UV/EB CURABLE BIOBASED COATING FOR FLOORING APPLICATION

A coating composition and a floor product are disclosed. The coating composition has a biobased component that includes urethane acrylate, vinyl ether, or polyester acrylate. The coating composition includes at least about 5% by weight of renewable and/or biobased component. The coating composition is radiation curable, formed by acrylating a biobased polyol acrylate, and reacting the biobased polyol acrylate with polyisocyanate to form a biobased resin. The floor product includes a cellulosic substrate and a biobased coating applied to the cellulosic substrate.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/863,319 filed Apr. 15, 2013, which is a continuation of U.S. Nonprovisional patent application Ser. No. 12/432,845 filed Apr. 30, 2009, and also claims priority to U.S. Pat. No. 8,420,710 issued on Apr. 16, 2013 and Provisional Application No. 61/125,918, filed Apr. 30, 2008, which are hereby incorporated by reference in their entirety.

FIELD OF THE INVENTION

The present invention relates to biobased coatings for flooring applications, and more particularly to an ultraviolet (UV)/electron beam (EB) curable biobased coating for flooring applications.

BACKGROUND OF THE INVENTION

Radiation curable coatings, such as UV/EB curable coatings, are applied to various types of substrates to enhance their durability and finish. The radiation curable coatings are typically resin based mixtures of oligomers or monomers that are cured or cross-linked after being applied to the substrate by radiation curing. The radiation curing polymerizes the resins to produce a high or low gloss coating having superior abrasion and chemical resistance properties. The radiation curable coatings of this type are often referred to as topcoats or wear layers and are used, for example, in a wide variety of flooring applications, such as on linoleum, hardwood, laminate, cork, bamboo, resilient sheet, and tile flooring.

The above-described radiation curable coatings are made from fossil fuels, such as petroleum and coal. Because the use of fossil fuels negatively impacts the environment, new radiation curable coatings need to be developed which are derived from recycled materials or renewable resources, such as biobased materials. Recycled materials are materials that have been recovered or otherwise diverted from the solid waste stream, either during the manufacturing process (pre-consumer), or after consumer use (post-consumer). Recycled materials therefore include post-industrial, as well as, post-consumer materials. Biobased materials are organic materials containing an amount of non-fossil carbon sourced from biomass, such as plants, agricultural crops, wood waste, animal waste, fats, and oils. The biobased materials formed from biomass processes therefore have a different radioactive C14 signature than those produced from fossil fuels. Because the biobased materials are organic materials containing an amount of non-fossil carbon sourced from biomass, the biobased materials may not necessarily be derived 100% from biomass. A test has therefore been established for determining the amount of biobased content in the biobased material. Generally, the amount of biobased content in the biobased material is the amount of biobased carbon in the material or product as a fraction weight (mass) or percentage weight (mass) of total organic carbon in the material or product.

The calculation of the amount of biobased content in the material or product is important for ascertaining whether the material or product, when used in commercial construction, would qualify for Leadership in Energy and Environmental Design (LEED) certification. The US Green Building Council has established a LEED rating system which sets forth scientifically based criteria for obtaining LEED certification based on a point system. As shown in Table 1, under the LEED rating system, for new construction 1 point is granted for at least 5% wt of the total of post-consumer materials and ½ post-industrial materials. A second point is granted for at least 10% wt of the total of post-consumer materials and ½ post-industrial materials. An additional point is granted for at least 5% wt of rapidly renewable building materials and products. For existing building 1 point is granted for at least 10% wt post-consumer materials. A second point is granted for at least 20% wt of post-industrial materials. An additional point is granted for at least 50% wt of rapidly renewable materials. Thus, flooring products meeting the LEED criteria can be used to obtain points for LEED certification.

TABLE 1 LEED Rating System Rating LEED - Version 2.1 Rating LEED - Version 2.0 System New Construction System Existing Building MR Credit = 5% wt of post- MR Credit = 10% wt of post- 4.1 consumer materials + 1/2 2.1 consumer materials 1 Point post-industrial materials 1 Point MR Credit = 10% wt of post- MR Credit = 20% wt of post- 4.2 consumer materials + 1/2 2.1 industrial materials 1 Point post-industrial materials 1 Point MR Credit = 5% wt of rapidly MR Credit = 50% wt of rapidly 6 renewable building 2.5 renewable materials 1 Point materials and products 1 Point

Because there has been renewed market interest in giving preference to “greener” flooring products based upon the LEED rating system, there remains a need to develop “greener” flooring products based upon existing product structures/processes and available renewable materials. The key to this approach is to integrate rapidly renewable materials, such as biobased materials, into the radiation curable coatings, such as those used in flooring applications, to reduce reliance on limited resources such as fossil fuels.

A radiation curable biobased coating for flooring applications having at least about 5% by weight of renewable or biobased content would be desirable in the art.

BRIEF DESCRIPTION OF THE INVENTION

In an exemplary embodiment, a coating having a biobased component including acrylate, vinyl ether, or polyester acrylate, where the biobased component is blended with a coating formula, the coating formula includes an initiator and the coating includes at least about 5% by weight of renewable or biobased content.

In another exemplary embodiment, a radiation curable flooring coating having a biobased component including renewable and/or biobased materials, where the radiation curable coating is formed by acrylating a biobased polyol acrylate and reacting the polyol acrylate with diisocyanate or triisocyanate to form a biobased resin.

In another exemplary embodiment, a floor comprising a cellulosic substrate and a coating applied to the cellulosic substrate, the coating having a biobased component including urethane acrylate, vinyl ether, or polyester acrylate where the biobased component is blended with a coating formula, including an initiator, and the coating includes at least about 5% by weight of renewable or biobased content.

Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment.

DETAILED DESCRIPTION OF THE INVENTION

Provided is a UV/EB curable biobased coating for a flooring application. The biobased component includes a urethane acrylate, a vinyl ether, or a polyester acrylate. The biobased component is blended with a coating formula where the coating formula includes an initiator and the coating includes at least about 5% by weight of renewable and/or biobased content.

The radiation curable floor coating has a biobased component that includes renewable and/or biobased materials. The radiation curable floor coating is formed by acrylating a biobased polyol acrylate and reacting the biobased polyol acrylate with diisocyanate or triisocyanate to form a biobased resin where the biobased resin has at least one initiator, the initiator includes a cationic type photo initiator.

In one embodiment, the biobased polyol acrylate is directly blended into the radiation curable biobased coating formulation comprising the at least one initiator to form the radiation curable biobased coating. In another embodiment, the biobased polyol is directly blended into a radiation curable biobased coating formulation comprising at least one epoxy resin or vinyl ether and at least one initiator, which may be, for example, a cationic type photoinitiator, to form the radiation curable biobased coating.

The biobased polyol may be made from various diacids or diols, which are derived from renewable and/or biobased material. The biobased polyol is-derived from renewable and/or biobased materials and contains a weight percentage of renewable materials or biobased content of at least about 5%, preferably at least about 75%, and more preferably at least about 95%. The biobased polyol may be derived, for example, from plant oils extracted from plant seeds, such as castor oil, linseed oil, soy oil, tall oil (pine oil), tung oil, vernonia oil, lesquerella oil (bladderpod oil), cashew shell oil, or other plant oils rich in unsaturated fatty acids. The plant oils include triglycerides generally comprised of esters formed from glycerol and saturated and unsaturated fatty acids. A typical structure of a triglyceride unsaturated fat contains three fatty acids esterified to three hydroxyl groups of glycerol. The triglycerides are converted to individual saturated fatty acids, unsaturated fatty acids, and glycerol by acid or base catalyzed transesterification. Examples of some of the acid components in various plant oils are listed in Table 2.

TABLE 2 Plant Oil Acids Plant Oil Acid Castor Oil Ricinoleic Linseed Oil Linolenic, Linoleic, Oleic Soy Oil Palmitic, Linoleic, Oleic Tall Oil (Pine Oil) Palmitic, Linoleic, Oleic Tung Oil Eleaostearic Vernonia Oil Vernolic Lesquerella Oil (Bladderpod Oil) Lesquerolic, Oleic, Linoleic Cashew Shell Oil Cardanol

The unsaturated fatty acids are of particular, interest as precursor chemicals for polyol synthesis because they have the functionality for satisfactory derivitization. Specifically, the unsaturated fatty acids contain functional groups, such as olefinic, hydroxyl, and epoxy, on a long carbon chain. For example, castor oil and lesquerella oil (bladderod oil) have a pendent hydroxyl group, and vernonia oil has a natural epoxy group. Thus, the unsaturated fatty acids include several chemical functions that facilitate polymer synthesis, such as unsaturated carbon chains, hydroxyl groups, ester linkages, and epoxy functions. As a result, the unsaturated fatty acids of the plant oils enable direct radiation cross-linking or chemical modifications toward polyol synthesis. Because many biobased polyols made from plant oils are commercially available, and the method of forming biobased polyols from plant oils is well known in the art, further description of the biobased polyols, made from plant oils has been omitted.

Alternatively, the biobased polyol may be a biobased polyester polyol or biobased polyester-ether polyol. The biobased polyester polyols and the biobased polyester-ether polyols may be made, for example, from biobased diols and biobased diacids derived from renewable resources, such as corn, sugar cane, vegetable oil, and the like. The biobased diol may be selected from the group consisting, for example, of 1,3 propanediol, 1.4 butanediol, propylene glycol, glycerol, and combinations thereof. The biobased diacid may be selected from the group consisting, for example, of sebacic acid, furnaric acid, succinic acid, tumaric acid, malic acid, dicarboxylic acid, citric acid, azelaic acid, lactic acid, and any combination thereof. Additional additives include surfactant, defoamer, organic and/or inorganic flatting agents, abrasion fillers, texture particles, and the like.

Table 3A shows some examples of some biobased polyester polyol formulations. Reaction of the diacid with the diol produces the biobased polyester polyol by condensation, with water as a by-product. For example, the biobased polyester polyol may be prepared according to the procedure set forth in Examples 1-4 of U.S. Pat. No. 5,543,232, which is hereby incorporated by reference in its entirety. Because the method of preparing polyester polyols is well known in the art, further description thereof has been omitted.

TABLE 3A Biobased Polyester Polyol Formulations EX-1 EX-2 EX-3 EX-4 EX-5 EX-6 EX-7 EX-8 Ingredient Amt (g) Amt (g) Amt (g) Amt (g) Amt (g) Amt (g) Amt (g) Amt (g) Sebacic 639.18 648.31 663.10 672.94 0 0 0 0 Acid Succinic 0 0 0 0 539.50 551.69 557.92 570.97 Acid 1,3 360.72 291.48 336.80 264.57 460.40 360.65 441.99 338.32 Propanediol Glycerine 0 60.10 0 62.39 0 87.56 0 90.81 Fascat 4100 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 Wt % 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 Renewable Materials Wt % 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 Biobased Content

The biobased polyester polyol may also be made by ring opening polymerization of lactone, lactide, and glycolide in the presence of a biobased diol or triol, such as 1,3 propanediol, 1,4 butanediol, glycerol, and combinations thereof, as initiator and a ring-opening polymerization catalyst. Table 3B shows some examples of some biobased polyester polyol formulations made by ring opening polymerization. These biobased polyester polyols may be prepared according to the procedure set forth in U.S. Pat. No. 6,916,547, which is hereby incorporated by reference in its entirety. For example, these biobased polyester polyols may be prepared by charging lactone/lactide monomer(s) and Bio-PDO into a 1 liter glass reactor equipped with anchor stirrer, temperature probe, nitrogen sparge tube and air condenser, and stirring at 175 rpm with 0.4 SCFH nitrogen sparge. The polymerization catalyst stannous 2-ethyl hexanoate is then charged. The nitrogen sparge is continued for 10 minutes. The nitrogen charge is then maintained, and the reactants are heated to 130 degrees Celsius over 30 minutes. The nitrogen sparge is then maintained at 130 degrees Celsius for 6-14 hours until the reaction is complete. The batch is then cooled to 30 degrees Celsius and discharged.

TABLE 3B Biobased Polyester Polyol Formulations EX-9 EX-10 EX-11 Ingredient Amt (g) Amt (g) Amt (g) Caprolactone 500.00 0 250.00 Lactide 0 550.00 250.00 1,3-Propanediol 154.36 134.47 138.30 Stannous 2-ethyl hexanoate 0.0654 0.0684 0.0388 Wt % Renewable Materials 23.59 99.99 60.83 Wt % Biobased Content 19.21 99.99 54.91

The biobased polyol may also be a biobased polyether polyol. The biobased diol may be selected from the group consisting, for example, of 1,3 propanediol and 1,4 butanediol, propylene glycol, glycerol, and combinations thereof. Examples of biobased polyether polyols include poly(trimethylene ether glycol) and poly(tetramethylene ether glycol). One commercially available poly(trimethylene ether glycol) is CERENOL manufactured by E.I. du Pont de Nemours and Company of Wilmington, Del. CERENOL is made 1,3 propanediol originating from corn sugar via aerobic fermentation. The biobased content of poly(trimethylene ether glycol) made from polycondensation of 1,3 propanediol originating from corn sugar via aerobic fermentation is about 100%.

Additionally, the biobased polyol may be derived, for example, from vegetable oils, corn, oats, cellulose, starch, sugar, sugar alcohols, such as xylitol, sorbitol, maltitol, sucrose, glycol, glycerol, erythritol, arabitol, rebitol, mannitol, isomalt laetitol, fructose, or polysaccharides or monosaccharides originated from cellulose, starches, or sugars. It will be appreciated by those skilled in the art that other renewable and/or biobased materials containing primary and secondary hydroxyl groups could also be used as the biobased polyol, because such renewable and/or biobased materials are capable of acylated, as described herein, to form the radiation curable biobased coating of the present invention.

The biobased polyol is partially or fully acrylated to form a biobased polyol acrylate. Because the biobased polyol acrylate is derived from renewable and/or biobased materials, the biobased polyol acrylate contains a weight percentage of renewable materials of at least about 5%, preferably at least about 50%, and more preferably at least about 70%. The biobased polyol acrylate may be formed, for example, by reacting the biobased polyol with acrylic acid. Table 4 shows some examples of some biobased polyol acrylate formulations using the biobased polyols made from castor oil (Polycin D-290; Polycin M-280; Polycin D-265; Polycin D-140), and soy oil (Soyol R2-052-F; Soyol R3-1710-F).

TABLE 4 Biobased Polyol Acrylate Formulations EX-12 EX-13 EX-14 EX-15 EX-16 EX-17 EX-18 Ingredient Amt (g) Amt (g) Amt (g) Amt (g) Amt (g) Amt (g) Amt (g) Polycin D-290 800.00 0 0 800.00 0 0 0 Polycin M-280 0 500.00 0 0 0 0 0 Polycin D-265 0 0 450.00 0 0 0 0 Polycin D-140 0 0 0 0 800.00 0 0 Soyol R2-052-F 0 0 0 0 0 800.00 0 Soyol R3-1710-F 0 0 0 0 0 0 800.00 Acrylic Acid 328.79 108.00 91.07 179.07 86.40 33.38 10.73 p-toluene 5.40 3.38 3.04 5.40 5.40 5.40 5.40 sulfonic acid Hydroquinone 0.12 0.08 0.07 0.12 0.12 0.12 0.12 Monomethyl ether 0.12 0.08 0.07 0.12 0.12 0.12 0.12 hydroquinone (p-methoxyphenol) 0.62 0.39 0.35 0.62 0.62 0.62 0.62 Phosphorous Acid n-heptane 200 ml 182.75 0 0 0 0 0 Toluene 0 0 130.06 200 ml 200 ml 200 ml 200 ml N-methyl- 0 0 0 0 0 0 0 diethanolamine Reaction 100-105° C. 100-105° C. 110-112° C. 110-112° C. 110-112° C. 110-112° C. 110-112° C. Temperature Wt % Renewable 70.51 81.71 82.53 81.19 89.62 95.28 87.82 Materials

A method for acrylating the biobased polyol using the formulation in Table 4, EX-14 will now be described. A 1.0 liter jacketed glass reaction flask is prepared for toluene reflux and water separation. The flask is sparged with about 0.5 standard cubic feet per hour of dry air and about 1.5 standard cubic feet per hour nitrogen blend. An anchor stirrer is activated at about 200 rpm. The polycin D-265, hydroquinone, monomethyl ether hydroquinone (p-methoxyphenol), and phosphorous acid are charged. The reactants are then heated to about 60 degrees Celsius. The acrylic acid and p-toluene sulfonic acid are charged. The p-toluene sulfonic acid is allowed to dissolve. The toluene is charged. The jacket of the glass reaction flask is heated to and maintained at a temperature of about 125 degrees Celsius. The reactants temperature is controlled at about 116-119 degrees Celsius by regulating the amount of the toluene. The toluene is refluxed back to the reactants and the reaction water is separated. The reaction water is then collected and measured. The conditions are maintained until the reaction water ceases. The jacket of the glass reaction flask is then reset to about 100 degrees Celsius, and a vacuum distillation is prepared to remove the toluene. When the reactants temperature reaches about 100 degrees Celsius, the blanket of dry air and nitrogen blend is slowly turned off and a vacuumed is slowly applied. The vacuum is continued at 26″ Hg until the toluene distillation ceases. The batch is then cooled and discharged.

The biobased polyol acrylate is then reacted with di-isocyanates or tri-isocyanates or reacted with di-isocyanates or tri-isocyanates and UV/EB moieties to form a biobased resin, such as a biobased urethane acrylate or a biobased polyester acrylate. Because the biobased resin is derived from renewable and/or biobased materials, the biobased resin contains a weight percentage of renewable materials of at least about 5%, preferably at least about 50%, and more preferably at least about 65%. The biobased resin comprises a mixture of crosslinkable monomers and oligomers having reactive groups capable of providing the ability to polymerize upon exposure to radiation, such as UV/EB radiation. Table 5 shows some examples of some biobased resin formulations using the biobased polyol acrylates from Table 4.

TABLE 5 Biobased Resin Formulations EX-19 EX-20 EX-21 Ingredient Amt (g) Amt (g) Amt (g) EX-14 600.00 0 459.85 EX-18 0 600.00 0 Desmodur W 132.48 23.60 101.53 Silwet L-7200 1.89 0 1.45 Iragacure 184 5.49 0 4.21 Benzophenone 21.97 0 16.84 Wt % Renewable Materials 65.00 84.49 65.00

A method for reacting the biobased polyol acrylate to produce the biobased resin using the formulation in Table 5, EX-21 will now be described. EX-14 from Table 4 is charged to a 1.0 liter jacketed glass reaction flask. An anchor stirrer is activated at about 200 rpm, and EX-14 is heated to about 35 degrees Celsius. The flask is blanketed with about 1.1 standard cubic feet per hour of dry air for about 30 minutes. EX-14 is heated to about 50 degrees Celsius. The blanket of dry air is adjusted to about 0.45 standard cubic feet per hour. Desmodur W is charged in one third increments (about 33.84 g) and exotherm is observed with each addition. The reactants are maintained at a temperature of about 85 degrees Celsius over about a 2 hour period. The reactants are then held at a temperature of about 85 degrees Celsius, and infrared is used to monitor the decline in the numerically controlled oscillator (NCO) peak. When the NCO peak is gone, the batch is cooled to about 60 degrees Celsius. The Silwet L-7200, Irgacure 184, and benzophenone are then charged and mixed for about 30 minutes until all dissolved. The batch is then cooled and discharged.

The biobased resin is then blended, for example, with an initiator, surfactant, and other additives, such as acrylate reactive diluents, defoamer, matting agent, abrasion agent, and texture particles, to form the radiation curable biobased coating. The acrylate reactive diluents may include, for example, (meth)acrylic acid, isobornyl (meth)acrylate, isodecyl (meth)acrylate, hexanediol di(meth)acrylate, N-vinyl formamide, tetraethylene glycol (meth)acrylate, tripropylene glycol(meth)acrylate, neopentyl glycol di(meth)acrylate, ethoxylated neopentyl glycol di(meth)acrylate, propoxylated neopentyl glycol di(meth)acrylate, trimhethylol propan tri(meth)acrylate, ethoxylated trimethylol propan tri(meth)acrylate, propoxylated trimethylol propan tri(meth)acrylate, ethoxylated or propoxylated tripropylene glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, tris(2-hydroxy ethyl) isocyanurate tri(meth)acrylate, and combinations thereof. The initiator may be any chemical capable of initiating, assisting, or catalyzing the polymerization and/or cross-linking of the biobased resin. The initiator may be, for example, a photoinitiator or photosensitizer that allows the biobased coating to cure when exposed to UV/EB radiation. The initiators may be chosen to increase curing rate and sensitivity to specific wavelengths of UV/EB radiation. The concentration of the initiator is the amount necessary to provide satisfactory curing for the biobased resin in the coating mixture.

Table 6A shows some examples of some radiation curable biobased coating formulations using the biobased resins from Table 5 based on a free radical curing mechanism. Because the radiation curable biobased coating is derived from renewable and/or biobased materials, the radiation curable biobased coating contains a weight percentage of renewable materials of at least about 5%, preferably at least about 30%, and more preferably at least about 40%.

TABLE 6A Radiation Curable Biobased Coating Formulations EX-22 EX-23 EX-24 EX-25 Ingredient Amt (g) Amt (g) Amt (g) Amt (g) EX-21 50.00 50.00 50.00 50.00 SR-3010 28.13 20.00 12.50 6.00 Silwet L-7200 0.07 0.05 0.03 0.02 Irgacure 184 0.21 0.15 0.09 0.05 Benzophenone 0.84 0.60 0.38 0.18 Wt % Renewable 41.01 45.91 51.59 57.78 Materials

In another embodiment, the biobased polyol acrylate is directly blended into a radiation curable biobased coating formulation similar to the radiation curable biobased coating formulations in Table 6A to form the radiation curable biobased coating. The biobased polyol acrylate may be, for example, any of the biobased polyol acrylates from Table 4, and the biobased polyol acrylate would be substituted for EX-21 in Table 6A.

In a further embodiment, the biobased polyol is directly blended into a radiation curable biobased coating formulation comprising at least one epoxy resin or vinyl ether and at least one initiator, which may be, for example, a cationic type photoinitiator, to form the radiation curable biobased coating. The biobased polyol may be, for example, any of the biobased polyols from Tables 3A-3B or combinations thereof. The epoxide resins may include, for example, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, bis-(3,4-epoxycyclohexyl) adipate, 3-ethyl-3-hydroxy-methyl-oxetane, 1,4-butanedial diglycidyl ether, 1,6 hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polyglycol diglycidyl ether, propoxylated glycerin triglycidyl ether, monoglycidyl ester of neodecanoic acid, epoxidized soy, epoxidized linseed oil, epoxidized polybutadiene resins, or combinations thereof. The vinyl ether resins may include, for example, 1,4-butanediol divinyl ether, diethyleneglycol divinyl ether, triethyleneglycol divinyl ether, N-vinyl caprolactam, N-vinylformamide, N-vinyl pyrrolidone, n-butyl vinyl ether, tert-butyl vinyl ether, cyclohexyl vinyl ether, dodecyl vinyl ether, octadecyl vinyl ether, trimethylolpropane diallyl ether, allyl pentaerythritol, trimethylolpropane monoallylether, or combinations thereof. The initiator may be, for example, a cationic photoinitiator and a photosensitizer, such as triarylsulfonium hexafluoroantimonate salts, triarylsulfonium hexafluorophosphate salts, bis(4-methylphenyl)-hexafluorophosphate-(1)-iodonium, isopropyl thioxanthone, 1-chloro-4-propoxy-thioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, camphorquinone.

Table 6B shows some examples of some radiation curable biobased coating formulations using the biobased polyols from Table 3A based on cationic curing mechanism.

TABLE 6B Radiation Curable Biobased Coating Formulations Ingredient EX-26 EX-27 Chemical Name Function Amt (g) Amt (g) EX-5 resin 12.5 12.5 3,4-epoxy cyclohexyl methy1-3,4 resin 50 50 epoxy cyclohexane carboxylate Silwet L-7200 surfactant 0.156 0.156 Isopropylthioxanthone photosensitizer 0.313 0 2,4-diethyl thioxanthone photosensitizer 0 0.313 Arylsulfoniumhexafluoro-phosphate photoinitiator 3.75 3.75 Gasil UV70C flatting agent 5.3375 5.3375 Wt % Renewable Materials 17.35 17.35 Wt % Biobased Content 13.32 13.31

The radiation curable biobased coating is then applied to a surface of a substrate and is cured or cross-linked by radiation curing to form a topcoat or wear layer thereon. The substrate may be made, for example, from a variety of materials, such as wood, ceramic, plastic, or metal. Additionally, the substrate may be, for example, a substrate of a flooring application, such as linoleum, hardwood, laminate, cork, bamboo, resilient sheet, or tile. The radiation curable biobased coating may be radiation cured, for example, with UV/EB radiation. For example, standard high pressure mercury vapor type UV lamps with wavelengths of about 1800-4000 Angstrom units can be used to cure the radiation curable biobased coating, as well as UV lamps containing additives to enhance specific UV regimes. The radiation curable biobased coating is exposed to the UV lamps at about 0.5-2.5 joules per centimeter squared at about 0.3-1.2 watts megawatts per centimeter squared. It will be appreciated by those skilled in the art, however, that the length and intensity of the exposure to the radiation may vary depending oh the thickness and composition of the radiation curable biobased coating and the desired finish, e.g., gloss level. Additionally, the radiation curable biobased coating may be cured in air or nitrogen depending upon the composition of the radiation curable biobased coating and the desired finish.

The foregoing illustrates some of the possibilities for practicing the invention. Many other embodiments are possible within the scope and spirit of the invention. It is, therefore, intended that the foregoing description be regarded as illustrative rather than limiting, and that the scope of the invention is given by the appended claims together with their full range of equivalents.

While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims

1. A radiation curable coating comprising a biobased polyol acrylate, the biobased component being blended with a coating formula, the coating formula including at least one initiator, wherein the biobased polyol acryate is derived from plant oil, and wherein the radiation curable biobased coating contains at least about 5% weight of renewable materials or biobased content.

2. The radiation curable coating of claim 1, wherein the plant oil is directly acrylated to form the biobased polyol acrylate.

3. The radiation curable coating of claim 1, wherein the plant oil is selected from the group consisting of castor oil, linseed oil, soy oil, tall oil, tung oil, vernonia oil, lesquerella oil, and cashew shell oil.

4. The radiation curable coating of claim 1, wherein the radiation curable coating further comprises a diisocyante or triisocynate.

5. The radiation curable coating of claim 1, wherein the initiator is a photoinitiator.

6. The radiation curable coating of claim 1, wherein the biobased polyol acryate is further modified with a diisocyante or triisocynate.

7. The radiation curable coating of claim 1, wherein the radiation curable coating includes at least about 30% by weight of renewable or biobased content.

8. The radiation curable coating of claim 1, wherein the radiation curable coating includes at least about 40% by weight of renewable or biobased content.

9. The radiation curable coating of claim 1, wherein the radiation curable coating is provided on a flooring.

10. The radiation curable coating of claim 9, wherein the flooring is a flooring tile.

11. A flooring product coated with a radiation curable coating, comprising:

a substrate having the radiation curable coating provided thereon, wherein the radiation curable comprises a biobased polyol acrylate, the biobased component being blended with a coating formula, the coating formula including at least one initiator, wherein the biobased polyol acryate is derived from plant oil, and wherein the radiation curable biobased coating contains at least about 5% weight of renewable materials or biobased content.

12. The flooring product of claim 11, wherein the plant oil is directly acrylated to form the biobased polyol acrylate.

13. The flooring product of claim 11, wherein the plant oil is selected from the group consisting of castor oil, linseed oil, soy oil, tall oil, tung oil, vernonia oil, lesquerella oil, and cashew shell oil.

14. The flooring product of claim 11, wherein the radiation curable coating further comprises a diisocyante or triisocynate.

15. The flooring product of claim 11, wherein the initiator is a photoinitiator.

16. The flooring product of claim 11, wherein the biobased polyol acryate is further modified with a diisocyante or triisocynate.

17. The flooring product of claim 11, wherein the radiation curable coating includes at least about 30% by weight of renewable or biobased content.

18. The flooring product of claim 11, wherein the radiation curable coating includes at least about 40% by weight of renewable or biobased content.

Patent History
Publication number: 20150232687
Type: Application
Filed: Apr 30, 2015
Publication Date: Aug 20, 2015
Inventors: Dong Tian (Lancaster, PA), Jeffrey S. ROSS (Lancaster, PA), Larry W. LEININGER (Akron, PA), Mary Kate DAVIES (Stevens, PA)
Application Number: 14/700,669
Classifications
International Classification: C09D 133/14 (20060101); C09D 133/02 (20060101);