, the profile identification module 848 may refer to rules stored in a memory to determine whether a match exists between at least some of the received information and matching information corresponding to user profile data. Matching information may include keywords, key terms, input types, context-sensitive data, match indicators, etc., and combinations thereof. By way of example, a user 216 may interface with an SPS of a vehicle 104 by inputting a destination, point-of-interest, and/or other travel-related information. The input of the SPS may be classified as an input type associated with user profile data in the matching information. In this example, and based at least partially on the input type (e.g., of the SPS), the information associated with the user 216 from the SPS qualifies as user profile data.
As can be appreciated, the matching information may comprise other user input types including, but not limited to, voice commands, audio input, visual input, device input, etc., and combinations thereof. For example, a user 216 may alter a preference and/or setting associated with a vehicle control. The vehicle control can be associated with an area 508 and/or a zone 512 of a vehicle 104. Similar to the input type associated with the SPS, the vehicle controls, settings, preferences, and/or other information may qualify as user profile data. In this example, the information associated with the vehicle control can be stored in the user profile associated with the user 216.
In some embodiments, the method 2000 may determine a category associated with information in the user profile. The category may include a memory location, classification, information type, and/or identifier associated with user profile information. This category may be used to store, transfer, and/or categorize user profile information. For example, a user 216 may change the control settings of one or more features of a vehicle 104. These control settings may be associated with features, elements, and/or controls of a vehicle 104. Continuing this example, the profile identification module 848 may determine that the control settings can be associated with a vehicle settings category. The control settings of the user 216 can be stored with the vehicle settings category of the user profile. This storing may include, but are not limited to, identifying the information as vehicle settings, storing the information with other vehicle settings, and/or storing the information in a memory location associated with the vehicle settings category. As can be appreciated, the user profile and profile data 252 may include any number of categories, subcategories, and/or identifiers.
If it is determined that the information does not qualify as user profile data, the method 2000 may return to step 2008. One example of information that may not qualify as user profile data may be general information that cannot be associated with one or more users 216. For instance, the weather in a geographical location, alone, may not qualify as user profile data. As can be appreciated, the weather cannot be controlled, modified, and/or altered by a user 216. However, if a user 216 commented on the weather in the geographical location (e.g., stating that the weather is nice, too hot, too cold, etc.), and/or acted in response to the weather condition, the user's comment and/or act would qualify as user profile data. Additionally or alternatively, if the user 216 altered a control setting (e.g., heating, venting, air conditioning (HVAC), window control, shade element/system, window tint level, windshield wipers, fog lights, traction control, four-wheel drive system, etc.) of the vehicle 104 based at least partially on the weather condition (e.g., temperature, humidity, rain, snow, sun, fog, wind, dust storm, tornado, etc.) in an area, then that information (e.g., the alteration of the control setting, and/or the associated weather condition, etc.) would qualify as user profile data.
In the event that at least some of the received information qualifies as user profile data, the method 2000 continues by storing the user profile data in a profile data 252 memory associated with the user (step 2016). As previously described, the profile data 252 may include one or more user profiles and may be stored locally (e.g., in a memory of a device 212, 248, and/or in a memory of a vehicle 104, etc.) and/or remotely (e.g., on the cloud, in a remote storage memory, and/or other memory location, etc.). The profile data 252 may include one or more security features to prevent unauthorized access and/or use of a user profile. These one or more security features may include an identity, identification, password, passphrase, key, and/or other authentication feature, etc.
In some cases, the qualifying information may be stored with an existing user profile in profile data 252. For example, a user 216 in a vehicle 104 may be identified by one or more sensors of the vehicle 104 (e.g., image sensors, cameras, etc.). Using this identification, the profile identification module 848 may refer to the profile data 252 for a corresponding user profile. In the event that the profile data 252 does not contain a user profile associated with the identified user 216, the profile identification module 848 may create a user profile for the user 216.
The method 2000 continues by determining whether any modifying information is received via the one or more sensors of the vehicle 104 (step 2020). Modifying information can include any information that modifies the content of a user profile. In some embodiments, the profile identification module 848 may determine whether modifying information is provided by a user 216. Determining whether modifying information is received may be similar, or identical, to the determination previously described in conjunction with step 2012. In one embodiment, the determination may include one or more additional steps, including but not limited to, detecting existing information stored in a user profile, determining whether the existing information should be modified, and modifying the existing information with modified information.
In the event that modifying information is received, the method 2000 continues by modifying and/or updating the user profile in the profile data 252. In some cases, the modifying information may include adding data, deleting data, overwriting data, and/or removing data from the user profile. If no modifying information is received, the method 2000 ends at step 2028.
An embodiment of a method 2100 for accessing a user profile associated with a user 216 is shown in
The method 2100 begins at step 2104 and proceeds when a request is received to access profile data 252. As provided herein, the profile data 252 may include at least one user profile and/or data associated with at least one user 216. The request to access profile data 252 may be made in response to identifying and/or recognizing a user 216. In one embodiment, the request to access profile data 252 may be made in response to identifying and/or recognizing at least one device 212, 248 associated with a user 216 and/or vehicle 104. In any event, the request may be received via the profile identification module 848 and/or the profile data 252 memory.
The method 2100 proceeds by determining whether the received request is authorized (step 2112). Authorization may be provided in a number of ways. In some embodiments, the authorization may be associated with a source of the request. For example, the request may be made from a source having a trusted, and/or authorized, address. The authorized address may include, but is not limited to, a MAC address, a BIA, an EHA, a physical address, hardware address, IP address, etc. In one embodiment, the authorization may depend on an authorization identification and/or key. For instance, the request may include biometric information associated with a user 216 for the authorization identification and/or key. In some embodiments, the biometric information associated with the user 216 may only be sufficient to act as an identification of the user 216. In this case, the request may include an authorization key to verify that the request is authorized. The authorization key may include, but is not limited to a password, passphrase, code, cryptographic code or code portion, etc., and/or combinations thereof.
In the event that the request is determined not to be authorized (i.e., the request is unauthorized), the method 2100 may continue at step 2124 by denying access to the user profile and/or profile data 252. Access can be denied by preventing the source of the request from communicating with the profile data 252 memory having the user profile data. This prevention, or denial of access, may be made for a limited time period, a permanent time period, and/or based on a number of failed authorization attempts.
In some embodiments, the denied access may be communicated to the requesting source via one or more messages (step 2128). For example, the profile identification module 848 may send a message to one or more devices 212, 248 associated with a user 216 and/or vehicle 104. The message may include information corresponding to the denied access. Additionally or alternatively, the message may be sent to a user 216 (e.g., via a device associated with the user 216). For example, an unauthorized user may attempt to access another user's profile stored in profile data 252. Once the unauthorized user is denied access, a message may be sent to the other user informing the other user of the attempted access. Continuing this example, the other user, in response to receiving the message, may take action in securing the user profile by at least one of disabling access to the user profile by the requesting source, locking the user profile with additional security locks (e.g., codes, passwords, authorization information, etc.).
In the event that the request is determined to be authorized, the method 2100 may continue at step 2116 by providing access to the user profile and/or profile data 252. Access may include copying at least one portion of the user profile, deleting at least one portion of the user profile, modifying at least one portion of the user profile, transferring the user profile, and/or the like. For example, a user 216 may request access to the user profile to configure a vehicle 104 using settings and/or preferences stored in the user profile. In some embodiments, the user profile, or portions thereof, may be copied to a memory of the vehicle 104. In one embodiment, the user profile may be read from the profile data 252 memory, without necessarily copying all of the user profile. In any embodiment, the vehicle 104 may read the settings and/or preferences from the user profile, and in response, configure at least one area 508 and/or zone 512 of the vehicle 104 based at least partially on the user profile information. In another example, an agency may wish to configure a vehicle 104 based on a user profile stored in profile data 252 memory. In this example, the agency may be provided with authorized access to the user profile. The agency may then choose to copy the user profile to a memory of the vehicle 104. Additionally or alternatively, the agency may select to configure the vehicle 104 (e.g., one or more settings and/or preferences, etc.) based on the user profile. This agency may be a company, rental agency, governmental entity, third-party, and/or other group. The method 2100 ends at step 2120.
Referring to
In some embodiments, a company 2832 may create a vehicle template that is configured to present a vehicle user 216 with a set of vehicle controls and/or features oriented in a standard (e.g., ergonomic, approved, safe, etc.) position that is predictable and accessible between different vehicles. In other words, the set of vehicle controls and/or features may be arranged to allow a vehicle user 216 to move from one vehicle 104 to another vehicle 104 without requiring the user to setup features and/or controls (e.g., presented to a vehicle display) anew. In part, these features and/or controls may be automatically setup via the vehicle template. The template may be stored in one or more template data 2220 memory. This template data 2220 memory may be associated with a user 216, user device 212, vehicle 104, template module 2204, manufacturer 2224, group 2228, company 2832, regulatory agency 2836, etc.
In one embodiment, a specific company 2832 (e.g., commercial carrier, trucking company, etc.) and/or federal law may require truckers to keep specific log books of time driving, time off-duty, record of duty, sleeper-berth time, combinations thereof, and the like. In some embodiments, the vehicle template may be configured to display at least a portion of the log books via at least one display associated with the vehicle 104. The displayed log books may automatically record any of the aforementioned times and/or provide a manual input for a trucker (e.g., user 216) to enter times where desired. Additionally or alternatively, the log books may be electronically transmitted to an employer, law enforcement agency, port authority, regulatory agency 2836, and/or some other receiving entity via the vehicle 104. In some cases, these electronically transmitted log books may be reviewed and/or checked to ensure one or more rules, regulations, laws, and the like are adhered to. Possible violations and/or inconsistencies may be detected automatically via the receiving entity. Where possible violations or inconsistencies are detected (whether automatically detected via a processor or manually detected via human review), the receiving entity may limit one or more of the vehicle functions of the transmitting vehicle 104 (e.g., prevent the vehicle from starting, limit driving time, cause the vehicle to pull safely to the side of the road, decrease speed, and/or slow to a stop, etc.).
As shown in
The vehicle template may be created by at least one entity, such as, a manufacturer 2224, group 2228, company 2832, agency 2836, and/or a user 216. For instance, the entity may communicate with the template module 2204. The template module 2204 may be configured to receive input from the entity, and based at least partially on rules 2208 stored in memory, generate a vehicle template. The vehicle template may be generated via the generation engine 2212 of the template module 2204. Once a vehicle template is created, the template may be stored in template data 2220 memory. In some cases, the vehicle template may apply to a series of vehicles, makes, models, manufacturers, and/or entity specifications.
For example, a first manufacturer 2224A may have a specific vehicle having a number of features, controls, and/or settings. This manufacturer may wish to generate a vehicle template for the specific vehicle. When a user 216 interfaces with the specific vehicle, the features, controls, and/or settings, can be configured in accordance with the vehicle template. As such, a user 216 may transfer from one specific vehicle to another specific vehicle, and have the same user experience based on the common vehicle template for the specific vehicle. As can be appreciated, this configuration of vehicles, based on the vehicle template, may be especially useful for fleet vehicle users.
As another example, a company 2832 (e.g., a travelling sales company) may wish to generate their vehicle template to include a number of safety features, ergonomic controls, hands-free phone system controls, and the like. Using the template module 2204, the company 2832 may generate a vehicle template to suit one or more vehicles used by users of the company 2832. For example, the company may provide the template module 2204 with a list of specifications (e.g., features, controls, etc.). In response, the generation engine 2212 of the template module 2204 may refer to rules 2208. The rules can include information about the available features and/or controls associated with vehicles used by the company 2832. In other words, the company may use one, two, three, or more types of vehicles (e.g., makes, models, manufacturers, styles, etc.). Each of these vehicle types may include various features and/or controls. Using the rules 2208, the generation engine 2212 can create vehicle template that configures common features and/or controls between the different types of vehicles. In some embodiments, a feature or control may not be available on a particular type of vehicle. In this instance, the vehicle template may include all of the features and/or controls for the other types of vehicles, but omit the feature or control from the vehicle template when used in the particular type of vehicle. The lack of a feature in a vehicle template may be communicated to a user 216 via at least one of a device 212, a vehicle 104, and/or a device associated with a vehicle 104.
An embodiment of a method 2300 for retrieving a vehicle template is shown in
The method 2300 begins at step 2304 and proceeds by retrieving a vehicle template from a memory. A vehicle template may be retrieved in response to identifying a user 216 associated with a vehicle 104. The identification may be based on one or more sensors (e.g., cameras, image sensors, signal detectors, etc.) associated with a device 212, and/or a vehicle 104. Additionally or alternatively, the vehicle template may be retrieved based on an identification of an entity associated with a vehicle 104. For example, a user 216 may be present inside a vehicle 104, where the user 216 is recognized and/or identified by one or more sensors of the vehicle 104. This recognition and/or identification may prompt the retrieval of the vehicle template from a memory. In some cases, the vehicle template may be retrieved by a vehicle control system 204. As another example, an entity may associate a user 216 with a vehicle 104 and based on the association, the vehicle control system 204 of a vehicle 104 may retrieve the vehicle template from memory. The memory may include template data 2220 memory, and may be configured as computer-readable medium, as provided herein.
In some embodiments, the vehicle template may only be retrieved by an authorized user and/or source. Authorization may be provided in a number of ways. In some embodiments, the authorization may be associated with a source of the retrieval request. For example, the retrieval request may be made from a source having a trusted, and/or authorized, address. The authorized address may include, but is not limited to, a MAC address, a BIA, an EHA, a physical address, hardware address, IP address, etc. In one embodiment, the authorization may depend on an authorization identification and/or key. For instance, the retrieval request may include biometric information associated with a user 216 for the authorization identification and/or key. In some embodiments, the biometric information associated with the user 216 may only be sufficient to act as an identification of the user 216. In this case, the request may include an authorization key to verify that the retrieval request is authorized. The authorization key may include, but is not limited to a password, passphrase, code, cryptographic code or code portion, etc., and/or combinations thereof. In the event that the retrieval request and/or user is determined to be authorized, the method 2300 may provide a user with access to the vehicle template.
In one embodiment, at least some of the information in the vehicle template can be stored in a user profile memory associated with a user 216 of the vehicle 104 and/or vehicle template. This information can include an identification of the vehicle template, an association to the vehicle template, and/or one or more settings, controls, and/or features associated with the vehicle template.
The method 2300 continues by utilizing the retrieved vehicle template in a vehicle 104 (step 2312). Utilizing the vehicle template can include configuring settings, features, controls, and/or other aspects of the vehicle 104 in accordance with data stored in the vehicle template. For example, data in a vehicle template may include restrictions on speed limits. These restrictions may be based on geographical areas, laws, standards, and/or recognized best/safe practices. Continuing this example, in utilizing the vehicle template, the vehicle control system 204 may govern speeds of the vehicle 104 based on the information in the vehicle template.
In some embodiments, the vehicle template may allow for modifications to data stored therein. The method 2300 continues by determining whether the vehicle template allows for the modifications (step 2316). When no changes/modifications are allowed, the method 2300 ends at step 2328. Modifying, or changing, the vehicle template may include adding data, deleting data, overwriting data, and/or removing data from the vehicle template. Whether a vehicle template can be modified may be determined based on settings associated with the vehicle template. These settings may be configured by an entity responsible for generating the vehicle template. Additionally or alternatively, the settings may include authorization information for allowing changes, or modifications, to a vehicle template. The authorization information may be similar to the authorization previously described in conjunction with retrieving the vehicle template. In one embodiment, the ability to modify the vehicle template may be restricted to an administrative entity (e.g., the creator of the vehicle template, a technical expert, and the like).
For example, a vehicle template may include rules that does not allow for certain features to be modified by a user 216. These features may correspond to safety, ergonomics, data recording, and/or the like. However, some features may be modified by a user 216 such as general comfort settings, infotainment preferences, and/or the like. As can be appreciated, the vehicle template may allow for portions of the vehicle template to be modified while other portions of the vehicle template are restricted from any unauthorized, or general, modifications.
In the event that the vehicle template allows for settings, the method 2300 continues by determining whether any settings and/or fields associated with the vehicle template have been modified (step 2320). The settings and/or fields may include, but are not limited to, a configuration, position, arrangement, sensitivity, presentation, activation, deactivation, limit, threshold, range, and/or other aspect of one or more features, controls, components, systems, and/or preferences of a vehicle 104. A user 216 may make changes to the settings. The changes may be made inside the vehicle 104 and/or remotely from the vehicle 104. When a modification to the settings and/or fields is determined, the method 2300 proceeds by storing the changes to the vehicle template in a user profile associated with the user 216 of the vehicle 104. For example, a user 216 can utilize a vehicle template from a company 2832 that may include safety features and general setting information. The vehicle 104 can configure the various features and/or settings in accordance with the vehicle template information. Continuing this example, a user 216 may make changes to the seat position, steering wheel position, mirror positions, etc. This changed feature data may then be stored in the user profile of the user 216. In some cases, the changed feature data may be reported to the entity responsible for generating the vehicle template. This information may be used by the entity to refine vehicle templates, user settings, etc. The method 2300 ends at step 2328.
If it is determined that no settings and/or fields associated with the vehicle template are changed, in step 2320, the method 2300 may continue by determining whether to store the vehicle template in a user profile (step 2332). In some cases, the vehicle template may allow for the template to be saved to a profile of a user 216. As can be appreciated, a user 216 may have one or more vehicle templates stored in a user profile. Storing the vehicle template in a user profile, and corresponding profile data 252 memory, can allow the vehicle template to be transported from one vehicle 104 to another. If it is determined that the vehicle template is to be stored in the user profile, the method continues at step 2336. If it is determined that the vehicle template is not to be stored in the user profile, the method 2300 ends at step 2328.
An embodiment of a method 2400 for converting a vehicle template configured for a first vehicle type into a second vehicle type is shown in
The method begins at step 2404 and continues by retrieving a vehicle template 2408. The vehicle template may be retrieved from a template data 2220 memory and/or a user profile associated with a user 216. Retrieving the template may be similar, or identical, to the template retrieval as described in conjunction with step 2308 of
The method 2400 continues by determining whether an entity and/or rules are recognized (step 2412). The entity may correspond to an entity associated with the vehicle 104. Rules may be stored in a memory that define vehicle template information conversion data. In any case, determining the recognition may include referring to a manufacturer, make, model, year, and/or other type of vehicle information associated with the vehicle 104. In some cases, conversion settings may exist between certain types of vehicles. Additionally or alternatively, a conversion of vehicle template information may not be required between similar, identical, or other types of vehicles.
In the event that the entity and/or rules associated with the second vehicle are recognized, the method 2400 may continue by determining whether a conversion of one or more settings and/or fields of the vehicle template is required (step 2416). The vehicle information, or at least a portion of the vehicle information recognized in step 2412, may match vehicle information associated with the vehicle template. In this case, the vehicle template may not require any conversion and the method 2400 can end at step 2428. The template module 2204 may determine that the second vehicle requires at least one setting and/or field conversion. For instance, the vehicle template retrieved may be configured for the first vehicle, and the first vehicle may have more, or fewer, features (e.g., hands-free phone interface, touch-screen GUI, etc.) than the second vehicle. Additionally or alternatively, the second vehicle may have a different arrangement of features (e.g., positions of pedals, controls, seats, etc.). In any event, these differences may require a conversion.
When it is determined that at least one setting and/or field of a vehicle template requires a conversion, the method 2400 continues by converting the at least one setting and/or field of the vehicle template to match the current, second, vehicle (step 2420). Conversion factors, equations, algorithms, and/or other conversion information may be stored in the memory 2216 of the template module 2204. This conversion information may be used by the generation engine 2212 in creating a converted vehicle template, for the second vehicle.
The converted vehicle template can be saved in template data 2220 memory and/or a user profile (step 2424). In one embodiment, the converted vehicle template may be retrieved from the memory in response to recognizing the second vehicle, as provided in step 2412. The method ends at step 2428.
In some embodiments, the entity and/or rules may not be recognized in step 2412. For example, the second vehicle may not be recognized by the template module 2204. The second vehicle may be a new model, make, manufacturer, and/or type. Additionally or alternatively, the second vehicle may include conflicting identification information (e.g., mismatched hardware, serial numbers, processors, etc.) that prevents a suitable identification and/or recognition. In any case, the method 2400 proceeds by determining whether new settings and/or fields are to be stored in memory (step 2432). The new settings may be made by a user 216 configuring the second vehicle. If not, the method 2400 ends at step 2428.
If settings associated with the unrecognized second vehicle are stored, the method 2400 continues by determining template conversion information based on the settings stored (step 2436). Once the new settings for the second vehicle are configured by a user 216, the configuration information and/or settings may be forwarded to a memory 2216 of the template module 2204. In one embodiment, any differences between the settings and/or fields of the vehicle template and the new settings made to the second vehicle can be reviewed by the template module 2204. Based on the differences reviewed, the template module 2204 may determine the conversion between the vehicle template and the second vehicle. This information may be associated with the user 216, stored in a user profile, and/or stored in template data 2220.
The method 2400 may proceed by collecting conversion information associated with one or more other users of the second vehicle type. Once collected, the template module 2204 may refer to this conversion information to determine conversion factors, such as, equations, algorithms, and/or other conversion information that can be used in conjunction with the second vehicle type. The method 2400 may then proceed at step 2424.
Referring now to
It is anticipated that the user profile, as described herein, may be affected, changed, improved, and/or refined via modification. This modification may be performed via the profile identification module 848 based on a trigger (e.g., a change in preferences, settings, features, etc.), continually, periodically, etc., and/or combinations thereof. In some embodiments, data may be constantly, or continually, recorded to modify an existing user profile. In some cases, a user 216 may wish to cease recording data associated with a user profile and/or edit or alter the user profile to include or exclude or modify selected information. In one embodiment, a user 216 may turn off user profile data recording. For instance, a user 216 may wish to travel to Las Vegas for a bachelor/bachelorette party. Although the user 216 may travel to numerous sites in and about Las Vegas, purchase many different goods and/or services, and even stay at one or more hotels/motels, the data may not be congruent with the user's 216 typical behavior. Accordingly, the data may be restricted from being recorded by a user's 216 selection and/or approval.
In some embodiments, a user profile may be associated with specific times and/or identities. For instance, a user profile may be setup to include a “work” personality, a “home” personality, and/or other personalities of a user 216. These various personalities may be determined over time and/or be preset or preconfigured. Continuing the example above, a user 216 may have a “work” personality that records, improves, and/or refines information associated with the user's profile during specified work periods (e.g., times of day, times of the year, other time periods, etc.). The user profile may be configured (e.g., upon reaching the end of a work period) to suspend modifying the “work” personality of the user profile. In one embodiment, the user profile may suspend modifying one personality and transition to another personality of the user 216 to modify. In the case above, when the user 216 finishes a work period, the “home” personality of the user profile may be accessed and/or modified. This access may be provided automatically and in response to detecting an end of the work period, or in response to detecting a beginning of the home period. As can be appreciated, environmental conditions, geographical locations, times, seasons, health of a user, combinations thereof, and the like may be used to switch between personalities and/or suspend modification of a user profile/user profile personality.
As shown in
The method 2500 continues by suspending data collection in the user profile (step 2512). In some embodiments, the suspension of user profile data may be associated with a particular type, or group of types, of user profile information. For instance, a user 216 may be suffering from a backache, and as such, may direct (e.g., via an input, etc.) that the user profile data collection, at least related to vehicle comfort settings (e.g., seat position, lumbar support, control position, feature arrangement, etc.), be suspended for period of time (e.g., until the user's 216 back feels better). During the suspension period, any vehicle settings corresponding to comfort that are adjusted by the user 216 may not be stored in the user profile associated with that user 216. As another example, a user 216 may be entering a fast food restaurant drive-thru while on a strict diet. Because the user 216 may not want the information associated with the fast food restaurant (e.g., selections made via voice detection, the location of the restaurant via location information, and/or a visual detection of the fast food brand via visual sensors, etc.) to be recorded in the user profile associated with that user 216, the user 216 may provide the input to suspend data collection.
Although the data collection may be suspended for a user profile, aspects of the present disclosure can allow the data to be collected for storage in a memory by one or more other module/system. For instance, the profile identification module 848 may store the collected data in a memory location outside of the user profile associated with the user 216. In some embodiments, this memory location may be stored outside of a user profile in the profile data 252 memory.
The method 2500 may continue by determining one or more conditions associated with the input to suspend modification of the user profile (step 2516). The one or more conditions may include, but are in no way limited to, a place, location, area, context, frequency, tone, urgency, voice input content, visual input content, rating, etc., and/or combinations thereof, associated with the input. Additionally or alternatively, the one or more conditions may be determined based on historical data (e.g., associated with the user 216), real-time data (e.g., data obtained as it happens, etc.), near-real-time data (e.g., data obtained as it is happening and including system and/or communication delays), group user data (e.g., similar conditions associated with one or more other users, etc.), and the like. By way of example, a user 216 may provide an input to suspend user profile modification every time the user 216 enters a geographical location. Based on the frequency of the suspension inputs provided by the user 216 and the accompanying geographical location of the inputs, the profile suspension module and/or the profile identification module 848 may determine that the geographical location is a condition associated with the suspension. As another example, a user 216 may provide a suspension input every day at approximately the same time of day. This time of day may be when the user 216 leaves work. Alternatively, the time of day may be when the user leaves home. In any event, the time of day may be determined as a suspension condition.
Once a suspension condition, or suspected suspension condition, has been determined, the method 2500 may continue by storing the suspension condition in a memory (step 2520). In one embodiment, the memory may be associated with the profile suspension module. In another embodiment, the suspension condition may be stored in a user profile and/or profile data 252 memory. Although the suspension condition may be stored in the user profile, the information and/or data collected while the user profile modification is suspended may not be stored therein.
The method 2500 may proceed by receiving an input to reinstate the user profile modification (step 2524). Similar to the input to suspend modification of a user profile, the input to reinstate user profile modification may be provided by a user 216 via at least one user interface of a vehicle 104, device 212, 248, and/or a device associated with the vehicle 104. In some embodiments, the reinstatement input may be provided based on one or more conditions associated with user profile modification suspension. For instance, a user profile suspension may be based on a location of the user 216. Once the user 216 leaves the location associated with the suspension input, the user profile modification may be reinstated. As can be appreciated, the input to reinstate modification may be based on the time of day, time of year, one or more timers, etc., and/or the location of the user 216. Upon receiving the input to reinstate user profile modification, data may be collected in the user profile as described herein (step 2528).
In some embodiments, the method 2500 may proceed by determining one or more conditions associated with the input to reinstate modification of the user profile (step 2532). The one or more reinstatement conditions may include, but are in no way limited to, a place, location, area, context, frequency, tone, urgency, voice input content, visual input content, rating, etc., and/or combinations thereof, associated with the reinstate input. Additionally or alternatively, the one or more reinstatement conditions may be determined based on historical data (e.g., associated with the user 216), real-time data (e.g., data obtained as it happens, etc.), near-real-time data (e.g., data obtained as it is happening and including system and/or communication delays), group user data (e.g., similar conditions associated with one or more other users, etc.), and the like. For example, a user 216 may provide an input to reinstate user profile modification a certain time after the user 216 has provided an input to suspend the user profile modification. This time may be used to determine a timer associated with the suspension of data, and the timer can provide a reinstatement input upon reaching a set time (e.g., countdown or count up, etc.). The timer can be used as a reinstatement condition. In another example, a user 216 may provide a reinstatement input after leaving a geographical location associated with a suspension input. Based on the frequency of the reinstatement inputs provided by the user 216 and the accompanying geographical location of the inputs, the profile suspension module and/or the profile identification module 848 may determine that the geographical location is a condition associated with the reinstatement. As yet another example, a user 216 may provide a reinstatement input every day at approximately the same time of day. This time of day may be when the user 216 leaves work. Alternatively, the time of day may be when the user leaves home. In any event, the time of day may be determined as a reinstatement condition.
Upon determining a reinstatement condition, or suspected reinstatement condition, the method 2500 may continue by storing the reinstatement condition in a memory (step 2536). In one embodiment, the memory may be associated with the profile suspension module. In another embodiment, the reinstatement condition may be stored in a user profile and/or profile data 252 memory. Although the reinstatement condition may be stored in the user profile, it should be appreciated that the reinstatement condition can be stored in any memory associated with the user 216 and/or the vehicle 104. In some cases, subsequent reinstatement inputs may be provided automatically based on the reinstatement conditions stored in the memory. The reinstatement input may require a user's 216 permission and/or approval before reinstating user profile modification. Among other things, this approval process can prevent unwanted data collection and user profile modification from unapproved automatic reinstatement inputs.
In some embodiments, the suspension and/or reinstatement of user profile modification may be locked and/or restricted to certain parties. For instance, children may be prevented from suspending user profile modification by parents and/or guardians. Additionally or alternatively, an employee may be restricted from suspending user profile modification by an employer. As another example, an individual (or group) subject to the regulatory auspices of a regulatory agency may be restricted from suspending user profile modification via the regulatory agency. The method 2500 ends at step 2540.
An embodiment of a method 2600 for determining conditions associated with user profile suspension is shown in
The method 2600 begins at step 2604 and proceeds by detecting a suspension condition (step 2608). The suspension condition can include any conditions associated with a suspension input as previously described. For example, a user 216 may be entering a specific area (e.g., location, etc.) and/or time of day associated with a previously provided suspension input. In some cases the suspension condition may be a suspected suspension condition that requires more data points and/or samples before qualifying as a suspension condition. The suspension condition can be detected via one or more sensors associated with the vehicle 104 in conjunction with the profile suspension module and/or the profile identification module 848.
The method 2600 continues by prompting the user 216 for suspension direction and/or input based on the detected suspension condition (step 2612). The prompt may be provided to a user 216 via at least one of a device 212, 248, a vehicle 104, and/or a device associated with a vehicle 104. One example of a device may include a display device having a GUI. Another example of the device can include one or more screens of a console and/or head unit in a vehicle 104. In some embodiments, the device can include a memory, processor, and at least one touch screen. For example, the prompt may be provided by the profile suspension module and/or the profile identification module 848 in communication with the device.
Next, the method 2600 determines whether a suspension input is received. The prompt may include one or more options related to the suspension condition and/or a suspension input. Via the presented options, the user 216 can provide a suspension input, ignore the prompt provided, maintain data collection, remove the suspension condition from memory, and/or combinations thereof, to name a few. A user 216 may provide a suspension input via one or more sensors associated with the vehicle 104. For instance, a user 216 may provide a voice input corresponding to a suspension input via at least one microphone 886 of the vehicle 104. As another example, a user 216 may provide the suspension input via a GUI of a device. In some cases, the prompt may be configured to timeout after a predetermined amount of time and/or inactivity. In some cases at the timeout, a suspension input may automatically be provided. In one embodiment at the timeout, the method 2600 ends at step 2636 without providing a suspension input. The method 2600 may end at step 2636 if the input is determined as being some other input other than a suspension input.
If a suspension input is received by the profile suspension module and/or the profile identification module 848, the method 2600 continues by suspending data collection with the user profile associated with the user 216 (step 2620). This suspension step may be similar, or identical, to the suspension of data collection disclosed in conjunction with
In some embodiments, the suspension condition associated with the user-provided suspension input may be stored in a memory (step 2624). As a user 216 accepts and/or provides suspension inputs in response to receiving suspension direction/input prompts, a confidence level associated with the suspension condition responsible for the prompt can be ascertained. In other words, the more a user 216 responds positively to a suspension direction/input prompt (e.g., by providing a suspension input in response, etc.), the better the accuracy of the detected suspension condition is rated. Suspension conditions identified as being more accurate, or reliable, can be implemented before suspension conditions identified as less accurate, or unreliable. For example, a user 216 may always respond to a suspension condition prompt associated with a suspension condition tied to a geographical location with a suspension input. The suspension condition in this example is considered reliable, that is, the suspension has a high confidence level that the user will respond with a suspension input. In some cases, the suspension condition may be considered highly-reliable (e.g., the suspension condition has been reliable 100%, or substantially close to 100%, of the time or number of prompts, etc.). In this case, the suspension input may be provided automatically in response to detecting the suspension condition. As can be appreciated, the rating of suspension conditions (e.g., unreliable, reliable, highly-reliable, and/or other ratings) may be adjusted, altered, and/or set by a user 216.
In some embodiments, the less that a user 216 responds positively to a suspension direction prompt (e.g., by providing a suspension input in response, etc.), the worse the accuracy of the detected suspension condition is rated. In other words, a user 216 may not respond with a suspension input in response to receiving some suspension condition prompts. Suspension conditions identified as being less accurate, or unreliable, can be implemented after other suspension conditions identified as more accurate, or more reliable. In some cases, the unreliable suspension conditions may be removed from memory or marked as unreliable. Unreliable suspension conditions may not be used to initiate a suspension direction prompt in some cases. For example, a user 216 may only respond to a specific suspension direction/input prompt 50% of the time, or in 50% of the number of prompts. In this case, the suspension condition associated with the prompt may be identified as unreliable, and may not be used in generating subsequent suspension direction prompts.
The method 2600 may continue by determining whether an input to reinstate data collection is received (step 2628). This step may be similar, or identical, to that disclosed in conjunction with
An embodiment of a method 2700 for suspending user profile modification for a selected personality is shown in
The method 2700 begins at step 2704 and proceeds by collecting profile information with a user profile (step 2708). In some cases, the profile information may be collected and/or associated with a personality of the user profile. For example, work profile information may be stored in a work personality of the user profile and home profile information may be stored in a home personality of the user profile. The user profile may have one or more personalities. Additionally or alternatively, the one or more personalities may be associated with a user 216.
The method 2700 continues by determining whether a personality change has occurred (step 2712). The personality change may be based on a user provided input, a trigger, a response to a condition, etc., and/or combinations thereof. As provided above, the personality may be associated with specific times and/or identities. If no personality change is detected, the method 2700 may continue to collect profile information associated with the personality and/or user profile, at step 2708.
In the event that a personality change is detected, the method 2700 may proceed by prompting a user 216 to cease the collection of information with a personality (step 2716). The prompt may be provided to a user 216 via at least one of a device 212, 248, a vehicle 104, and/or a device associated with a vehicle 104. Additionally or alternatively, the prompt may include one or more options related to a selection of a profile and/or a personality associated with data collection and/or the cessation of data collection. For example, a prompt may include a list of one or more user personalities that are currently collecting data. From this list a user 216 may select one or more of the personalities to cease collecting data. Alternatively, the user 216 may select one or more of the personalities to continue collecting data. In some embodiments, the change of personality may automatically cease collection associated with another personality.
The method 2700 proceeds by determining whether an input to cease data collection associated with a personality and/or user profile is received (step 2720). The input may be provided manually (e.g., by a user 216) and/or automatically (e.g., via the profile suspension module and/or the profile identification module 848, etc.). An automatic cessation, or suspension, input may be provided based on one or more detected conditions.
If it is determined that an input to cease data collection associated with at least one personality and/or user profile is received, the method 2700 may continue by ceasing the collection of profile information with the selected user profile (step 2724). The cessation of data collection is similar to the suspension of data collection previously described.
The method 2700 continues by collecting information with another personality and/or user profile (step 2728). For instance, the method 2700 may collect data associated with the user 216 for association with the (new) personality changed to in step 2712. Next, the method 2700 may determine whether a cessation input is received with the new personality (step 2732). If no other user personality and/or user profile is collecting data, the method 2700 ends at step 2736. If the there is no input to cease data collection, the method 2700 may return to step 2712 and determine whether any personality change is made.
In some embodiments, the method 2700 may collect data with multiple personalities and/or user profiles. This data collection associated with multiple personalities may be made at the same time. In any event, a personality change may not terminate the data collection associated with a personality in use before the change. In one example, a personality change may be detected at step 2712 and the method 2700 may determine that no input to cease data collection is received at step 2720. At this point, the method 2700 may continue by determining to collect information with an additional user personality and/or profile (step 2740). When it is determined that information is to be collected in two or more personalities and/or user profiles, the method 2700 may proceed by collecting information with the new profile (step 2744) and any other (e.g., existing, unsuspended) personality and/or profile (step 2728).
Referring to
The method 2800 begins at step 2804 and proceeds by determining gestures stored in a user profile (step 2808). The gestures stored in the user profile can be any of the gestures described above (e.g., in conjunction with
In some embodiments, gestures may include one or more of standard and custom gestures. Standard gestures can refer to gestures created, generated, and/or provided by a manufacturer, group, agency, third party, and/or the like. The standard gestures may be approved for use in vehicles 104 to control one or more features of the vehicle 104. As can be appreciated, standard gestures may be the same between different vehicle types. In this approach, a user 216 does not need to learn new gestures when entering a new vehicle 104. In some embodiments, the standard gestures may be vehicle type specific. Although vehicle type specific standard gestures may not be common among all vehicles, the vehicle type specific standard gestures may apply to certain controls associated with a particular vehicle type.
Custom gestures can include user-configured gestures. These custom gestures may be specific to one or more users 216. In some cases, the one or more users 216 may share their custom gestures with others (e.g., other users, etc.). For example, a user 216 may setup a series of ergonomic custom gestures to be used by individuals who may not have two fully-functional arms/hands. This series of ergonomic custom gestures may be beneficial to other users who have a similar disability or arm/hand use preference. It is anticipated that the user 216 may share the series of ergonomic custom gestures via a social networking site, paid-for site, electronic data transfer, user profile copying, and/or the like. In some cases, a user 216 may train a vehicle control system 204 to utilize specific custom gestures for specific features/controls of a vehicle 104. Training may include providing at least one instance of the gesture to the vehicle (e.g., via gesture detection sensors, etc.) and assigning a task, activity, feature, and/or control for the custom gesture.
In determining the gestures stored in the user profile, the vehicle control system 204 can refer to a user profile of a user 216 associated with the vehicle 104. In some embodiments, a user 216 of a vehicle 104 can be recognized by at least one recognition sensor associated with the vehicle, and as provided above. The user profile may include the gestures in one or more data records, data fields, and memory locations. The vehicle control system 204 may communicate with the profile identification module 848 to determine the contents and any gestures in the user profile.
The method 2800 proceeds by determining whether the user profile includes any custom gestures (2812). In some embodiments, custom gestures may be identified as such in the user profile. One form of identification may include storing the custom gestures in a custom gesture data field of the user profile. Another form of identification may include an identifier associated with the gesture information, where the identifier serves to define whether the gesture is a standard or custom gesture. If no custom gestures are found in the user profile, the method 2800 may continue by using standard and/or vehicle type specific gestures (step 2832).
In the event that custom gestures are found in the user profile, the method 2800 continues by mapping the custom gestures to an output comprising at least one field, function, feature, setting, and control, associated with a vehicle 104. Mapping the custom gesture may include reviewing at least one of a gesture input of the custom gesture and an output associated with the custom gesture. The output of the custom gesture may be associated with a vehicle feature function. Additionally or alternatively, the mapping can include determining whether a capability of the vehicle 104 associated with the user 216 includes a vehicle feature function. The capability of the vehicle 104 may be based on an identification type of the vehicle. The identification type can include at least one of a vehicle manufacturer, make, model, year, style, configuration, etc. This information may be stored in local and/or remote memory. When a user 216 provides a mapped custom gesture inside a vehicle 104, a vehicle feature function of the vehicle 104 may be manipulated by the mapped custom gesture provided. In some embodiments, this manipulation may be caused by the vehicle control system 204.
The method 2800 continues by determining whether any of the custom gestures in the user profile are unable to map with the vehicle 104. By way of example, an output associated with a custom gesture may only be available on a limited number of vehicles or a particular vehicle 104. As another example, vehicle 104 may have limited gesture detection capabilities and as such may not be capable of receiving and/or interpreting the gesture input associated with the custom gesture. As yet another example, a vehicle 104 may lack a vehicle feature function associated with the custom gesture. In another example, a vehicle feature may be associated with an authorization lock. For instance, a user may be prevented from accessing a particular vehicle feature. In some cases, the vehicle feature may be an advanced control that is suitable for advanced users. Continuing this example, a new driver (e.g., a minor child, employee, etc.) may be restricted from accessing the particular vehicle feature by an experienced driver (e.g., a parent, employer, authority, agency, etc.). In any event, if at least one of the custom gestures is unable to map, the method 2800 may optionally continue by sending a message to the user 216 to inform the user of the mapping failure (step 2836). The message may be presented to the user 216 via one or more devices 212, 248. In some cases, the message may identify the custom gesture that failed to map. Additionally or alternatively, the message may identify similar gestures from a standard database of gestures that can be substituted for the user's custom gesture that failed to map. This substitution may be performed automatically and/or in response to a user 216 input.
If all of the custom gestures in the user profile mapped with the vehicle output as provided above, the method 2800 may continue by storing the map of the custom gesture in a memory (step 2824). In one embodiment, the mapped custom gesture may be stored in a memory of the vehicle 104. This memory may be a user profile data 252 memory. Additionally or alternatively, the mapped custom gesture may be stored in a user profile (e.g., profile data 252 memory) associated with the user. The profile data 252 memory as provided herein may be associated with at least one of a device 212, 248, a server 228, a vehicle control system 204, data storage 320, etc. The method 2800 ends at step 2828.
The facial recognition module 2904 can include one or more rules 2908, a memory 2912, a recognition engine 2916, other components, etc. The rules 2908 associated with the facial recognition module 2904 can include recognition processing information, facial feature matching information, contact reference data, timers, facial detection triggers, facial data acquisition times, and other facial recognition information. The memory 2912 may be configured to store data collected by the image sensor or cameras 878. Additionally or alternatively, the memory 2912 may be configured to store computer-executable instructions for performing the facial recognition methods provided herein.
The group 2928 may include at least one source for facial recognition data and collection. In some embodiments, the group 2928 can include at least one advertiser, data mining entity, analytics company, statistics organization, poll group, research group, big data analysis company, sales company, service provider, and the like. For example, the group 2928 may collect facial recognition information from one or more users 216, vehicles 104, and facial recognition data 2920 memories. This information may be compiled, analyzed, and/or sold to one or more purchasers. In some cases, the group 2928 may pay for facial recognition information. The payment for the facial recognition information could be made to a user 216 associated with a vehicle 104. In some cases, the payment for the facial recognition information may be made to a facial recognition information owner/administrator. In any event, the payment may be based at least partially on the amount of facial recognition information collected. Additionally or alternatively, the payment may be based at least partially on a completeness associated with the facial recognition information for at least one person. Completeness may include how much personal information, in addition to facial features, accompanies the facial recognition information. Personal information can include such data as a person's name, age, occupation, likes, dislikes, preferences, vehicle settings, behaviors, driving habits, shopping habits, and/or the like.
In some embodiments, a regulatory agency 2932 may have an interest in collecting and reviewing facial recognition information about one or more people 2936. Examples of the regulatory agency 2932 may include the Department of Homeland Security, the Federal Bureau of Investigation, the Central Intelligence Agency, the National Security Agency, the Secret Service, the International Criminal Police Organization-Interpol, the Security Service, Ministry of Defence, the Police, the Census Bureau, etc. In some cases, the regulatory agency 2932 may be a company, entity, and/or organization. For example, and in any case, the regulatory agency 2932 may wish to collect facial recognition information to track one or more people 2932.
In the case of law enforcement agencies, the facial recognition information may be used by the regulatory agency 2932 to determine a location of a criminal, suspected criminal, and/or a victim of a crime. Continuing this example, as facial recognition information is collected and stored, additional information may be collected including at least one of a timestamp, a geographical location (e.g., based on location information as provided herein), and a collection source (e.g., the user 216 and vehicle 104 responsible for collecting the facial recognition data). Additionally or alternatively, the facial recognition information having the additional data can be used by the regulatory agency 2932 to track the movements of one or more people 2936 (e.g., based on a changing timestamp, geographical location, etc., and/or combinations thereof). This tracking ability can be especially useful in locating a criminal who is attempting to escape a regulatory agency 2932.
In determining a recognition associated with the collected facial information of one or more users 2936, the facial recognition module 2904 may communicate with at least one social networking site 2924 or image data source. The at least one social networking site 2924 can include any source of facial recognition identification information. Facial recognition identification information may be stored in the form of an image and/or image data. For example, the at least one social networking site 2924 may include, but is not limited to, a social group, a social contact site, a face search site, reverse image search site, facial detection database, a facial recognition video search engine, etc., and/or combinations thereof. In one embodiment, the facial recognition module 2904 may communicate across a communication network 224 to retrieve facial recognition information from the at least one social networking site 2924. In one example, the facial recognition module 2904 may refer to a user profile associated with a user 216 for user 216 information. This information may be used by the facial recognition module 2904 to determine any social contacts associated with the user 216. For instance, the social contacts and information may be in the form of an address book, name database, or other person identification storage. In one example, the information can include at least one of a site name, site address, username, and password.
An embodiment of a method 3000 for identifying contacts associated with a user 216 of a vehicle 104 via collected facial recognition information is shown in
The method 3000 begins at step 3004 and proceeds by collecting facial recognition information (step 3008). Facial recognition information may be collected from one or more of sites 2924, sources 2928, 2932, cameras 878, user profile data 252, vehicle user 216 data, vehicle passenger data, and/or other sensors. The collection of facial recognition information may include recording information via one or more sensors. These one or more sensors may be associated with a vehicle 104. In one example, the one or more sensors may include at least one image sensor, such as a camera 878. Continuing this example, the cameras 878 may be positioned inside and/or outside of a vehicle 104. As can be appreciated, facial recognition information can be collected from one or more users 216 inside the vehicle 104 and/or from one or more people 2936 outside the vehicle 104. In some cases, a person 2936 outside the vehicle 104 may be user 216 of the vehicle 104, and vice versa.
The method 3000 continues by storing the facial recognition information in a memory (step 3012). Facial recognition information may include facial features, and information about facial features, that can identify a person 2936 and/or user 216. For instance, the facial features can include measurement information that defines a position and/or arrangement of the facial features. In some cases, the recognition engine 2916, in communication with one or more sensors may determine a measurement between at least one of the facial features. Typical facial features can include, but are not limited to, at least one eye, eyebrow, nose, nostril, cavity, socket, tooth, bone, mouth, lip, chin, ear, hairline, forehead, facial hair, mole, birthmark, scar, and/or other distinguishing mark associated with the face of a person 2936 and/or user 216. The collected facial recognition information stored in a memory may include pointers to the memory. These pointers can be stored in one or more other memory locations.
Next, the method 3000 determines whether any facial features are recognized (step 3016). The recognition of facial features may include the feature recognition module 2904 comparing identified facial features associated with a user 216 or person 2936 with one or more identification characteristics stored in a memory. The one or more identification characteristics can be stored in a memory of a social networking site 2924, facial recognition data 2920 memory, and/or other memory location. When the at least some of the identified facial features match at least one identification characteristic stored in the memory, a successful match, or facial recognition, may be determined. The more identified facial features that match the identification characteristics, the more successful the facial recognition. In other words, the facial recognition may be associated with a confidence level, or accuracy rating. This rating may be based on the number of features that are determined to match.
In the event that the facial features are recognized, the method 3000 continues by providing an output based on the recognition (step 3020). The output may be configured to present an identification of the recognized person 2936. This identification may be presented to the user 216 of the vehicle 104. For example, a camera 878 may observe a group of one or more people 2936 outside of a vehicle 104. From the data collected by the camera 878, the facial recognition module 2904 may recognize at least one person in the group. Based on this recognition, the feature recognition module 2904 may communicate with one or more components of the vehicle 104 to provide an identification of the at least one recognized person. One example of the presentation, may include providing the at least one recognized person's name, address, contact type, relationship, etc, and/or combinations thereof, to a device (e.g., device 212, 248, 848, etc.) associated with the vehicle 104. Additionally or alternatively, the presentation output may include a picture, or image, of the at least one recognized person.
In some embodiments, the output may be associated with a social output. For instance, upon recognizing a person 2936, the facial recognition module may communicate with one or more social networking sites 2924 to “tag” the recognized person. Tagging may include providing a link from one site to another site associated with the recognized person. In some cases, tagging may include providing a location associated with the recognized person 2936. In any event, the tagging may include a timestamp associated with the tag (e.g., when the tag was made, when the recognition was made, etc.).
In one embodiment, the social output may include initiating a contact message between the user 216 and the recognized person. For instance, the facial recognition module 2904 may communicate across a communication network 224 to a communication device operated by the recognized person. In some cases, this communication may be effected through a device 212 of the user 216 (e.g., mobile device, phone, tablet, computer, etc.).
In the event that the facial features are not recognized, the method 3000 continues by determining whether any of the collected facial features should be stored for further processing (step 3028). Determining whether the collected facial features should be stored for further processing may be based on one or more rules 2908 in the facial recognition module 2904. For example, if the collected facial features are associated with a user 216 (e.g., a passenger and/or operator of a vehicle 104), the rules 2908 may provide that the facial features should be stored. Additionally or alternatively, if the facial features are associated have been collected by one or more cameras 878 inside a vehicle, the rules 2908 may direct the facial recognition module 2904 to store the features for further processing. In contrast, the rules 2908 may instruct that unrecognized people and features should not be stored in memory. In some cases, any collected information related to these unrecognized people may be removed from memory. If no facial features are to be stored, the method 3000 ends at step 3024.
The facial recognition module 2904 may prompt a user 216 to store the facial features associated with an unrecognized person. This prompt may be based on rules 2908 associated with the facial recognition module 2904. Among the benefits of prompting a user 216 to store the facial features, is the ability to add known, but unrecognized, people to the facial recognition data 2920 memory. If a user 216 chooses not to store any of the facial features, the method 3000 ends at step 3024.
The method 3000 may proceed when it is determined that the facial features are to be stored for further processing, by storing the facial features with an identifier (step 3032). The identifier may be provided by the user 216. In other words, the user 216 may provide a name, identity, relationship, contact number, and/or other identifying information associated with the unrecognized person. Although a person may not be recognized by the facial recognition module 2904 a user 216 may still recognize the person. In this case, the user 216 may assign an identifier with the facial features for the facial recognition module 2904 to recognize the person. In one embodiment, the facial recognition module 2904 may refer to one or more social networking sites 2924 for the identifier.
Next, the method 3000 continues by optionally associating an output associated with the identifier and/or person (step 3036). The output may include any of the outputs provided above and/or at least one of a social output, a functionality output, a vehicle setting, a communication output, and the like. For example, the person may be a child of a user 216 associated with the vehicle 104. As such, the child may be restricted to certain features of the vehicle 104 (e.g., no vehicle driving controls, adult features, etc.). The associated output may include this vehicle restriction and/or setting. When the child, in this example, attempts to access the restricted feature, upon being recognized by the facial recognition module 2904, the output would prevent the child from accessing the feature. The output may be stored in memory in step 3012.
It should be appreciated that the user profiles as described herein can be associated with a single user 216. In some embodiments, each user profile may be unique to the user 216 with whom the user profile is associated. Additionally or alternatively, one or more user profiles associated with one or more users 216 may be stored in a profile data memory 252. In some cases, the one or more user profiles may be stored in the profile data memory separately from one another. In other words, the one or more user profiles may be stored according to an identification of a unique user 216 associated with each user profile.
The exemplary systems and methods of this disclosure have been described in relation to configurable vehicle consoles and associated devices. However, to avoid unnecessarily obscuring the present disclosure, the preceding description omits a number of known structures and devices. This omission is not to be construed as a limitation of the scopes of the claims. Specific details are set forth to provide an understanding of the present disclosure. It should however be appreciated that the present disclosure may be practiced in a variety of ways beyond the specific detail set forth herein.
Furthermore, while the exemplary aspects, embodiments, options, and/or configurations illustrated herein show the various components of the system collocated, certain components of the system can be located remotely, at distant portions of a distributed network, such as a LAN and/or the Internet, or within a dedicated system. Thus, it should be appreciated, that the components of the system can be combined in to one or more devices, such as a Personal Computer (PC), laptop, netbook, smart phone, Personal Digital Assistant (PDA), tablet, etc., or collocated on a particular node of a distributed network, such as an analog and/or digital telecommunications network, a packet-switch network, or a circuit-switched network. It will be appreciated from the preceding description, and for reasons of computational efficiency, that the components of the system can be arranged at any location within a distributed network of components without affecting the operation of the system. For example, the various components can be located in a switch such as a PBX and media server, gateway, in one or more communications devices, at one or more users' premises, or some combination thereof. Similarly, one or more functional portions of the system could be distributed between a telecommunications device(s) and an associated computing device.
Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. These wired or wireless links can also be secure links and may be capable of communicating encrypted information. Transmission media used as links, for example, can be any suitable carrier for electrical signals, including coaxial cables, copper wire and fiber optics, and may take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
Also, while the flowcharts have been discussed and illustrated in relation to a particular sequence of events, it should be appreciated that changes, additions, and omissions to this sequence can occur without materially affecting the operation of the disclosed embodiments, configuration, and aspects.
A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.
It should be appreciated that the various processing modules (e.g., processors, vehicle systems, vehicle subsystems, modules, etc.), for example, can perform, monitor, and/or control critical and non-critical tasks, functions, and operations, such as interaction with and/or monitoring and/or control of critical and non-critical on board sensors and vehicle operations (e.g., engine, transmission, throttle, brake power assist/brake lock-up, electronic suspension, traction and stability control, parallel parking assistance, occupant protection systems, power steering assistance, self-diagnostics, event data recorders, steer-by-wire and/or brake-by-wire operations, vehicle-to-vehicle interactions, vehicle-to-infrastructure interactions, partial and/or full automation, telematics, navigation/SPS, multimedia systems, audio systems, rear seat entertainment systems, game consoles, tuners (SDR), heads-up display, night vision, lane departure warning, adaptive cruise control, adaptive headlights, collision warning, blind spot sensors, park/reverse assistance, tire pressure monitoring, traffic signal recognition, vehicle tracking (e.g., LoJack™), dashboard/instrument cluster, lights, seats, climate control, voice recognition, remote keyless entry, security alarm systems, and wiper/window control). Processing modules can be enclosed in an advanced EMI-shielded enclosure containing multiple expansion modules. Processing modules can have a “black box” or flight data recorder technology, containing an event (or driving history) recorder (containing operational information collected from vehicle on board sensors and provided by nearby or roadside signal transmitters), a crash survivable memory unit, an integrated controller and circuitry board, and network interfaces.
Critical system controller(s) can control, monitor, and/or operate critical systems. Critical systems may include one or more of (depending on the particular vehicle) monitoring, controlling, operating the ECU, TCU, door settings, window settings, blind spot monitor, monitoring, controlling, operating the safety equipment (e.g., airbag deployment control unit, collision sensor, nearby object sensing system, seat belt control unit, sensors for setting the seat belt, etc.), monitoring and/or controlling certain critical sensors such as the power source controller and energy output sensor, engine temperature, oil pressure sensing, hydraulic pressure sensors, sensors for headlight and other lights (e.g., emergency light, brake light, parking light, fog light, interior or passenger compartment light, and/or tail light state (on or off)), vehicle control system sensors, wireless network sensor (e.g., Wi-Fi and/or Bluetooth sensors, etc.), cellular data sensor, and/or steering/torque sensor, controlling the operation of the engine (e.g., ignition, etc.), head light control unit, power steering, display panel, switch state control unit, power control unit, and/or brake control unit, and/or issuing alerts to a user and/or remote monitoring entity of potential problems with a vehicle operation.
Non-critical system controller(s) can control, monitor, and/or operate non-critical systems. Non-critical systems may include one or more of (depending on the particular vehicle) monitoring, controlling, operating a non-critical system, emissions control, seating system controller and sensor, infotainment/entertainment system, monitoring certain non-critical sensors such as ambient (outdoor) weather readings (e.g., temperature, precipitation, wind speed, and the like), odometer reading sensor, trip mileage reading sensor, road condition sensors (e.g., wet, icy, etc.), radar transmitter/receiver output, brake wear sensor, oxygen sensor, ambient lighting sensor, vision system sensor, ranging sensor, parking sensor, heating, venting, and air conditioning (HVAC) system and sensor, water sensor, air-fuel ratio meter, hall effect sensor, microphone, radio frequency (RF) sensor, and/or infrared (IR) sensor.
It is an aspect of the present disclosure that one or more of the non-critical components and/or systems provided herein may become critical components and/or systems, and/or vice versa, depending on a context associated with the vehicle.
Optionally, the systems and methods of this disclosure can be implemented in conjunction with a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device or gate array such as PLD, PLA, FPGA, PAL, special purpose computer, any comparable means, or the like. In general, any device(s) or means capable of implementing the methodology illustrated herein can be used to implement the various aspects of this disclosure. Exemplary hardware that can be used for the disclosed embodiments, configurations and aspects includes computers, handheld devices, telephones (e.g., cellular, Internet enabled, digital, analog, hybrids, and others), and other hardware known in the art. Some of these devices include processors (e.g., a single or multiple microprocessors), memory, nonvolatile storage, input devices, and output devices. Furthermore, alternative software implementations including, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.
In yet another embodiment, the disclosed methods may be readily implemented in conjunction with software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with this disclosure is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized.
In yet another embodiment, the disclosed methods may be partially implemented in software that can be stored on a storage medium, executed on programmed general-purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this disclosure can be implemented as program embedded on personal computer such as an applet, JAVA® or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated measurement system, system component, or the like. The system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system.
Although the present disclosure describes components and functions implemented in the aspects, embodiments, and/or configurations with reference to particular standards and protocols, the aspects, embodiments, and/or configurations are not limited to such standards and protocols. Other similar standards and protocols not mentioned herein are in existence and are considered to be included in the present disclosure. Moreover, the standards and protocols mentioned herein and other similar standards and protocols not mentioned herein are periodically superseded by faster or more effective equivalents having essentially the same functions. Such replacement standards and protocols having the same functions are considered equivalents included in the present disclosure.
The present disclosure, in various aspects, embodiments, and/or configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations embodiments, subcombinations, and/or subsets thereof. Those of skill in the art will understand how to make and use the disclosed aspects, embodiments, and/or configurations after understanding the present disclosure. The present disclosure, in various aspects, embodiments, and/or configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and/or configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more aspects, embodiments, and/or configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and/or configurations of the disclosure may be combined in alternate aspects, embodiments, and/or configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claims require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspect, embodiment, and/or configuration. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the description has included description of one or more aspects, embodiments, and/or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and/or configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
This application is also related to PCT Patent Application Nos. PCT/US14/______, filed on Apr. 15, 2014, entitled, “Building Profiles Associated with Vehicle Users” (Attorney Docket No. 6583-543-PCT); PCT/US14/______, filed on Apr. 15, 2014, entitled “Access and Portability of User Profiles Stored as Templates” (Attorney Docket No. 6583-544-PCT); PCT/US14/______, filed on Apr. 15, 2014, entitled “User Interface and Virtual Personality Presentation Based on User Profile” (Attorney Docket No. 6583-547-PCT); PCT/US14/______, filed on Apr. 15, 2014, entitled “Creating Targeted Advertising Profiles Based on User Behavior” (Attorney Docket No. 6583-549-PCT); PCT/US14/______, filed on Apr. 15, 2014, entitled “Behavior Modification via Altered Map Routes Based on User Profile Information” (Attorney Docket No. 6583-550-PCT); PCT/US14/______, filed on Apr. 15, 2014, entitled “Vehicle Location-Based Home Automation Triggers” (Attorney Docket No. 6583-556-PCT); PCT/US14/______, filed on Apr. 15, 2014, entitled “Vehicle Initiated Communications with Third Parties via Virtual Personalities” (Attorney Docket No. 6583-559-PCT); PCT/US14/______, filed on Apr. 15, 2014, entitled “Vehicle Intruder Alert Detection and Indication” (Attorney Docket No. 6583-562-PCT); PCT/US14/______, filed on Apr. 15, 2014, entitled “Driver Facts Behavior Information Storage System” (Attorney Docket No. 6583-565-PCT); PCT/US14/______, filed on Apr. 15, 2014, entitled “Synchronization Between Vehicle and User Device Calendar” (Attorney Docket No. 6583-567-PCT); PCT/US14/, filed on Apr. 15, 2014, entitled “User Gesture Control of Vehicle Features” (Attorney Docket No. 6583-569-PCT); PCT/US14/______, filed on Apr. 15, 2014, entitled “Central Network for the Automated Control of Vehicular Traffic” (Attorney Docket No. 6583-574-PCT); and PCT/US14/______, filed on Apr. 15, 2014, entitled “Vehicle-Based Multimode Discovery” (Attorney Docket No. 6583-585-PCT). The entire disclosures of the applications listed above are hereby incorporated by reference, in their entirety, for all that they teach and for all purposes.
Examples of the processors as described herein may include, but are not limited to, at least one of Qualcomm® Snapdragon® 800 and 801, Qualcomm® Snapdragon® 610 and 615 with 4G LTE Integration and 64-bit computing, Apple® A7 processor with 64-bit architecture, Apple® M7 motion coprocessors, Samsung® Exynos® series, the Intel® Core™ family of processors, the Intel® Xeon® family of processors, the Intel® Atom™ family of processors, the Intel Itanium® family of processors, Intel® Core® i5-4670K and i7-4770K 22 nm Haswell, Intel® Core® i5-3570K 22 nm Ivy Bridge, the AMDC® FX™ family of processors, AMD® FX-4300, FX-6300, and FX-8350 32 nm Vishera, AMD® Kaveri processors, Texas Instruments® Jacinto C6000™ automotive infotainment processors, Texas Instruments® OMAP™ automotive-grade mobile processors, ARM® Cortex™-M processors, ARM® Cortex-A and ARM926EJ-S™ processors, other industry-equivalent processors, and may perform computational functions using any known or future-developed standard, instruction set, libraries, and/or architecture.
Claims
1. A method, comprising:
- referring to a user profile memory associated with a user for gesture information;
- determining that the gesture information includes at least one custom gesture, wherein the at least one custom gesture is associated with a vehicle feature function;
- determining whether a capability of a vehicle associated with the user includes the vehicle feature function; and
- mapping, in response to determining that the capability of the vehicle includes the vehicle feature function, the custom gesture with the vehicle feature function of the vehicle.
2. The method of claim 1, further comprising:
- associating the mapped custom gesture with the user of the vehicle; and
- storing the mapped custom gesture in the user profile memory.
3. The method of claim 2, further comprising:
- recognizing the user of the vehicle via at least one recognition sensor associated with the vehicle;
- providing, in response to recognizing the user, access to the stored mapped custom gesture; and
- manipulating the vehicle feature function of the vehicle in response to receiving the custom gesture provided by the user inside the vehicle.
4. The method of claim 1, further comprising:
- determining that the capability of the vehicle lacks the vehicle feature function; and
- sending a message to the user of the vehicle corresponding to the lack of the vehicle feature function.
5. The method of claim 1, wherein determining whether the capability of the vehicle associated with the user includes the vehicle feature function further comprises:
- determining an identification type of the vehicle;
- referring to a memory having stored thereon at least one vehicle feature associated with the identification type of the vehicle; and
- determining whether a match exists between the vehicle feature function and the at least one vehicle feature.
6. The method of claim 5, wherein the identification type includes at least one of a vehicle manufacturer, make, year, and model.
7. The method of claim 5, further comprising:
- determining, when the match exists, whether the matched at least one vehicle feature is associated with an authorization lock, wherein the authorization lock prevents an unauthorized user from accessing the matched at least one vehicle feature, and wherein the authorization lock grants an authorized user access to the matched at least one vehicle feature.
8. The method of claim 7, further comprising:
- determining, when the matched at least one vehicle feature is associated with the authorization lock, whether the user is the authorized user.
9. The method of claim 8, wherein determining whether the user is the authorized user, further comprises:
- referring to an authorization memory having authorizing information configured to identify at least one authorized user.
10. The method of claim 2, wherein the custom gesture is stored in a memory of the vehicle.
11. A non-transitory computer readable medium having instructions stored thereon that, when executed by a processor, perform a method comprising:
- referring to a user profile memory associated with a user for gesture information;
- determining that the gesture information includes at least one custom gesture, wherein the at least one custom gesture is associated with a vehicle feature function;
- determining whether a capability of a vehicle associated with the user includes the vehicle feature function; and
- mapping, in response to determining that the capability of the vehicle includes the vehicle feature function, the custom gesture with the vehicle feature function of the vehicle.
12. The non-transitory computer readable medium of claim 11, wherein the method further comprises:
- associating the mapped custom gesture with the user of the vehicle; and
- storing the mapped custom gesture in the user profile memory.
13. The non-transitory computer readable medium of claim 12, wherein the method further comprises:
- recognizing the user of the vehicle via at least one recognition sensor associated with the vehicle;
- providing, in response to recognizing the user, access to the stored mapped custom gesture; and
- manipulating the vehicle feature function of the vehicle in response to receiving the custom gesture provided by the user inside the vehicle.
14. The non-transitory computer readable medium of claim 11, wherein the method further comprises:
- determining that the capability of the vehicle lacks the vehicle feature function; and
- sending a message to the user of the vehicle corresponding to the lack of the vehicle feature function.
15. The non-transitory computer readable medium of claim 11, wherein determining whether the capability of the vehicle associated with the user includes the vehicle feature function further comprises:
- determining an identification type of the vehicle;
- referring to a memory having stored thereon at least one vehicle feature associated with the identification type of the vehicle; and
- determining whether a match exists between the vehicle feature function and the at least one vehicle feature.
16. The non-transitory computer readable medium of claim 15, wherein the identification type includes at least one of a vehicle manufacturer, make, year, and model.
17. The non-transitory computer readable medium of claim 15, wherein the method further comprises:
- determining, when the match exists, whether the matched at least one vehicle feature is associated with an authorization lock, wherein the authorization lock prevents an unauthorized user from accessing the matched at least one vehicle feature, and wherein the authorization lock grants an authorized user access to the matched at least one vehicle feature.
18. The non-transitory computer readable medium of claim 17, wherein the method further comprises:
- determining, when the matched at least one vehicle feature is associated with the authorization lock, whether the user is the authorized user; and
- referring to an authorization memory having authorizing information configured to identify at least one authorized user.
19. A vehicle control system, comprising:
- a profile identification module contained in a memory and executed by a processor of the vehicle control system, the profile identification module configured to refer to a user profile memory associated with a user for gesture information, determine that the gesture information includes at least one custom gesture, wherein the at least one custom gesture is associated with a vehicle feature function, determine whether a capability of a vehicle associated with the user includes the vehicle feature function, and map, in response to determining that the capability of the vehicle includes the vehicle feature function, the custom gesture with the vehicle feature function of the vehicle.
20. The system of claim 19, wherein the profile identification module is further configured to associate the mapped custom gesture with the user of the vehicle, and store the mapped custom gesture in the user profile memory.
Type: Application
Filed: Apr 15, 2014
Publication Date: Oct 16, 2014
Applicant: Flextronics AP, LLC (San Jose, CA)
Inventor: Christopher P. Ricci (Saratoga, CA)
Application Number: 14/253,226
International Classification: B60R 16/037 (20060101);