Securement Structure for Joining Medical Device Parts
A securement structure is positioned inside a channel of a first medical device to facilitate securement of the first medical device to a second medical device. The first medical device may be a ligation banding cap, and the second medical device may be an endoscope. The securement structure is adapted to be compressed between the second medical device and the first medical device to secure them together. This allows parts of different sizes to fit together.
The present application claims priority to U.S. provisional application Ser. No. 61/624,696 filed Apr. 16, 2012, the disclosure of which is incorporated herein by reference in its entirety.
TECHNICAL FIELDThe invention relates to structures and methods for joining parts together. In some embodiments, the invention relates to a securement structure for joining a ligation banding cap to an endoscope or the like.
BACKGROUND OF THE INVENTIONVarious medical procedures involve the use of medical devices that are joined together. For example, certain medical procedures involve the attachment of devices to the end of an endoscope or the like.
One example of a medical procedure that can involve the use of an endoscope is a ligation procedure. Ligation is a medical procedure whereby a physician ties off or mechanically constricts a piece of body tissue with a ligature such as a suture, clip or band. In certain procedures, the purpose of ligation may be to impede or obstruct the flow of blood, fluids and/or other bodily materials through the tissue. For example, a physician can remove target tissue by ligating it to obstruct circulation through the target tissue, thereby causing the tissue to die and slough off. The purpose of ligation may also be to hold tissue to be cauterized or resected, as in an endoscopic mucosal resection (EMR) procedure.
For ligating tissue inside a body cavity, orifice or lumen, physicians often use an endoscope to access the target tissue and ligate it. In one such form of endoscopic ligation, the physician attaches a ligation banding cap to the end of an endoscope. One or a plurality of ligation bands are stretched around the ligation banding cap and can be deployed by the physician. The physician uses the endoscope to position each stretched ligation band over the target tissue and then releases the band onto the tissue so that the band contracts and catches the tissue. The inward pressure of the ligation band constricts the target tissue.
Ligating instruments have been the subject of a number of patents and patent applications, including U.S. Pat. No. 5,259,366 to Reydel, et al.; U.S. Pat. No. 5,269,789 to Chin, et al.; U.S. Pat. No. 5,356,416 to Chu, et al.; U.S. Pat. No. 5,398,844 to Zaslaysky, et al.; U.S. Pat. No. 5,853,416 to Tolkoff; U.S. Pat. No. 5,857,585 to Tolkoff, et al.; U.S. Pat. No. 5,913,865 to Fortier, et al.; U.S. Pat. No. 5,968,056 to Chu, et al., U.S. Pat. No. 6,235,040 to Chu, et al.; U.S. Pat. No. RE 36,629 to Zaslaysky, et al., and U.S. Patent Application Publication No. 2008/0091218 to Richardson. The disclosures of these prior U.S. patents and patent application are expressly incorporated herein by reference.
In certain previous ligating instruments, the ligation banding cap is designed for use with endoscopes of a particular size. The ligation banding cap assembly includes an adapter for fitting on the end of the endoscope. Generally, however, such prior ligation banding cap assemblies were not suitable for fitting on a wide range of endoscope sizes.
There remains a need for improving the attachment together of medical devices. In some instances, prior means for joining medical devices together has had the potential to lead to problems such as misalignment, instability, jarring, inadequate sealing, poor suction, poor visualization, separation of parts and/or other issues arising from a poor connection. The potential for these problems is exacerbated when parts of different sizes are joined together. There remains a need for facilitating the joining of different-sized parts together while avoiding or minimizing these potential problems.
SUMMARY OF THE INVENTIONThe present disclosure relates to the use of a securement structure that is positioned inside of a channel of a first medical device, wherein a second medical device is received within the channel, and the securement structure is compressed between the first and second medical devices to facilitate securement of the first medical device to the second medical device.
In accordance with some embodiments, an adapter is provided for joining a first medical device to a second medical device. The adapter comprises a securement structure comprising one or more resilient securement projections positionable inside the channel of the first medical device. The securement structure is adapted to be compressed between the second medical device and a mounting structure of the first medical device when the second medical device is received within the channel of the first medical device. The resilient securement projections may comprise one or more resilient lobes, rings, ridges, domes, bumps, wedges and/or any other suitable projections.
In accordance with other embodiments, a cap assembly comprises a cap and a securement structure. The cap comprises a mounting structure defining a channel, the mounting structure at least partially surrounding the channel. The securement structure comprises one or more resilient securement projections located inside the channel of the cap, adjacent an inner surface of the mounting structure. The securement structure is adapted to be compressed between an outer surface of an elongated medical device and the inner surface of the mounting structure of the cap when the elongated medical device is received within the channel of the cap. The elongated medical device may be an endoscope. The cap assembly may be a ligation banding cap assembly.
The cap may further comprise one or more grooves in the inner surface of the mounting structure, the one or more grooves adapted to receive the one or more resilient securement projections. The cap may further comprise one or more holes in the mounting structure, the one or more holes adapted to receive the one or more resilient securement projections. The securement structure may be part of an adapter that is configured to be received around the elongated medical device.
In accordance with other embodiments, a method of securing a cap assembly to an end of an elongated medical device is provided. The method comprises positioning the cap assembly with respect to the elongated medical device and placing the cap assembly on the end of the elongated medical device. When the cap assembly is placed on the end of the elongated medical device, the securement structure is compressed between an outer surface of the elongated medical device and the inner surface of the mounting structure of the cap, such that the securement structure secures the cap to the end of the elongated medical device.
The cap 110 comprises a proximal portion or endoscopic mounting structure 111 and a distal portion 112. A channel 113 extends through the length of the cap 110, through both the mounting structure 111 and the distal portion 112. The channel 113 comprises a proximal channel portion 114 and a distal channel portion 115. An abutment surface 116 defines a stop for advancement of an endoscope to be placed within proximal channel portion 114.
The mounting structure 111 comprises an inner surface 117 and an outer surface 118. A lip 119 projects from the outer surface 118 and serves to help secure the adapter 130 on the cap 110.
The adapter 130 is adapted to be joined to the cap 110 as shown. The adapter 130 comprises a proximal portion 131 and a distal portion 132. A channel 133 extends through the length of the adapter 130, through both the proximal portion 131 and the distal portion 132.
The prior art ligation banding cap assembly 100 is adapted for placement on an endoscope that has a diameter that is substantially the same as or only slightly less than the inner diameter of the mounting structure 111 of the cap 110. In this way, when the ligation banding cap assembly 100 is placed on the distal end of such an endoscope, the cap 110 fits snugly on the endoscope. In addition, the proximal portion 131 of the adapter 130 is stretched so that its inner diameter can accommodate the endoscope. The tendency of the resilient material of the adapter 130 to want to return to its resting shape and size creates a snug fit of the proximal portion 131 of the adapter 130 around the outside surface of the endoscope.
The prior art ligation banding cap assembly 100 is not well-suited, however, to be placed on an endoscope that has a diameter that is substantially less than the inner diameter of the mounting structure 111 of the cap 110. This is illustrated in
The cap 210 comprises a proximal portion or endoscopic mounting structure 211 and a distal portion 212. A channel 213 extends through the length of the cap 210, through both the mounting structure 211 and the distal portion 212. The channel 213 comprises a proximal channel portion 214 and a distal channel portion 215. An abutment surface 216 defines a stop for advancement of an endoscope to be placed within proximal channel portion 214. The mounting structure 211 comprises an inner surface 217 and an outer surface 218.
The adapter 230 is adapted to be joined to the cap 210 as shown. The adapter 230 comprises a proximal portion 231 and a distal portion 232. A channel 233 extends through the length of the adapter 230, through both the proximal portion 231 and the distal portion 232.
The distal portion 232 of the adapter 230 differs significantly from the distal portion 131 of the adapter 130. The distal portion 232 of the adapter 230 comprises a securement structure having one or more securement projections. In the example of
The resilient securement structure that is positioned, at least in part, inside the channel of the mounting structure of the cap allows the cap assembly to fit securely to endoscopes of various sizes. At rest, the securement structure defines an inner diameter that is substantially smaller than the inner diameter of the mounting structure. Accordingly, when the cap assembly is assembled to an endoscope with a relatively small diameter, the endoscope will contact and compress the securement structure to create a snug fit. That is, when the cap assembly is placed on the end of the endoscope, the securement structure is compressed between an outer surface of the endoscope and the inner surface of the mounting structure of the cap. The compression of the resilient elastomeric material of the securement structure from its resting size and shape creates forces against the endoscope and cap that secure the cap to the endoscope.
It will be appreciated that the use of a securement structure positioned inside the mounting structure of a cap as described herein can overcome the problems associated with a poor fit as described above. In addition, the design enables the use of a single size of cap assembly for different-sized endoscopes. Thus, the design shown in
In
The ligation banding cap assembly 400 is similar to the ligation banding cap assembly 300 except that the cap 410 includes a plurality of grooves 421 along its inner surface. The cap 410 may have a groove for each resilient lobe 442. Each resilient lobe 442 is designed in such a way that when it is compressed, part of the material of the resilient lobe 442 moves into the corresponding groove 421. This can help relieve the pressure when larger endoscopes are used.
The ligation banding cap assembly 500 is similar in some respects to the ligation banding cap assembly 400. The cap 510 includes a plurality of holes 522 in the mounting structure 511. The distal portion 532 of the adapter 530 includes an outer portion 534 that extends to an area over the holes 522. The securement structure comprises a series of resilient domes 543, with one dome adjacent each hole 522. The material of the adapter 530 extends through the holes 522 to connect the outer portion 534 of the adapter to the resilient domes 543. The holes 522 may be slightly larger than the material of the adapter extending through the holes 522. In this way, when the resilient domes 543 are compressed, part of the material of the resilient domes 543 can move into the holes 522.
In the cap assembly 500, the distal portion 532 of the adapter 530 also includes a resilient ring 544 positioned inside the channel of the mounting structure 511. Thus, in this embodiment, the securement structure inside the channel of the mounting structure 511 comprises the resilient domes 543 and the resilient ring 544.
As an alternative to holes 522 as shown, the cap or first medical device may include cut-outs, shapes, slots, wells, etc., through which the resilient material of the securement structure may extend, connect or protrude. As with the material through the holes 522, this can create a stronger connection between the resilient material of the securement structure and the more rigid material of the cap or first medical device.
It will be appreciated that a ligation banding cap assembly according to embodiments described above may accommodate a wide range of sizes of endoscopes. For example, a single ligation banding cap assembly can accommodate endoscopes having diameters from 8.8 mm to 11.6 mm. Other sizes can be made to accommodate other size ranges.
Embodiments other than those illustrated herein are of course possible. A securement structure as described also may be utilized for joining other medical devices together, other than a ligation banding cap to an endoscope. For example, other tools or devices can be mounted to other elongated devices, such as, but not limited to, catheters, other tubes and the like.
The securement structure, or the resilient securement projections, may be manufactured of any suitable resilient material that allows the resilient securement projections to function as described herein. Accordingly, suitable elastomers, foams or other materials may be used. The securement structure, or the resilient securement projections, may be coated so as to facilitate securement and sealing to the endoscope or other device (e.g., by increasing friction or tackiness) and/or to facilitate ease of attachment to the endoscope or other device (e.g., by providing lubrication or reducing friction). The securement structure, or the resilient securement projections, may have surface modifications, such as roughening, bumps, ridges, grooves, etc., so as to facilitate securement and sealing to the endoscope or other device and/or to facilitate ease of attachment to the endoscope or other device (e.g., the lobes may be roughened or provided with bumps in order to improve the connection). The securement structure, or the resilient securement projections, may be made of layers. For example, in one embodiment, the resilient securement projections may have an outer layer to provide tackiness and sealing to the endoscope or other device and an inner layer that provides suitable compressibility to create the secure attachment to the endoscope or other device. The first medical device or cap could be formed as one integral unit with the securement structure or resilient securement projections, for example with the first medical device or cap comprising a more rigid area of the unit and with the resilient securement projections comprising a more resilient area of the unit. The securement structure, or the resilient securement projections, may comprise one or more materials that swell upon contact with fluids, such as saline and/or body fluids. In this manner, the medical devices may be positioned together and then the fluid can be introduced to swell the resilient securement projections and create or improve the connection/seal.
The foregoing embodiments are merely examples of embodiments within the scope of the invention. Other embodiments are possible that incorporate one or more of the features and/or advantages of the above-described embodiments. This invention thus embraces other embodiments within the scope of the claims.
Claims
1-20. (canceled)
21. A cap assembly adapted to be secured to an end of a medical device, comprising:
- a cap extending from a proximal end to a distal end and including a cap channel extending therethrough, a proximal portion of the cap including a hole extending laterally through a side wall thereof; and
- an adapter extending from a proximal end to a distal end and including an adapter channel extending therethrough, a distal portion of the adapter including an outer portion extending about the proximal portion of the cap and a first resilient projection extending from an interior surface of the outer portion such that the first resilient projection extends through the hole into the cap channel.
22. The cap assembly of claim 21, wherein the distal portion of the adapter includes a second resilient projection, the outer portion and the second resilient projection defining a space therebetween in which the proximal end of the cap is received, the second resilient projection extending distally into the cap channel.
23. The cap assembly of claim 21, wherein the first resilient projection is configured to be compressed between an interior surface of the cap channel and an exterior surface of a medical device received within the adapter channel.
24. The cap assembly of claim 2, wherein the second resilient projection is configured to be compressed between an interior surface of the cap channel and an exterior surface of a medical device received within the adapter channel.
25. The cap assembly of claim 21, wherein the first resilient projection is a resilient dome.
26. The cap assembly of claim 22, wherein the second resilient projection is a resilient ring.
27. The cap assembly of claim 21, wherein the hole of the cap is larger than a portion of the first resilient projection received within the hole so that, when the first resilient projection is compressed, a portion of a material of the first resilient projection is received within the hole.
28. The cap assembly of claim 21, wherein the cap is formed of a polymeric material.
29. The cap assembly of claim 21, wherein the adapter is formed of an elastomeric material.
30. The cap assembly of claim 22, wherein one of the first and second resilient projections is coated to increase an engagement with a medical device received within the adapter channel.
31. The cap assembly of claim 22, wherein one of the first and second resilient projections include one of roughening, bumps and ridges for increasing an engagement with a medical device received within the adapter channel.
32. A ligating band assembly configured to be coupled to a distal end of an endoscope, comprising:
- a ligating band cap extending from a proximal end to a distal end and including a cap channel extending therethrough, a proximal portion of the ligating band cap including a hole extending laterally through a side wall thereof; and
- an adapter extending from a proximal end to a distal end and including an adapter channel extending therethrough, a distal portion of the adapter including an outer portion extending about the proximal portion of the ligating band cap and a first resilient projection extending from an interior surface of the outer portion such that the first resilient projection extends through the hole into the cap channel so that, when an endoscope is received within the adapter channel, the first resilient projection is compressed between an interior surface of the cap channel and an exterior surface of the endoscope.
33. The ligating band assembly of claim 32, wherein the distal portion of the adapter includes a second resilient projection, the outer portion and the second resilient projection defining a space therebetween in which the proximal end of the ligating band cap is received, the second resilient projection extending distally into the cap channel so that, when the endoscope is received within the adapter channel, the second resilient projection is compressed between the interior surface of the cap channel and the exterior surface of the endoscope.
34. The ligating band assembly of claim 32, wherein the first resilient projection is a resilient dome.
35. The ligating band assembly of claim 33, wherein the second resilient projection is a resilient ring.
36. A method for securing a cap to an end of a medical device, comprising:
- coupling an adapter to a cap such that an outer portion of a distal portion of the adapter extends about a proximal portion of the cap and a first resilient projection extending from an interior surface of the outer portion extends through a lateral hole in the cap into a channel of the cap; and
- inserting a distal end of a medical device into a channel of the adapter so that the first resilient projection is compressed between an interior surface of the channel of the cap and an exterior surface of the medical device.
37. The method of claim 36, wherein coupling the adapter to the cap includes inserting a second resilient projection of the adapter distally into the channel of the cap, the second resilient projection and the outer portion defining a space therebetween in which the proximal end of the cap is received.
38. The method of claim 36, wherein the cap is a ligating band cap and the medical device is an endoscope.
39. The method of claim 36, wherein the first resilient projection is a resilient dome.
40. The method of claim 36, wherein the second resilient projection is a resilient ring.
Type: Application
Filed: Apr 29, 2015
Publication Date: Sep 3, 2015
Inventors: Brad M. Isaacson (Lancaster, MA), Oscar R. Carrillo, JR. (Attleboro, MA), Jason Romano (Wakefield, RI)
Application Number: 14/699,334