SEMICONDUCTOR ISOLATION STRUCTURE AND METHOD OF MANUFACTURE
A method of formation of an isolation structure for vertical semiconductor devices, the resulting isolation structure, and a memory device to prevent leakage among adjacent vertical semiconductor devices are described.
This application is a continuation of application Ser. No. 14/104,575, filed Dec. 12, 2013, which is a divisional of application Ser. No. 13/310,145, filed Dec. 2, 2011, now U.S. Pat. No. 8,633,564, which are incorporated by reference in their entirety.
TECHNICAL FIELDEmbodiments of the invention relate to isolation structures for semiconductor devices, and more particularly, to isolation structures for vertically constructed semiconductor devices.
BACKGROUND OF THE INVENTIONMany electronic devices, such as personal computers, workstations, computer servers, mainframes and other computer related equipment such as printers, scanners and hard disk drives use memory devices that provide substantial data storage capability, while incurring low power consumption. One type of memory device that is well-suited for use in such devices is dynamic random access memory (DRAM).
Generally, DRAM includes a memory array having a plurality of memory cells that can be arranged in rows and columns. Conductive word lines may be positioned along the rows of the array to couple cells in respective rows, while conductive bit lines may be positioned along columns of the array and coupled to cells in the respective columns. The memory cells in the array may include an access device, such as a transistor device, and a storage device, such as a capacitor. The access device and the storage device may be coupled so that information is stored within a memory cell by imposing a predetermined charge state (corresponding to a selected logic level) on the storage device, and retrieved by accessing the charge state through the access device. Since the charge state in the storage device typically dissipates due to leakage from the cell, the storage device within each memory cell may be periodically refreshed. Current leakage from the cells in the DRAM may occur along several different paths, and if the current leakage is excessive, then the cell refresh interval may be relatively short, which can adversely affect access time for the memory device, and increase the amount of power consumed.
As the cell density of memory devices increases, semiconductor devices, such as access devices, that are vertically disposed in a supporting substrate are increasingly favored. Although a vertical semiconductor device has a reduced footprint when compared to a laterally-disposed device, electrical device isolation presents a concern with ever increasing packing densities.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof and illustrate specific embodiments of the invention. These embodiments are described in sufficient detail to enable those skilled in the art to make and use them. It is to be understood that structural, logical, or procedural changes may be made to the specific embodiments disclosed without departing from the spirit and scope of the invention.
The term “substrate” includes silicon, silicon-on-insulator (SOI) or silicon-on-sapphire (SOS), doped and undoped semiconductors, epitaxial layers of silicon supported by a base semiconductor foundation, and other semiconductor structures. Furthermore, when reference is made to a “substrate” in the following description, previous process steps may have been utilized to form regions, junctions or material layers in or on the base semiconductor structure or foundation. In addition, the semiconductor need not be silicon-based, but could be based on silicon-germanium, germanium, gallium arsenide, or other known semiconductor materials.
Embodiments described herein provide an isolation structure suitable for isolating vertical semiconductor devices. One example is a vertical access device that may be used in a memory product. However, the described embodiments are not limited to memory products, even though a memory product is described herein a providing a context for the invention.
As is known in the art, an electrical charge is placed on the source 18 of the access device 14 via a corresponding bit line (BL). By controlling the voltage at the gate 22 via the word line (WL), a voltage potential may be created across the access device 14 such that the electrical charge at the source 18 can flow to or from the storage device 16.
The bit lines BL are used to read from and write data to the memory elements 12. The word lines WL are used to activate the access device 14 to access a particular row of memory elements 12. The memory device 10 includes an address buffer 24, a row decoder 26, and column decoder 28 to control the word lines WL and bit lines BL. The address buffer 24 controls the row decoder 26 and the column decoder 28 such that the row decoder 26 and column decoder 28 selectively access memory elements 12 in response to address signals 30 provided during read and write operations. The address signals 30 are typically provided by an external controller 35 such as a microprocessor or other memory controller. The column decoder 28 may also include sense amplifiers and input/output circuitry to further enable data to be read from and written to the memory elements 12 via the bit lines BL.
In high density arrays it becomes increasingly difficult to prevent source/drain leakage from a vertical access device to the semiconductor substrate and device to device leakage due to band-band and trap assisted band-band tunneling. Embodiments described herein provide an isolation structure which reduces leakage from vertical access devices to the substrate without affecting leakage from one vertical access device to adjacent vertical access devices. Fabrication of such an isolation structure is now described with reference to
As is shown in the cross section of
The second semiconductor region 117, third semiconductor region 118, and fourth semiconductor region 119 are then etched to form trenches 131 between N-type semiconductor access device regions 130, 140 and P-type semiconductor access device regions 135, as is shown in
As is shown next in
Next, as is shown in
In another embodiment, the bit lines 132a are formed as shown in
In another embodiment, shown in
After the dielectric liner material 127 has been deposited, the dielectric liner material 127 is etched from the bottom of the trenches 126 to expose the first semiconductor region 116, as shown in
Next, as is shown in
Next, the bottom of the trench 126a is oxidized to create a silicon dioxide isolation region 120a, as shown in
In an alternative embodiment, the first semiconductor region 116 is not etched further, as was shown in
Next, as illustrated in
The isolation structure described above serves to reduce leakage from one vertical access device to another as well as from the vertical access device to the substrate. The isolation structure serves to have a fixed positive interface charge between the dielectric liner material and the isolation regions. In one embodiment, this fixed charge is between 1e12 and 5e12 cm−2, more preferably, approximately 3e12 cm 2. This interface charge serves to reduce the Band-Band tunneling, which reduces bit line leakage. The isolation structure also increases the effective base length for the parasitic path between adjacent devices and reduces bit line-to-bit line leakage. If desired to further reduce Band-Band tunneling, the intermediary material 129, shown in
While various embodiments have been described herein, various modifications and changes can be made. As is understood by one of ordinary skill in the art, the disclosed process is not limited to construction of MOSFET devices. In other embodiments, the disclosed process may be utilized in the formation of other devices using semiconductor regions of the type described above including bipolar transistors. Accordingly, the disclosed embodiments are not to be considered as limiting as the invention is defined solely by the scope of the appended claims.
Claims
1. (canceled)
2. An isolation structure comprising:
- a trench in a first portion of a semiconductor substrate, the trench defining an area between adjacent first semiconductor regions, the first semiconductor regions having a first type of conductivity, each first semiconductor region being adjacent to a second semiconductor region of a vertical access device, the second semiconductor region having a second type of conductivity;
- a dielectric liner material formed in the trench of the adjacent first semiconductor regions; and
- a dielectric liner material that fills the trench to form at least a portion of an isolation region such that only the dielectric material is provided between the dielectric liner material formed in the trench between the adjacent first semiconductor regions,
- wherein the trench extends into a second portion of the semiconductor substrate residing below the first portion, and wherein the isolation region is formed in the second portion of the semiconductor substrate.
3. The trench isolation structure of claim 2, wherein the trench extends beneath adjacent first semiconductor regions.
4. The trench isolation structure of claim 2, wherein the isolation region is formed in the second portion of the semiconductor substrate to extend beneath an adjacent first semiconductor regions.
5. The isolation structure of claim 4, wherein the dielectric liner material is formed in contact with at least a portion of at least one adjacent first semiconductor regions.
6. The isolation structure of claim 2, further comprising a bit line adjacent to and in electrical communication with the second semiconductor region.
7. The isolation structure of claim 6, wherein the bit line is formed such that the bit line is spaced from a junction where the first semiconductor region and the second semiconductor region contact.
8. The isolation structure of claim 6, wherein the dielectric liner material is formed over the bit line.
9. The isolation structure of claim 6, further comprising an intermediary material formed adjacent to the bit line.
10. The isolation structure of claim 2, further comprising:
- a third semiconductor region formed adjacent to the second semiconductor region, the third semiconductor region having a first dopant type;
- a gate oxide formed adjacent to the third semiconductor region; and
- a word line formed adjacent to the gate oxide.
11. A memory device comprising:
- a plurality of storage devices; and
- an array of vertical access devices, wherein each storage device is coupled to a corresponding vertical access device, the array comprising:
- at least one trench in a first portion of a semiconductor substrate, the trench defining an area between adjacent first semiconductor regions of adjacent vertical access devices, the first semiconductor regions being doped to a first type of conductivity;
- a dielectric liner material formed in the trench between the adjacent first semiconductor regions; and
- an isolation region comprising a dielectric material that fills the trench such that only the dielectric material is provided between the dielectric liner material formed in the trench region between the adjacent first semiconductor regions,
- wherein the trench extends into a second portion of the semiconductor substrate residing below the first portion, and wherein the isolation region is formed in the second portion of the semiconductor substrate.
12. The memory device of claim 11, wherein the trench extends beneath adjacent first semiconductor regions.
13. The memory device of claim 11, wherein the isolation region is formed in the second portion of the semiconductor substrate to extend beneath an adjacent first semiconductor regions.
14. The memory device of claim 11, wherein the isolation region is formed in the second portion of the semiconductor substrate to extend beneath an adjacent first semiconductor regions.
15. The memory device of claim 13, wherein the dielectric liner material is formed in contact with at least a portion of at least one adjacent first semiconductor regions.
16. The memory device of claim 11, further comprising a bit line adjacent to and in electrical communication with the second semiconductor region.
17. The memory device of claim 16, wherein the bit line is formed such that the bit line is spaced from a junction where the first semiconductor region and the second semiconductor region contact.
18. The memory device of claim 17, further comprising an intermediary material formed adjacent to the bit line.
19. The memory device of claim 11, further comprising:
- a third semiconductor region formed adjacent to the second semiconductor region, the third semiconductor region having a first dopant type;
- a gate oxide formed adjacent to the third semiconductor region; and
- a word line formed adjacent to the gate oxide.
20. A memory device comprising:
- a plurality of storage devices; and
- an array of vertical access devices, wherein each storage device is coupled to a corresponding vertical access device, the array comprising:
- at least one trench in a first portion of a semiconductor substrate, the trench defining an area between adjacent first semiconductor regions of adjacent vertical access devices, the first semiconductor regions being doped to a first type of conductivity;
- a dielectric liner material formed in the trench between the adjacent first semiconductor regions; and
- an isolation region comprising a dielectric material that fills the trench such that only the dielectric material is provided between the dielectric liner material formed in the trench region between the adjacent first semiconductor regions,
- wherein the trench extends into a second portion of the semiconductor substrate residing below the first portion, wherein the isolation region is formed in the second portion of the semiconductor substrate, and wherein the isolation region extends beneath an adjacent first semiconductor regions such that it contacts an adjacent isolation region.
Type: Application
Filed: Jan 26, 2015
Publication Date: May 21, 2015
Inventors: Kamal Karda (Boise, ID), Chandra Mouli (Boise, ID)
Application Number: 14/605,100
International Classification: H01L 21/762 (20060101); H01L 27/108 (20060101);