CATHETER FOR REMOVING FOREIGN BODY IN BLOOD VESSEL
A capturing unit provided on a distal end of a second tube can be deformed into a contracted state and an expanded state, in which the capturing unit is deployed to form a capturing chamber. The capturing chamber has an opening area decreased as it goes from a distal end opening of the capturing chamber toward a proximal end opening of the capturing chamber. A third tube rotatable relative to the second tube and a cutting unit provided on a distal end of the third tube for cutting a foreign substance are arranged in a second lumen. In the expanded state of the capturing unit, the cutting unit is arranged more toward the proximal end opening of the capturing chamber than the distal end opening.
Latest KAWASUMI LABORATORIES, INC. Patents:
This application is based upon and claims the benefit of priority from U.S. Provisional Patent Application No. 61/911,022 filed on Dec. 3, 2013; the entire contents of which are incorporated herein by reference.
TECHNICAL FIELDThe present invention relates to a catheter for removing foreign body in blood vessel, and more particularly, to a catheter for removing foreign body in blood vessel, which captures/crushes a foreign substance, such as thrombus, which embolizes a blood vessel and is adhered on a blood vessel wall, and thus allows the foreign substance to be effectively sucked and removed through the catheter to the outside of the body.
BACKGROUND ARTTo reperfuse a blood vessel, in which stenosis or occlusion is caused due to atheromatous plaque or thrombus, an occlusion substance within the blood vessel has to be removed. A balloon catheter in which a foreign substance removing filter, such a annular wire or a mesh is stored in a catheter tube, or various apparatuses, in which a metal wire is expanded in a coil shape or in three dimensional directions so that thrombus is caught or scrapped by the metal wire, thereby removing the thrombus, have been previously proposed. Even in the case of the catheter having such a foreign substance removing filter, it is difficult to capture all fragments of atheromatous plaque or thrombus peeled from a blood vessel wall, and in addition, there are problems in that in a case of a large thrombus or the like, the thrombus is clogged in the catheter or does not enter the catheter, or the like. If such thrombus, which cannot be recovered and is freed, enters a peripheral vascular, there is a risk of causing peripheral vascular occlusion or the like. Therefore, development of an apparatus in which thrombus removed by a balloon or the like can be reliably and effectively recovered, is strongly required.
Previously, as a suction catheter, which sucks and removes thrombus present in a blood vessel for treating stenosis due to the thrombus, a suction catheter has been known, which has an outer tube and an inner tube and in which a suction device is connected to a proximal end of the inner tube and an elastic deformable portion formed to be deformable into a contracted state and an expanded state is arranged on a distal end thereof, so that the suction device sucks and removes a foreign substance, such as thrombus, from the elastic deformable portion in the expanded state where a suction port thereof is expanded in a tapered shape (e.g., see Patent Document 1). Also, an apparatus has been known, in which, on an distal end of a catheter having a suction device, a propeller rotatably supported in the catheter is arranged, and when thrombus is sucked into a tip portion of the catheter by the suction device, the thrombus is crushed by the propeller and then is sucked and removed (e.g., see Patent Document 2).
CITATION LIST Patent DocumentPatent Document 1: JP 2009-66178 A
Patent Document 2: JP 2-61315 U
SUMMARY OF INVENTION Technical ProblemHowever, in the suction catheter disclosed in Patent Document 1, there has been a problem in that a larger thrombus than an opening of the inner tube cannot be satisfactorily sucked and removed. Also, in the catheter of Patent Document 2, although the sucked thrombus is crushed by the propeller, a large thrombus, which cannot be sucked through an opening of the catheter, cannot be cut by the propeller, because a location of an end of the propeller coincides with a location of the distal end of the catheter as viewed along a tube axis of the catheter. Even if a portion of the thrombus has been sucked in the tip portion of the catheter, the cutting process has to be sequentially performed from the sucked portion, as a result of which there is a possibility that much time is taken to cut the entire thrombus.
The present invention has been made keeping in mind the above problems, and an object of the invention is to provide a catheter for removing foreign body in blood vessel, in which a foreign substance in vivo, such as thrombus, can be nodulized to be effectively sucked and removed.
Technical SolutionThe above object of the present invention is achieved by the following configurations:
- (1) A catheter for removing foreign body in blood vessel, including:
a tube that has a lumen; and
a capturing unit that is provided on a distal end of the tube and that can have a contracted state, in which the capturing unit is contracted, and an expanded state, in which the capturing unit is expanded to form a capturing chamber;
wherein the catheter is characterized by further including:
a power transmitting member that is arranged in the lumen and that can rotate relative to the tube; and
a cutting unit that is provided on a distal end of the power transmitting member for cutting a foreign substance flowed into the capturing unit;
wherein the capturing chamber has an opening area decreased gradually from a distal end opening of the capturing chamber toward a proximal end opening of the capturing chamber; and
in the expanded state of the capturing unit, the cutting unit is arranged more toward the proximal end opening of the capturing chamber than the distal end opening of the capturing chamber.
- (2) The catheter for removing foreign body in blood vessel according to (1), characterized in that:
the power transmitting member is another tube having a lumen; and
a guide wire can be inserted through the lumen of said another tube.
- (3) The catheter for removing foreign body in blood vessel according to (1) or (2), characterized in that:
the power transmitting member is another tube having a lumen; and
a guide unit which guides a foreign substance into the capturing chamber can be inserted through the lumen of said another tube.
- (4) The catheter for removing foreign body in blood vessel according to (3), characterized in that:
a radiographic marker is provided to check a distance between the guide unit and the cutting unit visually.
- (5) The catheter for removing foreign body in blood vessel according to any one of (1) to (4), characterized in that:
the cutting unit is a foldable propeller-shaped member.
- (6) The catheter for removing foreign body in blood vessel according to (5), characterized in that:
unevenness is formed on an inner surface of the capturing chamber along a circumferential direction thereof.
- (7) The catheter for removing foreign body in blood vessel according to any one of (1) to (4), characterized in that:
the cutting unit is an expandable meshed member.
- (8) The catheter for removing foreign body in blood vessel according to any one of (1) to (7), characterized in that:
the power transmitting member is movable relative to the tube only toward a distal end thereof.
Advantageous EffectsAccording to the catheter for removing foreign body in blood vessel of the present invention as described in (1), because the capturing chamber has an opening area decreased as it goes from a distal end opening of the capturing chamber toward a proximal end opening of the capturing chamber and also, in the expanded state of the capturing unit, the cutting unit is arranged more toward the proximal end opening of the capturing chamber than the distal end opening of the capturing chamber, a foreign substance, such as thrombus, can be guided from the distal end opening having a large opening area in the capturing chamber toward the proximal end opening having a small opening area, and thus can be effectively condensed in the proximal end opening. Also, by cutting the foreign substance, which has been condensed in the proximal end opening of the capturing chamber, by the cutting unit, the foreign substance can be effectively nodulized. Therefore, a large foreign substance, which would not be previously sucked into a catheter, can be also nodulized to be effectively sucked and removed. In addition, because the cutting unit is arranged more toward the proximal end opening of the capturing chamber than the distal end opening of the capturing chamber, the cutting unit is not exposed in a blood vessel upon cutting, thereby ensuring safety.
According to the catheter for removing foreign body in blood vessel of the present invention as described in (2), because the power transmitting member is another tube having a lumen, through which a guide wire can be inserted, the catheter can be directed by the guide wire to be reliably guided to a site, where the foreign substance is generated.
According to the catheter for removing foreign body in blood vessel of the present invention as described in (3), because the power transmitting member is another tube having a lumen, through which a guide unit for guiding a foreign substance into the capturing chamber can be inserted, the foreign substance can be effectively guided and condensed into the capturing chamber by the guide unit.
According to the catheter for removing foreign body in blood vessel of the present invention as described in (4), because a radiographic marker is provided to allow a distance between the guide unit and the cutting unit to be seen by eyes, contact between the cutting unit and a balloon can be prevented, thereby avoiding damage of the guide unit by the cutting unit.
According to the catheter for removing foreign body in blood vessel of the present invention as described in (5), because the cutting unit is a foldable propeller-shaped member, even a large foreign substance can be sucked and removed by reliably cutting and nodulizing the foreign substance by the propeller-shaped member.
According to the catheter for removing foreign body in blood vessel of the present invention as described in (6), because unevenness is formed on an inner surface of the capturing chamber along a circumferential direction thereof, the foreign substance can be ground and crushed by the unevenness formed on the inner surface of the capturing chamber and the propeller-shaped member, thereby effectively nodulizing the foreign substance.
According to the catheter for removing foreign body in blood vessel of the present invention as described in (7), because the cutting unit is an expandable meshed member, even a large foreign substance can be sucked and removed by reliably cutting and nodulizing the foreign substance by the meshed member.
According to the catheter for removing foreign body in blood vessel of the present invention as described in (8), because the power transmitting member is movable relative to the tube only toward a distal end thereof, the power transmitting member is moved relative to the tube toward the distal end side thereof after cutting the foreign substance, so that the nodulized foreign substance can be effectively sucked from the proximal end opening of the capturing chamber. Also, during insertion into the blood vessel, movement of the power transmitting member relative to the tube toward the proximal end side thereof is restricted, so that when inserting the tube, a location of the power transmitting member is restricted, thereby allowing an easy insertion of the tube.
Each of embodiments of a catheter for removing foreign body in blood vessel according to the present invention will be now described in detail on the basis of the drawings.
First EmbodimentThe sheath 11 includes a first tube 21 having a first lumen 22 and a second tube 23 having a second lumen 24 and has a double lumen structure in which the second tube 23 is inserted through the first lumen 22 of the first tube 21 and thus is adapted to be movable in first lumen 22 in an axial direction of the first tube 21.
The first and second tubes 21 and 23 are molded of an elastically deformable material, such as polyethylene, polyethylene terephthalate, polypropylene, polyurethane, polyamide elastomer, polyimide, polyimide elastomer, copolymers thereof, silicone rubber, or natural rubber, and have a substantially uniform outer diameter over a longitudinal direction thereof. Also, the first and second lumens 22 and 24 are likewise formed to have a substantially uniform inner diameter over a longitudinal direction thereof.
An operation unit 30 is provided on a proximal end side of the second tube 23. The operation unit 30 is provided with a first port 25 and a second port 26. The first port 25 is communicated with the second lumen 24 and provided on an axis of the sheath 11 (second tube 23), and also has an opening fluid-tightly occluded by a valve body, not shown, formed of silicone rubber or the like. A third tube 41 as described below is inserted in the first port 25 to extend through the valve body and then to be inserted through the second lumen 24.
The second port 26 is communicated with the second lumen 24 and formed to extend from the second tube 23 in a direction intersecting the axis of the sheath 11. Other devices (not shown), such as a syringe, is connected to the second port 26 to impart a suction force to the second lumen 24, so that a foreign substance 2, such as thrombus formed within a blood vessel 1, are sucked and removed through the second port 26 to the outside of a body.
Referring to
The capturing unit 12 has a plurality of generally triangle column-shaped frame portions 31 (16 pieces in the embodiment shown in the drawings) made of a shape memory alloy (for example, Ni—Ti alloy), in which the expanded state is shape-memorized, and a plurality of sheet portions 32 (16 pieces in the embodiment shown in the drawings) formed in a membrane shape for connecting the adjacent frame portions 31 to each other and being deployable in an umbrella shape in accordance with expansion of the frame portions 31.
The frame portions 31 are arranged at substantially equal intervals in a circumferential direction and extend in an axial direction in a state where proximal end sides 31a of the frame portions 31 are fixed on an outer periphery of a tip of the second tube 23 and distal end sides 31b of the frame portions 31 are opened. In the contracted state, in which frame portions are received in the first lumen 22, each frame portion 31 is pushed and contracted against the restoring force, by which the shape memory alloy is to be expanded, because an outer peripheral surface of each frame portion 31 is abutted to and constrained by an inner peripheral surface (first lumen 22) of the first tube 21. Namely, the capturing unit 12 in the contracted state forms a generally cylinder because the distal end sides 31b of the plurality of frame portions 31 are aligned on a circumference. The frame portions 31 in the contracted state are arranged so that one ridge 31c of three ridges, which extend along an axial direction of the second tube 23, protrudes toward an inner surface of the cylinder. Therefore, on an inner surface of the capturing unit 12, unevenness along a circumferential direction thereof is formed. Also, the frame portions 31 in a natural state, in which constraint by the first lumen 22 is released, are deployed by the self-restoring force to become the expanded state.
The sheet portions 32, which have a foldable flexibility, extend in the axial direction of the second tube 23 and also are fixed on lateral surfaces of the adjacent frame portions 31. In addition, proximal end sides of the sheet portions 32 are fixed on the outer periphery of the tip of the second tube 23. The folded sheet portions 32 are deployed in an umbrella shape when the frame portions 31 become the expanded state, and thus cover between the adjacent frame portions 31 in a membrane shape.
Thus, in the contracted state (see
Meanwhile, it is not necessary for the frame portions 31 to be made of a shape memory alloy, in which the expanded state is shape-memorized, and accordingly, the sheet portions 32 may be formed by a balloon. In this case, in a state, where a fluid has not been introduced into the balloon, the balloon is folded and also the frame portions 31 are also contracted so that the capturing unit 12 exhibits the contracted state, whereas in a state, where the fluid has been introduced into the balloon, the balloon is inflated and thus the frame portions 31 are also deployed in accordance with expansion of the balloon, as a result which the capturing unit 12 forms the capturing chamber 12A.
As shown in
The cutting unit 13 is intended to nodulize the foreign substance 2, which has been flowed into the capturing chamber 12A, by cutting, crushing or grinding, and is provided on a distal end of the third tube 41 as shown in
The third tube 41, which has a third lumen 42, is inserted into the second lumen 24 through the valve body (not shown) of the first port 25 and rotatable relative to the second tube 23, and also is arranged to be axially movable by a predetermined distance only toward a distal end side thereof. The third tube 41 is provided on a proximal end side thereof with a spinning rod 43 for operating the cutting unit 13 (see
The cutting unit 13 according to the present embodiment has a plurality of blades 44 (8 pieces in the embodiment shown in the drawings), which have one ends 44a on proximal end sides thereof fixed on a distal end of the third tube 41 and the other ends 44b on distal end sides thereof being opened, and are arranged at substantially equal intervals in a circumferential direction to take a propeller shape, and also extend in an axial direction.
Each blade 44 has an arc-shaped cross-section shape, which is swelled outward, i.e., toward an inner peripheral surface of the capturing chamber 12A, and is formed of a shape memory alloy (for example, Ni—Ti alloy), in which an expanded state thereof is shape-memorized. The blades 44 in a natural state are urged by a restoring force of the shape memory alloy, so that the other ends 44b on the distal end sides of the blades 44 are flared in a direction spaced away from each other, i.e., each blade 44 is radially flared. Further, when being received in the capturing unit 12, an outer peripheral surface of each blade 44 is abutted to and constrained by the frame portions 31, and thus becomes a contracted state (see
Namely, the blades 44 become a contracted state when having been received in the contracted capturing unit 12, and the plurality of blades 44 are aligned in a cylinder shape (see
As shown in
The balloon 52 is formed of a general material, such as polyamide elastomer. The balloon 52 has an outer surface covered with a wire material 53, which is a protection member for protecting the balloon 52 from the blades 44 and the like. Preferably, the wire material 53 is formed of Ni—Ti alloy or the like having an X-ray contrast property to allow a location thereof in vivo to be checked from the outside of a body under X-ray illumination, and serves as a radiographic marker. However, the wire material 53 is not necessary to be made of a metal, and accordingly may be made of a resin.
In addition, the blades 44 are likewise preferably formed of alloy, such as Ni—Ti alloy, having an X-ray contrast property to serve as a radiographic marker. Therefore, locations of the balloon 52 and the blades 44 can be checked from the outside of the body, and thus when the foreign substance 2, such as thrombus is nodulized by the blades 44 while being condensed in the capturing chamber 12A by the balloon 52 as described below, interference between the balloon 52 and the blades 44 can be prevented.
Meanwhile, the radiographic markers are not limited to the balloon 52 or the blades 44, and accordingly, rings (not shown) or the like formed of a material having an X-ray contrast property may be arranged at suitable locations.
Alternatively, Ni—Ti alloy may be substituted with a superelastic alloy, such as Au—Cd alloy, Cu—Al—Ni alloy, Ni—Ti—Co alloy, or Ni—Ti—Cu alloy, which all have an X-ray contrast property.
In addition, the guide unit provided on the tip end of the guide wire 50 is not limited to the balloon 52, and for example, a thrombus capturing instrument made of a wire material formed in a coil shape (see JP 2010-188068 A) or the like may be employed.
Next, a method of using the catheter for removing foreign body in blood vessel 10 will be described.
First, as shown in
Subsequently, in a state where the contracted capturing unit 12 is received in the first lumen 22, and also the contracted cutting unit 13 is received in the capturing unit 12, the first, second and third tubes 21, 23 and 41 are inserted in the blood vessel 1 along the guide wire 50, and then, distal ends of the first, second and third tubes 21, 23 and 41, i.e., the capturing unit 12 and the cutting unit 13, which all are received in the first lumen 22 to be in the contracted state, are positioned in front of the foreign substance 2.
When the capturing unit 12 and the cutting unit 13 are pushed out from the distal end of the first tube 21 by operating the operation unit 30 of the second tube 23 and the spinning rod 43 of the third tube 41, as shown
Then, after a fluid is supplied from the lumen 51 of the guide wire 50 to inflate the balloon 52, the guide wire 50 is retracted so that the foreign substance 2, such as thrombus, is guided into the capturing chamber 12A by the balloon 52. Because the capturing chamber 12A has an opening area gradually decreased as it goes from the distal end opening 33 of the capturing chamber 12A toward the proximal end opening 34 of the capturing chamber 12A, the foreign substance 2 is effectively condensed in the proximal end opening 34 side of the capturing chamber 12A, i.e., in the vicinity of the blades 44.
At this time, when the spinning rod 43 is rotated, the foreign substance 2 is cut by the rotating blades 44 and also ground between the frame portions 31 of the capturing chamber 12A and the blades 44 to be nodulized. Because unevenness is formed on the inner surface of the capturing chamber 12A by the ridges 31c of the triangle column-shaped frame portions 31, a resistance is applied to the foreign substance 2 by the unevenness so that the foreign substance 2 can be reliably nodulized without rotating together with the blades 44. Meanwhile, the spinning rod 43 may be manually rotated, but may be rotated by a power, such as a motor.
After the foreign substance 2 has been nodulized by the blades 44, other devices, such as a syringe, connected to the second port 26, are activated to build a negative pressure inside the second lumen 24, so that the nodulized foreign substance 2 is sucked and removed from the second port 26 to the outside of the body. At this time, by operating the spinning rod 43 to move the blades 44 in a direction toward a distal end thereof and thus to widen a gap between a distal end-side opening of the second lumen 24 and the blades 44, a relatively large foreign substance 2 can be also effectively sucked and removed.
In addition, as an alternative method, the blades 44 may be moved to a base of the second tube 23 (the vicinity of the first port 25) and then the foreign substance may be sucked and removed from the second port 26. In this case, the third tube 41 has to be provided to be axially movable toward a proximal end side of the second tube 23 as well.
After suction and removal of the foreign substance 2 is ended, the capturing unit 12 (capturing chamber 12A) and the cutting unit 13, which are in the expanded state, are retracted into the first lumen 22 of the first tube 21 to become the contracted state against the restoring force of each thereof, and then the first, second and third tubes 21, 23 and 41 are withdrawn from the blood vessel 1 and also after flatting the balloon 52, the guide wire 50 together with the balloon 52 is withdrawn from the blood vessel 1.
Meanwhile, although the foreign substance 2, such as thrombus, is guided into the capturing chamber 12A by the balloon 52 in the foregoing description, the balloon 52 is not used, but the foreign substance 2 may be guided into the capturing chamber 12A by only suction from the second port 26. In this case, the balloon 52 is not required and also the guide wire 50 can be omitted.
As described above, according to the catheter for removing foreign body in blood vessel 10 of the present embodiment, the capturing unit 12 is provided on the distal end of the second tube 23 and the capturing unit 12 can be deformed into a contracted state and an expanded state in which the capturing chamber 12A having an opening area decreased as it goes from the distal end opening 33 toward the proximal end opening 34, is formed. Because the third tube 41, which is rotatable relative to the second tube 23, and the cutting unit 13, which is provided on the distal end of the third tube 41 and arranged on the proximal end opening 34 side of the capturing chamber 12A to cut the foreign substance 2 captured in the capturing chamber 12A, are disposed in the second lumen 24, the foreign substance 2, such as thrombus, can be guided from the distal end opening 33 having a large opening area toward the proximal end opening 34 having a small opening area, and thus can be effectively condensed in the proximal end opening 34. Also, by cutting or grinding the foreign substance 2, which has been condensed in the proximal end opening 34 of the capturing chamber 12A, by the cutting unit 13, the foreign substance 2 can be effectively nodulized. Therefore, a large foreign substance 2, which would not be previously sucked into a catheter, can be also effectively sucked and removed. In addition, because the cutting unit 13 is arranged more toward the proximal end opening 34 of the capturing chamber 12A than the distal end opening 33 of the capturing chamber 12A, the cutting unit 13 is not exposed in the blood vessel 1 upon cutting, thereby ensuring safety.
Also, because the power transmitting members is the third tube 41 having the third lumen 42 through which the guide wire 50 can be inserted, the catheter for removing foreign body in blood vessel 10 can be directed by the guide wire 50 to be reliably guided to a site, where the foreign substance is generated.
In addition, because the balloon 52 for guiding the foreign substance 2 into the capturing chamber 12A can be inserted through the third tube 41, the foreign substance 2 can be effectively guided and condensed into the capturing chamber 12A by the balloon 52. Meanwhile, the balloon 52 may be provided on the guide wire 50 as described above, and also, after other guide wires not having a balloon are used instead of the guide wire 50, a typical balloon catheter may be used.
Further, because as the radiographic makers, which allows a distance between the balloon 52 and the cutting unit 13 to be seen by eyes, the wire material 53 and the blades 44 are formed of materials having an X-ray contrast property, the balloon 52 and the blades 44 can be operated while checking locations thereof from the outside of the body, thereby preventing contact between the cutting unit 13 and the balloon 52 and thus avoiding damage of the balloon 52 by the cutting unit 13.
Further, because the cutting unit 13 is the plurality of foldable blades 44, even a large foreign substance 2 can be reliably sucked and removed by cutting and nodulizing the foreign substance 2 by the blades 44.
Further, because unevenness along a circumferential direction is formed on the inner surface of the capturing chamber 12A by the triangle column-shaped frame portions 31, the foreign substance 2 can be ground and crushed by the unevenness formed on the inner surface of the capturing chamber 12A and the blades 44, thereby effectively nodulizing the foreign substance 2.
In addition, because the third tube 41 can be moved relative to the second tube 23 only toward the distal end side thereof, the third tube 41 is moved relative to the second tube 23 toward the distal end side thereof after nodulizing the foreign substance 2, so that the nodulized foreign substance 2 can be effectively sucked from the proximal end opening 34 of the capturing chamber 12A. Also, during insertion into the blood vessel 1, movement of the third tube 41 relative to the second tube 23 toward the proximal end side thereof is restricted, so that when inserting the second tube 23 into the blood vessel 1, a location of the third tube 41 is restricted, thereby allowing an easy insertion of the second tube. Meanwhile, the third tube 41 may be configured to be movable relative to the second tube 23 toward the distal end side and the proximal end side.
Second EmbodimentNext, a second embodiment of a catheter for removing foreign body in blood vessel will be described with reference to
As shown in
The propellers 62 are formed of a shape memory alloy, in which an expanded state, where the propellers extend radially outward from the cylindrical base portion 61, is shape-memorized, and are deformable into a contracted state, in which, as shown in
As shown in
Then, by operating a spinning rod 43 to rotate the propellers 62, a foreign substance 2, such as thrombus, condensed in the capturing chamber 12A is cut and nodulized and then sucked and removed from a second port 26 to the outside of the body.
As described above, according to the catheter for removing foreign body in blood vessel 10 of the present embodiment, because the cutting unit 13 is the foldable propellers 62, even a large foreign substance 2 can be reliably sucked and removed by reliably cutting and nodulizing the foreign substance 2 by the propellers 62.
Third EmbodimentNext, a third embodiment of a catheter for removing foreign body in blood vessel according to the present invention will be described with reference to
As shown in
The wire materials 66 are formed of a shape memory alloy, which is shape-memorized to have a generally elliptical shape in a natural state, and are deformable into an contracted state, in which, as shown in
When a capturing unit 12 is pushed out from a distal end opening 22a of the first lumen 22, the plurality of wire materials 66 constituting the meshed member 65 are released from constraint by the first lumen 22, and thus the middle part thereof is swelled radially outward by the self-restoring thereof to be deformed into a generally elliptical shape, thereby forming a capturing chamber 12A.
Then, by operating a spinning rod 43 to rotate the meshed member 65, a foreign substance 2, such as thrombus, condensed in the capturing chamber 12A is cut and nodulized by the meshed member 65 and then sucked and removed from a second port 26 to the outside of the body.
As described above, according to the catheter for removing foreign body in blood vessel 10 of the present embodiment, because the cutting unit 13 is the expandable meshed member 65, even a large foreign substance 2 can be reliably sucked and removed by reliably cutting and nodulizing the foreign substance 2 by the meshed member 65.
Meanwhile, the present invention is not limited to each of the foregoing embodiments, and accordingly, appropriate changes, modifications or the like thereof can be made.
For examples, a vibration generating member may be provided on the capturing unit 12, the cutting unit 13, the balloon 52 and the like, so that the vibration generating member can generate a vibration by operation of a user. In this case, due to the vibration of the vibration generating member, a vibration can be applied to the foreign substance flowed into the capturing chamber 12A, so that the foreign substance becomes smaller pieces to easily flow.
In addition, the sheath 11 is not necessary to include the first tube 21 having the first lumen 22 and the second tube 23 having the second lumen 24, but may be constituted of only the second tube 23 having the second lumen 24, and thus, a member corresponding to the first tube 21 having the first lumen 22 may be separately prepared during surgery and also may be employed as a guiding catheter used in other treatments. Therefore, for example, when a stent or the like is indwelled after removing a foreign substance, an operation can be performed with the guiding catheter remained.
More specifically, if the guiding catheter is used instead of the first tube 21 of the sheath 11, when the sheath 11 is withdrawn, the second and third tubes 23 and 41 are withdrawn with the guiding catheter remained as it is. In this state, an indwelling catheter for indwelling a stent or the like is inserted into a blood vessel and reaches an indwelling site through the inside of the guiding catheter, and then the stent or the like is indwelled.
REFERENCE NUMERALS LIST2 Foreign substance
10 Catheter for removing foreign body in blood vessel
11 Sheath
12 Capturing unit
12A Capturing chamber
13 Cutting unit
21 First tube
22 First lumen
22a Opening
23 Second tube (Tube)
24 Second lumen
33 Distal end opening
34 Proximal end opening
41 Third tube (Power transmitting member)
42 Third lumen
44 Blade (Cutting unit, Propeller-shaped member)
50 Guide wire
52 Balloon (Guide unit)
53 Wire material (Protection member)
62 Propeller (Cutting unit, Propeller-shaped member)
65 Meshed member (Cutting unit)
Claims
1. A catheter for removing foreign body in blood vessel, comprising:
- a tube that has a lumen; and
- a capturing unit that is provided on a distal end of the tube and that has a contracted state, in which the capturing unit is contracted, and an expanded state, in which the capturing unit is expanded to form a capturing chamber;
- wherein the catheter further comprise:
- a power transmitting member that is arranged in the lumen and that rotates relative to the tube; and
- a cutting unit that is provided on a distal end of the power transmitting member for cutting a foreign substance flowed into the capturing unit;
- wherein the capturing chamber has an opening area decreased gradually from a distal end opening of the capturing chamber toward a proximal end opening of the capturing chamber; and
- in the expanded state of the capturing unit, the cutting unit is arranged more toward the proximal end opening of the capturing chamber than the distal end opening of the capturing chamber.
2. The catheter for removing foreign body in blood vessel according to claim 1,
- wherein the power transmitting member is another tube having a lumen; and
- a guide wire is configured to be inserted through the lumen of said another tube.
3. The catheter for removing foreign body in blood vessel according to claim 1,
- wherein the power transmitting member is another tube having a lumen; and
- a guide unit which guides a foreign substance into the capturing chamber is configured to be inserted through the lumen of said another tube.
4. The catheter for removing foreign body in blood vessel according to claim 3,
- wherein a radiographic marker is provided to check a distance between the guide unit and the cutting unit visually.
5. The catheter for removing foreign body in blood vessel according to claim 1,
- wherein the cutting unit is a foldable propeller-shaped member.
6. The catheter for removing foreign body in blood vessel according to claim 5,
- wherein unevenness is formed on an inner surface of the capturing chamber along a circumferential direction thereof.
7. The catheter for removing foreign body in blood vessel according to claim 1,
- wherein the cutting unit is an expandable meshed member.
8. The catheter for removing foreign body in blood vessel according to claim 1,
- wherein the power transmitting member is movable relative to the tube only toward a distal end thereof.
Type: Application
Filed: Dec 1, 2014
Publication Date: Jun 4, 2015
Applicants: KAWASUMI LABORATORIES, INC. (Saiki-shi), (Madison, WI)
Inventor: Dai YAMANOUCHI (Madison, WI)
Application Number: 14/556,827