TREFOIL FAMILY FACTOR PROTEINS AND USES THEREOF
The invention provides for methods for treating an inflammatory disease of the digestive system in a subject by administering a trefoil family molecule. The invention provides for methods for treating a digestive system cancer in a subject by administering a trefoil family molecule. The invention provides for methods for cell proliferation in a subject by administering a trefoil family molecule.
This application is a continuation-in-part of International Application No. PCT/US2013/034981, filed Apr. 2, 2013, which claims priority to U.S. Provisional Patent Application No. 61/649,767, filed on May 21, 2012, the contents of which are hereby incorporated by reference in its entirety.
GOVERNMENT SUPPORTThis invention was made with government support under Grant No. NIH 5R01 DK060758-10 awarded by the National Institute of Health and the National Institute of Diabetes and Digestive and Kidney Diseases. The Government has certain rights in the invention.
All patents, patent applications and publications, and non-patent publications cited herein are hereby incorporated by reference in their entirety. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as known to those skilled therein as of the date of the invention described and claimed herein.
This patent disclosure contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the U.S. Patent and Trademark Office patent file or records, but otherwise reserves any and all copyright rights.
BACKGROUND OF THE INVENTIONTrefoil factor 2 (TFF2) is a small secreted protein that is expressed in gastrointestinal mucosa where it functions to protect and repair mucosa, but it is also expressed at low levels in splenic immune cells where its role has been unclear. The Tff2 gene is epigenetically silenced in digestive system cancers and thus has been postulated to protect against cancer development through multiple mechanisms.
SUMMARY OF THE INVENTIONThe present invention provides for the use of TFF2, delivered as a recombinant peptide or using a viral vector or modified peptide (for example, a fusion protein for increased stability) to treat advanced cancer or dysplasia by specifically suppressing myeloid proliferation with this approach. TFF2 can be a new and useful cancer therapy that works by targeting the tumor microenvironment, specifically the myeloid cells (e.g. MDSC, tumor associated macrophages, neutrophils) that support cancer. In addition, it can be a form of replacement of a tumor suppressor gene product that is normally downregulated in many cancers.
In one aspect, the invention provides for a method of treating or preventing a cancer in a subject, the method comprising administering to the subject a therapeutically effective amount of TFF2 protein, thereby treating or preventing the cancer. In one embodiment, the cancer is colon cancer. In another embodiment, the cancer is rectal cancer. In one embodiment, the cancer is gastric cancer. In another embodiment, the cancer is stomach cancer.
In one embodiment, the TFF2 protein is a human TFF2 protein. In one embodiment, the TFF2 protein is a recombinant protein.
In one embodiment, the treating or preventing comprises inhibiting the proliferation of myeloid-derived suppressor cells (MDSCs).
In one aspect, the invention provides for a method of treating an inflammatory disease of the digestive system in a subject, the method comprising administering to a subject a trefoil family molecule. In one embodiment, the inflammatory disease of the digestive system comprises esophagitis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, colitis, irritable bowel syndrome, celiac disease, gastritis, or a combination thereof. In another embodiment, the inflammatory disease of the digestive system is colitis.
In one aspect, the invention provides for a method of treating a digestive system cancer in a subject, the method comprising administering to a subject a trefoil family molecule. In one embodiment, the digestive system cancer is selected from the group consisting of mouth cancer, pharynx cancer, esophageal cancer, and stomach cancer. In another embodiment, the digestive system cancer is selected from the group consisting of small intestine cancer, large intestine cancer, colon cancer, rectal cancer, and anal cancer. In another embodiment, the digestive system cancer is selected from the group consisting of liver cancer, pancreatic cancer, and gall bladder. In a further embodiment, the digestive system cancer is colon cancer.
In one aspect, the invention provides for a method of decreasing cell proliferation in a subject, the method comprising administering to a subject a trefoil family molecule, thus decreasing cell proliferation. In one embodiment, the cell is a myeloid-derived suppressor cell. In another embodiment, the myeloid-derived suppressor cell is a tumor associated myeloid-derived suppressor cell. In another embodiment, the myeloid-derived suppressor cell is a myeloid-derived suppressor cell associated with a tumor. In further embodiments, the myeloid-derived suppressor cell expresses a MDSC-specific surface marker. In one embodiment, the myeloid derived suppressor cell does not express a MDSC-specific surface marker. In another embodiment, the surface marker is Grl1, CD11b, or a combination thereof. In another embodiment, the surface marker is CD14, CD15, CD33, or a combination thereof. In another embodiment the surface marker is HLA-DR.
In one aspect, the invention provides a method of decreasing tumor growth in a subject, the method comprising administering to a subject a trefoil family molecule, thus decreasing tumor growth. In one embodiment, the tumor is a tumor of the digestive system.
In one aspect, the invention provides a method of treating dysplasia of the digestive system in a subject, the method comprising administering to the subject a trefoil family molecule.
In one aspect, the invention provides a kit for treating a trefoil family protein disorder, the kit comprising a trefoil family molecule, to administer to a subject and instructions of use.
In one aspect, the invention provides a method of determining the presence of, or predisposition to, a trefoil family molecule disorder in a sample from a subject, the method comprising: (a) detecting the presence, absence or reduction of a trefoil family molecule in the sample, wherein absence, or reduction of the molecule indicates the presence of, or predisposition to, a trefoil family molecule disorder. In one embodiment, the method further comprises: (b) administering a trefoil family molecule to the subject where a trefoil family molecule was not detected. In one embodiment, the method further comprises incubating the sample with an agent that binds a trefoil family molecule, or fragment thereof. In one embodiment, the agent is an antibody to a trefoil family molecule. In another embodiment, the sample is digestive system cancer cells. In further embodiments, the digestive system cancer is selected from the group consisting of mouth cancer, pharynx cancer, esophageal cancer, and stomach cancer. In yet another embodiment, the digestive system cancer is selected from the group consisting of small intestine cancer, large intestine cancer, colon cancer, rectal cancer, and anal cancer. In another embodiment, the digestive system cancer is selected from the group consisting of liver cancer, pancreatic cancer, and gall bladder. In one embodiment, the digestive system cancer is colon cancer.
In one embodiment, administering the trefoil family molecule is conducted simultaneously with the administering of a chemotherapy drug. In another embodiment, administering the trefoil family molecule is conducted sequentially in any order with the administering of a chemotherapy drug. Non-limiting examples of conventional chemotherapy drugs include: aminoglutethimide, amsacrine, asparaginase, bcg, anastrozole, bleomycin, buserelin, bicalutamide, busulfan, capecitabine, carboplatin, camptothecin, chlorambucil, cisplatin, carmustine, cladribine, colchicine, cyclophosphamide, cytarabine, dacarbazine, cyproterone, clodronate, daunorubicin, diethylstilbestrol, docetaxel, dactinomycin, doxorubicin, dienestrol, etoposide, exemestane, filgrastim, fluorouracil, fludarabine, fludrocortisone, epirubicin, estradiol, gemcitabine, genistein, estramustine, fluoxymesterone, flutamide, goserelin, leuprolide, hydroxyurea, idarubicin, levamisole, imatinib, lomustine, ifosfamide, megestrol, melphalan, interferon, irinotecan, letrozole, leucovorin, ironotecan, mitoxantrone, nilutamide, medroxyprogesterone, mechlorethamine, mercaptopurine, mitotane, nocodazole, octreotide, methotrexate, mitomycin, paclitaxel, oxaliplatin, temozolomide, pentostatin, plicamycin, suramin, tamoxifen, porfimer, mesna, pamidronate, streptozocin, teniposide, procarbazine, titanocene dichloride, raltitrexed, rituximab, testosterone, thioguanine, vincristine, vindesine, thiotepa, topotecan, tretinoin, vinblastine, trastuzumab, and vinorelbine. In one embodiment, the chemotherapy drug is an alkylating agent (e.g. busulfan, cisplatin, carboplatin, chlorambucil, cyclophosphamide, ifosfamide, dacarbazine (DTIC), mechlorethamine (nitrogen mustard), melphalan, and temozolomide), a nitrosourea, an anti-metabolite (e.g. 5-fluorouracil, capecitabine, 6-mercaptopurine, methotrexate, gemcitabine, cytarabine (ara-C), fludarabine, or pemetrexed), a topoisomerase inhibitor (e.g. topotecan, irinotecan, etoposide (VP-16), or teniposide), a mitotic inhibitor, an anthracycline (e.g. daunorubicin, doxorubicin (Adriamycin), epirubicin, idarubicin, or mitoxantrone), a corticosteroid hormone, a sex hormone, or a targeted anti-tumor compound (e.g. imatinib (Gleevec), gefitinib (Iressa), erlotinib (Tarceva), rituximab (Rituxan), or bevacizumab (Avastin)).
In one embodiment, administering the trefoil family molecule is conducted simultaneously with the administering of radiation therapy. In another embodiment, administering the trefoil family molecule is conducted sequentially in any order with the administering of radiation therapy. Non-limiting examples of conventional radiation therapy include: external beam radiation therapy, sealed source radiation therapy, unsealed source radiation therapy, particle therapy, and radioisotope therapy.
In one embodiment, administering the trefoil family molecule is conducted simultaneously with the administering of cancer immunotherapy. In another embodiment, administering the trefoil family molecule is conducted sequentially in any order with the administering of cancer immunotherapy. Non-limiting examples of cancer immunotherapy include: cancer vaccines, therapeutic antibodies, such as monoclonal antibody therapy (e.g., Bevacizumab, Cetuximab, and Panitumumab), cell based immunotherapy, and adoptive cell based immunotherapy.
In one embodiment, administering the trefoil family molecule is conducted simultaneously with the administering of an anti-inflammatory drug. In another embodiment, the trefoil family molecule is conducted sequentially in any order with the administering of an anti-inflammatory drug. Non-limiting examples of anti-inflammatory drugs include: anti-inflammatory steroids (corticosteroids) (e.g. prednisone), aminosalicylates (e.g., mesalazine), non-steroidal anti-inflammatory drugs (NSAIDs) (e.g. aspirin, ibuprofen, naproxen) and immune selective anti-inflammatory derivatives (ImSAIDs). An anti-inflammatory drug also includes antibodies or molecules that target cytokines and chemokines including, but not limited to, anti-TNFα antibodies (e.g. infliximab (Remicade), adalimumab (Humira), certolizumab pegol (Cimzia), golimumab (Simponi), etanercept (Enbrel)), anti-IL12 antibodies, anti-IL2 antibodies (basiliximab (Simulect), daclizumab (Zenapax), azathioprine (Imuran®, Azasan®), 6-mercaptopurine (6-MP, Purinethol®), cyclosporine A (Sandimmune®, Neoral®), tacrolimus (Prograf®), and anti-GM-CSF antibodies.
In one aspect, the invention provides a diagnostic kit for determining the presence of, or predisposition to, a trefoil family molecule disorder, the kit comprising an agent that binds to a trefoil family molecule, and instructions for use. In one embodiment, the agent is an antibody to a trefoil family molecule.
In one embodiment, the trefoil family molecule is TFF1. In another embodiment, the trefoil family molecule is TFF2. In a further embodiment, the trefoil family molecule is TFF3.
In one embodiment, the subject is a human. In another embodiment, the subject is a cat. In a further embodiment, the subject is a dog.
In one embodiment, the trefoil family molecule is a nucleic acid. In another embodiment, the nucleic acid is delivered as a viral vector. In one embodiment, the nucleic acid comprises the nucleotide sequence of SEQ ID NO: 2. In another embodiment, the nucleic acid comprises the nucleotide sequence of SEQ ID NO: 4. In a further embodiment, the nucleic acid comprises the nucleotide sequence of SEQ ID NO: 6.
This patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
The singular forms “a”, “an” and “the” include plural reference unless the context clearly dictates otherwise. The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.”
As used herein the term “about” is used herein to mean approximately, roughly, around, or in the region of. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value by a variance of 20 percent up or down (higher or lower).
The invention is directed to methods of treating diseases of the digestive system in a subject comprising administering a trefoil family molecule. For example, the invention is directed to methods for treating an inflammatory disease of the digestive system in a subject. The invention is also directed to methods for treating a digestive system cancer. The invention is also directed to methods of decreasing tumor growth. The invention is also directed to treating dysplasia of the digestive system. The invention further encompasses methods of decreasing cell proliferation in a subject comprising administering a trefoil family molecule. For example, the invention is directed to methods of decreasing the proliferation of myeloid-derived suppressor cells.
As would be apparent to one of ordinary skill in the art, any method or composition described herein can be implemented with respect to any other method or composition described herein.
These, and other, embodiments of the invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following description, while indicating various embodiments of the invention and numerous specific details thereof, is given by way of illustration and not of limitation. Many substitutions, modifications, additions and/or rearrangements may be made within the scope of the invention without departing from the spirit thereof, and the invention includes all such substitutions, modifications, additions and/or rearrangements.
Diseases of the Digestive System
The present invention provides methods for treating diseases of the digestive system. In one embodiment the digestive system comprises the gastrointestinal tract including structures from the mouth to the anus, and the accessory organs. For example, this includes, but is not limited to, the mouth, the pharynx, the esophagus, the stomach, the small intestine, including the duodenum, jejunum, and ileum, the large intestine including the cecum, colon, and rectum, and the anus. In further embodiments, the accessory organs of the digestive system include, but are not limited to, the liver, the pancreas, and the gall bladder.
The present invention provides methods for treating an inflammatory disease of the digestive system in a subject comprising administering a trefoil family molecule. In one embodiment, the inflammatory disease of the digestive system includes, but is not limited to, esophagitis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, colitis, irritable bowel syndrome, celiac disease, and gastritis.
In some embodiments, the subject is already suspected to have an inflammatory disease of the digestive system. In other embodiments, the subject is being treated for an inflammatory disease of the digestive system, before being treated according to the methods of the invention. In other embodiments, the subject is not being treated for an inflammatory disease of the digestive system, before being treated according to the methods of the invention.
The present invention provides methods for treating a digestive system cancer in a subject comprising administering a trefoil family molecule. In one embodiment, the digestive system cancer includes, but is not limited to, mouth cancer, pharynx cancer, esophageal cancer, stomach cancer, small intestine cancer, large intestine cancer, colon cancer, rectal cancer, anal cancer, liver cancer, pancreatic cancer, and gall bladder cancer.
In some embodiments, the subject is already suspected to have a digestive system cancer. In other embodiments, the subject is being treated for a digestive system cancer, before being treated according to the methods of the invention. In other embodiments, the subject is not being treated for a digestive system cancer, before being treated according to the methods of the invention.
The present invention also provides methods for decreasing tumor growth in a subject comprising administering a trefoil family molecule. In one embodiment, the tumor is a tumor of the digestive system. Tumor growth can be measured in a variety of ways, known to one of skill in the art. For example, tumor growth can be measured by measuring the tumor volume over time. Tumor volume can be measured in a variety of ways, known to one of skill in the art including, but not limited to, positron emission tomography and computed tomography (PET-CT), single-photon emission computed tomography (SPECT-CT), magnetic resonance spectroscopy (MR), X-ray computed tomography (CT), and molecular imaging.
The present invention provides methods for treating dysplasia of the digestive system in a subject comprising administering a trefoil family molecule. Dysplasia is a condition where there is a morphologically identifiable local tissue abnormality at a given site. Dysplasia can have characteristics including, but not limited to, increased cell number, nuclear abnormalities, and cellular differentiation abnormalities, compared to normal cells. A dysplasia can precede the development of any neoplasm, benign or malignant.
The present invention provides methods for decreasing cell proliferation in a subject comprising administering a trefoil family molecule. In one embodiment, the cells are myeloid-derived suppressor cells (also referred to throughout as “MDSC”). In another embodiment the myeloid-derived suppressor cells are tumor associated. In another embodiment, the myeloid-derived suppressor cell is a myeloid-derived suppressor cell associated with a tumor. For example, the tumor can be any solid tumor associated with myeloid-derived suppressor cells. A tumor is a growth of tissue forming an abnormal mass, and can be benign, pre-malignant, or malignant. In one embodiment, the tumor is a breast tumor. In another embodiment, the tumor is a prostate tumor. In another embodiment, the tumor is a lung tumor. In a further embodiment, the tumor is a skin tumor. In one embodiment the tumor can be a tumor of the digestive system. In one embodiment, the tumor of the digestive system includes, but is not limited to, a mouth tumor, a pharynx tumor, an esophageal tumor, a stomach tumor, a small intestine tumor, a large intestine tumor, a colon tumor, a rectal tumor, an anal tumor, a liver tumor, a pancreatic tumor, and a gall bladder tumor.
In a further embodiment MDSC express a surface marker. In yet another embodiment MDSC do not express a surface marker. In one embodiment, MDSC express the surface marker Grl1, CD11b, or a combination thereof. In one embodiment, MDSC express the surface marker CD14, CD15, CD33, or a combination thereof. In another embodiment, MDSC do not express the surface marker HLA-DR. In a further embodiment, MDSC express the surface marker CD14, CD15, CD33, and do not express the surface marker HLA-DR, or a combination thereof.
MDSC are a heterogeneous population of early myeloid progenitors, such as immature granulocytes, macrophages, and dendritic cells. As used herein “MDSC” includes both M-MDSC (monocytic-MDSC) or G-MDSC (granulocytic-MDSC), or a combination thereof. MDSC may or may not express surface markers. For example, in mice, MDSC can express CD11b, Gr1, or a combination thereof. In mice, MDSC can express other surface markers including, but not limited to Ly-6G, Ly-6C, CD49d, or a combination thereof. In one embodiment, mouse MDSC express CD11b, Gr1, and Ly-6G and do not express Ly-6C and CD49d. In another embodiment, mouse MDSC express CD80, CD11b, Grl1, Ly-6C and CD49d and do not express Ly-6G. In humans, MDSC can express CD14, CD15, CD33, or a combination thereof. In humans, MDSC may not express HLA-DR. In one embodiment, human MDSC express CD14, CD33 and do not express HLA-DR. In another embodiment, human MDSC express CD15, CD33 and do not express HLA-DR. In humans, MDSC can express other surface markers including, but not limited to, CD11b, CD124, S100A9, Stat, CD80, CD83, DC-Sign, SSC, or a combination thereof. In humans, MDSC may not express other surface markers, including, but not limited to, Lin (Lin refers to Lineage markers specific for T and B cells). In one embodiment, MDSC can be associated with tumors. In another embodiment MDSC can reside in the tumor microenvironment. The tumor microenvironment comprises the normal cells and molecules that surround a tumor or cancer cell. Characteristics of MDSC will be known to one of skill in the art, for further information the reader is referred to Lindau D. et al. 2013 Immunology 138(2):105-115.
The present invention also provides a kit for treating a trefoil family molecule disorder in a subject. A trefoil family molecule disorder comprises an inflammatory disease of the digestive system, a cancer of the digestive system, or a dysplasia of the digestive system. In one embodiment, the kit for treating a trefoil family molecule disorder comprises a trefoil family molecule, to administer to a subject and instructions of use.
The present invention also provide a method of determining the presence of, or predisposition to, a trefoil family molecule disorder in a subject. A trefoil family molecule disorder comprises an inflammatory disease of the digestive system, a cancer of the digestive system, or a dysplasia of the digestive system. In one embodiment, the presence of, or predisposition to a trefoil family molecule disorder in a subject is determined by extracting a sample from a subject and detecting the presence, absence or reduction of a trefoil family molecule in the sample, wherein absence, or reduction of the molecule indicates the presence of, or predisposition to, a trefoil family molecule disorder. In a further embodiment, the method further comprises administering a trefoil family molecule to the subject where a trefoil family protein was not detected. In one embodiment the sample is digestive system cancer cells. In one embodiment, a reduction of a trefoil family molecule in the sample comprises detecting a lower amount of a trefoil family molecule in the sample than the amount of a trefoil family molecule in a control sample. In one embodiment, the control sample is from a subject without a trefoil family molecule disorder. In another embodiment, the control sample are not cancer cells. In one embodiment, the trefoil family molecule is detected by incubating the sample with an agent that binds to a trefoil family molecule. In a further embodiment, the agent is an antibody to a trefoil family molecule.
The present invention also provides a diagnostic kit for determining the presence of, or predisposition to, a trefoil family protein disorder, the kit comprising an agent that binds to a trefoil family molecule, and instructions for use. A trefoil family molecule disorder comprises an inflammatory disease of the digestive system, a cancer of the digestive system, or a dysplasia of the digestive system. In one embodiment, the agent is an antibody to a trefoil family molecule.
In one embodiment, the subject is an animal. In another embodiment, the subject is an animal that has or is diagnosed with a disease of the digestive system. In one embodiment, the subject is a human. In other embodiments, the subject is a mammal. In one embodiment, the subject is a dog. In another embodiment, the subject is a cat. In some embodiments, the subject is a rodent, such as a mouse or a rat. In some embodiments, the subject is a cow, pig, sheep, goat, cat, horse, dog, and/or any other species of animal used as livestock or kept as pets.
Trefoil Family Molecules
As used herein, a “trefoil family molecule” refers to a trefoil family protein, or a fragment thereof. A “trefoil family molecule” can also refer to a nucleic acid (including, for example, genomic DNA, complementary DNA (cDNA), synthetic DNA, as well as any form of corresponding RNA) which encodes a polypeptide corresponding to a trefoil family protein, or fragment thereof. For example, a trefoil family molecule can include TFF1 (e.g., comprising the amino acid sequence shown in SEQ ID NO: 1, or comprising the nucleic acid sequence shown in SEQ ID NO: 2), TFF2 (e.g., comprising the amino acid sequence shown in SEQ ID NO: 3, or comprising the nucleic acid sequence shown in SEQ ID NO: 4), or TFF3 (e.g., comprising the amino acid sequence shown in SEQ ID NO: 5, or comprising the nucleic acid sequence shown in SEQ ID NO: 6). For example, a trefoil family molecule can be encoded by a recombinant nucleic acid encoding a trefoil family protein, or fragment thereof. The trefoil family molecules of the invention can be obtained from various sources and can be produced according to various techniques known in the art. For example, a nucleic acid that encodes a trefoil family molecule can be obtained by screening DNA libraries, or by amplification from a natural source. A trefoil family molecule can include a fragment or portion of a trefoil family protein. A trefoil family molecule can include a variant of the above described examples, such as a fragment thereof. Such a variant can comprise a naturally-occurring variant due to allelic variations between individuals (e.g., polymorphisms), mutated alleles, or alternative splicing forms. In one embodiment, a trefoil family molecule is encoded by a nucleic acid variant of the nucleic acid having the sequence shown in SEQ ID NOS: 2, 4, or 6 wherein the variant has a nucleotide sequence identity to SEQ ID NOS:2, 4, or 6 of at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%. In another embodiment, a variant of the trefoil family protein comprises a protein or polypeptide encoded by a trefoil family nucleic acid sequence, such as the sequence shown in SEQ ID NOS: 2, 4, or 6. A trefoil family molecule can also include a trefoil family protein, or fragment thereof, that is modified by the addition of a carboxy-terminal peptide (CTP) domain for increased stability.
The nucleic acid can be any type of nucleic acid, including genomic DNA, complementary DNA (cDNA), synthetic or semi-synthetic DNA, as well as any form of corresponding RNA. For example, a nucleic acid encoding a trefoil family protein can comprise a recombinant nucleic acid encoding such a protein. The nucleic acid can be a non-naturally occurring nucleic acid created artificially (such as by assembling, cutting, ligating or amplifying sequences). It can be double-stranded or single-stranded.
The invention further provides for nucleic acids that are complementary to a trefoil family molecule. Complementary nucleic acids can hybridize to the nucleic acid sequence described above under stringent hybridization conditions. Non-limiting examples of stringent hybridization conditions include temperatures above 30° C., above 35° C., in excess of 42° C., and/or salinity of less than about 500 mM, or less than 200 mM. Hybridization conditions can be adjusted by the skilled artisan via modifying the temperature, salinity and/or the concentration of other reagents such as SDS or SSC.
According to the invention, protein variants can include amino acid sequence modifications. For example, amino acid sequence modifications fall into one or more of three classes: substitutional, insertional or deletional variants. Insertions can include amino and/or carboxyl terminal fusions as well as intrasequence insertions of single or multiple amino acid residues. Insertions ordinarily will be smaller insertions than those of amino or carboxyl terminal fusions, for example, on the order of one to four residues. Deletions are characterized by the removal of one or more amino acid residues from the protein sequence. These variants ordinarily are prepared by site-specific mutagenesis of nucleotides in the DNA encoding the protein, thereby producing DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture. In one embodiment, a trefoil family molecule can be modified with an amino acid sequence inserted as a carboxyl terminal fusion. For example, carboxyl terminal fusions may be used to increase the stability of a trefoil family molecule.
In one embodiment, a trefoil family molecule comprises a protein or polypeptide encoded by a nucleic acid sequence encoding a trefoil family protein, such as the sequences shown in SEQ ID NOS: 2, 4, or 6. In another embodiment, the polypeptide can be modified, such as by glycosylations and/or acetylations and/or chemical reaction or coupling, and can contain one or several non-natural or synthetic amino acids. An example of a trefoil family molecule is the polypeptide having the amino acid sequence shown in SEQ ID NOS: 1, 3, or 5. Such variants can include those having at least from about 46% to about 50% identity to SEQ ID NOS: 1, 3, or 5 or having at least from about 50.1% to about 55% identity to SEQ ID NOS: 1, 3, or 5, or having at least from about 55.1% to about 60% identity to SEQ ID NOS: 1, 3, or 5, or having from at least about 60.1% to about 65% identity to SEQ ID NOS: 1, 3, or 5, or having from about 65.1% to about 70% identity to SEQ ID NOS: 1, 3, or 5, or having at least from about 70.1% to about 75% identity to SEQ ID NOS: 1, 3, or 5, or having at least from about 75.1% to about 80% identity to SEQ ID NOS: 1, 3, or 5, or having at least from about 80.1% to about 85% identity to SEQ ID NOS: 1, 3, or 5, or having at least from about 85.1% to about 90% identity to SEQ ID NOS: 1, 3, or 5, or having at least from about 90.1% to about 95% identity to SEQ ID NOS: 1, 3, or 5, or having at least from about 95.1% to about 97% identity to SEQ ID NOS: 1, 3, or 5, or having at least from about 97.1% to about 99% identity to SEQ ID NOS: 1, 3, or 5. In another embodiment, a trefoil family molecule can be a fragment of a trefoil family protein.
In one embodiment, a trefoil family molecule, according to the methods described herein can be administered to a subject as a recombinant protein. In another embodiment, a trefoil family molecule, can be administered to a subject as a modified recombinant protein. For example, a trefoil family protein, or fragment thereof, can be modified by the addition of a carboxy-terminal peptide (CTP) domain for increased stability. In a further embodiment, a trefoil family molecule, according to the methods described herein can be administered to a subject by delivery of a nucleic acid encoding a trefoil family protein, or fragment thereof. For example, nucleic acids can be delivered to a subject using a viral vector.
Polypeptides can be susceptible to denaturation or enzymatic degradation in the blood, liver or kidney. Accordingly, polypeptides can be unstable and have short biological half-lives. Polypeptides can be modified to increase their stability, for example, a fusion protein can be generated for increased stability. In one embodiment, an isolated polypeptide can comprise a carboxy-terminal peptide (CTP) domain fused to a trefoil family molecule. The addition of the CTP domain to a trefoil family molecule can be used to stabilize the trefoil family molecule and cause a longer biological half-life to the polypeptides in circulation. In one embodiment, the CTP comprises the C-terminal domain of the beta subunit of the human chorionic gonadotrophin (hCG).
The term “biological half-life” is the time required for the activity of a substance taken into the body to lose one half its initial pharmacologic, physiologic, or biologic activity.
In one embodiment, a trefoil family molecule of the present invention comprises an isolated polypeptide comprising a carboxy-terminal peptide (CTP) domain fused to a trefoil family molecule. In one embodiment, fusing a CTP domain to a trefoil family molecule (for example, TFF1, TFF2, or TFF3) can result in increased glycosylation and/or protein stability. In some embodiments, one CTP domain is added to the N-terminus of a trefoil family molecule. In other embodiments, two CTP domains are added to the N-terminus of a trefoil family molecule. In further embodiments, three CTP domains are added to the N-terminus of a trefoil family molecule. In some embodiments, one CTP domain is added to the C-terminus of a trefoil family molecule. In other embodiments, two CTP domains are added to the C-terminus of a trefoil family molecule. In further embodiments, three CTP domains are added to the C-terminus of a trefoil family molecule. In some embodiments, at least one CTP domain is added to the N-terminus and/or C-terminus of a trefoil family molecule. In other embodiments, at least two CTP domains are added to the N-terminus and/or C-terminus of a trefoil family molecule. In further embodiments, at least three CTP domains are added to the N-terminus and/or C-terminus of a trefoil family molecule. In some embodiments, the CTP domains are added in tandem.
In one embodiment, a trefoil family molecule of the present invention comprises an isolated polypeptide comprising a Fc domain fused to a trefoil family molecule. A Fc domain is the fragment crystallizable region of an antibody. In one embodiment, fusing a Fc domain to a trefoil family molecule (for example, TFF1, TFF2, or TFF3) can result in dimerization, and/or protein stability, and/or increased protein activity, and/or improved protein purification. In some embodiments, one Fc domain is added to the N-terminus of a trefoil family molecule. In other embodiments, two Fc domains are added to the N-terminus of a trefoil family molecule. In further embodiments, three Fc domains are added to the N-terminus of a trefoil family molecule. In some embodiments, one Fc domain is added to the C-terminus of a trefoil family molecule. In other embodiments, two Fc domains are added to the C-terminus of a trefoil family molecule. In further embodiments, three Fc domains are added to the C-terminus of a trefoil family molecule. In some embodiments, at least one Fc domain is added to the N-terminus and/or C-terminus of a trefoil family molecule. In other embodiments, at least two Fc domains are added to the N-terminus and/or C-terminus of a trefoil family molecule. In further embodiments, at least three Fc domains are added to the N-terminus and/or C-terminus of a trefoil family molecule. In some embodiments, the Fc domains are added in tandem.
In one embodiment, a trefoil family molecule of the present invention comprises an isolated polypeptide comprising a CTP domain and a Fc domain fused to a trefoil family molecule. In one embodiment, fusing a CTP domain and a Fc domain to a trefoil family molecule (for example, TFF1, TFF2, or TFF3) can result in dimerization, and/or protein stability, and/or increased protein activity, and/or improved protein purification. In some embodiments, a CTP domain and a Fc domain are added to the N-terminus of a trefoil family molecule. In some embodiments, a CTP domain and a Fc domain are added to the C-terminus of a trefoil family molecule. In some embodiments, at least one Fc domain is added to the N-terminus and/or C-terminus of a trefoil family molecule and at least one CTP domain is added to the N-terminus and/or C-terminus of a trefoil family molecule. In other embodiments, at least one Fc domain is added to the N-terminus and/or C-terminus of a trefoil family molecule and at least two CTP domains are added to the N-terminus and/or C-terminus of a trefoil family molecule. In further embodiments, at least one Fc domain are added to the N-terminus and/or C-terminus of a trefoil family molecule and at least three CTP domain is added to the N-terminus and/or C-terminus of a trefoil family molecule. In some embodiments, the Fc domains and CTP domains are added in tandem and can be in any order.
SEQ ID NO: 19 depicts the amino acid sequence of a CTP domain:
SEQ ID NO: 20 depicts the nucleic acid sequence encoding a CTP domain:
SEQ ID NO: 21 depicts the amino acid sequence of a Fc domain:
SEQ ID NO: 22 depicts the nucleic acid sequence encoding a Fc domain:
SEQ ID NO: 23 depicts the amino acid sequence of a FcCTP where the CTP domain is underlined and bold:
SEQ ID NO: 24 depicts the nucleic acid sequence encoding a FcCTP where the CTP domain is underlined and bold:
The invention provides for a nucleic acid encoding a trefoil family protein, or fragment thereof, such as a TFF1 molecule, a TFF2 molecule, or a TFF3 molecule.
For example, the polypeptide sequence of human TFF1 is depicted in SEQ ID NO: 1. The nucleotide sequence of human TFF1 is shown in SEQ ID NO: 2. Sequence information related to TFF1 is accessible in public databases by GenBank Accession numbers NP—003216.1 (protein) and NM 003225.2 (nucleic acid).
SEQ ID NO: 1 is the human wild type amino acid sequence corresponding to TFF1 (residues 1-84):
SEQ ID NO: 2 is the human wild type nucleotide sequence corresponding to TFF1 (nucleotides 1-508), wherein the underscored bolded “ATG” denotes the beginning of the open reading frame:
For example, the polypeptide sequence of human TFF2 is depicted in SEQ ID NO: 3. The nucleotide sequence of human TFF2 is shown in SEQ ID NO: 4. Sequence information related to TFF2 is accessible in public databases by GenBank Accession numbers NP—005414.1 (protein) and NM 005423.4 (nucleic acid).
SEQ ID NO: 3 is the human wild type amino acid sequence corresponding to TFF2 (residues 1-129):
SEQ ID NO: 4 is the human wild type nucleotide sequence corresponding to TFF2 (nucleotides 1-717), wherein the underscored bolded “ATG” denotes the beginning of the open reading frame:
For example, the polypeptide sequence of human TFF3 is depicted in SEQ ID NO: 5. The nucleotide sequence of human TFF3 is shown in SEQ ID NO: 6. Sequence information related to TFF3 is accessible in public databases by GenBank Accession numbers NP—003217.3 (protein) and NM 003226.3 (nucleic acid).
SEQ ID NO: 5 is the human wild type amino acid sequence corresponding to TFF3 (residues 1-94):
SEQ ID NO: 6 is the human wild type nucleotide sequence corresponding to TFF3 (nucleotides 1-1054), wherein the underscored bolded “ATG” denotes the beginning of the open reading frame:
A trefoil family molecule can also encompass ortholog genes, which are genes conserved among different biological species such as humans, dogs, cats, mice, and rats, that encode proteins (for example, homologs (including splice variants), mutants, and derivatives) having biologically equivalent functions as the human-derived protein. Orthologs of a trefoil family protein include any mammalian ortholog inclusive of the ortholog in humans and other primates, experimental mammals (such as mice, rats, hamsters and guinea pigs), mammals of commercial significance (such as horses, cows, camels, pigs and sheep), and also companion mammals (such as domestic animals, e.g., rabbits, ferrets, dogs, and cats). A trefoil family molecule can comprise a protein encoded by a nucleic acid sequence homologous to the human nucleic acid, wherein the nucleic acid is found in a different species and wherein that homolog encodes a protein similar to a trefoil family protein.
The invention utilizes conventional molecular biology, microbiology, and recombinant DNA techniques available to one of ordinary skill in the art. Such techniques are well known to the skilled worker and are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, “DNA Cloning: A Practical Approach,” Volumes I and II (D. N. Glover, ed., 1985); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Nucleic Acid Hybridization” (B. D. Hames & S. J. Higgins, eds., 1985); “Transcription and Translation” (B. D. Hames & S. J. Higgins, eds., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1986); “Immobilized Cells and Enzymes” (IRL Press, 1986): B. Perbal, “A Practical Guide to Molecular Cloning” (1984), and Sambrook, et al., “Molecular Cloning: a Laboratory Manual” (2001).
One skilled in the art can obtain a trefoil family molecule, (e.g., TFF1, TFF2, or TFF3) in several ways, which include, but are not limited to, isolating the protein via biochemical means or expressing a nucleotide sequence encoding the protein of interest by genetic engineering methods.
The invention provides for a trefoil family molecule that are encoded by nucleotide sequences. The trefoil family molecule can be a polypeptide encoded by a nucleic acid (including genomic DNA, complementary DNA (cDNA), synthetic DNA, as well as any form of corresponding RNA). For example, a trefoil family molecule can be encoded by a recombinant nucleic acid encoding a human trefoil family protein, or fragment thereof. The trefoil family molecules of the invention can be obtained from various sources and can be produced according to various techniques known in the art. For example, a nucleic acid that encodes a trefoil family molecule can be obtained by screening DNA libraries, or by amplification from a natural source. The trefoil family molecule of the invention can be produced via recombinant DNA technology and such recombinant nucleic acids can be prepared by conventional techniques, including chemical synthesis, genetic engineering, enzymatic techniques, or a combination thereof. A trefoil family molecule of this invention can also encompasses variants of the human trefoil family proteins. The variants can comprise naturally-occurring variants due to allelic variations between individuals (e.g., polymorphisms), mutated alleles, or alternative splicing forms.
In one embodiment, a fragment of a nucleic acid sequence that comprises a trefoil family molecule (such as, e.g., TFF1, TFF2, or TFF3) can encompass any portion of at least about 8 consecutive nucleotides of SEQ ID NO: 2, 4, or 6. In one embodiment, the fragment can comprise at least about 10 nucleotides, at least about 15 nucleotides, at least about 20 nucleotides, or at least about 30 nucleotides of SEQ ID NO: 2, 4, or 6. Fragments include all possible nucleotide lengths between about 8 and about 100 nucleotides, for example, lengths between about 15 and about 100 nucleotides, or between about 20 and about 100 nucleotides.
A trefoil family molecule, can be a fragment of a trefoil family protein, such as, e.g., TFF1, TFF2, or TFF3. For example, the trefoil family protein fragment can encompass any portion of at least about 8 consecutive amino acids of SEQ ID NO: 1, 3, or 5. The fragment can comprise at least about 10 consecutive amino acids, at least about 20 consecutive amino acids, at least about 30 consecutive amino acids, at least about 40 consecutive amino acids, a least about 50 consecutive amino acids, at least about 60 consecutive amino acids, at least about 70 consecutive amino acids, at least about 80 consecutive amino acids, at least about 90 consecutive amino acids, at least about 100 consecutive amino acids, at least about 110 consecutive amino acids, or at least about 120 consecutive amino acids of SEQ ID NOS: 1, 3, or 5. Fragments include all possible amino acid lengths between about 8 and 80 about amino acids, for example, lengths between about 10 and about 80 amino acids, between about 15 and about 80 amino acids, between about 20 and about 80 amino acids, between about 35 and about 80 amino acids, between about 40 and about 80 amino acids, between about 50 and about 80 amino acids, or between about 70 and about 80 amino acids.
Recombinant Proteins
One skilled in the art understands that polypeptides (for example TFF1, TFF2, TFF3, and the like) can be obtained in several ways, which include but are not limited to, expressing a nucleotide sequence encoding the protein of interest, or fragment thereof, by genetic engineering methods.
In one embodiment, the nucleic acid is expressed in an expression cassette, for example, to achieve overexpression in a cell. The nucleic acids of the invention can be an RNA, cDNA, cDNA-like, or a DNA of interest in an expressible format, such as an expression cassette, which can be expressed from the natural promoter or an entirely heterologous promoter. The nucleic acid of interest can encode a protein, and may or may not include introns. Any recombinant expression system can be used, including, but not limited to, bacterial, mammalian, yeast, insect, or plant cell expression systems.
Host cells transformed with a nucleic acid sequence encoding a trefoil family molecule (such as, e.g., TFF1, TFF2, or TFF3), can be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The polypeptide produced by a transformed cell can be secreted or contained intracellularly depending on the sequence and/or the vector used. Expression vectors containing a nucleic acid sequence encoding a trefoil family molecule can be designed to contain signal sequences which direct secretion of soluble polypeptide molecules encoded by a trefoil family molecule (such as, e.g., TFF1, TFF2, or TFF3), through a prokaryotic or eukaryotic cell membrane.
Nucleic acid sequences comprising a trefoil family molecule (such as, e.g., TFF1, TFF2, or TFF3) that encode a polypeptide can be synthesized, in whole or in part, using chemical methods known in the art. Alternatively, a trefoil family molecule can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques. Protein synthesis can either be performed using manual techniques or by automation. Automated synthesis can be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Optionally, fragments of a trefoil family molecule can be separately synthesized and combined using chemical methods to produce a full-length molecule.
A synthetic peptide can be substantially purified via high performance liquid chromatography (HPLC). The composition of a synthetic a trefoil family molecule can be confirmed by amino acid analysis or sequencing. Additionally, any portion of an amino acid sequence comprising a protein encoded by a trefoil family molecule (e.g., TFF1, TFF2, or TFF3) can be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins to produce a variant polypeptide or a fusion protein.
The invention further encompasses methods for using a protein or polypeptide encoded by a nucleic acid sequence of a trefoil family molecule, such as the sequences shown in SEQ ID NOS: 1, 3, or 5. In another embodiment, the polypeptide can be modified, such as by glycosylations and/or acetylations and/or chemical reaction or coupling, and can contain one or several non-natural or synthetic amino acids. An example of a trefoil family molecule has the amino acid sequence shown in either SEQ ID NO: 1, 3, or 5. In certain embodiments, the invention encompasses variants of a human protein encoded by a trefoil family molecule (such as, e.g., TFF1, TFF2, and TFF3).
Expression Systems
Bacterial Expression Systems.
One skilled in the art understands that expression of desired protein products in prokaryotes is most often carried out in E. coli with vectors that contain constitutive or inducible promoters. Some non-limiting examples of bacterial cells for transformation include the bacterial cell line E. coli strains DH5a or MC1061/p3 (Invitrogen Corp., San Diego, Calif.), which can be transformed using standard procedures practiced in the art, and colonies can then be screened for the appropriate plasmid expression. In bacterial systems, a number of expression vectors can be selected. Non-limiting examples of such vectors include multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene). Some E. coli expression vectors (also known in the art as fusion-vectors) are designed to add a number of amino acid residues, usually to the N-terminus of the expressed recombinant protein. Such fusion vectors can serve three functions: 1) to increase the solubility of the desired recombinant protein; 2) to increase expression of the recombinant protein of interest; and 3) to aid in recombinant protein purification by acting as a ligand in affinity purification. In some instances, vectors, which direct the expression of high levels of fusion protein products that are readily purified, may also be used. Some non-limiting examples of fusion expression vectors include pGEX, which fuse glutathione S-tranferase (GST) to desired protein; pcDNA 3.1/V5-His A B & C (Invitrogen Corp, Carlsbad, Calif.) which fuse 6×-His to the recombinant proteins of interest; pMAL (New England Biolabs, MA) which fuse maltose E binding protein to the target recombinant protein; the E. coli expression vector pUR278 (Ruther et al., (1983) EMBO 12:1791), wherein the coding sequence may be ligated individually into the vector in frame with the lac Z coding region in order to generate a fusion protein; and pIN vectors (Inouye et al., (1985) Nucleic Acids Res. 13:3101-3109; Van Heeke et al., (1989) J. Biol. Chem. 24:5503-5509. Fusion proteins generated by the likes of the above-mentioned vectors are generally soluble and can be purified easily from lysed cells via adsorption and binding of the fusion protein to an affinity matrix. For example, fusion proteins can be purified from lysed cells via adsorption and binding to a matrix of glutathione agarose beads subsequently followed by elution in the presence of free glutathione. For example, the pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target can be released from the GST moiety.
Plant, Insect, and Yeast Expression Systems.
Other suitable cell lines, in addition to microorganisms such as bacteria (e.g., E. coli and B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing coding sequences for a trefoil family molecule may alternatively be used to produce the molecule of interest. A non-limiting example includes plant cell systems infected with recombinant virus expression vectors (for example, tobacco mosaic virus, TMV; cauliflower mosaic virus, CaMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing coding sequences for a trefoil family molecule. If plant expression vectors are used, the expression of sequences encoding a trefoil family molecule can be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV can be used alone or in combination with the omega leader sequence from tobacco mosaic virus TMV. Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters, can be used. These constructs can be introduced into plant cells by direct DNA transformation or by pathogen-mediated transfection.
In another embodiment, an insect system also can be used to express a trefoil family molecule. For example, in one such system Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. Sequences encoding a trefoil family molecule can be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of the nucleic acid sequences of a trefoil family molecule will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses can then be used to infect S. frugiperda cells or Trichoplusia larvae in which a trefoil family molecule can be expressed.
In another embodiment, a yeast (for example, Saccharomyces sp., Pichia sp.) system also can be used to express a trefoil family molecule. Yeast can be transformed with recombinant yeast expression vectors containing coding sequences for a trefoil family molecule.
Mammalian Expression Systems.
Mammalian cells (such as BHK cells, VERO cells, CHO cells and the like) can also contain an expression vector (for example, one that harbors a nucleotide sequence encoding a trefoil family molecule) for expression of a desired product. Expression vectors containing such a nucleic acid sequence linked to at least one regulatory sequence in a manner that allows expression of the nucleotide sequence in a host cell can be introduced via methods known in the art. A number of viral-based expression systems can be used to express a trefoil family molecule in mammalian host cells. The vector can be a recombinant DNA or RNA vector, and includes DNA plasmids or viral vectors. For example, if an adenovirus is used as an expression vector, sequences encoding a trefoil family molecule can be ligated into an adenovirus transcription/translation complex comprising the late promoter and tripartite leader sequence. Insertion into a non-essential E1 or E3 region of the viral genome can be used to obtain a viable virus which is capable of expressing a trefoil family molecule in infected host cells. Transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, can also be used to increase expression in mammalian host cells. In addition, viral vectors can be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, lentivirus or alphavirus.
Regulatory sequences are well known in the art, and can be selected to direct the expression of a protein or polypeptide of interest (such as a trefoil family molecule) in an appropriate host cell as described in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Non-limiting examples of regulatory sequences include: polyadenylation signals, promoters (such as CMV, ASV, SV40, or other viral promoters such as those derived from bovine papilloma, polyoma, and Adenovirus 2 viruses (Fiers, et al., 1973, Nature 273:113; Hager G L, et al., Curr Opin Genet Dev, 2002, 12(2):137-41) enhancers, and other expression control elements. Practitioners in the art understand that designing an expression vector can depend on factors, such as the choice of host cell to be transfected and/or the type and/or amount of desired protein to be expressed.
Enhancer regions, which are those sequences found upstream or downstream of the promoter region in non-coding DNA regions, are also known in the art to be important in optimizing expression. If needed, origins of replication from viral sources can be employed, such as if a prokaryotic host is utilized for introduction of plasmid DNA. However, in eukaryotic organisms, chromosome integration is a common mechanism for DNA replication.
For stable transfection of mammalian cells, a small fraction of cells can integrate introduced DNA into their genomes. The expression vector and transfection method utilized can be factors that contribute to a successful integration event. For stable amplification and expression of a desired protein, a vector containing DNA encoding a protein of interest (for example, a trefoil family molecule) is stably integrated into the genome of eukaryotic cells (for example mammalian cells, such as HEK293 cells), resulting in the stable expression of transfected genes. An exogenous nucleic acid sequence can be introduced into a cell (such as a mammalian cell, either a primary or secondary cell) by homologous recombination as disclosed in U.S. Pat. No. 5,641,670, the contents of which are herein incorporated by reference.
A gene that encodes a selectable marker (for example, resistance to antibiotics or drugs, such as ampicillin, neomycin, G418, and hygromycin) can be introduced into host cells along with the gene of interest in order to identify and select clones that stably express a gene encoding a protein of interest. The gene encoding a selectable marker can be introduced into a host cell on the same plasmid as the gene of interest or can be introduced on a separate plasmid. Cells containing the gene of interest can be identified by drug selection wherein cells that have incorporated the selectable marker gene will survive in the presence of the drug. Cells that have not incorporated the gene for the selectable marker die. Surviving cells can then be screened for the production of the desired protein molecule (for example, a trefoil family molecule).
A host cell strain can be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed trefoil family molecule (such as, e.g., TFF1, TFF2, or TFF3) in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a “prepro” form of the polypeptide also can be used to facilitate correct insertion, folding and/or function. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and W138), are available from the American Type Culture Collection (ATCC; 10801 University Boulevard, Manassas, Va. 20110-2209) and can be chosen to ensure the correct modification and processing of the foreign protein.
An exogenous nucleic acid can be introduced into a cell via a variety of techniques known in the art, such as lipofection, microinjection, calcium phosphate or calcium chloride precipitation, DEAE-dextrin-mediated transfection, or electroporation. Electroporation is carried out at approximate voltage and capacitance to result in entry of the DNA construct(s) into cells of interest. Other methods used to transfect cells can also include modified calcium phosphate precipitation, polybrene precipitation, liposome fusion, and receptor-mediated gene delivery.
Animal or mammalian host cells capable of harboring, expressing, and secreting large quantities of a trefoil family molecule of interest into the culture medium for subsequent isolation and/or purification include, but are not limited to, Human Embryonic Kidney 293 cells (HEK-293) (ATCC CRL-1573); Chinese hamster ovary cells (CHO), such as CHO-K1 (ATCC CCL-61), DG44 (Chasin et al., (1986) Som. Cell Molec. Genet, 12:555-556; Kolkekar et al., (1997) Biochemistry, 36:10901-10909; and WO 01/92337 A2), dihydrofolate reductase negative CHO cells (CHO/dhfr−, Urlaub et al., (1980) Proc. Natl. Acad. Sci. U.S.A., 77:4216), and dp12. CHO cells (U.S. Pat. No. 5,721,121); monkey kidney CV1 cells transformed by SV40 (COS cells, COS-7, ATCC CRL-1651); human embryonic kidney cells (e.g., 293 cells, or 293 cells subcloned for growth in suspension culture, Graham et al., (1977) J. Gen. Virol., 36:59); baby hamster kidney cells (BHK, ATCC CCL-10); monkey kidney cells (CV1, ATCC CCL-70); African green monkey kidney cells (VERO-76, ATCC CRL-1587; VERO, ATCC CCL-81); mouse sertoli cells (TM4; Mather (1980) Biol. Reprod., 23:243-251); human cervical carcinoma cells (HELA, ATCC CCL-2); canine kidney cells (MDCK, ATCC CCL-34); human lung cells (W138, ATCC CCL-75); human hepatoma cells (HEP-G2, HB 8065); mouse mammary tumor cells (MMT 060562, ATCC CCL-51); buffalo rat liver cells (BRL 3A, ATCC CRL-1442); TRI cells (Mather (1982) Annals NY Acad. Sci., 383:44-68); MCR 5 cells; FS4 cells. A cell line transformed to produce a trefoil family molecule can also be an immortalized mammalian cell line of lymphoid origin, which include but are not limited to, a myeloma, hybridoma, trioma or quadroma cell line. The cell line can also comprise a normal lymphoid cell, such as a B cell, which has been immortalized by transformation with a virus, such as the Epstein Barr virus (such as a myeloma cell line or a derivative thereof).
A host cell strain, which modulates the expression of the inserted sequences, or modifies and processes the nucleic acid in a specific fashion desired also may be chosen. Such modifications (for example, glycosylation and other post-translational modifications) and processing (for example, cleavage) of protein products may be important for the function of the protein. Different host cell strains have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. As such, appropriate host systems or cell lines can be chosen to ensure the correct modification and processing of the foreign protein expressed, such as a trefoil family molecule. Thus, eukaryotic host cells possessing the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Non-limiting examples of mammalian host cells include HEK-293, 3T3, W138, BT483, Hs578T, CHO, VERY, BHK, Hela, COS, BT2O, T47D, NS0 (a murine myeloma cell line that does not endogenously produce any immunoglobulin chains), CRL7O3O, MDCK, 293, HTB2, and HsS78Bst cells.
Various culturing parameters can be used with respect to the host cell being cultured. Appropriate culture conditions for mammalian cells are well known in the art (Cleveland W L, et al., J Immunol Methods, 1983, 56(2): 221-234) or can be determined by the skilled artisan (see, for example, Animal Cell Culture: A Practical Approach 2nd Ed., Rickwood, D. and Hames, B. D., eds. (Oxford University Press: New York, 1992)). Cell culturing conditions can vary according to the type of host cell selected. Commercially available medium can be utilized.
Cells suitable for culturing can contain introduced expression vectors, such as plasmids or viruses. The expression vector constructs can be introduced via transformation, microinjection, transfection, lipofection, electroporation, or infection. The expression vectors can contain coding sequences, or portions thereof, encoding the proteins for expression and production. Expression vectors containing sequences encoding the produced proteins and polypeptides, as well as the appropriate transcriptional and translational control elements, can be generated using methods well known to and practiced by those skilled in the art. These methods include synthetic techniques, in vitro recombinant DNA techniques, and in vivo genetic recombination which are described in J. Sambrook et al., 201, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. and in F. M. Ausubel et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y.
Purification of Recombinant Proteins
A trefoil family molecule (such as, e.g., TFF1, TFF2, or TFF3) can be purified from any human or non-human cell which expresses the polypeptide, including those which have been transfected with expression constructs that express a trefoil family molecule. A purified trefoil family molecule (such as, e.g., TFF1, TFF2, or TFF3) can be separated from other compounds which normally associate with the trefoil family molecules, in the cell, such as certain proteins, carbohydrates, or lipids, using methods practiced in the art. For protein recovery, isolation and/or purification, the cell culture medium or cell lysate is centrifuged to remove particulate cells and cell debris. The desired polypeptide molecule (for example, a trefoil family molecule) is isolated or purified away from contaminating soluble proteins and polypeptides by suitable purification techniques. Non-limiting purification methods for proteins include: size exclusion chromatography; affinity chromatography; ion exchange chromatography; ethanol precipitation; reverse phase HPLC; chromatography on a resin, such as silica, or cation exchange resin, e.g., DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, e.g., Sephadex G-75, Sepharose; protein A sepharose chromatography for removal of immunoglobulin contaminants; and the like. Other additives, such as protease inhibitors (e.g., PMSF or proteinase K) can be used to inhibit proteolytic degradation during purification. Purification procedures that can select for carbohydrates can also be used, e.g., ion-exchange soft gel chromatography, or HPLC using cation- or anion-exchange resins, in which the more acidic fraction(s) is/are collected.
Methods of Administration
Nucleic Acid Delivery Methods. The invention provides methods for treating a disease of the digestive system in a subject, e.g., an inflammatory disease of the digestive system, or a digestive system cancer. In one embodiment, the method can comprise administering to the subject a trefoil family molecule (e.g, a trefoil family polypeptide or a trefoil family polynucleotide).
Various approaches can be carried out to restore the activity or function of a trefoil family molecule (such as, e.g., TFF1, TFF2, or TFF3) in a subject, such as those carrying an altered trefoil family gene locus. For example, supplying wild-type trefoil family gene function (such as, e.g., TFF1, TFF2, TFF3) to such subjects can treat inflammatory diseases of the digestive system, treat a cancer of the digestive system, treat dysplasia of the digestive system, decrease tumor growth, or decrease cell proliferation (e.g., myeloid-derived suppressor cell proliferation). Increasing a trefoil family gene expression level or activity (such as, e.g., TFF1, TFF2, or TFF3) can be accomplished through gene or protein therapy.
A nucleic acid encoding a trefoil family molecule can be introduced into the cells of a subject. For example, the wild-type gene (or fragment thereof) can also be introduced into the cells of the subject in need thereof using a vector as described herein. The vector can be a viral vector or a plasmid. The gene can also be introduced as naked DNA. The gene can be provided so as to integrate into the genome of the recipient host cells, or to remain extra-chromosomal. Integration can occur randomly or at precisely defined sites, such as through homologous recombination. For example, a functional copy of a trefoil family molecule can be inserted in replacement of an altered version in a cell, through homologous recombination. Further techniques include gene gun, liposome-mediated transfection, or cationic lipid-mediated transfection. Gene therapy can be accomplished by direct gene injection, or by administering ex vivo prepared genetically modified cells expressing a functional polypeptide.
Delivery of nucleic acids into viable cells can be effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., lentivirus, adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). Non-limiting techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, and the calcium phosphate precipitation method (see, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp. 25-20 (1998)). Introduction of a nucleic acid or a gene encoding a polypeptide of the invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of therapeutic compositions of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.
Nucleic acids can be inserted into vectors and used as gene therapy vectors. A number of viruses have been used as gene transfer vectors, including papovaviruses, e.g., SV40 (Madzak et al., (1992) J Gen Virol. 73(Pt 6):1533-6), adenovirus (Berkner (1992) Curr Top Microbiol Immunol. 158:39-66; Berkner (1988) Biotechniques, 6(7):616-29; Gorziglia and Kapikian (1992) J Virol. 66(7):4407-12; Quantin et al., (1992) Proc Natl Acad Sci USA. 89(7):2581-4; Rosenfeld et al., (1992) Cell. 68(1):143-55; Wilkinson et al., (1992) Nucleic Acids Res. 20(9):2233-9; Stratford-Perricaudet et al., (1990) Hum Gene Ther. 1(3):241-56), vaccinia virus (Moss (1992) Curr Opin Biotechnol. 3(5):518-22), adeno-associated virus (Muzyczka, (1992) Curr Top Microbiol Immunol. 158:97-129; Ohi et al., (1990) Gene. 89(2):279-82), herpesviruses including HSV and EBV (Margolskee (1992) Curr Top Microbiol Immunol. 158:67-95; Johnson et al., (1992) Brain Res Mol Brain Res. 12(1-3):95-102; Fink et al., (1992) Hum Gene Ther. 3(1):11-9; Breakefield and Geller (1987) Mol Neurobiol. 1(4):339-71; Freese et al., (1990) Biochem Pharmacol. 40(10):2189-99), and retroviruses of avian (Bandyopadhyay and Temin (1984) Mol Cell Biol. 4(4):749-54; Petropoulos et al., (1992) J Virol. 66(6):3391-7), murine (Miller et al. (1992) Mol Cell Biol. 12(7):3262-72; Miller et al., (1985) J Virol. 55(3):521-6; Sorge et al., (1984) Mol Cell Biol. 4(9):1730-7; Mann and Baltimore (1985) J Virol. 54(2):401-7; Miller et al., (1988) J Virol. 62(11):4337-45), and human origin (Shimada et al., (1991) J Clin Invest. 88(3):1043-7; Helseth et al., (1990) J Virol. 64(12):6314-8; Page et al., (1990) J Virol. 64(11):5270-6; Buchschacher and Panganiban (1992) J Virol. 66(5):2731-9).
Non-limiting examples of in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors (see U.S. Pat. No. 5,252,479, which is incorporated by reference in its entirety) and viral coat protein-liposome mediated transfection (Dzau et al., Trends in Biotechnology 11:205-210 (1993), incorporated entirely by reference). For example, naked DNA vaccines are generally known in the art; see Brower, Nature Biotechnology, 16:1304-1305 (1998), which is incorporated by reference in its entirety. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Pat. No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.
For reviews of gene therapy protocols and methods see Anderson et al., Science 256:808-813 (1992); U.S. Pat. Nos. 5,252,479, 5,747,469, 6,017,524, 6,143,290, 6,410,010 6,511,847; 8,398,968; and 8,404,653 which are all hereby incorporated by reference in their entireties. For an example of gene therapy treatment in humans see Porter et al., NEJM 2011 365:725-733 and Kalos et al. Sci. Transl. Med. 2011. 201 3(95):95. For additional reviews of gene therapy technology, see Friedmann, Science, 244:1275-1281 (1989); Verma, Scientific American: 68-84 (1990); Miller, Nature, 357: 455-460 (1992); Kikuchi et al., J Dermatol Sci. 2008 May; 50(2):87-98; Isaka et al., Expert Opin Drug Deliv. 2007 September; 4(5):561-71; Jager et al., Curr Gene Ther. 2007 August; 7(4):272-83; Waehler et al., Nat Rev Genet. 2007 August; 8(8):573-87; Jensen et al., Ann Med. 2007; 39(2):108-15; Herweijer et al., Gene Ther. 2007 January; 14(2):99-107; Eliyahu et al., Molecules, 2005 Jan. 31; 10(1):34-64; and Altaras et al., Adv Biochem Eng Biotechnol. 2005; 99:193-260, all of which are hereby incorporated by reference in their entireties.
These methods described herein are by no means all-inclusive, and further methods to suit the specific application is understood by the ordinary skilled artisan. Moreover, the effective amount of the compositions can be further approximated through analogy to compounds known to exert the desired effect.
Protein Delivery Methods.
Protein replacement therapy can increase the amount of protein by exogenously introducing wild-type or biologically functional protein by way of infusion. A replacement polypeptide can be synthesized according to known chemical techniques or may be produced and purified via known molecular biological techniques. Protein replacement therapy has been developed for various disorders. For example, a wild-type protein can be purified from a recombinant cellular expression system (e.g., mammalian cells or insect cells-see U.S. Pat. No. 5,580,757 to Desnick et al.; U.S. Pat. Nos. 6,395,884 and 6,458,574 to Selden et al.; U.S. Pat. No. 6,461,609 to Calhoun et al.; U.S. Pat. No. 6,210,666 to Miyamura et al.; U.S. Pat. No. 6,083,725 to Selden et al.; U.S. Pat. No. 6,451,600 to Rasmussen et al.; U.S. Pat. No. 5,236,838 to Rasmussen et al. and U.S. Pat. No. 5,879,680 to Ginns et al.), human placenta, or animal milk (see U.S. Pat. No. 6,188,045 to Reuser et al.), or other sources known in the art. After the infusion, the exogenous protein can be taken up by tissues through non-specific or receptor-mediated mechanism.
A trefoil family molecule can also be delivered in a controlled release system. For example, the trefoil family molecule can be administered using intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration. In one embodiment, a pump can be used (see Sefton (1987) Biomed. Eng. 14:201; Buchwald et al. (1980) Surgery 88:507; Saudek et al. (1989) N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, (1983) J. Macromol. Sci. Rev. Macromol. Chem. 23:61; see also Levy et al. (1985) Science 228:190; During et al. (1989) Ann. Neurol. 25:351; Howard et al. (1989) J. Neurosurg. 71:105). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)). Other controlled release systems are discussed in the review by Langer (Science (1990) 249:1527-1533).
Pharmaceutical Compositions and Methods of Administration
In some embodiments, a trefoil family molecule can be supplied in the form of a pharmaceutical composition, comprising an isotonic excipient prepared under sufficiently sterile conditions for human administration. Choice of the excipient and any accompanying elements of the composition comprising a trefoil family molecule will be adapted in accordance with the route and device used for administration. In some embodiments, a composition comprising a trefoil family molecule can also comprise, or be accompanied with, one or more other ingredients that facilitate the delivery or functional mobilization of the trefoil family molecule.
These methods described herein are by no means all-inclusive, and further methods to suit the specific application is understood by the ordinary skilled artisan. Moreover, the effective amount of the compositions can be further approximated through analogy to compounds known to exert the desired effect.
According to the invention, a pharmaceutically acceptable carrier can comprise any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Any conventional media or agent that is compatible with the active compound can be used. Supplementary active compounds can also be incorporated into the compositions.
A trefoil family molecule (such as, e.g., TFF1, TFF2, and TFF3) can be administered to the subject one time (e.g., as a single injection or deposition). Alternatively, a trefoil family molecule can be administered once or twice daily to a subject in need thereof for a period of from about 2 to about 28 days, or from about 7 to about 10 days, or from about 7 to about 15 days. It can also be administered once or twice daily to a subject for a period of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 times per year, or a combination thereof. Furthermore, a trefoil family molecule can be co-administrated with another therapeutic.
In one embodiment, a trefoil family molecule can be co-administrated with a chemotherapy drug. Some non-limiting examples of conventional chemotherapy drugs include: aminoglutethimide, amsacrine, asparaginase, bcg, anastrozole, bleomycin, buserelin, bicalutamide, busulfan, capecitabine, carboplatin, camptothecin, chlorambucil, cisplatin, carmustine, cladribine, colchicine, cyclophosphamide, cytarabine, dacarbazine, cyproterone, clodronate, daunorubicin, diethylstilbestrol, docetaxel, dactinomycin, doxorubicin, dienestrol, etoposide, exemestane, filgrastim, fluorouracil, fludarabine, fludrocortisone, epirubicin, estradiol, gemcitabine, genistein, estramustine, fluoxymesterone, flutamide, goserelin, leuprolide, hydroxyurea, idarubicin, levamisole, imatinib, lomustine, ifosfamide, megestrol, melphalan, interferon, irinotecan, letrozole, leucovorin, ironotecan, mitoxantrone, nilutamide, medroxyprogesterone, mechlorethamine, mercaptopurine, mitotane, nocodazole, octreotide, methotrexate, mitomycin, paclitaxel, oxaliplatin, temozolomide, pentostatin, plicamycin, suramin, tamoxifen, porfimer, mesna, pamidronate, streptozocin, teniposide, procarbazine, titanocene dichloride, raltitrexed, rituximab, testosterone, thioguanine, vincristine, vindesine, thiotepa, topotecan, tretinoin, vinblastine, trastuzumab, and vinorelbine.
In one embodiment, the chemotherapy drug is an alkylating agent, a nitrosourea, an anti-metabolite, a topoisomerase inhibitor, a mitotic inhibitor, an anthracycline, a corticosteroid hormone, a sex hormone, or a targeted anti-tumor compound.
A targeted anti-tumor compound is a drug designed to attack cancer cells more specifically than standard chemotherapy drugs can. Most of these compounds attack cells that harbor mutations of certain genes, or cells that overexpress copies of these genes. In one embodiment, the anti-tumor compound can be imatinib (Gleevec), gefitinib (Iressa), erlotinib (Tarceva), rituximab (Rituxan), or bevacizumab (Avastin).
An alkylating agent works directly on DNA to prevent the cancer cell from propagating. These agents are not specific to any particular phase of the cell cycle. In one embodiment, alkylating agents can be selected from busulfan, cisplatin, carboplatin, chlorambucil, cyclophosphamide, ifosfamide, dacarbazine (DTIC), mechlorethamine (nitrogen mustard), melphalan, and temozolomide.
An antimetabolite makes up the class of drugs that interfere with DNA and RNA synthesis. These agents work during the S phase of the cell cycle and are commonly used to treat leukemia, tumors of the breast, ovary, and the gastrointestinal tract, as well as other cancers. In one embodiment, an antimetabolite can be 5-fluorouracil, capecitabine, 6-mercaptopurine, methotrexate, gemcitabine, cytarabine (ara-C), fludarabine, or pemetrexed.
Topoisomerase inhibitors are drugs that interfere with the topoisomerase enzymes that are important in DNA replication. Some examples of topoisomerase I inhibitors include topotecan and irinotecan while some representative examples of topoisomerase II inhibitors include etoposide (VP-16) and teniposide.
Anthracyclines are chemotherapy drugs that also interfere with enzymes involved in DNA replication. These agents work in all phases of the cell cycle and thus, are widely used as a treatment for a variety of cancers. In one embodiment, an anthracycline used with respect to the invention can be daunorubicin, doxorubicin (Adriamycin), epirubicin, idarubicin, or mitoxantrone.
In one embodiment, a trefoil family molecule can be co-administrated with an anti-inflammatory drug. Some non-limiting examples of anti-inflammatory drugs include: anti-inflammatory steroids (corticosteroids) (e.g. prednisone), aminosalicylates (e.g., mesalazine), non-steroidal anti-inflammatory drugs (NSAIDs) (e.g. aspirin, ibuprofen, naproxen) and immune selective anti-inflammatory derivatives (ImSAIDs). An anti-inflammatory drug also includes antibodies or molecules that target cytokines and chemokines including, but not limited to, anti-TNFα antibodies (e.g. infliximab (Remicade), adalimumab (Humira), certolizumab pegol (Cimzia), golimumab (Simponi), etanercept (Enbrel)), anti-IL12 antibodies, anti-IL2 antibodies (basiliximab (Simulect), daclizumab (Zenapax), azathioprine (Imuran®, Azasan®), 6-mercaptopurine (6-MP, Purinethol®), cyclosporine A (Sandimmune®, Neoral®), tacrolimus (Prograf®), and anti-GM-CSF antibodies.
In one embodiment, a trefoil family molecule can be co-administrated with radiation therapy. Some non-limiting examples of conventional radiation therapy include: external beam radiation therapy, sealed source radiation therapy, unsealed source radiation therapy, particle therapy, and radioisotope therapy.
In one embodiment, a trefoil family molecule can be co-administrated with a cancer immunotherapy. Cancer immunotherapy comprises using the immune system of the subject to treat a cancer. For example, the immune system of a subject can be stimulated to recognize and eliminate cancer cells. Some non-limiting examples of cancer immunotherapy include: cancer vaccines, therapeutic antibodies, such as monoclonal antibody therapy (e.g., Bevacizumab, Cetuximab, and Panitumumab), cell based immunotherapy, and adoptive cell based immunotherapy.
A trefoil family molecule may also be used in combination with surgical or other interventional treatment regimens used for the treatment disease of the digestive system.
A trefoil family molecule can be administered to a subject by any means suitable for delivering the protein, nucleic acid or compound to cells of the subject. For example, it can be administered by methods suitable to transfect cells. Transfection methods for eukaryotic cells are well known in the art, and include direct injection of the nucleic acid into the nucleus or pronucleus of a cell; electroporation; liposome transfer or transfer mediated by lipophilic materials; receptor mediated nucleic acid delivery, bioballistic or particle acceleration; calcium phosphate precipitation, and transfection mediated by viral vectors.
The compositions of this invention can be formulated and administered to reduce the symptoms associated with a disease of the digestive system by any means that produce contact of the active ingredient with the agent's site of action in the body of a human or non-human subject. For example, the compositions of this invention can be formulated and administered to reduce the symptoms associated with an inflammatory disease of the digestive system, a digestive system cancer, or a dysplasia of the digestive system, or cause a decrease in cell proliferation, or a decrease in tumor growth. They can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic active ingredients or in a combination of therapeutic active ingredients. They can be administered alone, but are generally administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.
Pharmaceutical compositions for use in accordance with the invention can be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. The therapeutic compositions of the invention can be formulated for a variety of routes of administration, including systemic and topical or localized administration. Techniques and formulations generally can be found in Remmington's Pharmaceutical Sciences, Meade Publishing Co., Easton, Pa. (20th ed., 2000), the entire disclosure of which is herein incorporated by reference. For systemic administration, an injection is useful, including intramuscular, intravenous, intraperitoneal, and subcutaneous. For injection, the therapeutic compositions of the invention can be formulated in liquid solutions, for example in physiologically compatible buffers, such as PBS, Hank's solution, or Ringer's solution. In addition, the therapeutic compositions can be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included. Pharmaceutical compositions of the present invention are characterized as being at least sterile and pyrogen-free. These pharmaceutical formulations include formulations for human and veterinary use.
Any of the therapeutic applications described herein can be applied to any subject in need of such therapy, including, for example, a mammal such as a dog, a cat, a cow, a horse, a rabbit, a monkey, a pig, a sheep, a goat, or a human.
A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EM™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). The composition must be sterile and fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, a pharmaceutically acceptable polyol like glycerol, propylene glycol, liquid polyetheylene glycol, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, and thimerosal. In many cases, it can be useful to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
Sterile injectable solutions can be prepared by incorporating the trefoil family molecule in the required amount in an appropriate solvent with one or a combination of ingredients enumerated herein, as required, followed by filtered sterilization. Dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated herein. In the case of sterile powders for the preparation of sterile injectable solutions, examples of useful preparation methods are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
Oral compositions include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed.
Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as known in the art
A composition of the invention can be administered to a subject in need thereof. Subjects in need thereof can include but are not limited to, for example, a mammal such as a dog, a cat, a cow, a horse, a rabbit, a monkey, a pig, a sheep, a goat, or a human.
A composition of the invention can also be formulated as a sustained and/or timed release formulation. Such sustained and/or timed release formulations can be made by sustained release means or delivery devices that are well known to those of ordinary skill in the art, such as those described in U.S. Pat. Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; 4,008,719; 4,710,384; 5,674,533; 5,059,595; 5,591,767; 5,120,548; 5,073,543; 5,639,476; 5,354,556; and 5,733,566, the disclosures of which are each incorporated herein by reference. The pharmaceutical compositions of the invention (e.g., that have a therapeutic effect) can be used to provide slow or sustained release of one or more of the active ingredients using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or the like, or a combination thereof to provide the desired release profile in varying proportions. Suitable sustained release formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the pharmaceutical compositions of the invention. Single unit dosage forms suitable for oral administration, such as, but not limited to, tablets, capsules, gel-caps, caplets, or powders, that are adapted for sustained release are encompassed by the invention.
In the methods described herein, a trefoil family molecule, can be administered to the subject either as RNA, in conjunction with a delivery reagent, or as a nucleic acid (e.g., a recombinant plasmid or viral vector) comprising sequences which express the gene product. Suitable delivery reagents for administration of the a trefoil family molecule, include the Minis Transit TKO lipophilic reagent; lipofectin; lipofectamine; cellfectin; or polycations (e.g., polylysine), or liposomes.
The dosage administered can be a therapeutically effective amount of the composition sufficient to result in treatment of an inflammatory disease of the digestive system, treatment of an of a digestive system cancer, a decrease in cell proliferation, a decrease in tumor growth, or treatment of dysplasia of the digestive system, and can vary depending upon known factors such as the pharmacodynamic characteristics of the active ingredient and its mode and route of administration; time of administration of active ingredient; age, sex, health and weight of the recipient; nature and extent of symptoms; kind of concurrent treatment, frequency of treatment and the effect desired; and rate of excretion.
In some embodiments, the effective amount of the administered trefoil family molecule is at least about 0.01 μg/kg body weight, at least about 0.025 μg/kg body weight, at least about 0.05 μg/kg body weight, at least about 0.075 μg/kg body weight, at least about 0.1 μg/kg body weight, at least about 0.25 μg/kg body weight, at least about 0.5 μg/kg body weight, at least about 0.75 μg/kg body weight, at least about 1 μg/kg body weight, at least about 5 μg/kg body weight, at least about 10 μg/kg body weight, at least about 25 μg/kg body weight, at least about 50 μg/kg body weight, at least about 75 μg/kg body weight, at least about 100 μg/kg body weight, at least about 150 μg/kg body weight, at least about 200 μg/kg body weight, at least about 250 μg/kg body weight, at least about 300 μg/kg body weight, at least about 350 μg/kg body weight, at least about 400 μg/kg body weight, at least about 450 μg/kg body weight, at least about 500 μg/kg body weight, at least about 550 μg/kg body weight, at least about 600 μg/kg body weight, at least about 650 μg/kg body weight, at least about 700 μg/kg body weight, at least about 750 μg/kg body weight, at least about 800 μg/kg body weight, at least about 850 μg/kg body weight, at least about 900 μg/kg body weight, at least about 950 μg/kg body weight, at least about 1000 μg/kg body weight, at least about 1500 μg/kg body weight, at least about 2000 μg/kg body weight, at least about 2500 μg/kg body weight, at least about 3000 μg/kg body weight, at least about 3500 μg/kg body weight, at least about 4000 μg/kg body weight, at least about 4500 μg/kg body weight, at least about 5000 μg/kg body weight, at least about 5500 μg/kg body weight, at least about 6000 μg/kg body weight, at least about 6500 μg/kg body weight, at least about 7000 μg/kg body weight, at least about 7500 μg/kg body weight, at least about 8000 μg/kg body weight, at least about 8500 μg/kg body weight, at least about 9000 μg/kg body weight, at least about 9500 μg/kg body weight, or at least about 10000 μg/kg body weight.
In one embodiment, a trefoil family molecule is administered at least once daily. In another embodiment, a trefoil family molecule is administered at least twice daily. In some embodiments, a trefoil family molecule is administered for at least 1 week, for at least 2 weeks, for at least 3 weeks, for at least 4 weeks, for at least 5 weeks, for at least 6 weeks, for at least 8 weeks, for at least 10 weeks, for at least 12 weeks, for at least 18 weeks, for at least 24 weeks, for at least 36 weeks, for at least 48 weeks, or for at least 60 weeks. In further embodiments, a trefoil family molecule is administered in combination with a second therapeutic agent.
Toxicity and therapeutic efficacy of therapeutic compositions of the present invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Therapeutic agents that exhibit large therapeutic indices are useful. Therapeutic compositions that exhibit some toxic side effects can be used.
Experimental animals can be used as models for human disease. For example, mice can be used as a mammalian model system. The physiological systems that mammals possess can be found in mice, and in humans, for example. Certain diseases can be induced in mice by manipulating their environment, genome, or a combination of both. For example, the AOM/DSS mouse model is a model for human colon cancer. In another example, the DSS mouse model is a model for human colitis. Other mouse models of carcinogenesis include the two-stage DMBA/TPA model of skin cancer, the DEN/CCL4 model of liver cancer, and the H. felis/MNU model of gastric cancer. In addition, there are numerous genetically engineered models of cancer, such as the KPC model of pancreatic cancer.
Administration of a trefoil family molecule is not restricted to a single route, but may encompass administration by multiple routes. Multiple administrations may be sequential or concurrent. Other modes of application by multiple routes will be apparent to one of skill in the art.
Methods of Detection
Embodiments of the invention provide for detecting expression of a trefoil family molecule (such as, e.g., TFF1, TFF2, TFF3). In one embodiment, a gene alteration can result in increased or reduced protein expression and/or activity. The alteration can be determined at the level of the DNA, RNA, or polypeptide.
In some embodiments, the detecting comprises detecting in a biological sample whether there is a reduction in an mRNA encoding a trefoil family protein, or a reduction in a trefoil family protein, or a combination thereof. In further embodiments, the detecting comprises detecting in a biological sample whether there is a reduction in an mRNA encoding a trefoil family protein, or a reduction in a trefoil family protein, or a combination thereof. The presence of such an alteration is indicative of the presence or predisposition to a digestive system cancer (e.g., colon cancer) or an inflammatory disease of the digestive system.
Methods for detecting and quantifying trefoil family molecules, (such as, e.g., TFF1, TFF2, TFF3 proteins and polynucleotides) in biological samples are known the art. For example, protocols for detecting and measuring the expression of a polypeptide encoded by a trefoil family molecule, such as TFF1, TFF2, TFF3, using either polyclonal or monoclonal antibodies specific for the polypeptide are well established. Non-limiting examples include Western blot, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS).
In one embodiment, a biological sample comprises, a blood sample, serum, cells (including whole cells, cell fractions, cell extracts, and cultured cells or cell lines), tissues (including tissues obtained by biopsy), body fluids (e.g., urine, sputum, amniotic fluid, synovial fluid), or from media (from cultured cells or cell lines). The methods of detecting or quantifying trefoil family molecules (such as, e.g., TFF1, TFF2, TFF3) include, but are not limited to, amplification-based assays with (signal amplification) hybridization based assays and combination amplification-hybridization assays. For detecting and quantifying trefoil family molecules (such as, e.g., TFF1, TFF2, TFF3), an exemplary method is an immunoassay that utilizes an antibody or other binding agents that specifically bind to a trefoil family protein (such as, e.g., TFF1, TFF2, or TFF3) or epitope of such, for example, Western blot or ELISA assays.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Exemplary methods and materials are described below, although methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention.
Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific substances and procedures described herein. Such equivalents are considered to be within the scope of this invention, and are covered by the following claims.
All publications and other references mentioned herein are incorporated by reference in their entirety, as if each individual publication or reference were specifically and individually indicated to be incorporated by reference. Publications and references cited herein are not admitted to be prior art.
EXAMPLESExamples are provided below to facilitate a more complete understanding of the invention. The following examples illustrate the exemplary modes of making and practicing the invention. However, the scope of the invention is not limited to specific embodiments disclosed in these Examples, which are for purposes of illustration only, since alternative methods can be utilized to obtain similar results.
Example 1 Generation of TFF2 Transgenic MiceA knock out the trefoil factor family 2 (TFF2) gene in mice showed that loss of TFF2 resulted in increased inflammation in response to DSS colitis or Helicobacter gastritis, suggesting that TFF2 dampened inflammatory responses. In addition, other results showed that TFF2 was specifically silenced in many cancers, suggesting it was a tumor suppressor gene. Most recently, it was shown that TFF2 is normally expressed by a subset of T cells, and that such TFF2 expression acts to regulate myeloid progenitors. In response to the induction of cancer, myeloid progenitors proliferate and are markedly amplified, resulting in increase myeloid derived suppressor cells (MDSC) that promote cancer growth. Thus, in TFF2 knockout mice these cells are much increased. A TFF2 overexpressing mouse was generated, where TFF2 was highly expressed in all T cells, and found that in response to carcinogens, myeloid proliferation was suppressed and the mice did not develop cancer. Accumulating evidence has indicated that blocking myeloid cell expansion (e.g. using an antibody to GM-CSF) can inhibit cancer initiation and progression.
TFF2 can be used, delivered as a recombinant peptide or using a viral vector or modified peptide (for increased stability) to treat advanced cancer (or dysplasia) by specifically suppressing myeloid proliferation with this approach. More potent means of delivery are being developed.
TFF2 can be a new and useful cancer therapy that works by targeting the tumor microenvironment, specifically the myeloid cells (e.g. MDSC, tumor associated macrophages, neutrophils) that support cancer. In addition, it can be a form of replacement of a tumor suppressor gene product that is normally downregulated in many cancers.
TFF2 differs from other myeloid therapies, such as anti-CSF or anti-GM-CSF, in that it would be a natural peptide and not a monoclonal antibody. While most useful potentially in treatment of advanced cancer, it can also be used in cancer prevention therapy in high risk individuals.
Example 2 TFF2 is a Novel Tumor Suppressor that Inhibits Expansion of Gr1+CD11b+ Myeloid Derived Suppressor Cells (MDSC) and Blocks Colon CarcinogenesisTrefoil factor 2 (TFF2) is a small secreted protein that is expressed in gastrointestinal mucosa where it functions to protect and repair mucosa. It is, however, also expressed at low levels in splenic immune cells where its role has been unclear. TFF2 is epigenetically silenced in gastric cancer and thus has been postulated to protect against cancer development through multiple mechanisms. Since TFF2 is normally expressed in splenic T-cells the specific contribution of T-cell related TFF2 production in the modulation of tumorigenesis was investigated. It was discovered that TFF2 is a critical modulator of the aberrant inflammatory response that promotes carcinogenesis.
Methods:
Transgenic (TG) mice that overexpress TFF2 under the control of the human CD2 promoter (specific to T-cells) were created. These TG mice were compared to TFF2−/− (knockout) and wild-type (WT) mice in inflammation and inflammatory carcinogenesis models (including the DSS colitis model and the AOM/DSS colon cancer model). The contribution of T-cell TFF2 production on tumor development and the associated immune response was examined in vivo and mechanisms analyzed in vitro.
Results:
DSS colitis caused a marked early (day 1-3) upregulation of TFF2 production in the spleen, absent in TFF2−/− mice. Compared to the WT mice, the null mice displayed a dramatically amplified inflammatory response to DSS with increased splenic cell proliferation and associated increases in MDSCs (Gr1+CD11b+) detected in both the spleen and bone marrow. In contrast, the proliferation and expansion of Gr1+CD11b+ cells seen with DSS was markedly suppressed in the TFF2 overexpressing TG mice. This was consistent with an immune modulatory role of T-cell TFF2. Interestingly, this aberrant inflammatory response to DSS seen in the TFF2 null mice, translated into an ordered difference in ultimate tumor development in the AOM/DSS model with TFF2−/− mice developing more colonic tumors then WT mice, which in turn developed more than the TG mice. The TG mice showed almost complete suppression of colonic tumorigenesis (P<0.05). To identify the cellular target of TFF2, a eukaryotic TFF2 expression construct was generated using the pMIG vector to express mouse TFF2 (mTFF2) in CHO-KI cells. Recombinant mTFF2 was properly folded in this system and subsequently purified. It was found that mTFF2 suppressed, in a dose-dependent manner, the proliferation of Gr1+CD11b+ cells (MDSCs) in vitro. Thus, potentially revealing the mechanism through which TFF2 modulated the immune response and reduced inflammatory carcinogenesis.
Conclusion:
Overexpression of TFF2 markedly suppressed tumor growth by curtailing the proliferation and expansion of myeloid progenitors that give rise to MDSCs. This novel mechanism for suppressing myeloid cells may have implications for cancer prevention and therapy.
Example 3 TFF2 Inhibits Expansion of Gr1+CD11b+Myeloid-Derived Suppressor Cells and Blocks Colon CarcinogenesisTrefoil factor 2 (TFF2) is a small secreted protein that is expressed in gastrointestinal mucosa where it functions to protect and repair mucosa, but it is also expressed at low levels in splenic immune cells where its role has been unclear. The Tff2 gene is epigenetically silenced in gastric cancers and thus has been postulated to protect against cancer development through multiple mechanisms.
The aims include:
-
- Identify the cell target of TFF2 in suppressing tumor development.
- Determine the specific contribution of T cell-derived TFF2 in the modulation of tumorigenesis.
Methods
Transgenic (TG) mice that overexpress TFF2 under the control of the human CD2 promoter, T cells-specific promoter were created. These TG mice were compared to Tff2-−/− and wild-type (WT) mice in inflammation and inflammatory carcinogenesis models (including the DSS—induced colitis model and the AOM/DSS colon cancer model). The contribution of T cell derived TFF2 on tumor development and the associated immune response was examined in vivo and mechanisms analyzed in vitro.
Results
DSS administration (colitis) caused a marked early (day 1-3) upregulation of TFF2 expression (production) in the spleen. Compared to the WT mice, TFF2−/− mice displayed worse inflammatory response to DSS with increased proportion of Gr1+CD11b+ cells (myeloid-derived suppressor cells [MDSCs]) in the spleen and bone marrow. In contrast, the proliferation and expansion of Gr1+CD11b+ cells seen with DSS treatment was markedly suppressed in the TFF2 overexpressing TG mice. Consistently TFF2−/− mice developed more colonic tumors than WT mice, which in turn developed more than the TG mice in AOM/DSS model. The TG mice showed almost complete suppression of colonic tumorigenesis (p<0.05) with normal proportion of MDSCs in spleen in contrast to TFF2−/− deficient mice which all develop tumor and display expansion of IMC in spleen and bone marrow. To identify the cellular target of TFF2, a eukaryotic TFF2 expression construct was generated using the pMIG vector to express mouse TFF2 (mTFF2) in CHO-KI cells. Recombinant mTFF2 was properly expressed in this system and subsequently purified. We found that recombinant mTFF2 suppressed, in a dose-dependent manner, the proliferation of Gr1+CD11b+ cells (MDSCs) in vitro, thus potentially revealing the mechanism through which TFF2 modulates the immune response and reduces inflammatory carcinogenesis.
Conclusion
Overexpression of TFF2 markedly suppressed tumor growth by curtailing the proliferation and expansion of myeloid progenitors that give rise to MDSCs. This novel mechanism for suppressing myeloid cells may have implications for cancer prevention and therapy.
Example 4 TFF2 Inhibits Expansion of Gr1+CD11b+ Myeloid-Derived Suppressor Cells and Blocks Colon CarcinogenesisTrefoil factor 2 (TFF2) is a small secreted protein that is expressed in gastrointestinal mucosa where it functions to protect and repair mucosa. It is also expressed at low levels in splenic immune cells where its role has been unclear. The Tff2 gene is epigenetically silenced in gastric cancers and thus has been postulated to protect against cancer development through multiple mechanisms.
Methods
The aims include:
-
- Determine the specific contribution of T cell-derived TFF2 in carcinogenesis.
- Identify the cells targeted by TFF2 to reduce tumor development.
Generation of Transgenic Mice
Transgenic (TG) mice that overexpress TFF2 under the control of the human CD2 promoter (a T cell-specific promoter,
Generation of Mice Chimaeras
WT mice were lethally irradiated and transplanted with bone marrow from WT, TFF2−/− and TG mice. The chimaeras were given 5% DSS water for 5 days and tap water for the remaining days. They were sacrificed on day 19 and differences in clinical disease parameters were measured.
Results
TFF2 is Upregulated Upon Splenic T Cells Activation
TFF2 is expressed in the stomach and spleen of WT mice (
TFF2−/− Mice have More Severe DSS-Induced Inflammation
TFF2 deficient mice had more severe inflammation and higher mortality rate than TG and WT mice after DSS administration (
Transgenic Mice Overexpressing TFF2 in T Cells (TG Mice) Show Attenuated DSS Colitis
Unlike TFF2−/− mice, TG mice showed attenuated DSS colitis. Tff2−/− showed an upregulation of inflammatory cytokines IL-1b at day 19 (
WT Mice Reconstituted with Bone Marrow from TFF2−/− Showed More Acute Inflammatory Response
Following bone marrow (BM) transplantation and DSS, WT recipients of TFF2−/− donor BM were most affected. They lost more weight (
DSS Treatment Increased Gr1+CD11b+(Myeloid-Derived Suppressor Cells, MDSCs) Cells in the Spleen of TFF2−/− and WT but not in the Spleen of TG Mice
In comparison to WT and TG groups, TFF2−/− mice had more significant splenic myeloid proliferation following DSS treatment ((examined by Ki67 (brown, proliferation) and Gr1 (red, myeloid marker) coimmunostaining) (
TFF2 Inhibits Proliferation of Gr1+CD11b+ Cells
Using BrdU uptake as another measure of proliferation, it was found that following DSS TFF2−/− mice showed greatest, WT mice intermediate and TG mice least proliferation of Gr1+CD11b+ cells (D+19,
Expression of TFF2 by Splenic T Cells Suppressed the Development of Colon and Rectal Tumors in AOM/DSS Model.
AOM/DSS treatment showed a similar gradient of Gr1+CD11b+ cell number in BM, spleen and blood relative to the TFF2 sufficiency of the host (TFF2−/− >WT>TG,
Conclusion
TFF2 suppresses tumorigenesis by inhibiting the expansion of MDSCs. This novel mechanism has implications for cancer prevention and therapy.
Example 5 TFF2 Secreted by Splenic T-Cells Dampens Inflammation and Inhibits Carcinogenesis Through Suppression of Immature CD11b+Gr1+ Myeloid CellsTrefoil factor 2 (TFF2) is a small protease resistant peptide secreted by the stomach that plays a prominent role in mucosal protection. Here, evidence that TFF2 is also produced by lymphoid T-cells and suppresses tumorigenesis associated with inflammation is provided. Transgenic mice (CD2-TFF2) overexpressing TFF2 in splenic T-cells are more resistant to DSS colitis, while TFF2-deficient mice show greater systemic and colonic inflammatory responses. Transplant of TFF2-deficient bone marrow into wild-type mice reproduces the DSS-injury susceptibility phenotype, while transplant of bone marrow from CD2-TFF2 transgenic mice reduces inflammatory responses. Following DSS treatment, TFF2-deficient mice accumulate a greater number of Gr1+CD11b+ immature myeloid cells (IMC) in the spleen and bone marrow, while CD2-TFF2 transgenic mice show minimal increases in splenic IMC. The expansion of splenic IMC in TFF2-deficient mice was associated with higher number of granulocyte-macrophage precursors and an increase in proliferating Gr-1+ myeloid cells, which was suppressed in CD2-TFF2 transgenic mice. Consistently, number of colony-forming units obtained from spleen of TFF2−/−-deficient mice has been found significantly higher while in TG mice it was much less compare with wild type counterparts. An addition of recombinant TFF2 suppressed proliferation of Gr1+CD11b+ cells in vitro experiments. Furthermore, all TFF2−/− deficient mice develop colon tumors in model AOM/DSS and show higher tumor burden compared with wild type mice and transgenic mice. Only 30% of transgenic mice develop tumors with a very low tumor burden. The number of colony-forming units in the spleen of TFF2 knockout mice was found to be much higher compared with wild-type while transgenic mice showed the lowest number of colony-forming units and granulocyte-macrophage cells as well. Taken together, these data show that TFF2 restricts expansion of Gr1+CD11b+ cells through inhibition of proliferation of myeloid progenitors/precursors. This accounts for less tumorigenesis associated with inflammation.
IntroductionTumor growth and progression can be accompanied by expansion of myeloid-derived suppressive cells (MDSCs) that are commonly characterized as a heterogeneous population expressing surface markers Gr1 and CD11b in mice. These cells suppress host immune response through inhibition of T-cells and natural killer cells function (1). At present there are several known tumor-derived factors that regulate the function and biology of MDSC. Growth factors GM-CSF and G-CSF along with cytokine IL-6 greatly modulate suppressive functions of myeloid cells through transcription factor C/EBPβ (2-5). IL-1b, TGF-b (6,7), IL-10, vascular endothelial growth factor (8), and prostaglandin E2 are also identified as factors promoting expansion of Gr1+CD11b+ cells.
The trefoil factor family in mammals comprises a group of three secreted proteins that all contain a highly conserved triple loop structure (the trefoil domain). In the gastrointestinal tract, trefoil factor family 1 (TFF1) is normally produced in the epithelium of gastric surface pits, while trefoil peptide 2 (TFF2) is most abundant in the stomach/duodenum, where, along with TFF1, it plays a role in the maintenance of mucus layer integrity as well as in stimulation of mucosal restitution, in part through a motogenic effect on epithelial cells (9-11). TFF3 is highly expressed in the apical part of goblet cells in the intestine and colon but not in normal gastric mucosa (9-11).
TFF2 and TFF3-deficiency does not result in obviously changed phenotype, however these mice have increased susceptibility to DSS treatment compared with wild type counterparts (12,13). In contrast, all TFF1-deficient mice developed adenoma and 30% of them showed carcinoma (14,15). From clinical research it is well known that TFF1 expression is lost in 40-60% of human gastric tumors (16). In addition, inactivation of TFF1 by deletion, missence mutation or promoter methylation results to tumor incidence in mice (17).
In contrast TFF1 the role of TFF2 as a gastric tumor suppressive gene was not so clear. However, the loss of TFF2 during progression of intestinal-type gastric cancer in human samples has been also reported (18,19). Like TFF1 the downregulation of TFF2 expression occurred likely due to aberrant promoter methylation (20,21). Importantly TFF2-deficient mice progressed more quickly to dysplasia in the setting of H. pylori infection or when crossed to gp130F/F mice (21,22). Considering direct link between cancer and inflammation and the anti-inflammatory nature of TFF2 there is a potential role of TFF2 as a gastric tumor suppressive gene however, there is still no direct experimental proof of the anti-tumor effect of TFF2.
The anti-inflammatory effect of TFF2 has been proven in numerous studies on experimental rodent models with induced colitis although the mechanism is not clearly understood. In contrast to the rat where TFF2 expression is observed in colon tissue, in mice neither TFF2 peptide nor mRNA is produced in the large intestine, even under inflammatory conditions (23). Nevertheless, administration of recombinant TFF2 ameliorates the severity of experimental colitis induced with bowel irritants such as dextran sodium sulfate (DSS), ethanol or indomethacin in rodents (24-28). Additionally, TFF2-deficient mice have more severe DSS-induced colitis (and delayed recovery) in comparison with wild type animals (13). Analysis of the distribution of endogenous trefoil peptides along the various compartments of the gastrointestinal tract revealed that TFF2 peptide is detectable in normal human luminal contents from the distal and proximal part of the gut. This finding suggests an effective transit and remarkable stability of gastric TFF2 peptide along the whole gastrointestinal tract (29,30). Presumably, gastric TFF2 may exert its protective effect in mouse colitis model in part due to a potentiation of mucin barrier function (31). Indeed, radiolabeled TFF2 injected intravenously in rats is specifically taken up by TFF2-producing cells and then transferred to the mucus where TFF2 presumably mediates its protective function (10,32,33).
However, expression of trefoil factors is not restricted solely to gastrointestinal epithelial cells. It has been shown TFF2 mRNA expression at much lower levels in primary and secondary lymphatic organs thymus and spleen, where their expression increased upon LPS treatment (13,34). Since then it has been suggested that trefoil factors are intimately involved in the regulation of immune responses. Indeed, TFF2 exhibits chemotactic activity for human monocytes (34), inhibits LPS-induced nitric oxide production by a monocyte cell line in vitro (35), inhibits myeloperoxidase activity in a model of DSS-induced colitis (25,28), and decreases leukocyte recruitment by reducing the expression of vascular adhesion component-1 (VACM-1) (24). Furthermore, TFF2 deficiency results in the upregulation of expression of several genes that have been implicated in immune regulation, including MHCI, MHCII, cryptdin family members, etc. (36). In addition, splenic T cells from TFF2-deficient mice were found to be hyper-responsive to IL-1β stimulation, suggesting a specific role in negative regulation of IL-1β receptor—mediated signaling (13). Finally, it was recently demonstrated that TFF2 was able to dampen SDF-1 induced signaling in vitro and in vivo studies through CXCR4 receptor (37,38). Indeed, in transgenic mice overexpression of SDF-1 in gastric mucosa increased gastric epithelial proliferation and hyperplasia, however TFF2-deficient mice crossed with transgenic SDF-1 mice developed markedly more severe inflammation, hyperplasia and metaplasia conforming that TFF2 as a partial antagonist of SDF-1 in vivo. Very recently it has been shown that TFF2 through CXCR4 receptor induces IL-33 release from lung epithelial, dendritic cells and macrophages resulting in the development of type 2 immune response in asthma (39).
Nevertheless, data on effect of trefoil factors on function of primary immune cells are still limited, and most of them are derived primarily from in vitro experiments that do not reproduce the inflammatory microenvironment in vivo (13,40). Moreover, it is possible that trefoil factors modulate function of target cells indirectly by affecting other cell populations or through the interaction with partner(s). Included in this example, the function of secreted TFF2 in the immune compartment through the generation of a transgenic mouse bearing an expression cassette consisting of mTFF2 open reading frame inserted under the control of human CD2 gene promoter that targets T-cell specific transgene expression (41) is explored. CD2-TFF2 transgenic mice and TFF2−/− deficient mice were used as experimental models to investigate the role of TFF2 in colonic inflammation and colitis-associated cancerogenesis (tumorigenesis associated with inflammation). Analysis of the CD2-TFF2 transgenic mice, along with the TFF2−/− mice, points to a critical role of TFF2 in the generation of myeloid-derived suppressor cells (MDSC) during inflammatory and carcinogenic stimuli. Without being bound by theory there is strong evidence that myeloid Gr+CD11b+ cells are the mediators/targets of TFF2 anti-inflammatory function in vivo.
Materials and Methods
Mice
Wild type C57/BL6 mice (7-12 weeks) were purchased from Jackson Laboratories (Bar Harbor, Me.), TFF2-deficient mice (TFF2−/−) on C57/BL6 background were described earlier, CD2-TFF2 mice (TG) were generated in current study. Mice were group housed under a controlled temperature (25° C.) and photoperiod (12:12-h light-dark cycle). To discriminate the role of TFF2 expressed by epithelial and immune cells bone marrow transplantation were performed using TFF2−/− deficient, WT and CD2-TFF2 transgenic mice as recipients or donors of bone marrow (hematopoietic) cells in various combinations.
Cloning mTFF2 into hCD2 Cassette, Generation of CD2-TFF2 Transgenic Mice and Screening for CD2-TFF2 Transgene.
Mouse gene TFF2 was cloned downstream into hCD2 promoter into EcoRI site of expressing vector. For this purpose the site for EcoRI was incorporated in primers for PCR amplification of mouse TFF2 sequence using respective mouse cDNA library (Open Biosystem).
The forward primer was ATTG AATTC GCC ACC ATG CGA CCT CGA GAT GCC (SEQ ID NO: 7) (Tm=60.6C). The reverse primer was AATTG AATTC TCA GTA GTG ACA ATC TTC CACAGA C (SEQ ID NO: 8) (Tm=56.2C) Site for EcoRI is shown in bold. PCR amplification produced 406 bp fragment of intact mTFF2. After cloning the resulting construct was transfected into E. coli Stb12 competent cells. Clones were verified for presence and proper orientation of TFF2 gene by sequencing using forward primer located in CD2 and reverse primer located within TFF2 sequence (see below).
Transgenic mouse lines expressing the TFF2 protein were generated in Transgenic Core Facility of Columbia University as follows. The DNA of pCD2-TFF2 was digested by SalI/NotI to remove vector sequence and the fragment with CD2 cassette was purified by gel electrophoresis. The fragment was microinjected into pronuclei of fertilized mouse eggs and the injected embryos were implanted into pseudopregnant outbred females.
The offspring were screened for transgene integration by PCR analysis of tail DNA using primers selected for promoter part of CD2 gene and TFF2 gene. Forward primer was 5′-TAAGCTCTCGGGGTGTGGACTC-3′ (SEQ ID NO: 9), Reverse primer was: GAAGTGGGTGGAAACACCAAGG (SEQ ID NO: 10). The correct size of amplified fragment was 472 bp. PCR amplification was performed for 30 cycles using following conditions: denaturation for 20 sec at 94° C., annealing at 65° C. for 20 sec, and elongation at 72° C. for 40 sec, followed by a final 7 min extension at 72° C.
Four founder mice were produced. These mice were bred with C57BL/6 mice. The offspring of the founders were tested for presence of transgenic CD2-TFF2 mRNA transcript expression in spleen and thymus as follows. Total RNA was isolated from whole spleen and thymus, using a Trizol reagent (Invitrogen-Life Technologies, Inc.) and RNAeasy® Mini Kit. Five micrograms of total RNA were reverse transcribed to cDNA with Superscript III reverse transcriptase (Invitrogen, Carlsbad USA). PCR amplification was performed by using primers specific for TFF2 sequence and for CD2 promoter part. Forward primer: 5′-TCTCCAAAGAATTCGCCACCAT-3′ (SEQ ID NO: 11), reverse primer: 5′-GGTTGGAAAAGCAGCAGTTTCG-3′ (SEQ ID NO: 12), the predicted fragment size 351 bp. PCR amplification was performed for 30 cycles using the following conditions: denaturation for 20 sec at 94° C., annealing at 56° C. for 30 sec, and elongation at 72° C. for 30 sec, followed by a final 7 min at 72° C. Two transgenic lines were maintained by back-crossing with C57BL/6 for at least 10 times before using in experiments.
Isolation of Splenic T- and B-Cells
Splenocytic T- and B-cells were isolated from resting splenocytes by negative selection using immunomagnetic separation kit (Myltenyi Biotech, Inc.). To confirm the validity of the separation procedure the RNA was extracted from T- and B-cell population and subjected to PCR analysis of cell-specific markers Thy 1.2 (marker for T-cells) and CD19 (marker for B-cells) in respective populations.
Semi-Quantitative RT-PCR Analysis
A semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method was used to measure the relative abundance of TFF2 mRNA transcripts in resting total splenocytes and splenic B- and T-cells. RNA was isolated from whole spleen, and separated splenic B-cells and T-cells, using a Trizol reagent (Invitrogen-Life Technologies, Inc.) and RNeasy® Mini Kit (Qiagen). 5 μg of total RNA was reverse transcribed to cDNA with Superscript III reverse transcriptase (Invitrogen, Carlsbad USA).
PCR amplification was performed using the AB Applied Biosystem device, and amplified PCR products were analyzed in 1.5% agarose gel. All primer pairs, PCR conditions, and predicted sizes of amplified products are listed below. Thy 1.2 antigen forward primer: 5′-GCTGGACTGCCGCCATGAGAA-3′ (SEQ ID NO: 13) Thy 1.2 antigen reverse primer: 5′-TGCCGC CACACTTGACCAGC-3′ (SEQ ID NO: 14), fragment size 295 bp. PCR amplification was performed for 30 cycles using the following conditions: denaturation for 20 s at 94° C., annealing at 68° C. for 5 s, and elongation at 72° C. for 5 s, followed by a final 7 min at 72° C. CD19 forward primer: 5′-TGCTCAGCGTTGGGCTGCTG-3′ (SEQ ID NO: 15). CD19 reverse primer: 5′-TGGGACCCAAGCGAGGATGC-3′ (SEQ ID NO: 16), fragment size 390 bp. PCR amplification was performed for 30 cycles using the following conditions: denaturation/annealing for 30 s at 94° C., and elongation at 68° C. for 25 s, followed by a final 7 min at 72° C.
Mouse β-actin sense oligonucleotide: 5′-ACCACACCTTCTACAATGAGCTGC-3′ (SEQ ID NO:17). Mouse β-actin anti-sense oligonucleotide: 5′-CTTCTCTTTGATGTCACGCACG-3′ (SEQ ID NO: 18), fragment size 386 bp. PCR amplification was performed for 25 cycles using the following conditions: denaturation for 20 s at 94° C., annealing at 55° C. for 30 s, and elongation at 72° C. for 30 s, followed by a final 7 min at 72° C. RNA was purified using Trizol® Reagent (Invitrogen, Scotland, UK) and RNeasy® Mini Kit. Total RNA was reverse transcribed with Superscript III reverse transcriptase (Invitrogen, Carlsbad USA). PCR amplification was performed for 25 cycles using the following conditions: denaturation for 20 s at 94° C., annealing at 55° C. for 30 s, and elongation at 72° C. for 30 s, followed by a final 7 min at 72° C. For calculation of fold augmentation RNA amounts were normalized to β-actin mRNA.
Western Blot Analysis of TFF2 Protein Level
Thymus (spleen) were homogenized in the loading buffer with β-mercaptoethanol and then boiled for 5 min. Proteins were resolved in 18% tris-glycine (or 10-20% Tris-Tricine) SDS-polyacrylamide gel and electrophoretically transferred for 1 hour at 100V onto 0.2 μm-pore-size PVDF membrane (Immobilon-Psq, Millipore). The filter was blocked 5% non-fat milk in 0.05% Tween 20/PBS (PBS-T) for 1 hour and incubated night with primary rabbit antibodies (1 μg/ml) raised to C-end of TFF2 (Tu et al., 2007) at 4° C. overnight. After washing in PBS-T the incubation was performed with secondary antibodies conjugated with horseradish peroxidase (GE Healthcare, dilution 1:20000) for 25 min at room temperature and after final washing the membrane was developed with SuperSignal West Femto Maximum Sensitivity Substrate Kit (Pierce ECL).
Quantitative Real-Time PCR for Cytokines
Total RNA was isolated from tissues using Trizol reagent (GIBCO BRL) according to the manufacturer's guidelines. Total RNA was purified using the RNeasy kit (QIAGEN). After DNase I (Invitrogen) treatment, 2 μg of total RNA was used for reverse transcription reaction (Applied Biosystems). The specific primers for target genes were selected in different exons to avoid/minimize amplification of genomic DNA by using program Primer 3 (http://fokker.wi.mit.edu/primer3/input.htm). Quantitative real-time PCR was performed on an AB 7300 System (Applied Biosystems, Warrington, U.K.) using SYBR GREEN PCR Master Mix (Applied Biosystems). Amplification conditions were: 50° C. (2 min), 95° C. (15 min), 45 cycles of 95° C. (15 s), and 55° C. (15 s). The expression of each mRNA was normalized to housekeeping gene GAPDH mRNA expression, and subsequently expressed as the fold change relative to non-inflamed controls.
Induction of Colitis
In the experiments involving DSS-induced colitis, 10 to 12-weeks old sex-matched KO, TG and WT mice were used unless specified otherwise. As a control KO, TG and WT mice received only ordinary water without DSS. For induction of chronic colitis, KO, TG and WT mice were given 2.5% DSS (m/w 36 000-50 000; MP Biomedicals, Solon, Ohio, USA) dissolved in drinking water provided ad libitum for 5 days, followed by provision of plain water for 19 days. Mice were daily weighed, and blood in the stool was analyzed at days 3, 5, 7, 9, 11, 13 and 15 using Hemoccult strips (4-5 mice per each group). For stool consistency, a score of 0 points was assigned for well-formed pellets, 2 points for pasty and semiformed stools that did not adhere to the anus, and 4 points for liquid stools that did adhere to the anus. For bleeding, a score of 0 points was assigned for no blood, 2 points for positive hemoccult, and 4 points for gross bleeding. These scores were added together and divided by three, resulting in a total clinical score ranging from 0 (healthy) to 4 (maximal activity of colitis).
For acute colitis induction mice received 2.5% DSS for 5 days and sacrificed at 6 day. In another set of experiments mice received 4% DSS for 7 days followed by plain water for 12 days and were sacrificed at 19 day.
Bone Marrow Transplantation
Bone marrow harvested from the femur and tibia was depleted of erythrocytes by using red blood cell lysis buffer (Sigma, R7757) according to manufacturer's instructions. Mice were lethally irradiated with 9Gy and after 3 h were reconstituted with bone marrow cells (3.5×106) by using tail injection. For bone marrow chimaeras, where wild-type and SPKO mice were reconstituted with transgenic and wild type bone marrow respectively the presence of mRNA and CD2-TFF2 transcripts was analyzed by qRT-PCR to determine a degree of chimerism. Irradiatiated control mice which did not received transferred bone marrow cells, served as an irradiation control in each experiment. Transplanted mice were allowed to rest 7-8 weeks for full engraftment before DSS water was administrated for 5 days followed plain water. Mice were sacrificed on day 6 and 19 after starting DSS administration and analyzed for progression of colitis (macroscopical and histological colon examination, MPO activity, cytokines level, spleen mass, analysis of splenic cell population)
Assessment of Colitis
Progression of colitis was evaluated by disease activity index (DAI) derived by scoring body weight change (0-4), stool consistency (0-4), and by the presence or absence of fecal blood (0-3) (Xu Y, Hunt N H, Bao S, 2008). These scores were added together and divided by three, resulting in a total clinical score ranging from 0 (healthy) to 4 (maximal activity of colitis). Mice were daily weighed and change in body weight was calculated by the percentage change (gain/loss) from the initial weight (0, less than 5% change; 1, 5-10%; 2, 10-20%; 4, more than 20%). For stool consistency, a score of 0 points was assigned for well-formed pellets, 2 points for pasty and semi formed stools that did not adhere to the anus, and 4 points for liquid stools that did adhere to the anus (Blood in the stool was analyzed both visually and by Hemoccult strip as described previously (Kourt-Jones et al., 2007). Scoring for blood in stool was as follows: 0, none; 1, trace using Hemoccult strips; 2, strong positive using Hemoccult strips; 3, gross hemorrhage.
Colonic inflammation was also evaluated macroscopically by measuring the longitudinal length of the colon from the ileocecal junction to the anal verge.
Histological Scoring
The entire colon was removed from the cecum to the anus, and the colon length was measured as marker of inflammation. For histological examination a 2-cm segment of the distal colon was fixed in 10% formalin overnight then in 70% ethanol for paraffin embedding and sectioning. Slides were stained with Harris hematoxylin-eosin (H&E). Histological scoring was performed in a blinded fashion by a pathologist, with a combined score for inflammatory cell infiltration (score, 0-3) and tissue damage (score, 0-3). The presence of occasional inflammatory cells in the lamina propria was assigned a value of 0; increased numbers of inflammatory cells in the lamina propria as 1; confluence of inflammatory cells, extending into the submucosa, as 2; and transmural extension of the infiltrate as 3. For tissue damage, no mucosal damage was scored as 0; discrete lymphoepithelial lesions were scored as 1; surface mucosal erosion or focal ulceration was scored as 2; and extensive mucosal damage and extension into deeper structures of the bowel wall were scored as 3. The combined histological score ranged from 0 (no changes) to 6 (extensive cell infiltration and tissue damage).
The histology damage score was calculated on a 12-point scale: loss of architecture, 0-3; inflammatory infiltrate, 0-3; goblet cell depletion, 0 or 1; ulceration, 0 or 1; edema, 0 or 1; muscle thickening, 0-2; and presence of crypt abscesses, 0 or 1.
Myeloperoxidase Activity (MPO)
Myeloperoxidase activity in colon tissues was determined as described. Briefly, the colon tissue was rinsed and homogenized in 50 mM potassium-phosphate buffer (pH 6.0) containing 0.5% hexadecyltrimethyl ammonium bromide (HTAB) (Sigma-Aldrich, St. Louis, Mo.). The homogenate centrifuged at 14000×g for 15 min and supernatant was used for measurement of MPO activity normalized on protein concentration. Supernatant was added to 1 mg/ml o-dianisidine hydrochloride (Sigma-Aldrich, ST. Louis, Mo.) and 0.0005% hydrogen peroxide, and the change in absorbance at 460 nm was measured. One unit of MPO activity was defined as the amount that degraded 1 mmol peroxide at 37° C. per minute and expressed in units per milligram protein.
Cytokine ELISA
Colonic tissues (50-100 mg) were homogenized in 1 ml of RIPA buffer containing inhibitors of proteases (Roche), samples were centrifuged at 14000×g for 15 min and supernatant were used for determination of protein concentration by using Bio-Rad DC Protein Assay kit. The concentrations of IL-6, TNF-α, IFN-γ, and IL-1 beta in colon tissue were measured by ELISA using commercial BD OptEIA Set kits (BD Biosciences, Sydney, Australia) and normalized to the concentration of total sample protein. TFF2 expression by T-cells.
Splenocytes from wild type and transgenic mice were depleted from erythrocytes and stimulated with PMA (50 ng/ml) and ionomycin (0.5 μM) for 4 h. Brefeldin (1 μl/ml) was added to prevent TFF2 secretion. Cells were stained for CD3, CD4 and CD8 antigens 30 min on ice, washed twice with cold PBS buffer, fixed and permeabilized with Cytofix/Cytosperm solution (20 min on ice). Then cells were washed twice in Perm/Wash solution and stained (30 min 4° C.) with raised to C-end of TFF2 affinity-purified antibody labeled with Alexa Fluor 488. Rabbit antibodies isolated from preimmune serum and labeled with Alexa Flour 488 were used in parallel as isotypic control. Cells were washed twice in PBS with 2% FBS and analyzed for TFF2 expression in CD4+ and CD8+ cells gated on CD3+ population.
Flow Cytometry Acquisition and Analysis.
Samples were analyzed on LSRII flow cytometer by using software. Typically list mode for 20,000 events for Gr1+CD11b+ cells in a live-gated mode were acquired. Statistical analysis was done by using isotype matching controls as a reference. Less than 1% positive cells were allowed beyond statistical marker in the appropriate control. The data files were analyzed using FloJo 5.5.5 software.
Cell Sorting.
Gr1+CD11b+ cells were labeled with PerCP5.5 conjugated Gr1 and APS conjugated CD11b+ antibodies and sorted using sorter FASCAria. The purity of sorted cells were more than 95% were used for experiments.
In Vivo Bromodeoxyuridine Labeling
Mice were given 3% DSS water or tap water (control group) for 5 days, and then mice were switched on tap water during next 2 weeks. Mice were injected with BrdU intraperitonally (1 mg per 20 g/body weight) 24, 48 96 h prior to sacrifice them. Splenic cells were stained for CD11b+, Gr1+ and intracellular BrdU according to manufacturer's instructions. Gr1+CD11b+ cells proliferation in vitro assay. Gr1+CD11b+ cells proliferation was determined by using BrdU Cell Proliferation Assay Kit (Calbiochem). Splenocytes were obtained from spleen TFF2−/− mice treated with DSS on day 19 and Gr1+CD11b+ cells were allowed to bind with antibodies for Gr1 antigen and CD11b marker labeled with PerCP Cy and APC accordingly and sorted by using sorter FACSAria. Sorted cells were cultured 7 days in complete RPMI 1640 medium (Invitrogen) supplemented with 10% FCS (HyClone), 50 μM β-mercaptoethanol, 1 mM penicillin-streptomycin, GM-CSF in concentrations 5 and 10 ng/ml. Recombinant mouse TFF2 was added in concentration as indicated. Cell proliferation was determined by addition of BrdU during the final 22 h of culture accordingly protocol of manufacture (Calbiochem).
Cell Growth Study.
Sorted Gr1+CD11b+ cells were grown at 37° C. in humidified 95% air and 5% CO2 in RPMI-1640 medium supplemented with 10% heat-inactivated fetal calf serum (HyClone), 2 mM glutamine, 100 U/ml penicillin, 100 μg streptomycin and GM-CSF at concentration 5 or 10 ng/ml. Recombinant TFF2 was added at concentrations as indicated. Cell number was determined by Trypan blue exclusion.
Assessment of Apoptosis
Apoptotic cells were quantified by using annexin V-PE apoptosis detection kit (BD Pharmigen) accordingly company's protocol. Sorted Gr1+CD11b+ cells were grown with 5 ng/ml GM-CSF for 7 days. TFF2 was added at concentrations as indicated at the beginning of experiment.
Tumor Models.
In the AOM/DSS murine model tumorigenesis was induced as described previously with minor modifications (42). Mice (TFF2−/−, WT and TG, age 7-8 weeks) were intraperitonally injected with AOM (10 mg/kg body weight) and maintained on regular water for 7 days. Animals were then given 3% DSS water for 7 days. Control groups were injected with AOM followed only regular water.
For skin tumor model mice were subjected two-step cancerogenesis by using 9,10-dimethylbenz(a)antracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) treatment ( ). Mice 7-9 week were shaved 2 days prior of initiation of tumorigenesis by single topical application with DMBA (100 μg/200 μl in acetone) to the shaved dorsal skin. One week after initiation mice were treated with topical application of TPA (2 μg/200 μl in acetone) 2 times a week until termination of experiment. Tumors were counted and measured with a caliper once a week. The number of tumors per mouse with the diameter more then 1 mm were counted and data were expressed as tumor burden (the number of tumors per mouse) and tumor incidence (the percentage of mice with tumors).
A, tumor multiplicity (average number of tumors per mouse±SE) and (B) incidence (percentage of mice with tumors) in wild-type (∘) and K5.RasGRP1 transgenic (•) mice treated with TPA following initiation with DMBA. C, wild-type (Wt) and K5.RasGRP1 transgenic (Tg) mice bearing tumors. Pictures were taken at the end of the protocol. D, tumor size (diameter in millimeters) at 17 and 28 wk after initiation with DMBA in both wild-type (Wt) and K5.RasGRP1 transgenic (Tg) mice. Values represent the mean±SE of all the tumors in each group (n). *, P<0.05; ***, P<0.0001 (Student's t test).
Statistical Analysis
Standard errors and significance by Student's two-tailed t-test were calculated by using Microsoft Excel software.
Results
TFF2 Protein is Expressed in the Splenic T Cells and Induced by T Cell Activation.
TFF2 mRNA expression in the murine spleen and thymus has previously been demonstrated (13,34,36). In rat lymphoid organs the peptide TFF2 was detected by radio-immunological assay due to its very low level and it is has been shown that TFF2 is up-regulated several fold upon LPS treatment. However, the source of cells secreting TFF2 was not identified. Consequently, western blot analysis of extracts from spleen of wild type mice was performed, using the previously developed and characterized rabbit polyclonal antibody to the C-terminal peptide of mouse TFF2 (43). Immunoprecipitation of mouse splenic extracts using the affinity-purified rabbit IgG identified TFF2 protein in the spleen as a band that migrates with the same motility as native gastric mouse TFF2 (
To discriminate which major splenic immune cell subset expressed TFF2, resting splenic cells were fractionated into isolated B and T-cell subsets, and these subsets were analyzed for TFF2 mRNA by semi-quantitative RT-PCR analysis. A robust band of amplified TFF2 mRNA was detected in resting splenic T cells (
It has been long known that trefoil peptides can be overexpressed in the site of ulceration or mucosal damage (44-47). TFF2 mRNA/protein production can be induced in gastric mucosa as rapidly as 1-4 h following injury (10,48). Therefore TFF2 protein/mRNA expression was analyzed in the spleen tissues of wild type and transgenic mice during administration of 3% DSS water (
Transgenic Mice Overexpressing TFF2 in T-Cells Show Attenuated DSS Colitis.
To further investigate the role of TFF2 specifically in the immune compartment in vivo, transgenic mice were created with the enforced expression of trefoil peptide in T cells. An expression construct in which expression of the murine TFF2 gene (cDNA/ORF) was governed by the human CD2 promoter/enhancer (
Previously it has been shown that TFF2 knockout mice exhibited an increased susceptibility to DSS colitis (13). Consequently, the susceptibility of CD2-TFF transgenic (TG) mice to DSS colitis was examined and compared to both WT and TFF2−/− mice. DSS (3%) was given continuously in the drinking water and mortality was used as the primary endpoint. TFF2−/− mice as expected showed a higher mortality rate compared to WT and TG mice; however, the CD2-TFF transgenic (TG) mice, overexpressing TFF2 only in their thymus and spleen, were more resistant than wild type mice to DSS treatment (
Changes in cytokine expression in the three groups of mice were analyzed after a single cycle of DSS for 5 days. In WT C57BL/6 mice, this results in a progressive chronic colitis characterized by increased levels of inflammatory cytokines IL-1β, IL-6, INF-γ and TNF-α in colonic tissues over the time (51-53). In accordance with published data, significant upregulation of mRNA for IL-1β, IL-6, TNF-α and INF-γ in were detected in WT and TFF2−/− mice compared with untreated wild type mice (
The IL-2 receptor alpha chain CD25 is a marker of activated of CD4+ T-cells (54,55), and previous studies have suggested that expression of the IL-2R alpha chain on CD4 T-cells in both the colon and draining lymphatic nodes from the intestine is associated with increased disease activity in experimental model of colitis (56-58). The proportion of CD4+CD25+ T-cells in TG vs. WT mice after DSS treatment was evaluated; while there was no difference in splenic CD4+CD25+ cells between TG and WT mice at selected time points, the proportion of activated CD4+CD25+ cells in the colon and lymphatic nodes was lower in TG mice compared to WT mice at 14 day after DSS treatment (
Chimaeras Mouse Studies Confirm a Role for Hematopoietic-Derived TFF2 in the Modulation of Acute Inflammatory Response.
Since TFF2 is expressed in the gastric epithelial cell compartment as well as the immune compartment, bone marrow transplantation experiments were carried out to assess further the importance of hematopoietic cell-derived TFF2. wild type mice were lethally irradiated, and transplanted with bone marrow from TFF2−/−, WT and TG mice. Colitis was induced using 5% DSS in the drinking water for 5 days followed by regular water for 19 days. At 6 days, mice transplanted with TFF2−/− bone marrow mice had worse (gross) rectal bleeding, while mice transplanted with bone marrow from TG mice showed a smaller spleen size and greater body weight (
In order to determine whether TFF2-expressing bone marrow could rescue the TFF2-deficient phenotype lethally-irradiated TFF2-deficient mice were transplanted with bone marrow derived from WT, TG or TFF2−/− mice. The transplanted mice were studied after exposure to DSS at a slightly lower concentration (2.5%). Mice receiving bone marrow from TFF2-deficient mice showed higher body weight loss at day 4 and 5 then mice received bone marrow from transgenic mice, however, there was not a difference compared to mice with bone marrow transplanted from wild-type mice (
Finally, the relative contribution of epithelial-derived TFF2 versus bone marrow-derived TFF2 on survival rate when DSS (5%) was continuously administered in the drinking water were compared. Chimaeras TFF2-deficient mice received bone marrow from knockout or wild type or transgenic mice died faster then chimaeras wild-type transplanted with bone marrow from wild type or transgenic or knockout mice upon continuous treatment with 5% DSS (
DSS Treatment Results in Greater Accumulation of Myeloid Cells in Spleen in TFF2-Deficient and Wild Type but not in Transgenic Mice.
While the data above indicated some degree of protective effect from hematopoietic-derived TFF2 on colonic inflammation, it was also noted in the chimeric studies that TFF2-deficiency was associated with a larger spleen size, while CD2-TFF2 transgenic mice exhibited a lower spleen size after DSS colitis. Under normal conditions, less than 4% of cells in the spleen are myeloid cells expressing CD11b+Ly6C+(59), but during the chronic phase following DSS treatment, the WT spleen enlarges with a significant increase in the total number and proportion of myeloid cells (51,60). Consequently, the possibility that the increase in spleen weight in the setting of TFF2 deficiency might result from the expansion of Gr1 CD11b+ cell population was investigated. Histological examination of heamotoxylin/eosin stained spleens on day 19 after DSS treatment revealed that cells with the typical ovoid or circular nucleus, characteristic of immature myeloid cells (IMC), were much more abundant in TFF2−/− and WT mice than in CD2-TFF2 transgenic mice (
To further explore the role of TFF2 in the modulation of splenocytes, changes in myeloid cells were examined by FACS analysis over the course of DSS-treatment using antibodies to CD11b and Gr-1. TFF2-deficient mice accumulated the highest proportion of CD11b+Gr1+ cells, while CD2-TFF2 transgenic mice showed the lowest percentage (
Changes in the numbers of Gr1+CD11b+ cells in the bone marrow over the course of DSS-induced colitis were investigated. An increase in Gr1+CD11b+ cells in bone marrow of all groups of mice was found; however TFF2−/− mice showed the highest percentage of IMSc while the TG mice exhibited the statistically lowest percentage of Gr1+CD11b+ cells (
Recently it has been proven that myelopoisis in spleen significantly contributes in accumulation of myeloid cells under various conditions including injury and cancer. Gr1+CD11b+ cells comprise heterogeneous population including immature macrophages, dendritic and myeloid cells at various stages of differentiation as well their precursors (61) Almand, 2001). Expansion of myeloid cells in spleen was likely as a result of both recruitment from bone marrow and local proliferation their precursors in spleen of tumor-bearing mice ((62) Cortez-Retamozo et al., 2012) and in case of myocardial infracture.
To determine whether the accumulation of splenic Gr1+CD11b+ cells occurred due to active proliferation in periphery BrdU was injected in mice to label in vivo dividing cells. After 96 h splenic cells were isolated and stained for CD11b+, Gr1+ and intracellular BrdU incorporation was detected according to manufacturer's instructions. It was observed that splenic cells stained for Gr1 and CD1b markers actively proliferate during recovery phase of DSS-induced colitis, however cells from TFF2-deficient mice display higher BrdU uptake then other two groups (
Since granulocyte/macrophage precursors may give rise to myeloid cell population and contribute to their expansion in spleen (63) Leuschner F et al., 2012) colony-forming capacity of splenocytes obtained from all groups of mice on day 19 after DSS treatment was evaluated by using medium MethoCult M3434. This medium support growth of erythroid, granulocyte-macrophage and multi-potential granulocyte, erythroid, macrophage, megakaryocyte progenitors (StemCell Technology). Splenocytes from TG mice showed the lowest capacity to form colonies, while splenocytes from TFF2−/− deficient mice formed significantly more colonies compared with TG and WT mice accordingly (
TFF2 Suppresses the Proliferation and Growth of Gr1+CD11b+ Cells in Ex-Vivo Culture.
To further explore the effect of TFF2 on Gr1+CD11b+ cells these cells were characterized morphologically and phenotypically. Because Gr1+CD11b+ cells comprise heterogeneous population including immature macrophages, dendritic and myeloid cells at various stages of differentiation (Almand, 2001) splenocytes were labeled with antibodies against antigens Gr1 (which recognizes both monocytic and granulocytic markers) and CD11b then sorted by using sorter FACSAria. Sorted double Gr1+CD11b+ cells with purity around 95% (
Expression of TFF2 by Splenic T Cells Suppresses the Development of Colon and Rectal Tumors Following AOM/DSS Treatment
Gr1+CD11b+ cells comprise several populations including cells with immunosuppressive function (MDSC). These cells are induced by various conditions including inflammation and inhibit tumor immunity in studies on mouse tumor models and cancer patients (1,67,68). Because TFF2−/− mice developed worse colitis with higher accumulation of Gr1+CD11b+ cells in bone marrow and spleen compare with wild type and transgenic counterparts it is possible TFF2−/− mice were more likely to develop tumors in cancer models associated with inflammation while transgenic mice would be resistant then wild type and TFF−/− deficient mice. Knockout, wild type and transgenic mice were injected with single intraperitoneal injection of procarcinogen azoxymethane (AOM) following 3% DSS regiment during next 7 days. Mice were analyzed for the presence of colon tumor five months later. Both wild type and TFF2−/− mice developed tumors in the third part of distal colon, however TFF2-deficient mice clearly showed higher number of small tumors with size 1-3 and 4 mm (
From the obtained data, and without being bound be theory, TFF2 attenuates tumor incidence by limiting the number of Gr1+CD11b+ cells in site of tumor.
Discussion
Protective role of TFF2 on stomach and colon is well documented and attributed to gastric origin, where its abundant expression is observed. Earlier studies showed that gastric TFF2 increased the viscosity of mucus which covers and protected cell epithelium and also promoted regenerative process by stimulating migration epithelial cell to places of injury (9,10,69-71).
However, trefoil peptides were detected in immune organs and functional relevance from immune compartment is still not fully understood. Several studies suggest that TFF2 is a negative regulator of gastrointestinal/systemic inflammation and immune cytokine response (13,36). Indeed, recent study showed that TFF2 promotes type 2 immunity by releasing IL-33 from epithelial, macrophages and dendritic cells through CXCR4 receptor (39). This process is beneficial in parasitic infection but pathogenic in context of asthma. In the example presented herein, splenic T-cells were identified as a source of immune cells expressing TFF2 under normal physiological conditions in spleen. For further analysis mice overexpressing TFF2 under human CD2 promoter specifically in T-cells were created and their inflammatory response was examined in a model of oral DSS administration which results in direct colonic injury to intestinal epithelial cells and inflammation due to increasing proinflammatory stimuli (72).
In accordance with earlier published data, results presented herein may not be explained by known barrier and reparative mechanism carried out by gastric TFF2. First, chimaeras WT with TFF2-deficiency in immune compartment showed higher susceptibility to DSS-treatment despite the presence of TFF2 in gastric epithelial cells. Second, chimeras TFF2-null mice with expression of TFF2 only in immune compartment showed less inflammation compared with TFF2-null mice. Thus TFF2 expressed by T-cells exhibits some dampening effect on colonic and systemic inflammation. Remarkably, protective effect was observed despite the fact that quantity of TFF2 in immune compartment is significantly lower than secreted by gastric epithelial cells or recombinant TFF2 used for treatment in earlier reports.
Experiments in the in vivo model indicate that TFF2 besides known barrier and reparative function in gastrointestinal tract also is involved in anti-inflammatory mechanism provided by T-cells expressing TFF2. Exacerbated immune response in TFF2−/− mice was observed in accordance with previous data and lower systemic inflammatory immune response in transgenic mice compare with wild type mice in DSS model. A transient significant increase in the number of Gr1+CD11b+ cells was found in TFF2−/− with less expansion in wild type mice, while only moderate accumulation of these cells was observed in transgenic mice. It has been widely accepted that chronic intestinal inflammation is generally associated with expansion of colitogenic T-cells. However significant increase of Gr1+CD11b+ cells also has been reported under experimental conditions of chronic gut inflammation induced with DSS (51,73) or T-cell adoptive transfer model of chronic colitis (Haile L A et al., Gastroenterology, 2008; Ostanin D et al., I Immunol., 2012). In these mouse models chronic colitis was associated with of accumulation of immature myeloid Gr1+CD11b+ cells similar to those described in tumor-bearing mice. While it is long established that IMC from tumor-bearing mice exhibit suppressive function (MDSC) and contribute in cancer progression, the role of IMC cells in pathogenesis of inflammatory bowel disease is still not clear. Some reports suggest that neutrophils suppress inflammation (Kuhl A A et al, Gastroenterology, 2007; Haile L A et al., Gastroenterology, 2008; Nemoto Y et al, Inflammation Bowel Dis. 2008; Zhang R et al., Inflamm Allergy Drag Targets 2011) but other studies do not support this conclusion (Natsui M et al., J. Gastroent. Hepatol., 1997; Qualls J E et all. J Leuco. Biol 2006; Ostanin D et al, J Immunol, 2012). Latest report suggests that Gr1+ neutrophils isolated from colitic mice induce proliferation of CD4+ T cells and enhance the production of proinflammatory cytokines by activated CD4+ T cells perpetuating gut inflammation (Ostanin et al., J Immunol, 2012).
Importantly, expansion of IMC in the experiments accompanies with an increase of Ki67 marker proliferation in spleen and in vivo BrdU uptake by splenic Gr1+CD11b+ cells suggesting on much higher extramedullar cells proliferation in TFF2-deficient mice compare with other two groups. Splenocytes from TFF2−/− mice treated with DSS form more colonies on medium supporting granulocyte, macrophage, megacaryocyte and erythroid precursors then splenocytes from wild type and transgenic mice. In addition recombinant TFF2 directly suppresses Gr1+CD11b+ cells proliferation in vitro culture, supporting in vivo data.
Expansion of myeloid cells in spleen due to increase in their turnover has been noticed earlier under other pathological conditions such thermal injury (Noel J et al., 2005). The idea that spleen may be as a source of immature myeloid cells due to active extramedullar hematopoiesis came from observation on massive accumulation of these cells in spleen of tumor-bearing mice (Johnson J R et al., 1985, Int. J Cell Cloning; Serafini P. et al., 2004, Cancer Immunol Immunoter; du'Pre S A et Hunter K W Jr, Exp Mol Path., 2007). An expanded red pulp with megacaryoblasts and metamyeloblasts and reduction of white pulp area in spleen of tumor-bearing mice suggest on extramedullar hematopoiesis (du'Pre S A et Hunter K W, 2007). So called leukemoid reactions characterized by splenomegaly due to massive granulocytic infiltrates have been also reported in human cancers and are associated with a poor prognosis (Sato K et al., J. Urol., 1994; Kasuga I et al., 2001; Nimieri et al., 2003, Annal Hematol; Schniewind B et al., 2005, Cancer Biol. Ther.) However, studies on syngenic tumor model suggest that expansion of IMC in spleen during cancer progression occurs as a result of proliferation and differentiation of these cells in bone marrow and subsequent migration from bone marrow to the blood but not due to proliferation in spleen (Ueha S et al., 2011). Indeed, by using a parabiosis system and in vivo BrdU incorporation these authors showed that immature myeloid cells have proliferated primarily in the bone marrow and not in peripheral tissues (Sawanobori Y et al., Blood, 2005). From earlier experiments it has been suggested that myeloid cells undergo extramedullar proliferation in response to soluble tumor-derived factors (Young M R, Young M E, Cancer Res., 1988; Kusmartsev S A, Li Y, J. Immunol., 2000). Recently it has been shown that spleen become reservoir of monocytes/macrophages that mobilize and migrate to inflamed tissue in response to myocardial infraction-induced heart injury and participate in wound healing (Swirski et al., 2009; Leuschner F et al., 2012). Later it has been shown that spleen also contributes inflammatory monocytes to atheroma in atherosclerosis (Robbins C S et al., Circulation, 2012) and monocytes/granulocytes in tumor sites during cancer progression (Cortez-Retamozo V et al., 2012).
Recent studies on RAG−/− mouse model clearly showed that chronic colitis is accompanied by the massive infiltration of myeloid cells in lamina propria and also associated with dramatic myelopoiesis with around 10 folds more myeloid cells (primary neutrophils) than T-cells in spleen (Ostanin D et al., J Immunol., 2012). Moreover, these infiltrated immature myeloid cells acquire the phenotype and function of APC within the inflamed bowel and contribute to disease progression. Therefore it is possible that some conditions such injury, inflammation and tumor growth stimulate extramedullar hematopoiesis in spleen that become an additional source of IMC which may contribute to outcome of disease. Although it has not been found directly how spleen-derived IMC contribute in cancer progression based on presented data it seems TFF2 to be the factor that suppresses proliferation of Gr1+CD11b+ cells in spleen and this accounts on less tumor incidence in cancer models associated with inflammation.
Anti-tumor activity of TFF2 was evaluated in two types of cancer models associated with inflammation: in colon cancer model initiated by AOM following DSS treatment and in skin cancer model initiated by DMBA following TPA treatment. In the first model it was found that TFF2−/− deficient mice are more susceptible while TG mice are more resistant to tumorigenesis. what is consistent with their higher susceptibility to inflammation and higher proportion of inflammatory Gr1+CD11b+ cells observed for these mice upon DSS treatment.
Extensive studies on mechanisms by which MDSCs exert their immunosuppressive function have been done as well factors that promote their expansion have been revealed. Attention should be dedicated to point which factors restrict expansion of MDSC.
REFERENCES
- 1. Gabrilovich, D. I., Nagaraj, S., Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P., Restifo, N. P., Gabriele, P., Malinverni, G., Moroni, G. L., Gatti, M., Regge, D., Versari, A., Serafini, D., Fraternali, A., Salvo, D., Serafini, P., Carbley, R., Noonan, K. A., Tan, G., Borrello, I., Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., Geilich, M., Winkels, G., Traggiai, E., Casati, A., Grassi, F., Elkabets, M., Ribeiro, V. S., Dinarello, C. A., Ostrand-Rosenberg, S., Di Santo, J. P., Apte, R. N., Vosshenrich, C. A., Li, H., Han, Y., Guo, Q., Zhang, M., Cao, X., Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., Carbone, D. P., Playford, R. J., Dignass, A., Lynch-Devaney, K., Kindon, H., Thim, L., Podolsky, D. K., Mashimo, H., Wu, D. C., Fishman, M. C., Kurt-Jones, E. A., Cao, L., Sandor, F., Rogers, A. B., Whary, M. T., Nambiar, P. R., Cerny, A., Bowen, G., Yan, J., Takaishi, S., Chi, A. L., Reed, G., Houghton, J., Fox, J. G., Wang, T. C., Lefebvre, O., Chenard, M. P., Masson, R., Linares, J., Dierich, A., LeMeur, M., Wendling, C., Tomasetto, C., Chambon, P., Rio, M. C., Farrell, J. J., Taupin, D., Koh, T. J., Chen, D., Zhao, C. M., Tomita, H., Menheniott, T. R., Yang, X., Shibata, W., Jin, G., Betz, K. S., Kawakami, K., Minamoto, T., Lerkowit, N., Varro, A., Giraud, A. S., Kim, H., Eun, J. W., Lee, H., Nam, S. W., Rhee, H., and Koh, K. H. (2009) Nat Rev Immunol 9, 162-174
- 2. Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P., and Restifo, N. P. (1999) J Immunol 162, 5728-5737
- 3. Serafini, P., Carbley, R., Noonan, K. A., Tan, G., Bronte, V., and Borrello, I. (2004) Cancer Res 64, 6337-6343
- 4. Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., Geilich, M., Winkels, G., Traggiai, E., Casati, A., Grassi, F., and Bronte, V. Eur J Immunol 40, 22-35
- 5. Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S., Sonda, N., Bicciato, S., Falisi, E., Calabrese, F., Basso, G., Zanovello, P., Cozzi, E.,
- Mandruzzato, S., and Bronte, V. Immunity 32, 790-802
- 6. Elkabets, M., Ribeiro, V. S., Dinarello, C. A., Ostrand-Rosenberg, S., Di Santo, J. P., Apte, R. N., and Vosshenrich, C. A. Eur J Immunol 40, 3347-3357
- 7. Li, H., Han, Y., Guo, Q., Zhang, M., and Cao, X. (2009) J Immunol 182, 240-249
- 8. Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., and Carbone, D. P. (1998) Blood 92, 4150-4166
- 9. Thim, L., Madsen, F., and Poulsen, S. S. (2002) Eur J Clin Invest 32, 519-527
- 10. Playford, R. J., Marchbank, T., Chinery, R., Evison, R., Pignatelli, M., Boulton, R. A., Thim, L., and Hanby, A. M. (1995) Gastroenterology 108, 108-116
- 11. Dignass, A., Lynch-Devaney, K., Kindon, H., Thim, L., and Podolsky, D. K. (1994) J Clin Invest 94, 376-383
- 12. Mashimo, H., Wu, D. C., Podolsky, D. K., and Fishman, M. C. (1996) Science 274, 262-265
- 13. Kurt-Jones, E. A., Cao, L., Sandor, F., Rogers, A. B., Whary, M. T., Nambiar, P. R., Cerny, A., Bowen, G., Yan, J., Takaishi, S., Chi, A. L., Reed, G., Houghton, J., Fox, J. G., and Wang, T. C. (2007) Infect Immun 75, 471-480
- 14. Lefebvre, 0., Chenard, M. P., Masson, R., Linares, J., Dierich, A., LeMeur, M., Wendling, C., Tomasetto, C., Chambon, P., and Rio, M. C. (1996) Science 274, 259-262
- 15. Farrell, J. J., Taupin, D., Koh, T. J., Chen, D., Zhao, C. M., Podolsky, D. K., and Wang, T. C. (2002) J Clin Invest 109, 193-204
- 16. Tomasetto, C., and Rio, M. C. (2005) Cell Mol Life Sci 62, 2916-2920
- 17. Tomita, H., Takaishi, S., Menheniott, T. R., Yang, X., Shibata, W., Jin, G., Betz, K. S., Kawakami, K., Minamoto, T., Tomasetto, C., Rio, M. C., Lerkowit, N., Varro, A., Giraud, A. S., and Wang, T. C. Gastroenterology 140, 879-891
- 18. Shi, S. Q., Cai, J. T., and Yang, J. M. (2006) World J Gastroenterol 12, 3119-3122
- 19. Kim, H., Eun, J. W., Lee, H., Nam, S. W., Rhee, H., and Koh, K. H. Exp Mol Pathol 90, 201-209
- 20. Hong, S. J., Oh, J. H., Jung, Y. C., Kim, Y. H., Kim, S. J., Kang, S. J., Seo, E. J., Choi, S. W., Kang, M. I., and Rhyu, M. G. J Korean Med Sci 25, 405-417
- 21. Peterson, A. J., Menheniott, T. R., O'Connor, L., Walduck, A. K., Fox, J. G., Kawakami, K., Minamoto, T., Ong, E. K., Wang, T. C., Judd, L. M., and Giraud, A. S. (2005) Gastroenterology 139, 2005-2017
- 22. Fox, J. G., Rogers, A. B., Whary, M. T., Ge, Z., Ohtani, M., Jones, E. K., and Wang, T. C. (2007) Am J Pathol 171, 1520-1528
- 23. Kjellev, S., Thim, L., Pyke, C., and Poulsen, S. S. (2007) Dig Dis Sci 52, 1050-1059
- 24. Soriano-Izquierdo, A., Gironella, M., Massaguer, A., May, F. E., Salas, A., Sans, M., Poulsom, R., Thim, L., Pique, J. M., and Panes, J. (2004) J Leukoc Biol 75, 214-223
- 25. Tran, C. P., Cook, G. A., Yeomans, N. D., Thim, L., and Giraud, A. S. (1999) Gut 44, 636-642
- 26. FitzGerald, A. J., Pu, M., Marchbank, T., Westley, B. R., May, F. E., Boyle, J., Yadollahi-Farsani, M., Ghosh, S., and Playford, R. J. (2004) Peptides 25, 793-801
- 27. Babyatsky, M. W., deBeaumont, M., Thim, L., and Podolsky, D. K. (1996) Gastroenterology 110, 489-497
- 28. Vandenbroucke, K., Hans, W., Van Huysse, J., Neirynck, S., Demetter, P., Remaut, E., Rottiers, P., and Steidler, L. (2004) Gastroenterology 127, 502-513
- 29. Semple, J. I., Newton, J. L., Westley, B. R., and May, F. E. (2001) Gut 48, 648-655
- 30. Kjellev, S., Vestergaard, E. M., Nexo, E., Thygesen, P., Eghoj, M. S., Jeppesen, P. B., Thim, L., Pedersen, N. B., and Poulsen, S. S. (2007) Peptides 28, 1197-1206
- 31. Poulsen, S. S., Thulesen, J., Christensen, L., Nexo, E., and Thim, L. (1999) Gut 45, 516-522
- 32. Poulsen, S. S., Thulesen, J., Nexo, E., and Thim, L. (1998) Gut 43, 240-247
- 33. Poulsen, S. S., Kissow, H., Hare, K., Hartmann, B., and Thim, L. (2005) Regul Pept 126, 163-171
- 34. Cook, G. A., Familari, M., Thim, L., and Giraud, A. S. (1999) FEES Lett 456, 155-159
- 35. Giraud, A. S., Pereira, P. M., Thim, L., Parker, L. M., and Judd, L. M. (2004) Peptides 25, 803-809
- 36. Baus-Loncar, M., Kayademir, T., Takaishi, S., and Wang, T. (2005) Cell Mol Life Sci 62, 2947-2955
- 37. Dubeykovskaya, Z., Dubeykovskiy, A., Solal-Cohen, J., and Wang, T. C. (2009) J Biol Chem 284, 3650-3662
- 38. Shibata, W., Ariyama, H., Westphalen, C. B., Worthley, D. L., Muthupalani, S., Asfaha, S., Dubeykovskaya, Z., Quante, M., Fox, J. G., and Wang, T. C. Gut 2012, 23
- 39. Wills-Karp, M., Rani, R., Dienger, K., Lewkowich, I., Fox, J. G., Perkins, C., Lewis, L., Finkelman, F. D., Smith, D. E., Bryce, P. J., Kurt-Jones, E. A., Wang, T. C., Sivaprasad, U., Hershey, G. K., and Herbert, D. R. J Exp Med 209, 607-622
- 40. Loos, M., De Creus, A., Thim, L., Remaut, E., and Rottiers, P. (2007) Scand J Immunol 66, 35-42
- 41. Zhumabekov, T., Corbella, P., Tolaini, M., and Kioussis, D. (1995) J Immunol Methods 185, 133-140
- 42. Tanaka, T., Kohno, H., Suzuki, R., Yamada, Y., Sugie, S., and Mori, H. (2003) Cancer Sci 94, 965-973
- 43. Tu, S., Chi, A. L., Lim, S., Cui, G., Dubeykovskaya, Z., Ai, W., Fleming, J. V., Takaishi, S., and Wang, T. C. (2007) Am J Physiol Gastrointest Liver Physiol 292, G1726-1737
- 44. Poulsom, R., Chinery, R., Sarraf, C., Lalani, E. N., Stamp, G., Elia, G., and Wright, N. (1992) Scand J Gastroenterol Suppl 192, 17-28
- 45. Rio, M. C., Chenard, M. P., Wolf, C., Marcellin, L., Tomasetto, C., Lathe, R., Bellocq, J. P., and Chambon, P. (1991) Gastroenterology 100, 375-379
- 46. Cook, G. A., Yeomans, N. D., and Giraud, A. S. (1997) Am J Physiol 272, 61540-1549
- 47. Henry, J. A., Bennett, M. K., Piggott, N. H., Levett, D. L., May, F. E., and Westley, B. R. (1991) Br J Cancer 64, 677-682
- 48. Alison, M. R., Chinery, R., Poulsom, R., Ashwood, P., Longcroft, J. M., and Wright, N. A. (1995) J Pathol 175, 405-414
- 49. Lang, G., Wotton, D., Owen, M. J., Sewell, W. A., Brown, M. H., Mason, D. Y., Crumpton, M. J., and Kioussis, D. (1988) EMBO J 7, 1675-1682
- 50. Lake, R. A., Wotton, D., and Owen, M. J. (1990) EMBO J 9, 3129-3136
- 51. Melgar, S., Karlsson, A., and Michaelsson, E. (2005) Am JPhysiol Gastrointest Liver Physiol 288, G1328-1338
- 52. Melgar, S., Drmotova, M., Rehnstrom, E., Jansson, L., and Michaelsson, E. (2006) Cytokine 35, 275-283
- 53. Mikami, S., Nakase, H., Yamamoto, S., Takeda, Y., Yoshino, T., Kasahara, K., Ueno, S., Uza, N., Oishi, S., Fujii, N., Nagasawa, T., and Chiba, T. (2008) J Pharmacol Exp Ther 327, 383-392
- 54. Maloy, K. J., and Powrie, F. (2001) Nat Immunol 2, 816-822
- 55. Shevach, E. M. (2002) Nat Rev Immunol 2, 389-400
- 56. Stallmach, A., Wittig, B., Giese, T., Pfister, K., Hoffmann, J. C., Bulfone-Paus, S., Kunzendorf, U., Meuer, S. C., and Zeitz, M. (1999) Gastroenterology 117, 866-876
- 57. Veltkamp, C., Tonkonogy, S. L., De Jong, Y. P., Albright, C., Grenther, W. B., Balish, E., Terhorst, C., and Sartor, R. B. (2001) Gastroenterology 120, 900-913
- 58. Siegmund, B., Lehr, H. A., Fantuzzi, G., and Dinarello, C. A. (2001) Proc Natl Acad Sci USA 98, 13249-13254
- 59. Liu, C., Yu, S., Kappes, J., Wang, J., Grizzle, W. E., Zinn, K. R., and Zhang, H. G. (2007) Blood 109, 4336-4342
- 60. Hall, L. J., Faivre, E., Quinlan, A., Shanahan, F., Nally, K., and Melgar, S. (2011) Dig Dis Sci 56, 79-89
- 61. Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., Carbone, D. P., and Gabrilovich, D. I. (2001) J Immunol 166, 678-689
- 62. Cortez-Retamozo, V., Etzrodt, M., Newton, A., Rauch, P. J., Chudnovskiy, A., Berger, C., Ryan, R. J., Iwamoto, Y., Marinelli, B., Gorbatov, R., Forghani, R., Novobrantseva, T. I., Koteliansky, V., Figueiredo, J. L., Chen, J. W., Anderson, D. G., Nahrendorf, M., Swirski, F. K., Weissleder, R., and Pittet, M. J. Proc Natl Acad Sci USA 109, 2491-2496
- 63. Leuschner, F., Rauch, P. J., Ueno, T., Gorbatov, R., Marinelli, B., Lee, W. W., Dutta, P., Wei, Y., Robbins, C., Iwamoto, Y., Sena, B., Chudnovskiy, A., Panizzi, P., Keliher, E., Higgins, J. M., Libby, P., Moskowitz, M. A., Pittet, M. J., Swirski, F. K., Weissleder, R., and Nahrendorf, M. J Exp Med 209, 123-137
- 64. Ling, V., Luxenberg, D., Wang, J., Nickbarg, E., Leenen, P. J., Neben, S., and Kobayashi, M. (1997) Eur J Immunol 27, 509-514
- 65. Angulo, I., de las Heras, F. G., Garcia-Bustos, J. F., Gargallo, D., Munoz-Fernandez, M. A., and Fresno, M. (2000) Blood 95, 212-220
- 66. Delano, M. J., Scumpia, P. 0., Weinstein, J. S., Coco, D., Nagaraj, S., Kelly-Scumpia, K. M., O'Malley, K. A., Wynn, J. L., Antonenko, S., Al-Quran, S. Z., Swan, R., Chung, C. S., Atkinson, M. A., Ramphal, R., Gabrilovich, D. I., Reeves, W. H., Ayala, A., Phillips, J., Laface, D., Heyworth, P. G., Clare-Salzler, M., and Moldawer, L. L. (2007) J Exp Med 204, 1463-1474
- 67. Bunt, S. K., Sinha, P., Clements, V. K., Leips, J., and Ostrand-Rosenberg, S. (2006) J Immunol 176, 284-290
- 68. Ostrand-Rosenberg, S., and Sinha, P. (2009) J Immunol 182, 4499-4506
- 69. Poulsom, R., Begos, D. E., and Modlin, I. M. (1996) Yale J Biol Med 69, 137-146
- 70. Longman, R. J., Douthwaite, J., Sylvester, P. A., Poulsom, R., Corfield, A. P., Thomas, M. G., and Wright, N. A. (2000) Gut 47, 792-800
- 71. Podolsky, D. K. (2002) Best Pract Res Clin Gastroenterol 16, 933-943
- 72. Kitajima, S., Takuma, S., and Morimoto, M. (1999) Exp Anim 48, 137-143
- 73. Zhang, R., Ito, S., Nishio, N., Cheng, Z., Suzuki, H., and Isobe, K. I. (1111) Clin Exp Immunol 164, 417-427
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of CD11b+Gr1+ cells that expand during cancer and can contribute to neoplastic progression. Trefoil factor 2 (TFF2), a small protease resistant protein expressed by the gastric epithelial cells and splenic T cells, can function in part as an anti-inflammatory peptide. Here, it is shown that in response to carcinogenic stimuli, TFF2 is upregulated in memory T cells in the spleen through a vagal neural circuit and functions to suppress proliferation of myeloid progenitor cells. Knockout of the TFF2 gene leads to an expansion of MDSC, and marked acceleration of tumor growth in response to AOM/DSS treatment. Moreover, overexpression of TFF2 in splenic T cells completely suppressed both MDSC expansion and colon cancer induction. Suppression of CD11b+Gr1+ cellular expansion by TFF2 correlated with an increase in CD8+ T cells in response to AOM/DSS colon carcinogenesis. In vitro studies showed that the effect of TFF2 involved a direct suppression of proliferation by granulocyte-macrophage progenitors (GMP) and CD11b+Gr1+ immature myeloid cells (IMC). Bone marrow transplant studies confirmed the role of hematopoietic TFF2 expression in inhibition of the cancer phenotype. Taken together, these studies validate the role for CD11b+Gr1+ cells in early cancer progression, and point to a possible therapeutic role for TFF2 in suppression of MDSCs and cancer.
Introduction
Tumor growth and progression can be accompanied by expansion of myeloid-derived suppressive cells (MDSCs), immune cells characterized in mice by the co-expression of surface markers Gr1 and CD11b (A1). MDSCs are a heterogeneous population of immature myeloid cells that accumulate in the bone marrow, spleen and peripheral blood of tumor-bearing mice, and can be elevated up to ten-fold in the blood of patients with diverse types of cancer. The accumulation and activation of MDSCs can occur in response to factors secrete by tumors, such as VEGF, GM-CSF, IL-1β, IL-6 and PGE2 (A2-A5, A6, A7, A8, A9, A10), which can also be increased in the setting of chronic inflammation. These carcinogenic and/or inflammatory factors can result in the expansion of MDSC through stimulation of myelopoiesis and inhibition of myeloid cell differentiation.
Expansion of CD11b+Gr1+ myeloid cells can also occur following trauma, infection and acute inflammation, but in cancer these cells persist and can acquire the profound ability to suppress T cell activation through multiple mechanisms (A1). Thus, the sustained expansion of MDSCs with immunosuppressive ability that can be seen in cancer is typically absent in acute inflammation. Resolution of inflammatory responses can be mediated by endogenous anti-inflammatory factors secreted by host immune cells in response to inflammatory signals (A2-A4). One anti-inflammatory pathway, termed the inflammatory reflex involves a neural reflex, whereby stimulation of the vagus nerve can activate acetycholine-synthesizing memory (CD4+ CD44hi) CD69Llo) T cells, which can inhibit cytokine release and attenuate inflammation-mediated injury (A5). These observations suggest the possibility that failure of these reflex anti-inflammatory mechanisms, which can normally limit the expansion of myeloid cells, can contribute to nonresolving inflammation and cancer.
The central nervous system can regulate the innate immune responses via the vagus nerve, a mechanism termed the cholinergic anti-inflammatory pathway. Vagus nerve stimulation can inhibit proinflammatory cytokine production by signaling through the alpha7 nicotinic acetylcholine receptor subunit expressed on macrophages, lymphocytes, neurons and other cells. The mechanism is called the inflammatory reflex. Administration of nicotine, an alpha7 agonist that mimics vagus nerve stimulation, can increase proinflammatory cytokine production and lethality from promicrobial sepsis in splenectomized mice, indicating that the spleen can be a major contributor to the anti-inflammatory effect via the cholinergic pathway.
Trefoil factor 2 (TFF2) is a secreted peptide that can function as an anti-inflammatory peptide. TFF2 is a member of the trefoil factor family (TFF), which in mammals includes three secreted proteins (TFF1, TFF2, and TFF3), each of which possesses a highly conserved triple loop structure (the trefoil domain) and are expressed in the gastrointestinal tract. TFF2, similar to other trefoil proteins, can play a role in mucosal repair and the maintenance of mucosal integrity through interactions with epithelial cells (A6-A8). However, TFF2 can also function as an anti-inflammatory peptide. TFF2-deficient mice at baseline show a minimal phenotype, but in response to DSS showed delayed healing and recovery (A14, A15). Studies have suggested that TFF2 can influence leukocyte migration, recruitment or responses (A10, A13, A16-A19). It has been shown that splenic T cells from TFF2-deficient mice are hyper-responsive to IL-1β stimulation, and that TFF2 can modulate signaling through CXCR4 and induce the release of IL-33 from lung epithelial, dendritic cells and macrophages, thus promoting a Th2 type immune response (A15, A20-22). The recognition that TFF2 can play a broader role in immune responses beyond the gastrointestinal tract was supported by the observation that TFF2 mRNA expression can be detected at low levels in rodents primary and secondary lymphatic organs (thymus and spleen), where expression was increased upon LPS treatment (A15, 16).
In addition, several studies have shown that TFF2 can be downregulated in cancer and may function as a tumor suppressor gene. Loss of TFF2 has been observed during the progression of human intestinal-type gastric cancer (A23, A24), and it has been shown that TFF2 expression is downregulated due to aberrant promoter methylation (A25, A26) in the setting of H. pylori infection. Moreover, TFF2-deficient mice progress more quickly to dysplasia in inflammatory models of gastric carcinogenesis (A26, A27).
In this example, it is shown that TFF2 is expressed in memory T cells, regulated by a vagal nerve circuit, and can function to suppress myelopoiesis in the spleen in response to inflammatory stimuli. Importantly, it is shown that TFF2 can function to suppress the development of myeloid-derived suppressor cells (MDSCs) in response to carcinogens, and that overexpression of TFF2 can markedly suppress gastrointestinal tumorigenesis.
Results
TFF2 can be Expressed in the Splenic CD4+ Memory T Cells and Regulated by the Vagus Nerve
While previous studies revealed that TFF2 mRNA can be expressed in the rodent in spleen and regulated by inflammatory signals (A15, A16, A18), the precise cellular origin of TFF2 was not identified. Antibodies to the TFF2 C-terminus (A15) identified TFF2 protein in whole spleen as a band at the position similar to those detected in stomach of wild type mice by western blot (
Given previous studies suggesting a protective role for trefoil peptides in rodent colitis models, and the upregulation of TFF2 in the gut in response to injury (A28-A31) (A7, A32, A33), TFF2 protein expression was analyzed in the whole spleen of wild type mice during administration of 3% DSS water, a marked increase was observed after 24 hours of DSS, with continued expression through day 19 (
Stimulation of the vagus nerve can inhibit cytokine release and can downregulate systemic inflammation through interactions with memory CD4+ T cells, (A34-A36). TFF2 can also be part of an anti-inflammatory pathway, thus TFF2 expression in the same subset of memory CD4+ T-cells in spleen was analyzed (
Transgenic Mice Overexpressing TFF2 in T-Cells Display Attenuated DSS Colitis.
Given the upregulation of TFF2 in response to inflammation, and its suggested role as an anti-inflammatory peptide, the ability of TFF2 overexpression in the immune compartment to suppress acute or chronic inflammation was tested. Transgenic mice that overexpress murine TFF2 specifically within T cells were generated using a well-established CD2 promoter construct (
Since TFF2 can be expressed in the gastric epithelium as well as T-cells, bone marrow transplantation experiments were performed to assess the importance of hematopoietic derived TFF2. Lethally irradiated wild type mice were transplanted with bone marrow from TFF2-null, wild-type and CD2-TFF2 mice; colitis was induced using 3% DSS in the drinking water for 5 days followed by regular water, and animals were assessed on day 19. Transplantation with CD2-TFF2 bone marrow, compared to WT bone marrow, resulted in attenuated colitis as revealed by greater body weight, normal spleen mass and colonic length; in contrast, mice transplanted with TFF2-null bone marrow, compared to WT bone marrow, showed significantly greater loss of body weight, larger spleens, shorter colons and higher levels of IL-1β (
Overexpression of TFF2 by Splenic T Cells can Suppress the Development of AOM/DSS-Induced Colon and Rectal Tumors
Previous studies have suggested that TFF2 is a tumor suppressor gene. The influence of overexpression of TFF2 on the development of colon and rectal cancer was tested. TFF2-null, wild type and CD2-TFF2 groups were subjected to the AOM/DSS regimen, and colonic tumors were quantified five months later. Both wild type and TFF2-null mice developed tumors in the third part of distal colon, with the TFF2-null mice showing the greatest tumor load (
Histological examination of adenomas from TFF2-null mice revealed greater degrees of dysplasia, and increased inflammatory cell infiltration in colonic tissues of TFF2-null mice compared with wild type counterparts (
TFF2 Inhibits Cancer Through Suppression of MDSCs.
The increase in tumorigenesis seen in the TFF2−/− mice was associated with splenomegaly and accumulation of CD11b+Gr1+ myeloid cells, while the suppression of tumors in CD2-TFF2 transgenic mice correlated with a lack of splenic enlargement. DSS-induced colitis has previously been associated with splenic enlargement and a significant increase in CD11b+Gr1+ cells (A39-A41). While under normal physiological conditions, TFF2−/− mice and CD2-TFF2 transgenic mice showed normal spleen size and proportions of CD11b+Gr1+ cells in spleen and bone marrow, in response to DSS, TFF2-null mice showed significantly more Ki67+ proliferating Gr1+ cells than wild-type mice, while CD2-TFF2 mice showed fewer Ki67+ proliferating Gr1+ cells compared to WT mice (
BrdU labeling studies of DSS treated mice revealed that CD11+Gr1+ myeloid cells in the spleens of WT mice proliferate during the recovery phase of DSS-induced colitis; however, splenic IMC's from TFF2-deficient mice showed greater BrdU uptake than the other two groups (
TFF2 can modulate the splenic accumulation of myeloid progenitor cells, such as the granulocyte/macrophage precursor (GMP), what give rise to CD11b+Gr1+ cells following their expansion in the spleen (A42). The relative colony-forming capacity of splenocytes obtained from all groups of mice on day 19 after DSS treatment was studied. Splenocytes from CD2-TFF2 mice showed the lowest capacity to form colonies, while splenocytes from TFF2-null mice formed significantly more colonies compared with those from wild type and CD2-TFF2 counterparts (
FACS sorted DSS-induced CD11b+Gr1+ cells from TFF2−/− mice contained a mixed population of cells with ring shaped and large nucleus segmented nuclei (
Splenic CD11b+Gr1+ cells from tumor-bearing TFF2−/− mice highly expressed the CD80 co-stimulatory molecule on their surface (
The effect of TFF2 on the in vitro growth of sorted CD11b+Gr1+ cells from spleen of TFF2−/− mice CD11b+Gr1+ cells was tested. The effect of TFF2 on IMCS grown in presence of low concentration (5 ng/ml) of GM-CSF in medium after 7 days of culture was tested. The number of viable cells decreased in a dose-dependent manner upon TFF2 supplementation in range 0.2 μM-4 μM (
Recombinant TFF2 Delivered by Adenovirus Vector Suppresses Colonic Cancer Progression in AOM/DSS Model.
To address whether administration of TFF2 is able to suppress cancer development in the AOM/DSS model adenovirus vectors expressing mouse recombinant TFF2 (Ad-TFF2) were generated. mTFF2 protein expression by eukaryotic cells transfected with Ad-TFF2 was validated in western blot (
Discussion
Gastric epithelial TFF2 can have a mucosal protective and restitutive function in the stomach and colon (A57-A59). Earlier studies showed that TFF2 increased the viscosity of mucus that covers and protects the epithelium, and promoted epithelial restitution by stimulating the migration of epithelial cells to sites of injury (A6, A7, A57, A59, A60). Accumulating data suggest that TFF2 is a modulator of gastrointestinal as well as systemic inflammation (A15, A18).
The role of trefoil peptides derived from an immune cell compartment has not been investigated. Splenic T-cells were identified as a source of TFF2 under normal physiological conditions, as well as under inflammatory conditions (A61). The TFF2 level was controlled in the spleen via the cholinergic anti-inflammatory pathway and was down-regulated by vagotomy. TFF2 derived from T-cells contributes in amelioration of DSS-induced colitis. In a cancer model of AOM/DSS T-cell derived TFF2 plays a role in the suppression of carcinogenesis. Results from the in vivo models indicate that TFF2, in addition to its known barrier and reparative function in gastrointestinal tract, is also involved in an anti-tumor mechanism provided by T-cells. This anti-tumor mechanism can also be provided by adenovirus delivered TFF2 in the AOM/DSS model. Transgenic mice overexpressing TFF2 under hCD2 promoter developed less cancer while TFF2-null mice display highest tumor burden. Recombinant TFF2 delivered by the adenovirus system also suppressed tumor development. Importantly, suppression of tumorigenesis is associated with a decrease in the number of CD11b+Gr1+ cells validating their role in cancer progression.
Expansion of IMCs is associated with an increase in Ki67+ or BrdU+ cells within splenic CD11b+Gr1+ cells, suggesting their higher proliferation in the spleen of TFF2− deficient versus WT and CD2-TFF2 transgenic mice. Splenocytes from TFF2−/− mice treated with DSS form more colonies on medium supporting granulocyte/macrophage precursors than splenocytes from wild type and transgenic mice. In addition, supporting the in vivo observations, recombinant TFF2 directly suppressed CD11b+Gr1+ cell proliferation in vitro.
Splenomegaly in DSS-treated TFF2-null mice resulted from the expansion of immature myeloid cells, presumably as a consequence of extramedullary hematopoiesis. Bone marrow is the major source of CD11b+Gr1+ cells and their precursors under normal and pathological conditions (A51-A53), with egress regulated through the CCR2 receptor (A54). However, recent studies have suggested that the spleen is an important source of extramedullary myelopoiesis under conditions of severe inflammation and cancer (A42, A43, A55, A56).
In the AOM/DSS model spleen-derived CD11b+Gr1+ cells in TFF2−/− mice are MDSCs and show profound suppression on T-cell proliferation and decreased IFN-γ production in vitro. MDSC from the spleen of tumor-bearing TFF2−/− mice express high levels of the surface marker CD80 compared with nonsuppressive CD11b+Gr1+ cells from transgenic CD2-TFF2 mice (without visible tumor in colon) post AOM/DSS regimen. A similar phenotype for CD11b+Gr1+CD80+ cells with suppressive functions has been described for melanoma patients, mouse ovarian carcinoma and 4T1 mammary carcinoma models (A62, A63). CD80 expressed on CD11b+Gr1+ cells ligates with CTLA-4 and transduces inhibitory signals in T-cells (A48). Consistently, the growth of ovarian 1D8 tumors was retarded in CD80-deficient mice due to a decrease of arginase I activity in CD11b+Gr1+MDSC (A64).
Since MDSCs are an important factor in promoting cancer progression several strategies has been suggested in an attempt to eliminate MDSCs in vivo or suppression their activity. Such as treatments include all-trans-retinoic acid (ATRA) (A66), 1α25-dihydroxyvitamin D (A67), administration of gemcitabine (A68), or 5-Fluorouracil (A69) to induce apoptosis, administration of phosphodiesterase-5 inhibitors in order to downregulate arginase and nitric oxide synthetase activities (A70). Indeed, two widely used anticancer cytotoxic agents, 5FU and Gem kill MDSC but they also show side effects by inducing IL-1β release that enhances IL-17 production and accelerates tumor growth (A71). The findings suggest that TFF2 is able to suppress expansion of myeloid cells and delivering recombinant TFF2 in the blood of a subject represents a new strategy to control MDSCs population even under conditions promoting cancer development.
Summary: Adenoviral delivery of TFF2 suppresses colon cancer in response to AOM/DSS.
Conclusion: These results show that adenoviral delivery of mTFF2 expression can suppress gastrointestinal tumorigenesis through reducing the proliferation of IMCs.
REFERENCES
- A1. Gabrilovich, D. I., Nagaraj, S., Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P., and Restifo, N. P. 2009. Myeloid-derived suppressor cells as regulators of the immune system unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. Nat Rev Immunol 9:162-174.
- A2. Nathan, C. 2002. Points of control in inflammation. Nature 420:846-852.
- A3. Delgado, M., and Ganea, D. 2008. Anti-inflammatory neuropeptides: a new class of endogenous immunoregulatory agents. Brain Behav Immun 22:1146-1151.
- A4. Banchereau, J., Pascual, V., and O'Garra, A. 1038. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines Nat Immunol 13:925-931.
- A5. Rosas-Ballina, M., Olofsson, P. S., Ochani, M., Valdes-Ferrer, S. I., Levine, Y. A., Reardon, C., Tusche, M. W., Pavlov, V. A., Andersson, U., Chavan, S., et al. 2011. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98-101.
- A6. Thim, L., Madsen, F., and Poulsen, S. S. 2002. Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur J Clin Invest 32:519-527.
- A7. Playford, R. J., Marchbank, T., Chinery, R., Evison, R., Pignatelli, M., Boulton, R. A., Thim, L., and Hanby, A. M. 1995. Human spasmolytic polypeptide is a cytoprotective agent that stimulates cell migration. Gastroenterology 108:108-116.
- A8. Dignass, A., Lynch-Devaney, K., Kindon, H., Thim, L., and Podolsky, D. K. 1994. Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. J Clin Invest 94:376-383.
- A9. Soriano-Izquierdo, A., Gironella, M., Massaguer, A., May, F. E., Salas, A., Sans, M., Poulsom, R., Thim, L., Pique, J. M., and Panes, J. 2004. Trefoil peptide TFF2 treatment reduces VCAM-1 expression and leukocyte recruitment in experimental intestinal inflammation. J Leukoc Biol 75:214-223.
- A10. Tran, C. P., Cook, G. A., Yeomans, N. D., Thim, L., and Giraud, A. S. 1999. Trefoil peptide TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis. Gut 44:636-642.
- A11. FitzGerald, A. J., Pu, M., Marchbank, T., Westley, B. R., May, F. E., Boyle, J., Yadollahi-Farsani, M., Ghosh, S., and Playford, R. J. 2004. Synergistic effects of systemic trefoil factor family 1 (TFF1) peptide and epidermal growth factor in a rat model of colitis. Peptides 25:793-801.
- A12. Babyatsky, M. W., deBeaumont, M., Thim, L., and Podolsky, D. K. 1996. Oral trefoil peptides protect against ethanol- and indomethacin-induced gastric injury in rats. Gastroenterology 110:489-497.
- A13. Vandenbroucke, K., Hans, W., Van Huysse, J., Neirynck, S., Demetter, P., Remaut, E., Rottiers, P., and Steidler, L. 2004. Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127:502-513.
- A14. Mashimo, H., Wu, D. C., Podolsky, D. K., and Fishman, M. C. 1996. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274:262-265.
- A15. Kurt-Jones, E. A., Cao, L., Sandor, F., Rogers, A. B., Whary, M. T., Nambiar, P. R., Cerny, A., Bowen, G., Yan, J., Takaishi, S., et al. 2007. Trefoil family factor 2 is expressed in murine gastric and immune cells and controls both gastrointestinal inflammation and systemic immune responses. Infect Immun 75:471-480.
- A16. Cook, G. A., Familari, M., Thim, L., and Giraud, A. S. 1999. The trefoil peptides TFF2 and TFF3 are expressed in rat lymphoid tissues and participate in the immune response. FEBS Lett 456:155-159.
- A17. Giraud, A. S., Pereira, P. M., Thim, L., Parker, L. M., and Judd, L. M. 2004. TFF-2 inhibits iNOS/NO in monocytes, and nitrated protein in healing colon after colitis. Peptides 25:803-809.
- A18. Baus-Loncar, M., Kayademir, T., Takaishi, S., and Wang, T. 2005. Trefoil factor family 2 deficiency and immune response. Cell Mol Life Sci 62:2947-2955.
- A19. McBerry, C., Egan, C. E., Rani, R., Yang, Y., Wu, D., Boespflug, N., Boon, L., Butcher, B., Mirpuri, J., Hogan, S. P., et al. 2012. Trefoil Factor 2 Negatively Regulates Type 1 Immunity against Toxoplasma gondii. J Immunol 2012:15.
- A20. Dubeykovskaya, Z., Dubeykovskiy, A., Solal-Cohen, J., and Wang, T. C. 2009. Secreted trefoil factor 2 activates the CXCR4 receptor in epithelial and lymphocytic cancer cell lines. J Biol Chem 284:3650-3662.
- A21. Shibata, W., Ariyama, H., Westphalen, C. B., Worthley, D. L., Muthupalani, S., Asfaha, S., Dubeykovskaya, Z., Quante, M., Fox, J. G., and Wang, T. C. 2012. Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors. Gut 2012:23.
- A22. Wills-Karp, M., Rani, R., Dienger, K., Lewkowich, I., Fox, J. G., Perkins, C., Lewis, L., Finkelman, F. D., Smith, D. E., Bryce, P. J., et al. 2012. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med 209:607-622.
- A23. Shi, S. Q., Cai, J. T., and Yang, J. M. 2006. Expression of trefoil factors 1 and 2 in precancerous condition and gastric cancer. World J Gastroenterol 12:3119-3122.
- A24. Kim, H., Eun, J. W., Lee, H., Nam, S. W., Rhee, H., and Koh, K. H. 2011. Gene expression changes in patient-matched gastric normal mucosa, adenomas, and carcinomas. Exp Mol Pathol 90:201-209.
- A25. Hong, S. J., Oh, J. H., Jung, Y. C., Kim, Y. H., Kim, S. J., Kang, S. J., Seo, E. J., Choi, S. W., Kang, M. I., and Rhyu, M. G. 2010. DNA methylation patterns of ulcer-healing genes associated with the normal gastric mucosa of gastric cancers. J Korean Med Sci 25:405-417.
- A26. Peterson, A. J., Menheniott, T. R., O'Connor, L., Walduck, A. K., Fox, J. G., Kawakami, K., Minamoto, T., Ong, E. K., Wang, T. C., Judd, L. M., et al. 2005. Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 139:2005-2017.
- A27. Fox, J. G., Rogers, A. B., Whary, M. T., Ge, Z., Ohtani, M., Jones, E. K., and Wang, T. C. 2007. Accelerated progression of gastritis to dysplasia in the pyloric antrum of TFF2−/− C57BL6×Sv129 Helicobacter pylori-infected mice. Am J Pathol 171:1520-1528.
- A28. Poulsom, R., Chinery, R., Sarraf, C., Lalani, E. N., Stamp, G., Elia, G., and Wright, N. 1992. Trefoil peptide expression in intestinal adaptation and renewal. Scand J Gastroenterol Suppl 192:17-28.
- A29. Rio, M. C., Chenard, M. P., Wolf, C., Marcellin, L., Tomasetto, C., Lathe, R., Bellocq, J. P., and Chambon, P. 1991. Induction of pS2 and hSP genes as markers of mucosal ulceration of the digestive tract. Gastroenterology 100:375-379.
- A30. Cook, G. A., Yeomans, N. D., and Giraud, A. S. 1997. Temporal expression of trefoil peptides in the TGF-alpha knockout mouse after gastric ulceration. Am J Physiol 272:G1540-1549.
- A31. Henry, J. A., Bennett, M. K., Piggott, N. H., Levett, D. L., May, F. E., and Westley, B. R. 1991. Expression of the pNR-2/p52 protein in diverse human epithelial tumours. Br J Cancer 64:677-682.
- A32. Alison, M. R., Chinery, R., Poulsom, R., Ashwood, P., Longcroft, J. M., and Wright, N. A. 1995. Experimental ulceration leads to sequential expression of spasmolytic polypeptide, intestinal trefoil factor, epidermal growth factor and transforming growth factor alpha mRNAs in rat stomach. J Pathol 175:405-414.
- A33. Taupin, D., Wu, D. C., Jeon, W. K., Devaney, K., Wang, T. C., and Podolsky, D. K. 1999. The trefoil gene family are coordinately expressed immediate-early genes: EGF receptor- and MAP kinase-dependent interregulation. J Clin Invest 103:R31-38.
- A34. Elenkov, I. J., Wilder, R. L., Chrousos, G. P., and Vizi, E. S. 2000. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595-638.
- A35. Borovikova, L. V., Ivanova, S., Zhang, M., Yang, H., Botchkina, G. I., Watkins, L. R., Wang, H., Abumrad, N., Eaton, J. W., and Tracey, K. J. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458-462.
- A36. Pavlov, V. A., and Tracey, K. J. 2004. Neural regulators of innate immune responses and inflammation. Cell Mol Life Sci 61:2322-2331.
- A37. Lang, G., Wotton, D., Owen, M. J., Sewell, W. A., Brown, M. H., Mason, D. Y., Crumpton, M. J., and Kioussis, D. 1988. The structure of the human CD2 gene and its expression in transgenic mice. EMBO J 7:1675-1682.
- A38. Lake, R. A., Wotton, D., and Owen, M. J. 1990. A 3′ transcriptional enhancer regulates tissue-specific expression of the human CD2 gene. EMBO J 9:3129-3136.
- A39. Melgar, S., Karlsson, A., and Michaelsson, E. 2005. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol 288:G1328-1338.
- A40. Hall, L. J., Faivre, E., Quinlan, A., Shanahan, F., Nally, K., and Melgar, S. 2011. Induction and activation of adaptive immune populations during acute and chronic phases of a murine model of experimental colitis. Dig Dis Sci 56:79-89.
- A41. Liu, C., Yu, S., Kappes, J., Wang, J., Grizzle, W. E., Zinn, K. R., and Zhang, H. G. 2007. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109:4336-4342.
- A42. Leuschner, F., Rauch, P. J., Ueno, T., Gorbatov, R., Marinelli, B., Lee, W. W., Dutta, P., Wei, Y., Robbins, C., Iwamoto, Y., et al. 2012. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123-137.
- A43. Cortez-Retamozo, V., Etzrodt, M., Newton, A., Rauch, P. J., Chudnovskiy, A., Berger, C., Ryan, R. J., Iwamoto, Y., Marinelli, B., Gorbatov, R., et al. 2012. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA 109:2491-2496.
- A44. Ling, V., Luxenberg, D., Wang, J., Nickbarg, E., Leenen, P. J., Neben, S., and Kobayashi, M. 1997. Structural identification of the hematopoietic progenitor antigen ER-MP12 as the vascular endothelial adhesion molecule PECAM-1 (CD31). Eur J Immunol 27:509-514.
- A45. Angulo, I., de las Heras, F. G., Garcia-Bustos, J. F., Gargallo, D., Munoz-Fernandez, M. A., and Fresno, M. 2000. Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood 95:212-220.
- A46. Delano, M. J., Scumpia, P. O., Weinstein, J. S., Coco, D., Nagaraj, S., Kelly-Scumpia, K. M., O'Malley, K. A., Wynn, J. L., Antonenko, S., Al-Quran, S. Z., et al. 2007. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204:1463-1474.
- A47. Hegde, V. L., Nagarkatti, M., and Nagarkatti, P. S. 2011. Cannabinoid receptor activation leads to massive mobilization of myeloid-derived suppressor cells with potent immunosuppressive properties. Eur J Immunol 40:3358-3371.
- A48. Yang, R., Cai, Z., Zhang, Y., Yutzy, W. H. t., Roby, K. F., and Roden, R. B. 2006. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res 66:6807-6815.
- A49. Satyanarayana, A., and Kaldis, P. 2009. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28:2925-2939.
- A50. Cano, C. E., Hamidi, T., Sandi, M. J., and Iovanna, J. L. 1439. Nupr1: the Swiss-knife of cancer. J Cell Physiol 226:1439-1443.
- A51. Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., Restifo, N. P., and Zanovello, P. 2000. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96:3838-3846.
- A52. Hock, H., Hamblen, M. J., Rooke, H. M., Traver, D., Bronson, R. T., Cameron, S., and Orkin, S. H. 2003. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18:109-120.
- A53. Shi, C., and Pamer, E. G. 1038. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762-774.
- A54. Serbina, N. V., and Pamer, E. G. 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7:311-317.
- A55. Noel, J. G., Guo, X., Wells-Byrum, D., Schwemberger, S., Caldwell, C. C., and Ogle, C. K. 2005. Effect of thermal injury on splenic myelopoiesis. Shock 23:115-122.
- A56. Ostrand-Rosenberg, S., and Sinha, P. 2009. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499-4506.
- A57. Poulsom, R., Begos, D. E., and Modlin, I. M. 1996. Molecular aspects of restitution: functions of trefoil peptides. Yale J Biol Med 69:137-146.
- A58. Poulsen, S. S., Kissow, H., Hare, K., Hartmann, B., and Thim, L. 2005. Luminal and parenteral TFF2 and TFF3 dimer and monomer in two models of experimental colitis in the rat. Regul Pept 126:163-171.
- A59. Longman, R. J., Douthwaite, J., Sylvester, P. A., Poulsom, R., Corfield, A. P., Thomas, M. G., and Wright, N. A. 2000. Coordinated localisation of mucins and trefoil peptides in the ulcer associated cell lineage and the gastrointestinal mucosa. Gut 47:792-800.
- A60. Podolsky, D. K. 2002. The current future understanding of inflammatory bowel disease. Best Pract Res Clin Gastroenterol 16:933-943.
- A61. Kitajima, S., Takuma, S., and Morimoto, M. 1999. Changes in colonic mucosal permeability in mouse colitis induced with dextran sulfate sodium. Exp Anim 48:137-143.
- A62. Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V., and Kiessling, R. 2010. Immature immunosuppressive CD14+HLA-DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335-4345.
- A63. Sinha, P., Okoro, C., Foell, D., Freeze, H. H., Ostrand-Rosenberg, S., Srikrishna, G., Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V., et al. 2008. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells Immature immunosuppressive CD14+HLA-DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. J Immunol 181:4666-4675.
- A64. Liu, Y., Yu, Y., Yang, S., Zeng, B., Zhang, Z., Jiao, G., Zhang, Y., Cai, L., and Yang, R. 2009. Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells. Cancer Immunol Immunother 58:687-697.
- A65. Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., De Baetselier, P., and Van Ginderachter, J. A. 2008. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233-4244.
- A66. Kusmartsev, S., Cheng, F., Yu, B., Nefedova, Y., Sotomayor, E., Lush, R., and Gabrilovich, D. 2003. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63:4441-4449.
- A67. Young, M. R., Lozano, Y., Ihm, J., Wright, M. A., and Prechel, M. M. 1996. Vitamin D3 treatment of tumor bearers can stimulate immune competence and reduce tumor growth when treatment coincides with a heightened presence of natural suppressor cells. Cancer Lett 104:153-161.
- A68. Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R., and Albelda, S. M. 2005. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713-6721.
- A69. Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A., Martin, F., Apetoh, L., Rebe, C., and Ghiringhelli, F. 1158. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052-3061.
- A70. Serafini, P., Borrello, I., and Bronte, V. 2006. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biot 16:53-65.
- A71. Bruchard, M., Mignot, G., Derangere, V., Chalmin, F., Chevriaux, A., Vegran, F., Boireau, W., Simon, B., Ryffel, B., Connat, J. L., et al. 1038. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19:57-64.
The role of TFF2-mediated suppression of MDSCs in cancer development can also be tested in mouse models of mammary cancer (for example, see Hennighausen (2000) Breast Cancer Res. 2(1): 2-7; and Fantozzi et al., (2006) Breast Cancer Res. 2006; 8(4): 212, each of which are hereby incorporated by reference in their entireties). A large number of well validated genetically engineered models (GEM) of breast cancer have been developed over the past few decades, and many (e.g. MMTV-HER2/Neu or MMTV-Wnt-1 or MMTV-PyV-mT) are widely available. In addition, a H. hepaticus infection model has recently been utilized to stimulate breast cancer development in Apc/Min mice (Rao V P et al, Cancer Res 2006; 66:7395-400).
The role of TFF2-mediated suppression of MDSCs in cancer development can also be tested in mouse models of prostate cancer (for example, see Jeet et al (2010) Cancer Metastasis Rev. 29(1):123-42; Zhou et al., (2010) J Androl. 31(3):235-43; Ahmad et al., (2008) Expert Rev Mol Med. 10:e16; Havens et al., (2008) Neoplasia. 10(4): 371-379; Valkenburg and Williams (2011) Prostate Cancer, Volume 2011, Article ID 895238, doi:10.1155/2011/895238, each of which are hereby incorporated by reference in their entireties). A large number of well validated genetically engineered models of prostate cancer have been developed over the past few decades, and many are widely available.
In addition, the role of TFF2-mediated suppression of MDSCs in cancer development can also be tested in mouse models of lung cancer (for example, see Meuwissen and Berns (2005) GENES & DEVELOPMENT 19:643-664; Kwon and Berns (2013) Molecular Oncology 7(2):165-177; de Serrano and Meuwissen (2010) Eur Respir J. 35: 426-443, each of which are hereby incorporated by reference in their entireties). A large number of well validated genetically engineered models of lung cancer have been developed over the past few decades, and many are widely available.
Using one or more of these mouse models, the ability of TFF2 to suppress myeloid progenitors and cancer initiation and progression can be tested. To start with, the CD2-TFF2 transgenic mice can be crossed to a breast cancer mouse model (non-limiting examples include: MMTV-HER2/Neu or MMTV-Wnt-1 or MMTV-PyV-mT), and the development of breast cancer can be followed over time. To study prostate cancer, the CD2-TFF2 transgenic mice can be crossed to a prostate cancer mouse model (non-limiting examples include: Androgen Receptor Knockout mouse, PB-Cre4×PTEN(loxP/loxP) mouse, TRAMP (for transgenic adenocarcinoma mouse prostate), FG-Tag mouse, PB-Neu, and LADY), and the development of prostate cancer can be followed over time. To study lung cancer, the CD2-TFF2 transgenic mice can be crossed to a lung cancer mouse model (non-limiting examples include: CC10-Tag/CC10-hASH1, K5-E6/E7, CCRP-H-Ras, and MMTV-TGF-β1 DN), and the development of lung cancer can be followed over time.
In addition, the use of adenoviral-TFF2 delivery to these animals can be used, through tail vein injection of the recombinant virus. Endpoints can include tumor number, tumor size, and tumor load. This can be correlated with the level of circulating MDSCs and the percentage of MDSCs in the mouse spleen and bone marrow. Without being bound by theory, TFF2 will reduce MDSC expansion and cancer development in either the breast, prostate, or lung.
Example 8 TFF2 is Upregulated in Memory T Cells Through Adrenergic StimulationThe studies described herein suggested that the vagus nerve upregulates TFF2 expression in CD4+ memory T cells through an adrenergic (e.g. noradrenaline) pathway. This conclusion was based on previous studies on the inflammatory reflex, which documented that the vagus stimulated splenic nerves, which released noradrenaline to stimulate CD4+ memory T cells. These T cells in turn produce acetylcholine, which inhibit cytokine production (TNF-alpha) by macrophages. However, in order to demonstrate that adrenergic signaling also regulates the production of TFF2 by T cells, studies were carried out with isoproterenol stimulation of memory T cells. These studies (
The studies described herein supported the notion that memory CD4+ T cells are the major source of TFF2 mRNA expression in the spleen. They appear to be the same T cells as those targeted by the vagus nerve, which have been reported to be positive for Chat expression.
To further address this issue, a TFF2-EGFP BAC transgenic mouse was generated. It was confirmed that the transgene was expressed in the stomach, pancreas and spleen. Splenic memory T cells were sorted using CD4+CD44hiCD62Llo for flow sorting, and it was confirmed that these cells strongly expressed the TFF2-EGFP transgene, while the rest of the splenic T cells did not (
In addition, mouse splenocytes were treated with PMA/ionomycin, which combines cell stimulation with protein transport inhibition, and then FACS sorted memory T cells (CD4+CD44hiCD62Llo), then fixed, permeabilized and performed immunofluorescent staining (
TFF2 is expressed in most mammals primarily in the gastric mucosa, but as described herein is also in low levels in the spleen. The data described herein suggested that T cells are the major source of TFF2 within the spleen. However, in order to confirm this finding, various hematopoietic populations in the spleen were sorted, and then assessed TFF2 expression by RT-PCR (
The data described herein showed that TFF2 overexpression inhibits expansion of myeloid-derived suppressor cells (MDSCs), which was associated with an increase in CD8+ T cells in the colon and a decrease in colonic tumors. To show that the decreased tumors in the colon are due to increased infiltration with activated T cells studies were carried out to show that CD8+ T cells are essential for the decreased colonic tumors seen in TFF2 transgenic mice (
In order to show that the TFF2-overexpressing mice have activated CD8+ T cells, CD8+ T cells were sorted from the spleens of transgenic mice, and the amount of interferon-gamma and granzyme B (markers of activated T cells) was measured by ELISASPOT (
As described herein, TFF2 overexpression, whether via the CD2-TFF2 transgene or through Ad-TFF2 overexpression, suppresses MDSCs and suppresses colon tumors. To show that the suppression of colon tumors was through MDSCs, or that MDSCs in TFF2 deficient mice induced colon cancer, adoptive transfer of the MDSCs from TFF2−/− mice treated with AOM/DSS into CD2-TFF2 mice that have been treated with AOM/DSS was carried out. This addressed whether MDSCs from TFF2−/− mice that are prone to cancer can change the cancer-resistant CD2-TFF2 mice to mice that are susceptible to cancer. Is the absence of these MDSCs, instructed in the spleen of mice lacking TFF2, the critical factor missing in the process of cancer initiation by AOM/DSS.
Here it was shown the direct suppression of MDSC tumor initiating function by TFF2 overexpression. Myeloid precursors instructed in the spleen in the absence of TFF2 can migrate to the periphery to suppress CD8+ T cell responses, and such instruction can be altered by expression of TFF2 in the spleen.
Claims
1-51. (canceled)
52. A method of treating a disease or condition in a subject comprising administering to the subject a TFF1 molecule, a TFF2 molecule, a TFF3 molecule, or a combination thereof, wherein the treatment is selected from the group consisting of treating a digestive system cancer, decreasing myeloid-derived suppressor cell proliferation, decreasing tumor growth, and treating dysplasia of the digestive system.
53. The method of claim 52, wherein the TFF1 molecule, TFF2 molecule, or TFF3 molecule is a nucleic acid.
54. The method of claim 53, wherein the nucleic acid is delivered as a viral vector.
55. The method of claim 53, wherein the nucleic acid comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 6.
56. The method of claim 52, wherein the digestive system cancer is selected from the group consisting of small intestine cancer, large intestine cancer, colon cancer, rectal cancer, and anal cancer.
57. The method of claim 52, wherein the myeloid-derived suppressor cell is a tumor associated myeloid-derived suppressor cell.
58. The method of claim 52, wherein the myeloid-derived suppressor cell expresses a MDSC-specific surface marker.
59. The method of claim 52, wherein the myeloid derived suppressor cell does not express a MDSC-specific surface marker.
60. The method of claim 58, wherein the MDSC-specific surface marker is selected from the group consisting of (1) Grl1, CD11b, or a combination thereof; and (2) CD14, CD15, CD33, or a combination thereof.
61. The method of claim 59, wherein the MDSC-specific surface marker is HLA-DR.
62. A kit for use for the method of claim 52, the kit comprising a TFF1 molecule, a TFF2 molecule, a TFF3 molecule, or a combination thereof, and instructions of use.
63. A method of determining the presence of, or predisposition to, a cancer of the digestive system in a sample from a subject, the method comprising:
- (a) detecting the presence, absence or reduction of a TFF1 molecule, TFF2 molecule, or a TFF3 molecule in the sample, wherein absence, or reduction of the molecule indicates the presence of, or predisposition to, a cancer of the digestive system.
64. The method of claim 63, further comprising (b) administering a TFF1 molecule, a TFF2 molecule, a TFF3 molecule, or a combination thereof to the subject where a TFF1 molecule, a TFF2 molecule, or a TFF3 molecule was not detected.
65. The method of claim 63, further comprising incubating the sample with an agent that binds a TFF1 molecule, a TFF2 molecule, or a TFF3 molecule, or fragment thereof.
66. The method of claim 65, wherein the agent is an antibody to a TFF1 molecule, a TFF2 molecule, or a TFF3 molecule.
67. The method of claim 63, wherein the digestive system cancer is selected from the group consisting of small intestine cancer, large intestine cancer, colon cancer, rectal cancer, and anal cancer.
68. The method of claim 63, wherein the TFF1 molecule, TFF2 molecule, or TFF3 molecule is a nucleic acid.
69. The method of claim 68, wherein the nucleic acid is delivered as a viral vector.
70. A diagnostic kit for determining the presence of, or predisposition to, a cancer of the digestive system, the kit comprising an agent that binds to a TFF1 molecule, a TFF2 molecule, or a TFF3 molecule, and instructions for use.
71. The kit of claim 70, wherein the agent is an antibody to a TFF1 molecule, a TFF2 molecule, or a TFF3 molecule.
Type: Application
Filed: Nov 21, 2014
Publication Date: Jun 4, 2015
Inventors: Timothy C. WANG (New York, NY), Jan K. KITAJEWSKI (Ridgewood, NJ)
Application Number: 14/550,246