Therapeutic Compression Apparatus
A bladder assembly for a compression apparatus for providing pressure to a limb, where the bladder assembly includes at least one bladder. The bladder includes a first and a second flexible wall secured to one another about a peripheral edge thereof to form an air pocket. The bladder further includes at least one spot weld provided in a predetermined location inward of the peripheral edge connecting the first and second walls to one another to define a plurality of chambers within the air pocket. The bladder assembly may be used in a variety of compression apparatus and the compression apparatus may also include a pressure gauge and pump for controlling an amount of pressure applied to the treatment site via the bladder. The bladder may be configured to provide a gradient pressure profile to the treatment site when filled.
Latest Sun Scientific, Inc. Patents:
The present application is co-pending and a divisional of U.S. patent application Ser. No. 12/855,185 entitled “Therapeutic Compression Apparatus” filed on Aug. 12, 2010 and issued as U.S. Pat. No. 9,033,906, the entire contents of which are hereby incorporated herein by reference for all purposes.
BACKGROUND OF THE INVENTIONI. Field of the Invention
The subject invention is directed generally to a device for applying compression to a limb, and more particularly, to a therapeutic apparatus for applying compression to the leg of an individual in conjunction with the treatment of conditions such as chronic venous insufficiency and lymphedema. The apparatus includes a primary wrap, a foot wrap and a stirrup for applying compression to the lower leg and foot of a patient.
II. Background of the Related Art
Normally, a healthy leg muscle, for example, squeezes the deep veins of the legs and feet to help move blood back to the heart. One-way valves in the deep leg veins keep blood flowing back towards the heart. However, prolonged periods of standing or sitting can cause the walls of the deep leg veins to stretch. Over time, in susceptible individuals, this can weaken the vein walls and damage the valves, causing blood to pool in the veins and increase venous blood pressure. This may result in a condition known as chronic venous insufficiency (CVI).
Treatment of CVI typically involves the use of compression stockings or medical hosiery to decrease chronic swelling. Compression stockings are elastic stockings that squeeze the veins to improve venous circulation and prevent excess blood from flowing backward. Compression stockings can also help to heal skin sores or stasis ulcers that often present in conjunction with CVI. It is also common to employ compression bandages to apply pressure to the leg. In this regard, a bandage is applied with constant tension so as to produce graduated compression with the highest pressure at the ankle. However, the technique is difficult and is often done by highly skilled caregivers.
Highly effective mechanical compression devices have also been developed for treating CVI, which are disclosed, for example, in U.S. Pat. Nos. 7,276,037 and 7,559,908, the disclosures of which are incorporated by reference herein in their entireties. These devices include a flexible wrap that carries a manually inflatable air bladder and is adapted to be securely positioned around the leg of an individual to apply as localized pressure to a treatment site. The device also includes a fluid-filled wound dressing that can be applied directly to the skin for applying localized pressure and even a medicament to a venous ulcer when it is enveloped by the flexible wrap. While this device is effective for applying localized compression to the leg, it is not configured to apply localized compression to the foot to prevent swelling and further improve venous circulation.
Lymphedema, also known as lymphatic obstruction, is another condition of localized fluid retention and tissue swelling, and is caused by a compromised lymphatic system. Treatment for lymphedema varies depending on the severity of the edema and the degree of fibrosis of the affected limb. The most common treatments for lymphedema are manual compression lymphatic massage, compression garments or bandaging. Elastic compression garments are typically worn by persons with lymphedema on the affected limb following complete decongestive therapy to maintain edema reduction.
Compression bandaging, also called wrapping, involves the application of several layers of padding and short-stretch bandages to the involved areas. Short-stretch bandages are preferred over long-stretch bandages (such as those normally used to treat sprains), as the long-stretch bandages cannot produce the proper therapeutic tension necessary to safely reduce lymphedema and may in fact end up producing a tourniquet effect. During activity, whether exercise or daily activities, the short-stretch bandages enhance the pumping action of the lymph vessels by providing increased resistance for them to push against. This encourages lymphatic flow and helps to soften fluid-swollen areas.
Known methods for CVI and lymphedema treatment, like compression bandaging, have several disadvantages. The bandaging is time consuming and the effectiveness is limited to the skill of the provider. In some instances, bandages can be applied too tightly or too loosely and may slip from their intended position, decreasing their effectiveness. When this occurs, bandages must be taken off and reapplied, further increasing the time of application and decreasing the consistency of application of the therapy.
The effectiveness of many of the current compression therapies is limited by the application of current products. Because current compression therapy is done either with manual wraps or electromechanical systems, they require either a skilled medical processional to apply and/or the need for the patient to be stationary for extended periods of time. Although stockings and/or bandages can be worn by patients and self-administered, they are very difficult for the patient to put on and pose a challenge for unskilled medical professionals to apply consistently and effectively.
The apparatuses, methods and systems of the subject invention provide benefits and advantages that may overcome a number of problems with respect to known compression technologies, particularly the problems that arise due to the difficulty of applying current compression wrap technologies. The subject invention provides an alternative to known technologies that employ tight-fitting therapeutic elastic garments, which cause patients discomfort, and lose their elasticity and therefore their effectiveness over time. Those skilled in the art will readily appreciate that it would be beneficial to provide a therapeutic compression device for treating CVI and lymphedema that is adapted and configured to apply localized compression to the leg and foot to prevent swelling and further improve venous circulation, that may also be self-administered by a patient effectively.
SUMMARY OF THE INVENTIONThe subject invention is directed to a therapeutic compression apparatus. The therapeutic compression apparatus comprises: a primary wrap, a foot wrap and a stirrup. The primary wrap encircles at least a first portion of a leg and applies compression thereto. The primary wrap has a horizontal proximal edge for positioning towards a knee of the leg, a horizontal distal edge for positioning towards an ankle of the leg, and first and second peripheral edges perpendicular to the horizontal proximal edge and the horizontal distal edge. The foot wrap encircles at least a portion of a foot of the leg to apply compression thereto. The stirrup is integrated with the primary wrap along the horizontal distal edges for securing the primary wrap to the leg, the stirrup being positioned between the primary wrap and the foot wrap.
The therapeutic compression apparatus may further comprise at least one bladder operatively associated with the primary wrap for applying pressure to a treatment site on the leg. The primary wrap may include at least one interior pocket for accommodating the at least one bladder. Alternatively, the at least one bladder may be integral with the primary wrap. One or more means for attaching the primary wrap may be operatively associated along the first and second peripheral edges of the primary wrap for securing the primary wrap around the leg.
The at least one bladder may be adapted and configured to form a predetermined gradient pressure profile when the at least one bladder is filled. The at least one bladder may be one of a wedge-shaped bladder, a cone-shaped bladder, a disk-shaped bladder or a rectangular-shaped bladder. The at least one bladder may also include a plurality of fluid chambers. The therapeutic compression apparatus may further comprise at least one means for adjusting pressure coupled to the at least one bladder for controlling an amount of pressure supplied to the treatment site by the primary wrap.
The foot wrap may be attached to the stirrup. The foot wrap may be configured to envelope toes of the foot and/or configured to envelope a heel of the foot. The foot wrap may also be configured as an adjustable strap around the foot.
The therapeutic compression apparatus may further comprises an adjustable belt along a proximal horizontal edge of the primary wrap for securing the primary wrap around the leg. The primary wrap may be formed at least in part of a non-elastic composite material comprising a plurality of distinct layers. In one embodiment, the composite material may comprises three distinct layers: an inner laminate layer, an outer hook-compatible layer, and a middle non-elastic layer provided between the inner and outer layers. The composite material may also be provided with a plurality of stitched darts and gathers for contouring the primary wrap to the leg.
The subject invention is also directed to a bladder assembly for a compression apparatus for providing pressure to a limb. The bladder assembly comprises: at least one bladder having first and second flexible walls secured to one another about a peripheral edge thereof to form an air pocket; and at least one spot weld provided in a predetermined location inward of the peripheral edge connecting the first and second walls to one another to define a plurality of chambers within the bladder. The geometric placement of the at least one spot weld determines a pressure profile of the at least one bladder.
An inflation device for inflating the air pocket through at least one inflation port may be provided in the first wall of the bladder assembly. The inflation device may be detachable from the at least one inflation port. At least one pressure valve may be operatively associated with the inflation device for controlling an amount of pressure within the air pocket.
These and other aspects of the contacts of the subject invention will become more readily apparent from the following description taken in conjunction with the drawings.
So that those having ordinary skill in the art to which the subject invention pertains will more readily understand how to make and use the apparatuses of the subject invention, preferred embodiments thereof will be described in detail herein below with reference to the drawings, wherein:
Preferred embodiments of the subject invention are described below with reference to the accompanying drawings, in which like reference numerals represent the same or similar elements. One of ordinary skill in the art would appreciate that while the apparatuses discussed herein relate to compression therapy of the leg and foot, the scope of the invention is not limited to those exemplary applications and may be sized and shaped for the anatomical portion for which compression therapy is needed.
The subject invention provides compression to the extremities, including for to example, the lower leg and foot, in a manner that is simpler and more convenient than current systems. The subject invention provides system for providing compression and preventing swelling of the foot using a non-elastic binder and bladder which can be used for compression. The bladder is provided within a non-elastic wrap and creates compression in a manner that allows for consistent measuring of the pressure supplied, as well as safe, comfortable, convenient, effective, self-application by the patient.
Referring now to
The primary wrap 12 may be attached to a patient's lower leg 2, for example, by encircling the wrap about the lower leg 2 and attaching it at the peripheral edges 5 and 7 with any number of connecting structures. Hook and loop fastening tabs, such as connecting tabs 32a, 32b, 32c, 32d illustrated in
At a horizontal proximal end 1 of the primary wrap 12 towards the knee 8, an optional garter or adjustable belt 18 may be provided to further secure the primary wrap 12 about the lower leg 2. The adjustable belt 18 may be connected around the leg 2 using a connecting tab, buckle or other known connecting structures. As shown in
The primary wrap 12 is preferably made of a composite material that is non-elastic and has one or more wicking layers, Because the material is non-elastic, the primary wrap 12 remains stiff and does not stretch when the bladder 22 is filled, or inflated, for example. Referring to
Referring to
The foot wrap 14 of the compression apparatus 10 encircles the foot 6 and, like the primary wrap 12, may be similarly utilized for both applying compression to the foot 6 or alternatively as a protective garment for wound care dressings. The foot wrap 14 helps to prevent swelling of the foot 6. The swelling may occur on its own, or as a result of compression of the lower leg 2. The foot wrap 14 may be optionally made of a continuous piece of material with the stirrup 16, as shown in
The foot wrap 14 is typically formed of an elastic material, but may also be formed of a non-elastic material or a combination of the two. The foot wrap 14 may be a single piece of connected material. Alternatively, the foot wrap 14 may also be secured about the foot 6 by any number of mechanical securing devices such as one or more hook and loop fastening tabs as shown in
The foot wrap 14 may have a number of configurations depending on the therapeutic needs of the patient. The foot wrap 14 may be open-toed to expose the toes of the patient's foot 6 as shown in
The primary wrap 12 supplies compression to a patient's limb by non-elastically holding at least one bladder 22 around the treatment site. In one embodiment, for is example, localized pressure is provided by the compression apparatus 10 near the saphenous vein of the lower leg 2. As shown in
The bladder 22 may be inserted into one or more pockets 20 provided within the primary wrap 12 for storing the bladder 22 at a location where compression will be primarily applied. In this embodiment, the bladder 22 is detachable from the compression apparatus 10. In another embodiment, the bladder 22 is permanently integrated within the primary wrap 12 and not detachable (not shown).
According to the subject invention, the bladder 22 may have a number of additional features for monitoring, setting and adjusting the pressure required for a desired therapeutic regimen. In an exemplary embodiment illustrated in
The pressure gauge 28 works in conjunction with the fluid or air pump 30 which pumps air into the bladder 22 through an inflation tube 26 at the inflation inlet 24a. The pump 30 may be a manual pump or an electronic pump for providing air to the bladder 22. An overflow valve 46 may also be provided and limits the amount of air capable of entering the bladder 22, along with a one-way valve 48 for releasing air from within the bladder 22, thereby lowering the pressure within the bladder 22. As shown in
In another embodiment, the bladder 22, itself, may serve as its own pressure gauge, in which the distention of the bladder 22 as it inflates indicates an amount of pressure within the bladder 22. In this instance, the pressure within the bladder 22 is pre-calibrated. Alternatively, more than one bladder 22 can be used, or a bladder 22 having multiple chambers can be used such that the distention of one or more of the bladders 22 or bladder chambers signifies the internal pressure. The subject invention provides pressure within the bladder 22 typically within the range of 20-50 mm Hg.
A number of different embodiments of a bladder 22 can be used in the compression apparatus 10 of the subject invention.
In addition to the bladder 22 having spot welds 36 illustrated in
Turning to
While the subject invention of the present disclosure has been described with respect to preferred and exemplary embodiments, those skilled in the art will readily appreciate that various changes and/or modifications can be made to the invention without departing from the spirit or scope of the invention as described herein.
Claims
1. A bladder assembly for a compression apparatus for providing pressure to a limb, the bladder assembly comprising at least one bladder having:
- a first and a second flexible wall secured to one another about a peripheral edge thereof to form an air pocket; and
- at least one spot weld provided in a predetermined location inward of the peripheral edge connecting the first and second walls to one another to define a plurality of chambers within the air pocket.
2. The bladder assembly as recited in claim 1, further comprising an inflation device for inflating the air pocket through at least one inflation port provided in the first wall.
3. The bladder assembly as recited in claim 2, wherein the inflation device is detachable from the at least one inflation port.
4. The bladder assembly as recited in claim 2, further comprising at least one pressure valve operatively associated with the inflation device for controlling an amount of pressure within the air pocket.
5. The bladder assembly as recited in claim 1, wherein the geometric placement of the at least one spot weld determines a pressure profile of the at least one bladder.
6. A bladder assembly for a compression apparatus for providing pressure to a limb, the bladder assembly comprising:
- at least one inflatable bladder integral with the compression apparatus, wherein the at least one inflatable bladder has (a) a first and a second flexible wall secured to one another about a peripheral edge thereof to form an air pocket, and (b) at least one spot weld provided in a predetermined location inward of the peripheral edge connecting the first and second walls to one another to define a plurality of chambers within the air pocket; and
- wherein the at least one inflatable bladder is selected from the group consisting of a wedge-shaped bladder, a cone-shaped bladder, a disk shaped bladder and a rectangular-shaped bladder.
7. The bladder assembly as recited in claim 1, wherein the at least one inflatable bladder is wedge-shaped.
8. The bladder assembly as recited in claim 7, wherein the wedge-shaped at least one inflatable bladder has three sides configured to define a pyramidal shape when inflated, with one of the three sides being rigid to prevent distension thereof in a direction away from a treatment area which is a leg when operatively disposed in the compression apparatus, and having a thinner portion configured to be positioned toward the knee and a thicker end configured to be positioned toward the ankle.
9. The bladder assembly as recited in claim 6, wherein the at least one inflatable bladder forms a predetermined gradient pressure profile when the at least one inflatable bladder is filled.
10. The bladder assembly as recited in claim 6, further comprising at least one means for adjusting pressure coupled to the at least one inflatable bladder for controlling an amount of pressure supplied to the treatment site on the leg by the compression apparatus.
11. The bladder assembly as recited in claim 6, wherein 1, wherein the at least one inflatable bladder includes a plurality of fluid chambers.
12. The bladder assembly as recited in claim 6 further comprising an inflation device for inflating the air pocket through at least one inflation port provided in the first wall.
13. The bladder assembly as recited in claim 12, wherein the inflation device is detachable from the at least one inflation port.
14. The bladder assembly as recited in claim 12, further comprising at least one pressure valve operatively associated with the inflation device for controlling an amount of pressure within the air pocket.
Type: Application
Filed: May 18, 2015
Publication Date: Sep 3, 2015
Applicant: Sun Scientific, Inc. (Dobbs Ferry, NY)
Inventors: Sundaram Ravikumar (Briarcliff Manor, NY), Vikram Ravikumar (Briarcliff Manor, NY), Guy Osborne (Trumbull, CT), Timothy Nolan (South Salem, NY)
Application Number: 14/714,706