METHODS FOR REPAIR OF ABNORMAL MITRAL VALVES
Methods of remodeling an abnormal mitral valve with an annuloplasty ring having a reduced anterior-to-posterior dimension to restore coaptation between the mitral leaflets in mitral valve insufficiency (IMVI). The ring has a generally oval shaped body with a major axis perpendicular to a minor axis. An anterior section lies between anteriolateral and posteriomedial trigones, while a posterior section defines the remaining ring body and is divided into P1, P2, and P3 segments. The anterior-to-posterior dimension of the ring body is reduced from conventional rings; such as by providing, in atrial plan view, a pulled-in P3 segment. The ring body may have a downwardly deflected portion in the posterior section. The downwardly deflected portion may have an apex which is the lowest elevation of the ring body and may be offset with respect to the center of the downwardly deflected portion toward the P3 segment.
This application is a continuation of U.S. patent application Ser. No. 13/094,145, filed Apr. 26, 2011, which is a continuation of U.S. patent application Ser. No. 10/882,031, filed Jun. 30, 2004, now U.S. Pat. No. 7,935,145, which is a continuation of U.S. patent application Ser. No. 10/678,338 filed Oct. 3, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 10/192,516, filed Jul. 8, 2002, now U.S. Pat. No. 6,858,039, and which is also a continuation-in-part of U.S. patent application Ser. No. 10/144,932, filed May 15, 2002, now U.S. Pat. No. 6,726,717, which claims the benefit under 35 U.S.C. §119(a) of Italian Application No. MI 2001A 001012, filed May 17, 2001, the disclosures all of which are incorporated by reference in their entireties.
FIELD OF THE INVENTIONThe present invention relates generally to medical devices, specifically to an annuloplasty ring and related procedure for surgically reconstructing the mitral valve annulus of a patient's heart. More specifically, this invention relates to a mitral valve annuloplasty ring and corresponding technique designed to correct an abnormal annulus in the pathology encountered with all functional anomalies seen with ischemic mitral valve insufficiency (IMVI), or other pathologies resulting in functional mitral regurgitation.
BACKGROUND OF THE INVENTIONIn the anatomy of the human heart, the left atrium receives oxygenated blood from the lungs through the pulmonary veins. The mitral valve separates the left atrium from the left ventricle. During diastole, as the contraction triggered by the sinoatrial node progresses through the atria, oxygenated blood passes through the mitral valve into the left ventricle. In this phase, the aortic valve leading into the ascending aorta closes, allowing the left ventricle to fill with blood. A similar flow of venous blood occurs from the right atrium through the tricuspid valve to the right ventricle. Once the ventricles are full, they contract during the systolic phase and pump blood out of the heart. During systole, the mitral valve closes and the aortic valve opens, thus preventing blood from regurgitating into the left atrium and forcing blood into the aorta, and from there throughout the body. Because of the high pressures associated with the left ventricle during systole, proper functioning of the mitral valve to prevent blood from flowing back through the system is extremely important.
The various anatomical components of a healthy mitral valve are depicted in
Normal dilatation of the left ventricle and downward displacement of the papillary muscles AP and PP pulls the chordae tendoneae CT, which in turn pull the leaflets open. When the ventricles contract the papillary muscles are displaced upward, and the distance h between the papillary muscles and the annulus is reduced. The chordae tendoneae become slack, allowing the leaflets to come together or “coapt.” As seen in
In patients who suffer from a heart attack or cardiomyopathy, regions of the left ventricle lose their contractility and dilate. Dilation of the left ventricle is often associated with a down and outward displacement of the papillary muscles. The change in the location of the papillary muscles increases the distance between the papillary muscles and the mitral valve leaflets. Since the chordae tendenae do not change their length significantly, the chordae tend to pull or “tether” the leaflets. In severe cases of left ventricle dilatation, the tethering of the chordae prevents the leaflets from coapting resulting in mitral regurgitation. Since this type of regurgitation is not associated with any disease or damage of the mitral apparatus it is often referred to as “functional” mitral regurgitation. Dilation of the left ventricle LV is also a symptom associated with mitral regurgitation in patients with idiopathic dilated cardiomyopathy or ischemic cardiomyopathy, and in patients with long-standing valvular regurgitation from other etiologies such as myxomatous disease, endocarditis, congenital defects, or rheumatic valvular disease.
As seen in
Mitral valve insufficiency is common treated by repairing or replacing the mitral valve. The most widely accepted technique for mitral valve repair is the remodeling of the mitral annulus with an annuloplasty. The goal of the annuloplasty is two-fold: reduction of the annular area to its normal size and reshaping of the annulus to re-establish the normal geometry of a health mitral annulus. In case of functional mitral regurgitation, the root cause of the insufficiency is the dilation of the LV and the associated dislocation of the papillary muscle. The purpose of the annuloplasty is to compensate for the dilation of the LV by reducing the cross-sectional area beyond its natural size. The downsized annulus brings the two leaflets closer together re-establishing coaptation of the leaflets.
Prostheses for annuloplasty surgery available on the market are generally of two types, with some hybrids. Flexible annular prostheses, made of various materials, that allow a “linear” reduction of the annular circumference, and rigid and semi-rigid annular prostheses made of various materials, that allow the “linear” reduction of the annular circumference and a geometric remodelling so as to re-establish the physiological systolic shape of the annulus. Additionally, semi-rigid prostheses permit some deformation in order to allow the prosthesis to follow the deformations of the annulus-during the cardiac stages. All the rigid and semi-rigid annular prostheses have a kidney-like or coupled D shape, with an anterior half-ring, rectilinear in first approximation that gets sutured in correspondence with the anterior valve leaflet and a curved posterior half-ring that is sutured in correspondence with the posterior valve leaflet. The shape of the annular prostheses at issue reproduces the configuration of the valve annulus during the ventricular systole, and therefore in the stage of the valve closing. The ratio between minor axis and major axis is approximately 3:4 in all the models currently on the market since it reproduces normal anatomical ratios.
The “downsizing” technique involves, for example, selecting a 26 mm ring for a nominal 28 mm annulus, while still maintaining the minor axis/major axis size ratio of approximately 3:4. The size nomenclature refers to the width of the major axis. Although good results have been reported with the downsizing technique, the reliability and durability of this operation to correct ischemic mitral valve insufficiency are not as good as for other causes of mitral valve insufficiency using the same techniques. This is largely due to the fact that a remodeling annuloplasty with currently available rings corrects only one anomaly, and various other functional anomalies seen in ischemic mitral valve insufficiency may not be corrected as effectively.
Annuloplasty rings have been developed in various shapes and configurations over the years to correct mitral regurgitation and other conditions that reduce the functioning of the valve. For example, Carpentier, et al. in U.S. Pat. No. 4,055,861 disclosed two semi-rigid supports for heart valves, one of which being closed (or D-shaped) and the other being open (or C-shaped). In the closed configuration, the ring is generally symmetric about an anterior-posterior plane, and has a convex posterior side and a generally straight anterior side. U.S. Pat. Nos. 5,104,407, 5,201,880, and 5,607,471 all disclose closed annuloplasty rings that are bowed slightly upward on their anterior side. Because the anterior aspect of the mitral annulus MA is fibrous and thus relatively inflexible (at least in comparison to the posterior aspect), the upward curve in the anterior side of each ring conforms that ring more closely to the anatomical contour of the mitral annulus. This three dimensional configuration reduces undue deformation of the annulus.
In general, conventional annuloplasty rings are intended to restore the original configuration of the mitral annulus MA. When correcting a condition as seen in
It should be noted here that correction of the aortic annulus requires a much different ring then with a mitral annulus. For example, U.S. Pat. Nos. 5,258,021 and 6,231,602 disclose sinusoidal or so-called “scalloped” annuloplasty rings that follow the up-and-down shape of the three cusp aortic annulus. Such rings would not be suitable for correcting a mitral valve deficiency.
While good results in the treatment of mitral valve insufficiency, congestive heart failure, and mitral regurgitation have been obtained in the preliminary applications of the above-described methods and apparatuses, it is believed that these results can be significantly improved. Specifically, it would be desirable to produce a mitral annuloplasty ring that takes into consideration all of the dysfunctions that exist in ischemic mitral valve insufficiency, namely, the dilatation of the annulus, the asymmetrical deformation of the annulus, and the increased distance between the posterior papillary muscle and the annulus.
SUMMARY OF THE INVENTIONThe inventors have noticed that in certain pathological conditions, there is a need to modify the minor axis/major axis size ratio in order to make the operation of reconstruction of the mitral valve more effective: for instance in order to bring the valve leaflets closer to each other in the case of anatomical or functional tissue deficiency of one or both leaflets. It has also been observed that anatomical variations that do not correspond to the conventionally accepted ratio of 3:4 are frequent in nature.
According to present the invention, better mitral annulus repair results have been attained by means of an annular prosthesis made up of a posterior half-ring and an anterior half-ring that are coupled to each other on a first transverse plane which defines a maximum width section of the prosthesis, characterized in that the ratio between the distance between said anterior half-ring and said posterior half-ring, as measured along a second plane, perpendicular to said first plane and equidistant to said couplings, and said maximum width of the prosthesis is lower than 3:4.
In one aspect, the present invention provides an annuloplasty ring for implantation in a mitral valve annulus that has a pathologic condition such that the posterior aspect thereof droops downward abnormally. The annuloplasty ring includes a rounded ring body having an anterior section and a posterior section. The ring body is oriented about a central flow axis that defines an upward direction and a downward direction, the downward direction corresponding to the direction of blood flow through the mitral valve annulus. The posterior section the ring body bows downward out of a plane perpendicular to the central flow axis.
The ring body may bow downward between about 2-15 mm from one end thereof to a lowest point, and desirably bows downward between about 4-8 mm from one end thereof to a lowest point. The bow in the ring body may or may not be centered in the posterior section, and in certain cases of ischemic mitral valve insufficiency is centered in the P3 segment of the ring. Preferably, the ring body is made of a malleable material such that the bow in the ring body may be manually reshaped. Desirably, the ring body is made of a semi-rigid material that will retain its posterior bow in opposition to the stresses that will be imparted by muscles of the heart throughout each beating cycle. The ring body may be substantially planar except in the posterior section, or an anterior section of the ring body may bow upward from one end thereof to a lowest point.
In plan view, as seen along the flow axis, the ring body preferably defines an oval shape with a major axis perpendicular to a minor axis, the minor axis bisecting both the anterior and posterior sections. Further, the bow in the posterior section may begin at symmetric locations across the minor axis that are spaced from the major axis around the ring body by an angle θ of between about 0-45°, more preferably about 30°.
The ring body may further include two upward bows on either side of the downward bow on the posterior section, and wherein the downward bow may be between about 2-15 mm. In one embodiment, the ring body comprises a plurality of ring elements concentrically disposed. A polymer strip in between each ring element may be provided. Optionally, the ring elements comprise bands that have a substantially larger height in the flow axis dimension than in the dimension perpendicular to the flow axis. Further, the ring elements may have varying heights so that the ring body is more flexible in the posterior section than around the remainder of the ring body.
Another aspect of the present invention is a method of repairing a mitral heart valve annulus that has a posterior aspect that is depressed downward along the blood flow axis relative to an anterior aspect. The method includes implanting an annuloplasty ring having an anterior section sized to fit the anterior aspect of the annulus and a posterior section sized to the posterior aspect, wherein the ring posterior section bows downward parallel to the central axis relative to the anterior section. The annuloplasty ring may be malleable and the surgeon adjusts the bow in the posterior section manually.
Another aspect of the invention is a method of repairing a mitral heart valve annulus that has a posterior aspect, an anterior aspect, and a blood flow axis. The method includes inspecting the shape of the mitral annulus and selecting a three-dimensional annuloplasty ring based on the shape of the mitral annulus. The selected annuloplasty ring has an anterior section and a posterior section generally arranged around a central axis. The central axis defines an upward direction and a downward direction, wherein the ring posterior section bows downward out of a plane perpendicular to the central axis. The method includes implanting the annuloplasty ring so that the ring posterior section attaches to the posterior aspect of the mitral valve annulus and the posterior section bows in the blood flow direction.
In a still further aspect, the present invention provides an annuloplasty ring for implantation in a mitral valve annulus that includes a rounded ring body having an anterior section and a posterior section. The ring body is oriented about a central flow axis that defines an upward direction and a downward direction, the downward direction corresponding to the direction of blood flow through the mitral valve annulus. The shape and dimension of the ring differs from the shape and dimension of the currently available rings in order to correct the three causes of valve dysfunction described above: 1) the ventricular diameter is reduced, 2) the ring is asymmetrical with inward advancement of the PC-P3 region creating a decrease in the oblique distance from there to the anterior side, and 3) the P2 and P3 regions of the ring are deflected downward in order to reduce the increased distance h′ between the annulus and the posterior papillary muscle.
In accordance with one particular aspect of the invention, an annuloplasty ring for implantation in a mitral valve annulus is provided that is designed to correct ischemic mitral valve insufficiency. The annuloplasty ring comprises a generally oval shaped ring body oriented about a central flow axis that defines an upward direction and a downward direction. The downward direction corresponds to the direction of blood flow through the mitral valve annulus from the left atrium to the left ventricle. In plan view, as seen along the flow axis, the ring body has a major axis perpendicular to a minor axis, the major and minor axes being perpendicular to the flow axis. In atrial plan view the ring body has an anterior section generally defined between an anterolateral trigone and a posteromedial trigone, and a posterior section around the remaining periphery of the ring body and between trigones. The posterior section is divided into three sequential segments, P1, P2, and P3, starting from the anterolateral trigone and continuing in a counterclockwise direction, wherein the minor axis intersects both the anterior section and the P2 segment of the posterior section.
In one version of the ring designed to correct ischemic mitral valve insufficiency, given a predetermined major axis dimension, the ratio of the minor axis dimension to the major axis dimension is less than 3:4 by reducing the absolute value of the minor axis dimension by between about 2-4 mm from an exact 3:4 ratio so as to restore the coaptation between the two leaflets without reducing excessively the overall orifice area of the annuloplasty ring.
In another version of the ring designed to correct ischemic mitral valve insufficiency, the ring body lies substantially in a plane defined by the major and minor axes or in a saddle-shaped three-dimensional surface except for a portion of the posterior section located within the P2 and P3 segments which is deflected downward with respect to the remaining sections of the ring body. The downwardly deflected portion includes an apex which is the lowest elevation of the ring body, and wherein the apex is off-center in the downwardly deflected portion toward the P1 segment of the ring body. As a result, in a posterior elevational view, a transition of the ring body between the P1 segment and the apex extends along a shorter distance around the ring body than a transition of the ring body between the apex and the non-downwardly-deflected portion of the P3 segment.
Any of the annuloplasty rings of the present invention may further include a sewing cuff around the ring body having an enlarged portion around the periphery of the ring body that can accommodate two radially adjacent rows of suture lines. Markings are desirably provided on the sewing cuff to indicate placement of the two radially adjacent rows of suture lines. The enlarged portion of the sewing cuff may extend around less than the entire periphery of the ring, and is preferably at least partly in the P3 segment.
The present invention provides various annuloplasty rings for correcting all the dysfunctions that exist in ischemic mitral valve insufficiency, and other pathologies not adequately corrected by prosthetic rings of the prior art. Various embodiments are shown and described in the present application with features that can be utilized independently or in combination. It should be understood, therefore, that any of the features described herein can be supplemented by one or more of the other features. Indeed, a particularly useful combination is believed to be either a reduction in the anterior-posterior dimension or a “pulled-in” P3 segment, in conjunction with a downward bow in the posterior section.
The attached figures illustrate several exemplary embodiments of the annuloplasty ring of the present invention, which can be described as being continuous and having an anterior section, a posterior section and right and left sides. All of the sides are generally curvilinear with no specific demarcations to indicate abrupt transitions therebetween. Rather, smooth transitional sections between the adjacent sides provide curvilinear connections that give the ring a generally rounded (e.g., oval) configuration.
The annuloplasty rings of the present invention are described as generally having an oval shape. This definition is intended to encompass various shapes in atrial plan view that are continuous around a periphery and are longer in one dimension (along a major axis) than in a perpendicular direction (along a minor axis). As seen from the figures, the shapes are not precisely ovals but are more similar to a capital “D”, or can be likened to a kidney bean. It should also be understood that the various shapes are intended to conform to the native mitral annulus, but also take into consideration the various deformations and dysfunctions of the ischemic mitral valve.
In a typical mitral annuloplasty remodeling, an annuloplasty ring sized slightly smaller than the distended annulus is implanted. The ring can be downsized one or two sizes, which typically corresponds to a reduction in the major axis dimension of 2 to 4 mm. The annuloplasty rings of the present invention incorporate this reduction by having a 2 to 4 mm reduction of the minor axis dimension as compared to the currently available rings. Desirably, given a predetermined major axis dimension, the ratio of the minor axis dimension to the major axis dimension is less than 3:4 by reducing the absolute value of the minor axis dimension by between about 2-4 mm from an exact 3:4 ratio so as to restore the coaptation between the two leaflets without reducing excessively the overall orifice area of the annuloplasty ring.
Furthermore, the anterior-posterior or minor axis size reduction may be more pronounced in the P3 region so as to further overcorrect the predominant tethering of the posterior leaflet and the dilatation of the annulus in this region. This results in an asymmetrical shape of the ring. It has been discovered that a size reduction along the minor axis effected by reshaping the posterior section of the ring results in more successful leaflet coaptation and generally better clinical results. This configuration differs from some earlier annuloplasty rings that reduced the minor axis dimension by only reshaping the anterior section of the ring.
In some embodiments, the posterior section bows downward in the direction of blood flow to help remodel the mitral annulus in the region of the posterior leaflet scallops P2 and P3 (see
In
In
For every size of prosthesis two or more reduced ratios can therefore be provided. By “size” the dimension of the transverse width of the prosthesis is meant; the “size” represents the clinical parameter on the basis of which the prosthesis is selected in each single clinical case in examination, and it is also the identifying parameter for the prosthesis.
The lower ratio as compared with the prostheses currently used for annuloplasty surgery allows its use in selected cases of pathologies that are not treatable in adequate way with conventional prostheses.
The lower ratios in this case have the function to treat pathologies characterized by reduced movement of the leaflets with tethering (stretching towards the cardiac apex) symmetrical (as regards each leaflet) with medium or serious proportions. The reduction of the ratio confers the prosthesis a more “squeezed” shape that allows a better apposition of the leaflets in selected cases. For instance, in the dilated cardiomyopathy, when the expansion of the left ventricle determines a lateral movement and toward the apex of the papillary muscles, the leaflets stretch toward the cardiac apex and the apposition is thus lacking at central level. A possible sizing, in addition, must respect an anatomical requirement: the anterior half-ring 1 (the base for the implant of the front leaflet) is anatomically fixed and not modifiable, and therefore, the sizing should not be applied to this structure, that is to the width of the prosthesis. The maintaining of a normal fore width of the prosthesis, associated with the reduction of the height allows an undersizing that is less inclined to deformation of the fore leaflet, therefore reducing the risk of residual insufficiency.
In
In some extreme cases, it could be useful to make the distance between the two half-rings in the central zone equal to zero, in order to obtain an eight-shape configuration, in order to improve the coaptation at central level. This remodeling simulates the double orifice operation, in which the leaflets are joined at the center of the valve in order to force the central coaptation. This prosthesis could also be used with this type of technique in order to reduce the stress on the suture and in order to minimize the reduction of the valve area.
In
The prosthesis, according to the present invention, can be made of an inert material that is highly tolerated by the human organism and can have a resistance that is appropriate to the use and that can substantially maintain the shape given to it.
An exemplary annuloplasty ring 30 of the present invention is shown in
The ring 30 has an oval or somewhat D-shaped configuration with a relatively straight anterior section 34 opposite a curved posterior section 36. A pair of trigone or commissure markers 38a, 38b generally delimit the anterior side 34, while a pair of opposed side sections 40a, 40b extend between each of these markers and the posterior section 36. A plurality of knotted suture loops 42 are typically used to secure the ring 30 to the mitral annulus MA, although other fasteners such as staples, fibrin glue, or the like may be used.
In the pathological conditions for which the annuloplasty ring 30 is best suited, the posterior aspect of the mitral annulus is depressed relative to the anterior aspect, as is illustrated in
The exemplary annuloplasty ring 30 of
As with many conventional rings, the ratio of the minor axis dimension to the major axis dimension is desirably about 3:4. This size ratio is the “classic” shape of the mitral annulus, and may be the best configuration of the annuloplasty ring 30. However, it is contemplated that other shapes that have smaller minor axis-to-major axis ratios may actually increase leaflet coaptation. Although not geometrically precise, the non-circular ring configuration may be considered oval, elliptical or D-shaped. It should be noted that the present invention could also take the form of a discontinuous ring that has a C-shape, for example. The break in such a ring may be in the anterior section, and the posterior section is continuous and exhibits the downward bow as explained.
The Z-axis in
Several points are noted around the ring 30 to help describe the posterior bow. These points, and the ones shown in
Various possible configurations for the ring 30 as seen in
Although the ring 30 is shown in
Various permutations of the ring 50 shown in
The inner ring body 60 demonstrates an asymmetric ring that conforms to patients that have a posterior annular bow that is displaced from the midline. It is believed that most patients have such a malformed anatomy resulting from the pathologic conditions described herein. However, posterior bows that are centered or even offset to the left have been observed. Therefore, one configuration of ring that is embodied in the present invention is one that is pre-shaped with a posterior bow in the middle or to the right, and that is malleable so that the bow can be exaggerated or diminished by the surgeon after examination of the precise shape of the patient's annulus. Further, in such a convertible ring the bow can even be displaced, from the right to the left, for example. Although the material of the ring permits manual deformation, it would be stiff enough to withstand further deformation once implanted and subjected to normal physiologic stresses.
The ring preferably includes an inner ring body and an outer sewing sheath that permits the ring body to be sutured into the mitral annulus. The sewing sheath should be sufficiently porous and/or flexible to permit sutures to be passed therethrough. One exemplary construction is to enclose the inner ring body in a tubular sheath of suture-permeable material, such as silicone, which is then covered with a fabric tube, such as polyethyl terepthalate. As opposed to flexible annuloplasty rings that are designed simply to reduce the circumference of the mitral annulus, the annuloplasty ring of the present invention must be semi-rigid. It must retain its posterior bow in opposition to the stresses that will be imparted by muscles of the heart throughout each beating cycle. For example, the ring body may be made from materials such as Elgiloy (a cobalt-nickel alloy), titanium, or Nitinol (a nickel-titanium alloy). Exemplary ring constructions are seen in the CARPENTIER-EDWARDS CLASSIC® Annuloplasty Ring, and in the CARPENTIER-EDWARDS PHYSIO® Annuloplasty Ring, both made and sold by Edwards Lifesciences of Irvine, Calif.
It will also be readily apparent that supporting the mitral valve annulus with the present annuloplasty ring will maintain the posterior leaflet depressed below the anterior leaflet, and thus the area of coaptation therebetween will be different than in a healthy valve. This is required by the pathology of the ventricle with displacement of the papillary muscles and posterior leaflet. However, those of skill in the art will recognize that this slight realignment of the leaflets is acceptable because of the surplus area of the leaflets available for coaptation, and because the realignment will be offset by other changes to the shape of the annulus that should over time improve coaptation of the two leaflets and therefore decrease regurgitation.
A further exemplary embodiment of an annuloplasty ring 130 of the present invention is seen in
The annuloplasty ring 130 is shown fully constructed with an external fabric covering (not numbered) over an internal ring body. It will be understood that the flexible fabric covering adds relatively little to the overall shape of the ring 130, and therefore the configuration depends on the shape of the internal ring body. Therefore, when the various shapes of the rings herein are described it is really the shapes of the ring bodies that are referenced.
The annuloplasty ring 130 comprises an anterior section AS defined between an anterolateral trigone T1 and posteriomedial trigone T2, with the remainder of the ring defined between the trigones by a posterior section made up of three sequential segments: P1, P2, and P3. The annuloplasty ring 130 is generally oval-shaped with a longer dimension along a major axis 134, a shorter dimension along a minor axis 136. The minor axis 136 intersects both the anterior section AS and the posterior segment P2. In a preferred embodiment, the minor axis 136 bisects both the anterior section AS and the posterior segment P2.
As seen in
With reference again to
The annuloplasty ring 130 has an asymmetric configuration across the minor axis 136 with the convexity of the P1 segment of the posterior section being greater than the convexity of the P3 segment. In particular, a portion of the P3 side is pulled in toward the center of the ring so as to define an oblique inner dimension line 142a that is shorter than an oblique inner dimension line 142b. The dimension lines 142a, 142b are measured from a point 144 on the minor axis 136 on the middle inner edge of the anterior section AS. The dimension line 142a is drawn to the point in the P3 zone that is closest to the point 144 at the middle of the anterior section AS, and forms an angle θ with the minor axis 136. The dimension line 142b is also oriented at an angle θ from the minor axis 136 but in the opposite rotational direction form the line 142a.
Stated another way, the annuloplasty ring 130 has a generally oval shape except for a reduced curvature portion 150 extending between a point 152 at the intersection of the minor axis 136 and the posterior segment P2, and the second trigone T2. “Reduced curvature” is relative to the curvature of the opposite side of the ring 130 across the minor axis 136; namely, relative to the segment P1 and the left side of segment P2. The conventional “oval” shape of the ring 130 is illustrated by a dashed line extension 154 around the modified portion of the ring, and the divergence of the reduced curvature portion 150 is apparent. The reduced curvature portion 150 is shown extending through approximately half of the central posterior segment P2 and all of the third posterior segment P3. Alternatively, the central posterior segment P2 could continue the oval shape of the remainder of the ring 130 and the reduced curvature portion 150 could extend only from imaginary point 156 to the second trigone T2. The reduced curvature portion 150 is desirably less convex than the imaginary oval shape 154, but may even be linear, or even slightly concave.
The effect of providing the reduced curvature portion 150 of the P3 segment, is to remodel the mitral annulus in the region of the posterior leaflet scallop P3 (see
The annuloplasty ring 160 lies substantially in a plane (or in a saddle-shaped three-dimensional surface) except for a portion 170 of the posterior section located within the P2 and P3 segments that is deflected downward with respect to the flow axis 162. As seen best in
In preferred embodiment, the apex A of the deflected portion 170 is off-center toward the P1 segment such that, as seen in
The anterior section AS is shown in
A further exemplary embodiment of an annuloplasty ring 180 of the present invention is seen in
The annuloplasty ring 180 is substantially saddle-shaped as opposed to being substantially planar. That is, the posterior segments P1 and P3 rise upward from a reference plane 184 while the anterior section AS lies generally on the reference plane. If the ring 180 were completely saddle-shaped, the central posterior segment P2 would also lie on the reference point. Instead, the downwardly deflected portion 182 brings the posterior segment P2 below the reference plane 184. It should be understood, therefore, that the portion 182 deflects downward from the saddle-shaped remainder of the ring 180.
In a preferred construction, the annuloplasty ring bodies of the several rings of the present invention are constructed to be more flexible in the posterior section than in the anterior section AS. For example, the ring body may be constructed with a metallic core of different thickness or with a series of annular bands that overlap in the anterior section to render that section less flexible than in the posterior section. In an alternative construction the ring is completely rigid throughout.
The major axis 202 and minor axis 204 are shown for ring 200b in
As mentioned above, the minor axis dimensions yi are reduced for each ring such that the ratio of the minor axis dimension to the major axis dimension is less than 3:4 (or less than 75%). In absolute terms, this is a reduction of between about 2-4 mm from an exact 3:4 ratio so as to restore the coaptation between the two leaflets without reducing excessively the overall orifice area of the annuloplasty ring. For example, Size 24 ring 200a of
Viewed another way, each ring 200a-200g has a minor axis dimension reduction of about 14% from the conventional or normal ring size. This is approximately equivalent to a reduction of about one ring size (e.g., a Size 26 ring to a Size 24 ring is one ring size reduction). However, the use of the rings of the present invention is not the same as the current “downsizing” practice because the ring that is ultimately used is not labeled as a smaller sized ring. For instance, current practice may be to “downsize” and use a Size 24 ring for a measured Size 26 patient. Ring 200b of
Most significantly, however, downsizing reduces the entire ring periphery when often only a segment of the mitral annulus need be corrected. For instance, an asymmetric dilation such as seen in
It should also be noted that the dimensions along the major axes of each ring are less than the measured or otherwise determined annulus size, in keeping with one of the aspects of the invention, which is downsizing the entire ring, not just the anterior-posterior dimension. The desired absolute major axis dimension reduction is between about 1.0-1.5 mm. For example, the convention or normal major axis dimension for Size 24 ring 200a of
All of the annuloplasty rings 200a-200g shown in
Looking at two particular examples,
A third angle θ is also drawn in
The annuloplasty rings 130, 160, 180, or 200a-200g are secured to the patient's annulus using sutures placed in the annulus and then in a sewing cuff which is part of the ring itself. A sewing cuff in this sense means any suture-permeable material or combination thereof that is an integral part of the ring and which is large enough to receive at least a single row of sutures. In conventional models, the sewing cuff is about 2-5 mm wide on the outer periphery of the annuloplasty ring and accommodates a single row of sutures.
For instance,
It will also be appreciated by those of skill in the relevant art that various modifications or changes may be made to the examples and embodiments of the invention described in this provisional application, without departing from the intended spirit and scope of the invention. In this regard, the particular embodiments of the invention described herein are to be understood as examples of the broader inventive concept disclosed in this application.
Claims
1. A method of remodelling an abnormal mitral valve annulus having a clinically measured native annulus “size” given in even mm increments corresponding to a transverse dimension across its orifice along a transverse axis, the annulus further having an anterior-posterior dimension along an anterior-posterior axis across its orifice perpendicular to the transverse axis, the abnormality of the mitral valve annulus exhibiting primarily in dilatation of a posterior aspect of the mitral annulus and reduced valve leaflet coaptation, the method comprising:
- implanting a continuous, closed generally rigid body around the annulus, wherein the rigid body forms a peripheral shape about an opening, the opening having a major axis dimension along a major axis perpendicular to a minor axis dimension along a minor axis, and wherein the ratio of the minor axis dimension to the major axis dimension is smaller than a ratio of the anterior-posterior dimension to the transverse dimension of the annulus, so as to constrict the annulus more along the anterior-posterior axis than along the transverse axis so as to constrict the dilated posterior aspect of the annulus and restore coaptation between the valve leaflets.
2. The method of claim 1, wherein the ring body is “downsized” by reducing the minor axis dimension by between about 2-4 mm relative to the corresponding anterior-posterior dimension of the annulus.
3. The method of claim 1, wherein the major axis dimension is smaller than the measured transverse dimension of the annulus.
4. The method of claim 1, wherein the ratio of the minor axis dimension of the opening to the major axis dimension of the opening is less than 3:4.
5. The method of claim 4, wherein the ratio of the minor axis dimension of the opening to the major axis dimension of the opening is less than or equal to 2.5:4.
6. The method of claim 1, wherein the ring body comprises a metal.
7. The method of claim 1, wherein the ring body has an anterior segment opposite a posterior segment which is divided into P1, P2, and P3 segments, with the minor axis bisecting the P2 segment, and wherein the posterior segment is asymmetric with the P3 segment being located closer to the anterior segment than is the P1 segment.
8. The method of claim 7, wherein the posterior segment has a downward bow.
9. The method of claim 7, wherein the rigid body is covered with a sewing cuff that has an enlarged portion around the periphery of the ring body in the P3 segment that can accommodate two radially adjacent rows of suture lines, the method including sewing the annuloplasty ring to the annulus using the sewing cuff and securing the annuloplasty ring with two rows of suture lines at the enlarged portion of the sewing cuff.
10. A method of remodelling an abnormal mitral valve annulus having a clinically measured native annulus “size” given in even mm increments corresponding to a transverse dimension across its orifice along a transverse axis, the annulus further having an anterior-posterior dimension along an anterior-posterior axis across its orifice perpendicular to the transverse axis, the abnormality of the mitral valve annulus exhibiting primarily in asymmetric dilatation of a posterior aspect of the mitral annulus and reduced valve leaflet coaptation, the method comprising:
- implanting a continuous, closed generally rigid body around the annulus, wherein the rigid body forms a peripheral shape about an opening, the opening defined by the ring body having a major axis perpendicular to a minor axis, and wherein the body is “downsized” with the peripheral shape smaller than the measured annulus so as to constrict the annulus when implanted, and wherein the ring body is reduced in size along the minor axis relative to the corresponding anterior-posterior dimension of the annulus a greater amount than the ring body is reduced in size along the major axis relative to the transverse dimension of the annulus, so as to constrict the dilated posterior aspect of the annulus and restore coaptation between the valve leaflets.
11. The method of claim 10, wherein the ring body is “downsized” by reducing the minor axis dimension by between about 2-4 mm relative to the corresponding anterior-posterior dimension of the annulus.
12. The method of claim 10, wherein the ring body is “downsized” by reducing the major axis dimension by between about 1.0-1.5 mm relative to the corresponding transverse dimension of the annulus.
13. The method of claim 10, wherein the ratio of the minor axis dimension to the major axis dimension is less than 3:4.
14. The method of claim 13, wherein the ratio of the minor axis dimension to the major axis dimension is less than or equal to 2.5:4.
15. The method of claim 10, wherein the ring body comprises a metal.
16. The method of claim 15, wherein the metal is titanium.
17. The method of claim 10, wherein the ring body has an anterior segment opposite a posterior segment which is divided into P1, P2, and P3 segments, with the minor axis bisecting the P2 segment, and wherein the posterior segment is asymmetric with the P3 segment being located closer to the anterior segment than is the P1 segment.
18. The method of claim 17, wherein the posterior segment has a downward bow.
19. The method of claim 17, wherein the rigid body is covered with a sewing cuff that has an enlarged portion around the periphery of the ring body in the P3 segment that can accommodate two radially adjacent rows of suture lines, the method including sewing the annuloplasty ring to the annulus using the sewing cuff and securing the annuloplasty ring with two rows of suture lines at the enlarged portion of the sewing cuff.
20. The method of claim 19, further including markings provided on the sewing cuff to indicate placement of the two radially adjacent rows of suture lines.
Type: Application
Filed: Mar 13, 2015
Publication Date: Aug 20, 2015
Inventors: Ottavio Alfieri (Brescia), Alain F. Carpentier (Paris), Francesco Maisano (Milano), Alberto Redaelli (Milano), Patrick M. McCarthy (Hunting Valley, OH)
Application Number: 14/657,413