RELUCTANCE TRANSDUCER
A reluctance transducer includes a soft ferromagnetic yoke and a soft ferromagnetic core element, which is movable relative to the yoke. Two permanent magnets bear the core element. The permanent magnets are arranged relative to each other and to the yoke so that the reluctance transducer has a good linear relationship between displacement and force. The reluctance transducer can be applied as stiffness compensating element. The reluctance transducer can include an electrical winding to allow its application as a magnetic bearing, an actuator or as a displacement, velocity or acceleration sensor with improved intrinsic linearity.
The invention relates to a reluctance transducer comprising a soft ferromagnetic yoke and a soft ferromagnetic core element being movable relative to each other and further comprising two permanent magnets. More in particular the invention relates to such a reluctance transducer comprising a soft ferromagnetic yoke having a first end and a second end, the first end and the second end defining an intermediate space, and comprising a soft ferromagnetic core element partly filling the intermediate space, the core element and yoke being movable relative to each other in a direction between the first end of the yoke and the second end of the yoke and further comprising a first permanent magnet and a second permanent magnet arranged relative to each other such that the permanent magnets exert opposite magnetic forces on the core element.
STATE OF THE ARTReluctance transducers are applied either as passive transducer or as active transducer. Passive reluctance transducers are used as stiffness compensating element. Active reluctance transducers are implemented for application as an actuator, as a sensor or as a magnetic bearing. Such active transducers comprise an electrical winding to generate a magnetic flux in the soft magnetic yoke. The position of the core element relative to the yoke can be influenced by varying the current in the winding which allows the application as an actuator. The reluctance transducer can also be applied as a sensor whereas moving the core element relative to the yoke results in an electrical current in the winding.
International application WO98/37335 discloses a magnetic bearing and drive. This known reluctance transducer, as shown in
An objective of the present invention is to provide a reluctance transducer with improved performance, more in particular with a better intrinsic linearity.
This objective of the invention is obtained by a reluctance transducer comprising
-
- a soft ferromagnetic yoke having a first end and a second end, the first end and the second end defining an intermediate space,
- a soft ferromagnetic core element partly filling the intermediate space, the core element and the yoke being movable relative to each other in a direction between the first end of the yoke and the second end of the yoke,
- a first permanent magnet and a second permanent magnet arranged relative to each other such that the first magnet and the second magnet exert opposite forces on the core element, and
wherein a first pole of the first magnet is mechanically and magnetically coupled by an intermediate soft ferromagnetic element to an equivalent pole of the second magnet,
characterized in that a second pole of the first magnet is magnetically insulated from an equivalent second pole of the second magnet.
An advantage of coupling only one set of equivalent magnet poles, for example the South poles, mechanically and magnetically with each other via a soft ferromagnetic element is that there are mainly just two magnetic flux circuits for each of the permanent magnets. This means that there are two main paths outside each magnet along which the magnetic field lines are closed. When displacing the core element relative to the yoke in a direction towards one of the two ends, in first order approximation the magnetic resistance of only one of the magnetic circuits varies. The effect of such a magnetic circuit is that the relationship between the displacement of the core element and the force exerted on that element is better linear than in the known transducers, whereas the design of the transducer is less complex. This effect results in a reluctance transducer with improved performance and a less complex design. More in particular it results in a reluctance transducer that is intrinsically better linear than known reluctance transducers, without the need of electronic control measures.
The reluctance transducer will be described in view of several embodiments. The invention, however, is not limited to these embodiments.
In
The yoke and the core element are soft ferromagnetic which means that they have the property to conduct a magnetic flux. Soft ferromagnetic materials can be magnetised but do not remain magnetised permanently after removal of the cause of magnetisation. Although the yoke and the core element of the reluctance transducer can be made out of any soft ferromagnetic material, they are preferably made of ferromagnetic materials selected from the group consisting of iron, cobalt, nickel, and steel or made of materials mainly made out of these ferromagnetic materials.
The two permanent magnets (7,8) are arranged opposite to each other at the inner side of the yoke such that the two magnets define a space (10) for receiving the movable core element. The magnets are arranged parallel to the end portions (15,16) of the yoke and are facing each other with equivalent magnetic poles (N1,N2), for example the North poles. So the magnets are oriented in opposite direction along a common line through the magnetic axis of the magnets. The poles (N1, N2) are magnetically insulated from each other by the intermediate space (10), which space is partially filled by the core element. To allow movement of the core element in the direction of the arrow, there is a first movement space (11) between the core element and the first magnet (7) and a second movement space (12) between the core element and the second magnet.
The other poles (S1,S2) of the two magnets, for example the South poles, are mechanically and magnetically coupled to each other via an intermediate soft ferromagnetic element (9), in this embodiment being a portion of the yoke. This soft ferromagnetic element with its low magnetic resistance allows the magnetic flux to pass. The magnets (7,8) are arranged relative to the end portions (15,16) of the yoke such that there is a space (17,18) between each magnet and the corresponding end portion of the yoke to avoid a short circuiting of the magnetic field. Preferably the distance between the magnets and the end portions is much larger than the distance between the core element and the magnets.
The core element is adapted to be movable in the space that is formed by the intermediate space (10) between the permanent magnets and the intermediate space (5) between the ends of the yoke in a direction from the first end (3) of the yoke to the second end (4) of the yoke and vice versa. So, the thickness of the core element, the distance between the two ends of the yoke, and the distance between the magnets is such that there is sufficient room for movement of the core element. In a preferred embodiment the distance between the ends of the yoke and the distance between poles (N1,N2) of the magnets is the same. Further, the intermediate space (10) between the permanent magnets may be located mainly in line with the intermediate space (5) between the ends of the yoke, i.e. the ends (3,4) of the yoke may be positioned on substantially the same offset position as the facing end portions of the poles (N1, N2) of the corresponding permanent magnets (7,8). In such an embodiment the thickness of the core element, which may be a disc or plate, may be uniform. Alternatively, the intermediate space (10) between the permanent magnets may be staggered relative to the intermediate space (5) between the ends of the yoke. Further, the distance between the poles (N1,N2) and the ends (3,4) may be different and the thickness of the core element may be different at different position, for example between the magnets and between the yoke ends. Then, the core element may have a non-uniform contour, e.g. having a staggered profile.
In the lateral direction, viz. in the direction perpendicular to the arrow, the core element is sufficiently long to extend at least partially between both the permanent magnets and the ends of the yoke to allow magnetic flux of both magnets going through the core element. When reference is made to a moving or movable core element, it is understood that this includes situations in which the yoke or the magnets are moving or movable relative to the core element.
This embodiment of the transducer can be applied for stiffness compensation because of its negative stiffness. However, by applying a winding at a portion of the yoke such an embodiment of the transducer can be applied as a magnetic bearing, an actuator, or as a sensor.
Also shown in
It is noted that the magnets in the embodiment of
The embodiments shown in the
The magnets and the ends of the yoke define a space (5) in which the movable core element (6) is situated. More in particular the space allows a movement in the direction from the first end (3) of the yoke and the first magnet (7) to the second end (4) of the yoke and the second magnet (8) as indicated by the arrow. Preferably, the core element is only movable in the vertical direction, viz. a direction parallel to the magnetic axis of the two magnets. Mechanical measures may be taken to prevent the core element from moving in the horizontal direction, viz. perpendicular to the direction of the magnetic axis. Such measures may also be omitted. Due to the magnetic forces exerted on the core element by the permanent magnets, the reluctance transducer has the characteristics of a negative stiffness. A negative stiffness cancels or reduces the stiffness of a system in which it is placed by exerting an opposing force. When during use of the reluctance transducer the distance (13) between the core element (6) and the first end (3) of the yoke, and the distance (11) between the core element and the first magnet (7), increases than the distance between the core element and the second end (4) of the yoke and between the core element and the second magnet decreases.
The electrical winding (23) that is wound around a portion (19) of the soft ferromagnetic yoke can be used to induce a magnetic flux in the soft ferromagnetic yoke by applying a voltage across the winding to create an electrical current in the winding. This additional magnetic flux, viz. in addition to the flux of the two permanent magnets, causes an additional force on the core element (6). As a consequence the core element will move towards the first end (3) or the second end (4) of the yoke. This allows applying the reluctance transducer as an actuator. If the electrical winding is omitted than the reluctance transducer can be applied for stiffness compensation.
The reluctance transducer shown in
In the embodiments of the reluctance transducer discussed so far the permanent magnets are mechanically coupled to each other via a portion of the soft ferromagnetic yoke. In the embodiment of the reluctance transducer (50) of which a cross-sectional view is shown in
The two permanent magnets (7,8) are arranged relative to each other so that equivalent poles (S1,S2) that are mechanically and magnetically coupled by a soft ferromagnetic portion (54) of the core element, are facing each other and thus their magnetic orientation is opposite. The other two equivalent poles (N1,N2) are magnetically insulated from each other by the spaces (13,14) that allow the core element moving from the first end (3) of the yoke to the second end (4) of the yoke, and vice versa. Instead of being arranged in cavities, the magnets may for example also be arranged at the opposite surfaces of a flat core element. In
The embodiment of the reluctance transducer (60) shown in
The other equivalent poles, here the South poles, are magnetically and mechanically coupled by a soft ferromagnetic portion (9) of the yoke. The static forces on the core element are such that they try to minimize the magnetic resistance of the magnetic circuit of which the core element is a part of. The electrical winding (23) can induce a magnetic flux as indicated by the circuit (I), the flux passing the core element in the direction from the first end (3) of the yoke to the second end (4) of the yoke, or vice versa. The second permanent magnet (8) is part of a magnetic circuit (III), whereas the first permanent magnet (7) is part of another the magnetic circuit (II). The first and second magnet are also part of a magnetic circuit comprising a part of the portion (9) of the yoke that couples the South poles of the two magnets. Only the magnetic circuit (IV) comprising the first magnet is indicated in
The core element can be moved from the first end (3) to the second end (4) of the yoke and visa versa by a magnetic flux (III) that is induced by the winding (23). In stead of applying this reluctance transducer as an actuator, it can also be applied as a sensor by measuring the current in the winding or the voltage across the winding. As in other embodiments of the reluctance transducer, the winding can be omitted for stiffness correction.
The above-described reluctance transducer can be used in a wide variety of applications, including magnetically driven actuators, magnetic sensors sensing mechanical displacements, magnetic bearings, and compensation structures for reducing a positive stiffness or increasing a negative stiffness of a structure.
Another embodiment of the reluctance transducer is discussed with reference to
A second soft ferromagnetic portion (71) of the yoke is mechanically coupled to the first portion by the first permanent magnet (7). A third soft ferromagnetic portion (8) of the yoke is mechanically coupled to the first portion by the second permanent magnet (8). The second and third portion of the yoke have a U-shape and are arranged such that the end (74) of the second portion is facing one side of the core element, whereas the end (75) of the third portion is facing the other side of the core element. The portions of the yoke are arranged such that the ends (3,4,74,75) leave a space for the movable core element. The end of the branch (71) that is mechanically coupled to the first magnet (7) and the second end (4) of the yoke are facing the same side of the core element. The other side of the core element is facing the end of the of the branch (73) that is mechanically coupled to the second magnet (8) and the first end (3) of the yoke.
Magnetic circuits similar to those of the reluctance transducer shown in
Preferably, the magnets of the embodiment of the reluctance transducer shown in the
In all the embodiments discussed above, the orientation of the magnets may be reversed, so the North poles may be changed into South poles and vice versa provided that both magnets (7,8) are reversed simultaneously.
The first portion (111) is implemented as a cylinder shell. Further, the second portion (112) includes a cylinder kernel, concentrically arranged with respect to the cylinder shell (111). The second portion also includes intermediate sections magnetically connecting axial ends (112a,b, 111a,b) of the cylinder kernel (112) and the cylinder shell (111), respectively. The intermediate sections are implemented as an upper lid (116) and a lower lid (117). Thus, the cylinder shell (111) bridging the intermediate space (5), the upper lid (116), the cylinder kernel (112) and the lower lid (117) constitute a circuit for conducting a magnetic flux. The cylinder kernel (112) may protrude from the upper lid (116) and/or the lower lid (117). Electrical windings (23) are located between the cylinder kernel (112) and the cylinder shell (111). The electrical windings (23) are provided with electrical terminals (23a,b) to feed the windings (23).
The construction shown in
A core (126) is integrally manufactured with the frame (110), and is formed as a lever pivoting with respect to an elastic hinge (127). Further, the actuator (101) includes a separate actuator element (128) extending axially with respect to the cylinder shell (111) and cylinder kernel (112), through the frame (110) and protruding from a top section of the frame, see also
By flowing an electrical current through the electrical windings (23), the core (126) moves upwardly or downwardly, depending on the flowing direction in the electrical windings. In principle, the configuration can also be used for sensing a mechanical displacement. When the core (126) moves, an electrical current is forced to flow through the electrical windings (23). The amount of electric current is a measure for the displacement of the core (126).
The left-hand part of
As shown in
The magnetic bearing (300) shown in
It is noted that, generally, the core includes soft magnetic elements for magnetically conducting the flux bridging between the ends of the soft magnetic elements. It is further noted that a multiple number of electrical windings can be applied to a soft magnetic element. Also, resistive elements can be added in the electrical windings.
The invention is not restricted to the embodiments described herein. It will be understood that many variants are possible.
Other such variants will be apparent for the person skilled in the art and are considered to fall within the scope of the invention as defined in the following claims.
Claims
1. A reluctance transducer comprising:
- a soft ferromagnetic yoke having a first end and a second end, the first end and the second end defining an intermediate space,
- a soft ferromagnetic core element partly filling the intermediate space, the core element and the yoke being movable relative to each other in a direction between the first end of the yoke and the second end of the yoke,
- a first permanent magnet and a second permanent magnet arranged relative to each other such that the first magnet and the second magnet exert opposite forces on the core element, and
- wherein a first pole of the first magnet is mechanically and magnetically coupled by an intermediate soft ferromagnetic element to an equivalent pole of the second magnet,
- wherein
- a second pole of the first magnet is magnetically insulated from an equivalent pole of the second magnet.
2. The reluctance transducer according to claim 1, wherein the first permanent magnet and the second permanent magnet are arranged such that the direction of a magnetic flux of the first permanent magnet at the first end of the yoke is opposite to the direction of a magnetic flux of the second permanent magnet at the second end of the yoke.
3. The reluctance transducer according to claim 1, wherein the intermediate soft ferromagnetic element is a portion of the yoke.
4. The reluctance transducer according to claim 3, wherein the first end of the soft ferromagnetic yoke is provided with a first cavity receiving the first permanent magnet and the second end of the soft ferromagnetic yoke is provided with a second cavity receiving the second permanent magnet.
5. The reluctance transducer according to claim 2, wherein the yoke comprises a first portion fixed to the first pole of the first magnet and a second portion fixed to the second pole of the first magnet.
6. The reluctance transducer according to claim 5, comprising a third portion of the yoke and wherein the first pole of the second magnet is fixed to the third portion of the yoke and the second portion is fixed to the second pole of the second magnet.
7. The reluctance transducer according to claim 2, wherein the soft ferromagnetic element mechanically coupling the two permanent magnets is a portion of the soft ferromagnetic core element.
8. The reluctance transducer according to claim 7, wherein a first surface of the core element is facing the first end of the yoke and a second surface of the core element is facing the second end of the yoke and wherein the first surface is provided with a cavity receiving the first magnet and the second surface is provided with a cavity receiving the second magnet.
9. The reluctance transducer according to claim 3, wherein the direction from the first end of the yoke to the second end of the yoke is perpendicular to the direction from the first permanent magnet to the second permanent magnet.
10. The reluctance transducer according to claim 1, wherein the soft ferromagnetic yoke has a first portion comprising the first end and the second end, and a second portion that is surrounded by an electrical winding.
11. The reluctance transducer according to claim 4, wherein the soft ferromagnetic yoke has a first portion implemented as a cylinder shell comprising the first end and the second end, and a second portion that is surrounded by an electrical winding, and wherein the second portion includes a cylinder kernel, concentrically arranged with respect to the cylinder shell, the second portion further including intermediate sections magnetically connecting axial ends of the cylinder kernel and cylinder shell, respectively.
12. The reluctance transducer according to claim 4, comprising a multiple number of permanent magnetic pairs, the permanent magnetic elements of each individual pair being arranged opposite to each other near first and second slots, respectively, and magnetically oriented opposite to each other.
13. The reluctance transducer according to claim 4, wherein the core element is formed as a lever moving an actuator element or a sensor element.
14. The reluctance transducer according to claim 4, wherein first and second end portions of the soft magnetic yoke are formed as mutually aligned bars.
Type: Application
Filed: Sep 10, 2013
Publication Date: Sep 3, 2015
Inventors: Roger Franciscus Mattheus Maria Hamelinck ('s-Gravenhage), Christian Werner ('s-Gravenhage)
Application Number: 14/427,286