SURGICAL INSTRUMENT UTILIZING SENSOR ADAPTATION
A surgical instrument can comprise a handle, a movable input, and an analog sensor configured to detect the position of the movable input, wherein the analog sensor is configured to produce an analog signal comprising analog data. The surgical instrument can further comprise a microcontroller comprising an input channel, wherein the analog sensor is in signal communication with the input channel, wherein the microcontroller is configured to compare the analog data to a reference value, and wherein the microcontroller is configured to produce a digital signal in response to the comparison.
Latest Ethicon Endo-Surgery, Inc. Patents:
The present invention relates to surgical instruments and, in various circumstances, to surgical stapling and cutting instruments and staple cartridges therefor that are designed to staple and cut tissue.
The features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 13/782,295, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH CONDUCTIVE PATHWAYS FOR SIGNAL COMMUNICATION;
U.S. patent application Ser. No. 13/782,323, entitled ROTARY POWERED ARTICULATION JOINTS FOR SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 13/782,338, entitled THUMBWHEEL SWITCH ARRANGEMENTS FOR SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 13/782,499, entitled ELECTROMECHANICAL SURGICAL DEVICE WITH SIGNAL RELAY ARRANGEMENT;
U.S. patent application Ser. No. 13/782,460, entitled MULTIPLE PROCESSOR MOTOR CONTROL FOR MODULAR SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 13/782,358, entitled JOYSTICK SWITCH ASSEMBLIES FOR SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 13/782,481, entitled SENSOR STRAIGHTENED END EFFECTOR DURING REMOVAL THROUGH TROCAR;
U.S. patent application Ser. No. 13/782,518, entitled CONTROL METHODS FOR SURGICAL INSTRUMENTS WITH REMOVABLE IMPLEMENT PORTIONS;
U.S. patent application Ser. No. 13/782,375, entitled ROTARY POWERED SURGICAL INSTRUMENTS WITH MULTIPLE DEGREES OF FREEDOM; and
U.S. patent application Ser. No. 13/782,536, entitled SURGICAL INSTRUMENT SOFT STOP are hereby incorporated by reference in their entireties.
Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE;
U.S. patent application Ser. No. 13/803,193, entitled CONTROL ARRANGEMENTS FOR A DRIVE MEMBER OF A SURGICAL INSTRUMENT;
U.S. patent application Ser. No. 13/803,053, entitled INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT;
U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK;
U.S. patent application Ser. No. 13/803,210, entitled SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 13/803,148, entitled MULTI-FUNCTION MOTOR FOR A SURGICAL INSTRUMENT;
U.S. patent application Ser. No. 13/803,066, entitled DRIVE SYSTEM LOCKOUT ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 13/803,117, entitled ARTICULATION CONTROL SYSTEM FOR ARTICULATABLE SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 13/803,130, entitled DRIVE TRAIN CONTROL ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS; and
U.S. patent application Ser. No. 13/803,159, entitled METHOD AND SYSTEM FOR OPERATING A SURGICAL INSTRUMENT.
Applicant of the present application also owns the following patent applications that were filed on even date herewith and are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. ______, entitled SURGICAL INSTRUMENT COMPRISING A SENSOR SYSTEM, Attorney Docket No. END7386USNP/130458;
U.S. patent application Ser. No. ______, entitled POWER MANAGEMENT CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, Attorney Docket No. END7387USNP/130459;
U.S. patent application Ser. No. ______, entitled STERILIZATION VERIFICATION CIRCUIT, Attorney Docket No. END7388USNP/130460;
U.S. patent application Ser. No. ______, entitled VERIFICATION OF NUMBER OF BATTERY EXCHANGES/PROCEDURE COUNT, Attorney Docket No. END7389USNP/130461;
U.S. patent application Ser. No. ______, entitled POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL, Attorney Docket No. END7390USNP/130462;
U.S. patent application Ser. No. ______, entitled MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES, Attorney Docket No. END7391USNP/130463;
U.S. patent application Ser. No. ______, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS, Attorney Docket No. END7392USNP/130464;
U.S. patent application Ser. No. ______, entitled SURGICAL INSTRUMENT CONTROL CIRCUIT HAVING A SAFETY PROCESSOR, Attorney Docket No. END7394USNP/130466;
U.S. patent application Ser. No. ______, entitled SURGICAL INSTRUMENT COMPRISING INTERACTIVE SYSTEMS, Attorney Docket No. END7395USNP/130467;
U.S. patent application Ser. No. ______, entitled INTERFACE SYSTEMS FOR USE WITH SURGICAL INSTRUMENTS, Attorney Docket No. END7396USNP/130468;
U.S. patent application Ser. No. ______, entitled MODULAR SURGICAL INSTRUMENT SYSTEM, Attorney Docket No. END7397USNP/130469;
U.S. patent application Ser. No. ______, entitled SYSTEMS AND METHODS FOR CONTROLLING A SEGMENTED CIRCUIT, Attorney Docket No. END7399USNP/130471;
U.S. patent application Ser. No. ______, entitled POWER MANAGEMENT THROUGH SEGMENTED CIRCUIT AND VARIABLE VOLTAGE PROTECTION, Attorney Docket No. END7400USNP/130472;
U.S. patent application Ser. No. ______, entitled SURGICAL STAPLING INSTRUMENT SYSTEM, Attorney Docket No. END7401USNP/130473; and
U.S. patent application Ser. No. ______, entitled SURGICAL INSTRUMENT COMPRISING A ROTATABLE SHAFT, Attorney Docket No. END7402USNP/130474.
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment”, or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation. Such modifications and variations are intended to be included within the scope of the present invention.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” referring to the portion closest to the clinician and the term “distal” referring to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the person of ordinary skill in the art will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, those of ordinary skill in the art will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongated shaft of a surgical instrument can be advanced.
The housing 12 depicted in
Referring now to
Still referring to
Further to the above,
In at least one form, the handle 14 and the frame 20 may operably support another drive system referred to herein as a firing drive system 80 that is configured to apply firing motions to corresponding portions of the interchangeable shaft assembly attached thereto. The firing drive system may 80 also be referred to herein as a “second drive system”. The firing drive system 80 may employ an electric motor 82, located in the pistol grip portion 19 of the handle 14. In various forms, the motor 82 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor 82 may be powered by a power source 90 that in one form may comprise a removable power pack 92. As can be seen in
As outlined above with respect to other various forms, the electric motor 82 can include a rotatable shaft (not shown) that operably interfaces with a gear reducer assembly 84 that is mounted in meshing engagement with a with a set, or rack, of drive teeth 122 on a longitudinally-movable drive member 120. In use, a voltage polarity provided by the power source 90 can operate the electric motor 82 in a clockwise direction wherein the voltage polarity applied to the electric motor by the battery can be reversed in order to operate the electric motor 82 in a counter-clockwise direction. When the electric motor 82 is rotated in one direction, the drive member 120 will be axially driven in the distal direction “DD”. When the motor 82 is driven in the opposite rotary direction, the drive member 120 will be axially driven in a proximal direction “PD”. The handle 14 can include a switch which can be configured to reverse the polarity applied to the electric motor 82 by the power source 90. As with the other forms described herein, the handle 14 can also include a sensor that is configured to detect the position of the drive member 120 and/or the direction in which the drive member 120 is being moved.
Actuation of the motor 82 can be controlled by a firing trigger 130 that is pivotally supported on the handle 14. The firing trigger 130 may be pivoted between an unactuated position and an actuated position. The firing trigger 130 may be biased into the unactuated position by a spring 132 or other biasing arrangement such that when the clinician releases the firing trigger 130, it may be pivoted or otherwise returned to the unactuated position by the spring 132 or biasing arrangement. In at least one form, the firing trigger 130 can be positioned “outboard” of the closure trigger 32 as was discussed above. In at least one form, a firing trigger safety button 134 may be pivotally mounted to the closure trigger 32 by pin 35. The safety button 134 may be positioned between the firing trigger 130 and the closure trigger 32 and have a pivot arm 136 protruding therefrom. See
As discussed above, the handle 14 can include a closure trigger 32 and a firing trigger 130. Referring to
As indicated above, in at least one form, the longitudinally movable drive member 120 has a rack of teeth 122 formed thereon for meshing engagement with a corresponding drive gear 86 of the gear reducer assembly 84. At least one form also includes a manually-actuatable “bailout” assembly 140 that is configured to enable the clinician to manually retract the longitudinally movable drive member 120 should the motor 82 become disabled. The bailout assembly 140 may include a lever or bailout handle assembly 142 that is configured to be manually pivoted into ratcheting engagement with teeth 124 also provided in the drive member 120. Thus, the clinician can manually retract the drive member 120 by using the bailout handle assembly 142 to ratchet the drive member 120 in the proximal direction “PD”. U.S. Patent Application Publication No. US 2010/0089970 discloses bailout arrangements and other components, arrangements and systems that may also be employed with the various instruments disclosed herein. U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Patent Application Publication No. 2010/0089970, is hereby incorporated by reference in its entirety.
Turning now to
Referring primarily to
In at least one form, the interchangeable shaft assembly 200 may further include an articulation joint 270. Other interchangeable shaft assemblies, however, may not be capable of articulation. As can be seen in
In use, the closure tube 260 is translated distally (direction “DD”) to close the anvil 306, for example, in response to the actuation of the closure trigger 32. The anvil 306 is closed by distally translating the closure tube 260 and thus the shaft closure sleeve assembly 272, causing it to strike a proximal surface on the anvil 360 in the manner described in the aforementioned reference U.S. patent application Ser. No. 13/803,086. As was also described in detail in that reference, the anvil 306 is opened by proximally translating the closure tube 260 and the shaft closure sleeve assembly 272, causing tab 276 and the horseshoe aperture 275 to contact and push against the anvil tab to lift the anvil 306. In the anvil-open position, the shaft closure tube 260 is moved to its proximal position.
As indicated above, the surgical instrument 10 may further include an articulation lock 350 of the types and construction described in further detail in U.S. patent application Ser. No. 13/803,086 which can be configured and operated to selectively lock the end effector 300 in position. Such arrangement enables the end effector 300 to be rotated, or articulated, relative to the shaft closure tube 260 when the articulation lock 350 is in its unlocked state. In such an unlocked state, the end effector 300 can be positioned and pushed against soft tissue and/or bone, for example, surrounding the surgical site within the patient in order to cause the end effector 300 to articulate relative to the closure tube 260. The end effector 300 may also be articulated relative to the closure tube 260 by an articulation driver 230.
As was also indicated above, the interchangeable shaft assembly 200 further includes a firing member 220 that is supported for axial travel within the shaft spine 210. The firing member 220 includes an intermediate firing shaft portion 222 that is configured for attachment to a distal cutting portion or knife bar 280. The firing member 220 may also be referred to herein as a “second shaft” and/or a “second shaft assembly”. As can be seen in
Further to the above, the shaft assembly 200 can include a clutch assembly 400 which can be configured to selectively and releasably couple the articulation driver 230 to the firing member 220. In one form, the clutch assembly 400 includes a lock collar, or sleeve 402, positioned around the firing member 220 wherein the lock sleeve 402 can be rotated between an engaged position in which the lock sleeve 402 couples the articulation driver 360 to the firing member 220 and a disengaged position in which the articulation driver 360 is not operably coupled to the firing member 200. When lock sleeve 402 is in its engaged position, distal movement of the firing member 220 can move the articulation driver 360 distally and, correspondingly, proximal movement of the firing member 220 can move the articulation driver 230 proximally. When lock sleeve 402 is in its disengaged position, movement of the firing member 220 is not transmitted to the articulation driver 230 and, as a result, the firing member 220 can move independently of the articulation driver 230. In various circumstances, the articulation driver 230 can be held in position by the articulation lock 350 when the articulation driver 230 is not being moved in the proximal or distal directions by the firing member 220.
Referring primarily to
As can be seen in
As also illustrated in
As discussed above, the shaft assembly 200 can include a proximal portion which is fixably mounted to the handle 14 and a distal portion which is rotatable about a longitudinal axis. The rotatable distal shaft portion can be rotated relative to the proximal portion about the slip ring assembly 600, as discussed above. The distal connector flange 601 of the slip ring assembly 600 can be positioned within the rotatable distal shaft portion. Moreover, further to the above, the switch drum 500 can also be positioned within the rotatable distal shaft portion. When the rotatable distal shaft portion is rotated, the distal connector flange 601 and the switch drum 500 can be rotated synchronously with one another. In addition, the switch drum 500 can be rotated between a first position and a second position relative to the distal connector flange 601. When the switch drum 500 is in its first position, the articulation drive system may be operably disengaged from the firing drive system and, thus, the operation of the firing drive system may not articulate the end effector 300 of the shaft assembly 200. When the switch drum 500 is in its second position, the articulation drive system may be operably engaged with the firing drive system and, thus, the operation of the firing drive system may articulate the end effector 300 of the shaft assembly 200. When the switch drum 500 is moved between its first position and its second position, the switch drum 500 is moved relative to distal connector flange 601. In various instances, the shaft assembly 200 can comprise at least one sensor configured to detect the position of the switch drum 500. Turning now to
Referring again to
Various shaft assembly embodiments employ a latch system 710 for removably coupling the shaft assembly 200 to the housing 12 and more specifically to the frame 20. As can be seen in
When employing an interchangeable shaft assembly that includes an end effector of the type described herein that is adapted to cut and fasten tissue, as well as other types of end effectors, it may be desirable to prevent inadvertent detachment of the interchangeable shaft assembly from the housing during actuation of the end effector. For example, in use the clinician may actuate the closure trigger 32 to grasp and manipulate the target tissue into a desired position. Once the target tissue is positioned within the end effector 300 in a desired orientation, the clinician may then fully actuate the closure trigger 32 to close the anvil 306 and clamp the target tissue in position for cutting and stapling. In that instance, the first drive system 30 has been fully actuated. After the target tissue has been clamped in the end effector 300, it may be desirable to prevent the inadvertent detachment of the shaft assembly 200 from the housing 12. One form of the latch system 710 is configured to prevent such inadvertent detachment.
As can be most particularly seen in
Attachment of the interchangeable shaft assembly 200 to the handle 14 will now be described with reference to
As discussed above, at least five systems of the interchangeable shaft assembly 200 can be operably coupled with at least five corresponding systems of the handle 14. A first system can comprise a frame system which couples and/or aligns the frame or spine of the shaft assembly 200 with the frame 20 of the handle 14. Another system can comprise a closure drive system 30 which can operably connect the closure trigger 32 of the handle 14 and the closure tube 260 and the anvil 306 of the shaft assembly 200. As outlined above, the closure tube attachment yoke 250 of the shaft assembly 200 can be engaged with the pin 37 on the second closure link 38. Another system can comprise the firing drive system 80 which can operably connect the firing trigger 130 of the handle 14 with the intermediate firing shaft 222 of the shaft assembly 200. As outlined above, the shaft attachment lug 226 can be operably connected with the cradle 126 of the longitudinal drive member 120. Another system can comprise an electrical system which can signal to a controller in the handle 14, such as microcontroller, for example, that a shaft assembly, such as shaft assembly 200, for example, has been operably engaged with the handle 14 and/or, two, conduct power and/or communication signals between the shaft assembly 200 and the handle 14. For instance, the shaft assembly 200 can include an electrical connector 4010 that is operably mounted to the shaft circuit board 610. The electrical connector 4010 is configured for mating engagement with a corresponding electrical connector 4000 on the handle control board 100. Further details regaining the circuitry and control systems may be found in U.S. patent application Ser. No. 13/803,086, the entire disclosure of which was previously incorporated by reference herein. The fifth system may consist of the latching system for releasably locking the shaft assembly 200 to the handle 14.
As described herein, a surgical instrument, such as a surgical stapling instrument, for example, can include a processor, computer, and/or controller, for example, (herein collectively referred to as a “processor”) and one or more sensors in signal communication with the processor, computer, and/or controller. In various instances, a processor can comprise a microcontroller and one or more memory units operationally coupled to the microcontroller. By executing instruction code stored in the memory, the processor may control various components of the surgical instrument, such as the motor, various drive systems, and/or a user display, for example. The processor may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, microcontrollers, integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate arrays (FPGA), logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontrollers, system-on-chip (SoC), and/or system-in-package (SIP). Examples of discrete hardware elements may include circuits and/or circuit elements such as logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, and/or relays. In certain instances, the processor may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
The processor may be an LM 4F230H5QR, available from Texas Instruments, for example. In certain instances, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QED analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available. Other microcontrollers may be readily substituted for use with the present disclosure. Accordingly, the present disclosure should not be limited in this context.
Signal communication can comprise any suitable form of communication in which information is transmitted between a sensor and the processor. Such communication can comprise wired communication utilizing one or more conductors and/or wireless communication utilizing a wireless transmitter and receiver, for example. In various instances, a surgical instrument can include a first sensor configured to detect a first condition of the surgical instrument and a second sensor configured to detect a second condition of the surgical instrument. For instance, the surgical instrument can include a first sensor configured to detect whether a closure trigger of the surgical instrument has been actuated and a second sensor configured to detect whether a firing trigger of the surgical instrument has been actuated, for example.
Various embodiments are envisioned in which the surgical instrument can include two or more sensors configured to detect the same condition. In at least one such embodiment, the surgical instrument can comprise a processor, a first sensor in signal communication with the processor, and a second sensor in signal communication with the processor. The first sensor can be configured to communicate a first signal to the processor and the second sensor can be configured to communicate a second signal to the processor. In various instances, the processor can include a first input channel for receiving the first signal from the first sensor and a second input channel for receiving the second signal from the second sensor. In other instances, a multiplexer device can receive the first signal and the second signal and communicate the data of the first and second signals to the processor as part of a single, combined signal, for example. In some instances, a first conductor, such as a first insulated wire, for example, can connect the first sensor to the first input channel and a second conductor, such as a second insulated wire, for example, can connect the second sensor to the second input channel. As outlined above, the first sensor and/or the second sensor can communicate wirelessly with the processor. In at least one such instance, the first sensor can include a first wireless transmitter and the second sensor can include a second wireless transmitter, wherein the processor can include and/or can be in communication with at least one wireless signal receiver configured to receive the first signal and/or the second signal and transmit the signals to the processor.
In co-operation with the sensors, as described in greater detail below, the processor of the surgical instrument can verify that the surgical instrument is operating correctly. The first signal can include data regarding a condition of the surgical instrument and the second signal can include data regarding the same condition. The processor can include an algorithm configured to compare the data from the first signal to the data from the second signal and determine whether the data communicated by the two signals are the same or different. If the data from the two signals are the same, the processor may use the data to operate the surgical instrument. In such circumstances, the processor can assume that a fault condition does not exist. In various instances, the processor can determine whether the data from the first signal and the data from the second signal are within an acceptable, or recognized, range of data. If the data from the two signals are within the recognized range of data, the processor may use the data from one or both of the signals to operate the surgical instrument. In such circumstances, the processor can assume that a fault condition does not exist. If the data from the first signal is outside of the recognized range of data, the processor may assume that a fault condition exists with regard to the first sensor, ignore the first signal, and operate the surgical instrument in response to the data from the second signal. Likewise, if the data from the second signal is outside the recognized range of data, the processor may assume that a fault condition exists with regard to the second sensor, ignore the second signal, and operate the surgical instrument in response to the data from the first signal. The processor can be configured to selectively ignore the input from one or more sensors.
In various instances, further to the above, the processor can include a module configured to implement an algorithm configured to assess whether the data from the first signal is between a first value and a second value. Similarly, the algorithm can be configured to assess whether the data from the second signal is between the first value and the second value. In certain instances, a surgical instrument can include at least one memory device. A memory device can be integral with the processor, in signal communication with the processor, and/or accessible by the processor. In certain instances, the memory device can include a memory chip including data stored thereon. The data stored on the memory chip can be in the form of a lookup table, for example, wherein the processor can access the lookup table to establish the acceptable, or recognized, range of data. In certain instances, the memory device can comprise nonvolatile memory, such as bit-masked read-only memory (ROM) or flash memory, for example. Nonvolatile memory (NVM) may comprise other types of memory including, for example, programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or battery backed random-access memory (RAM) such as dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), and/or synchronous DRAM (SDRAM).
Further to the above, the first sensor and the second sensor can be redundant. The processor can be configured to compare the first signal from the first sensor to the second signal from the second sensor to determine what action, if any, to take. In addition to or in lieu of the above, the processor can be configured to compare the data from the first signal and/or the second signal to limits established by the algorithm and/or data stored within a memory device. In various circumstances, the processor can be configured to apply a gain to a signal it receives, such as the first signal and/or the second signal, for example. For instance, the processor can apply a first gain to the first signal and a second gain to the second signal. In certain instances, the first gain can be the same as the second gain. In other instances, the first gain and the second gain can be different. In some circumstances, the processor can be configured to calibrate the first gain and/or the second gain. In at least one such circumstance, the processor can modify a gain such that the amplified signal is within a desired, or acceptable, range. In various instances, the unmodified gain and/or the modified gain can be stored within a memory device which is integral to and/or accessible by the processor. In certain embodiments, the memory device can track the history of the gains applied to a signal. In any event, the processor can be configured to provide this calibration before, during, and/or after a surgical procedure.
In various embodiments, the first sensor can apply a first gain to the first signal and the second sensor can apply a second gain to the second signal. In certain embodiments, the processor can include one or more output channels and can communicate with the first and second sensors. For instance, the processor can include a first output channel in signal communication with the first sensor and a second output channel in signal communication with the second sensor. Further to the above, the processor can be configured to calibrate the first sensor and/or the second sensor. The processor can send a first calibration signal through said first output channel in order to modify a first gain that the first sensor is applying to the first signal. Similarly, the processor can send a second calibration signal through said second output channel in order to modify a second gain that the second sensor is applying to the second signal.
As discussed above, the processor can modify the operation of the surgical instrument in view of the data received from the first signal and/or the second signal. In some circumstances, the processor can ignore the signal from a redundant sensor that the processor deems to be faulty. In some circumstances, the processor can return the surgical instrument to a safe state and/or warn the user of the surgical instrument that one or both of the sensors may be faulty. In certain circumstances, the processor can disable the surgical instrument. In various circumstances, the processor can deactivate and/or modify certain functions of the surgical instrument when the processor detects that one or more of the sensors may be faulty. In at least one such circumstance, the processor may limit the operable controls to those controls which can permit the surgical instrument to be safely removed from the surgical site, for example, when the processor detects that one or more of the sensors may be faulty. In at least one circumstance, when the processor detects that one or more of the sensors may be faulty. In certain circumstances, the processor may limit the maximum speed, power, and/or torque that can be delivered by the motor of the surgical instrument, for example, when the processor detects that one or more of the sensors may be faulty. In various circumstances, the processor may enable a recalibration control which may allow the user of the surgical instrument to recalibrate the mal-performing or non-performing sensor, for example, when the processor detects that one or more of the sensors may be faulty. While various exemplary embodiments utilizing two sensors to detect the same condition are described herein, various other embodiments are envisioned which utilize more than two sensors. The principles applied to the two sensor system described herein can be adapted to systems including three or more sensors.
As discussed above, the first sensor and the second sensor can be configured to detect the same condition of the surgical instrument. For instance, the first sensor and the second sensor can be configured to detect whether an anvil of the surgical instrument is in an open condition, for example. In at least one such instance, the first sensor can detect the movement of a closure trigger into an actuated position and the second sensor can detect the movement of an anvil into a clamped position, for example. In some instances, the first sensor and the second sensor can be configured to detect the position of a firing member configured to deploy staples from an end effector of the surgical instrument. In at least one such instance, the first sensor can be configured to detect the position of a motor-driven rack in a handle of the surgical instrument and the second sensor can be configured to detect the position of a firing member in a shaft or an end effector of the surgical instrument which is operably coupled with the motor-driven rack, for example. In various instances, the first and second sensors could verify that the same event is occurring. The first and second sensors could be located in the same portion of the surgical instrument and/or in different portions of the surgical instrument. A first sensor can be located in the handle, for example, and a second sensor could be located in the shaft or the end effector, for example.
Further to the above, the first and second sensors can be utilized to determine whether two events are occurring at the same time. For example, whether the closure trigger and the anvil are moving, or have moved, concurrently. In certain instances, the first and second sensors can be utilized to determine whether two events are not occurring at the same time. For example, it may not be desirable for the anvil of the end effector to open while the firing member of the surgical instrument is being advanced to deploy the staples from the end effector. The first sensor can be configured to determine whether the anvil is in an clamped position and the second sensor can be configured to determine whether the firing member is being advanced. In the event that the first sensor detects that the anvil is in an unclamped position while the second sensor detects that the firing member is being advanced, the processor can interrupt the supply of power to the motor of the surgical instrument, for example. Similarly, the first sensor can be configured to detect whether an unclamping actuator configured to unclamp the end effector has been depressed and the second sensor can be configured to detect whether a firing actuator configured to operate the motor of the surgical instrument has been depressed. The processor of the surgical instrument can be configured to resolve these conflicting instructions by stopping the motor, reversing the motor to retract the firing member, and/or ignoring the instructions from the unclamping actuator, for example.
In some instances, further to the above, the condition detected can include the power consumed by the surgical instrument. In at least one such instance, the first sensor can be configured to monitor the current drawn from a battery of the surgical instrument and the second sensor can be configured to monitor the voltage of the battery. As discussed above, such information can be communicated from the first sensor and the second sensor to the processor. With this information, the processor can calculate the electrical power draw of the surgical instrument. Such a system could be referred to as ‘supply side’ power monitoring. In certain instances, the first sensor can be configured to detect the current drawn by a motor of the surgical instrument and the second sensor can be configured to detect the current drawn by a processor of the surgical instrument, for example. As discussed above, such information can be communicated from the first sensor and the second sensor to the processor. With this information, the processor can calculate the electrical power draw of the surgical instrument. To the extent that other components of the surgical instrument draw electrical power, a sensor could be utilized to detect the current drawn for each component and communicate that information to the processor. Such a system could be referred to as ‘use side’ power monitoring. Various embodiments are envisioned which utilize supply side power monitoring and use side power monitoring. In various instances, the processor, and/or an algorithm implemented by the processor, can be configured to calculate a state of the device using more than one sensor that may not be sensed directly by only one sensor. Based on this calculation, the processor can enable, block, and/or modify a function of the surgical instrument.
In various circumstances, the condition of the surgical instrument that can be detected by a processor and a sensor system can include the orientation of the surgical instrument. In at least one embodiment, the surgical instrument can include a handle, a shaft extending from the handle, and an end effector extending from the shaft. A first sensor can be positioned within the handle and a second sensor can be positioned within the shaft, for example. The first sensor can comprise a first tilt sensor and the second sensor can comprise a second tilt sensor, for example. The first tilt sensor can be configured to detect the instrument's orientation with respect to a first plane and the second tilt sensor can be configured to detect the instrument's orientation with respect to a second plane. The first plane and the second plane may or may not be orthogonal. The first sensor can comprise an accelerometer and/or a gyroscope, for example. The second sensor can comprise an accelerometer and/or a gyroscope, for example. Various embodiments are envisioned which comprise more than two sensors and each such sensor can comprise an accelerometer and/or a gyroscope, for example. In at least one implementation, a first sensor can comprise a first accelerometer arranged along a first axis and a second sensor can comprise a second accelerometer arranged along a second axis which is different than the first axis. In at least one such instance, the first axis can be transverse to the second axis.
Further to the above, the processor can utilize data from the first and second accelerometers to determine the direction in which gravity is acting with respect to the instrument, i.e., the direction of ground with respect to the surgical instrument. In certain instances, magnetic fields generated in the environment surrounding the surgical instrument may affect one of the accelerometers. Further to the above, the processor can be configured to ignore data from an accelerometer if the data from the accelerometers is inconsistent. Moreover, the processor can be configured to ignore data from an accelerometer if the accelerometer is dithering between two or more strong polarity orientations, for example. To the extent that an external magnetic field is affecting two or more, and/or all, of the accelerometers of a surgical instrument, the processor can deactivate certain functions of the surgical instrument which depend on data from the accelerometers. In various instances, a surgical instrument can include a screen configured to display images communicated to the screen by the processor, wherein the processor can be configured to change the orientation of the images displayed on the screen when the handle of the surgical instrument is reoriented, or at least when a reorientation of the handle is detected by the accelerometers. In at least one instance, the display on the screen can be flipped upside down when the handle is oriented upside down. In the event that the processor determines that orientation data from one or more of the accelerometers may be faulty, the processor may prevent the display from being reoriented away from its default position, for example.
Further to the above, the orientation of a surgical instrument may or may not be detectable from a single sensor. In at least one instance, the handle of the surgical instrument can include a first sensor and the shaft can include a second sensor, for example. Utilizing data from the first sensor and the second sensor, and/or data from any other sensor, the processor can determine the orientation of the surgical instrument. In some instances, the processor can utilize an algorithm configured to combine the data from the first sensor signal, the second sensor signal, and/or any suitable number of sensor signals to determine the orientation of the surgical instrument. In at least one instance, a handle sensor positioned within the handle can determine the orientation of the handle with respect to gravity. A shaft sensor positioned within the shaft can determine the orientation of the shaft with respect to gravity. In embodiments where the shaft, or at least a portion of the shaft, does not articulate relative to the handle, the processor can determine the direction in which the shaft, or the non-articulated shaft portion, is pointing. In some instances, a surgical instrument can include an end effector which can articulate relative to the shaft. The surgical instrument can include an articulation sensor which can determine the direction and the degree in which the end effector has been articulated relative to the shaft, for example. With data from the handle sensor, the shaft sensor, and the articulation sensor, the processor can determine the direction in which the end effector is pointing. With additional data including the length of the handle, the shaft, and/or the end effector, the processor can determine the position of the distal tip of the end effector, for example. With such information, the processor could enable, block, and/or modify a function of the surgical instrument.
In various instances, a surgical instrument can include a redundant processor in addition to a first processor. The redundant processor can be in signal communication with some or all of the sensors that the first processor is in signal communication with. The redundant processor can perform some or all of the same calculations that the first processor performs. The redundant processor can be in signal communication with the first processor. The first processor can be configured to compare the calculations that it has performed with the calculations that the redundant processor has performed. Similarly, the redundant processor can be configured to compare the calculations that it has performed with the calculations that the first processor has performed. In various instances, the first processor and the redundant processor can be configured to operate the surgical instrument independently of one another. In some instances, the first processor and/or the redundant processor can be configured to determine whether the other processor is faulty and/or deactivate the other processor if a fault within the other processor and/or within the surgical instrument is detected. The first processor and the redundant processor can both be configured to communicate with the operator of the surgical instrument such that, if one of the processors determines the other processor to be faulty, the non-faulty processor can communicate with the operator that a fault condition exists, for example.
In various embodiments, a surgical instrument can include a processor and one or more sensors in signal communication with the processor. The sensors can comprise digital sensors and/or analog sensors. A digital sensor can generate a measuring signal and can include an electronic chip. The electronic chip can convert the measuring signal into a digital output signal. The digital output signal can then be transmitted to the processor utilizing a suitable transmission means such as, for example, a conductive cable, a fiber optic cable, and/or a wireless emitter. An analog sensor can generate a measuring signal and communicate the measuring signal to the processor using an analog output signal. An analog sensor can include a Hall Effect sensor, a magnetoresistive sensor, an optical sensor, and/or any other suitable sensor, for example. A surgical instrument can include a signal filter which can be configured to receive and/or condition the analog output signal before the analog output signal reaches the processor. The signal filter can comprise a low-pass filter, for example, that passes signals to the processor having a low frequency which is at and/or below a cutoff frequency and that attenuates, or reduces the amplitude of, signals with high frequencies higher than the cutoff frequency. In some instances, the low-pass filter may eliminate certain high frequency signals that it receives or all of the high frequency signals that it receives. The low-pass filter may also attenuate, or reduce the amplitude of, certain or all of the low frequency signals, but such attenuation may be different than the attenuation that it applies to high frequency signals. Any suitable signal filter could be utilized. A high-pass filter, for example, could be utilized. A longpass filter could be utilized to receive and condition signals from optical sensors. In various instances, the processor can include an integral signal filter. In some instances, the processor can be in signal communication with the signal filter. In any event, the signal filter can be configured to reduce noise within the analog output signal, or signals, that it receives.
Further to the above, an analog output signal from a sensor can comprise a series of voltage potentials applied to an input channel of the processor. In various instances, the voltage potentials of the analog sensor output signal can be within a defined range. For instance, the voltage potentials can be between about 0V and about 12V, between about 0V and about 6V, between about 0V and about 3V, and/or between about 0V and about 1V, for example. In some instances, the voltage potentials can be less than or equal to 12V, less than or equal to 6V, less than or equal to 3V, and/or less than or equal to 1V, for example. In some instances, the voltage potentials can be between about 0V and about −12V, between about 0V and about −6V, between about 0V and about −3V, and/or between about 0V and about −1V, for example. In some instances, the voltage potentials can be greater than or equal to −12V, greater than or equal to −6V, greater than or equal to −3V, and/or greater than or equal to −1V, for example. In some instances, the voltage potentials can be between about 12V and about −12V, between about 6V and about −6V, between about 3V and about −3V, and/or between about 1V and about −1V, for example. In various instances, the sensor can supply voltage potentials to an input channel of the processor in a continuous stream. The processor may sample this stream of data at a rate which is less than rate in which data is delivered to the processor. In some instances, the sensor can supply voltage potentials to an input channel of the process intermittently or at periodic intervals. In any event, the processor can be configured to evaluate the voltage potentials applied to the input channel or channels thereof and operate the surgical instrument in response to the voltage potentials, as described in greater detail further below.
Further to the above, the processor can be configured to evaluate the analog output signal from a sensor. In various instances, the processor can be configured to evaluate every voltage potential of the analog output signal and/or sample the analog output signal. When sampling the analog output signal, the processor can make periodic evaluations of the signal to periodically obtain voltage potentials from the analog output signal. For each evaluation, the processor can compare the voltage potential obtained from the evaluation against a reference value. In various circumstances, the processor can calculate a digital value, such as 0 or 1, or on or off, for example, from this comparison. For instance, in the event that the evaluated voltage potential equals the reference value, the processor can calculate a digital value of 1. Alternatively, the processor can calculate a digital value of 0 if the evaluated voltage potential equals the reference value. With regard to a first embodiment, the processor can calculate a digital value of 1 if the evaluated voltage potential is less than the reference value and a digital value of 0 if the evaluated voltage potential is greater than the reference value. With regard to a second embodiment, the processor can calculate a digital value of 0 if the evaluated voltage potential is less than the reference value and a digital value of 1 if the evaluated voltage potential is greater than the reference value. In either event, the processor can convert the analog signal to a digital signal. When the processor is continuously evaluating the voltage potential of the sensor output signal, the processor can continuously compare the voltage potential to the reference value, and continuously calculate the digital value. When the processor is evaluating the voltage potential of the sensor output signal at periodic intervals, the processor can compare the voltage potential to the reference value at periodic intervals, and calculate the digital value at periodic intervals.
Further to the above, the reference value can be part of an algorithm utilized by the processor. The reference value can be pre-programmed in the algorithm. In some instances, the processor can obtain, calculate, and/or modify the reference value in the algorithm. In some instances, the reference value can be stored in a memory device which is accessible by and/or integral with the processor. The reference value can be pre-programmed in the memory device. In some instances, the processor can obtain, calculate, and/or modify the reference value in the memory device. In at least one instance, the reference value may be stored in non-volatile memory. In some instances, the reference value may be stored in volatile memory. The reference value may comprise a constant value. The reference value may or may not be changeable or overwritten. In certain instances, the reference value can be stored, changed, and/or otherwise determined as the result of a calibration procedure. The calibration procedure can be performed when manufacturing the surgical instrument, when initializing, or initially powering up, the instrument, when powering up the instrument from a sleep mode, when using the instrument, when placing the instrument into a sleep mode, and/or when completely powering down the instrument, for example.
Also further to the above, the processor can be configured to store the digital value. The digital value can be stored at an electronic logic gate. In various instances, the electronic logic gate can supply a binary output which can be referenced by the processor to assess a condition detected by the sensor, as described in greater detail further below. The processor can include the electronic logic gate. The binary output of the electronic logic gate can be updated. In various instances, the processor can include one or more output channels. The processor can supply the binary output to at least one of the output channels. The processor can apply a low voltage to such an output channel to indicate an off bit or a high voltage to the output channel to indicate an on bit, for example. The low voltage and the high voltage can be measured relative to a threshold value. In at least one instance, the low voltage can comprise no voltage, for example. In at least one other instance, the low voltage can comprise a voltage having a first polarity and the high voltage can comprise a voltage having an opposite polarity, for example.
In at least one instance, if the voltage potentials evaluated by the processor are consistently at or below the reference value, the electronic logic gate can maintain an output of ‘on’. When an evaluated voltage potential exceeds the reference value, the output of the logic gate can be switched to ‘off’. If the voltage potentials evaluated by the processor are consistently above the reference value, the electronic logic gate can maintain an output of ‘off’. When an evaluated voltage potential is thereafter measured at or below the reference value, the output of the logic gate can be switched back to ‘on’, and so forth. In various instances, the electronic logic gate may not maintain a history of its output. In some instances, the processor can include a memory device configured to record the output history of the electronic logic gate, i.e., record a history of the calculated digital value. In various instances, the processor can be configured to access the memory device to ascertain the current digital value and/or at least one previously-existing digital value, for example.
In various instances, the processor can provide an immediate response to a change in the calculated digital value. When the processor first detects that the calculated digital value has changed from ‘on’ to ‘off’ or from ‘off’ to ‘on’, for example, the processor can immediately modify the operation of the surgical instrument. In certain instances, the processor may not immediately modify the operation of the surgical instrument upon detecting that the calculated digital value has changed from ‘on’ to ‘off’ or from ‘off’ to ‘on’, for example. The processor may employ a hysteresis algorithm. For instance, the processor may not modify the operation of the surgical instrument until after the digital value has been calculated the same way a certain number of consecutive times. In at least one such instance, the processor may calculate an ‘on’ value and display an ‘on’ binary value at the output logic gate and/or the output channel based on the data it has received from one or more surgical instrument sensors wherein, at some point thereafter, the processor may calculate an ‘off’ value based on the data it has received from one or more of the surgical instrument sensors; however, the processor may not immediately display an ‘off’ binary value at the output logic gate and/or the output channel. Rather, the processor may delay changing the binary value at the output logic gate and/or the output channel until after the processor has calculated the ‘off’ value a certain number of consecutive times, such as ten times, for example. Once the processor has changed the binary value at the output logic gate and/or the output channel, the processor may likewise delay changing the binary value at the output logic gate and/or the output channel until after the processor has calculated the ‘on’ value a certain number of consecutive times, such as ten times, for example, and so forth.
A hysteresis algorithm may be suitable for handling switch debounce. A surgical instrument can include a switch debouncer circuit which utilizes a capacitor to filter out any quick changes of signal response.
In the example provided above, the sampling delay for going from ‘on’ to ‘off’ was the same as the sampling delay for going from ‘off’ to ‘on’. Embodiments are envisioned in which the sampling delays are not equal. For instance, if an ‘on’ value at an output channel activates the motor of the surgical instrument and an ‘off’ value at an output channel deactivates the motor, the ‘on’ delay may be longer than the ‘off’ delay, for example. In such instances, the processor may not suddenly activate the motor in response to accidental or incidental movements of the firing trigger while, on the other hand, the processor may react quickly to a release of the firing trigger to stop the motor. In at least one such instance, the processor may have an ‘on’ delay but no ‘off’ delay such that the motor can be stopped immediately after the firing trigger is released, for example. As discussed above, the processor may wait for a certain number of consecutive consistent binary output calculations before changing the binary output value. Other algorithms are contemplated. For instance, a processor may not require a certain number of consecutive consistent binary output calculations; rather, the processor may only require that a certain number, or percentage, of consecutive calculations be consistent in order to change the binary output.
As discussed above, a processor can convert an analog input signal to a digital output signal utilizing a reference value. As also discussed above, the processor can utilize the reference value to convert the analog input data, or samples of the analog input data, to ‘on’ values or ‘off’ values as part of its digital output signal. In various instances, a processor can utilize more than one reference value in order to determine whether to output an ‘on’ value or an ‘off’ value. One reference value can define two ranges. A range below the reference value and a range above the reference value. The reference value itself can be part of the first range or the second range, depending on the circumstances. The use of additional reference values can define additional ranges. For instance, a first reference value and a second reference value can define three ranges: a first range below the first reference value, a second range between the first reference value and the second reference value, and a third range above the second reference value. Again, the first reference value can be part of the first range or the second range and, similarly, the second reference value can be part of the second range or the third range, depending on the circumstances. For a given sample of data from an analog signal, the processor can determine whether the sample lies within the first range, the second range, or the third range. In at least one exemplary embodiment, the processor can assign an ‘on’ value to the binary output if the sample is in the first range and an ‘off’ value to the binary output if the sample is in the third range. Alternatively, the processor can assign an ‘off’ value to the binary output if the sample is in the first range and an ‘on’ value to the binary output if the sample is in the third range.
Further to the above, the processor can assign an ‘on’ value or an ‘off’ value to the binary output if the data sample is in the second range. In various instances, an analog data sample in the second range may not change the binary output value. For instance, if the processor has been receiving analog data above the second reference value and producing a certain binary output and, subsequently, the processor receives analog data between the first reference value and the second reference value, the processor may not change the binary output. If the processor, in this example, receives analog data below the first reference value, the processor may then change the binary output. Correspondingly, in this example, if the processor has been receiving analog data below the first reference value and producing a certain binary output and, subsequently, the processor receives analog data between the first reference value and the second reference value, the processor may not change the binary output. If the processor, in this example, receives analog data above the second reference value, the processor may then change the binary output. In various instances, the second range between the first reference value and the second reference value may comprise an observation window within which the processor may not change the binary output signal. In certain instances, the processor may utilize different sampling delays, depending on whether the analog input data jumps directly between the first range and the third range or whether the analog input data transitions into the second range before transitioning into the third range. For example, the sampling delay may be shorter if the analog input data transitions into the second range before transitioning into the first range or the third range as compared to when analog input data jumps directly between the first range and the third range.
As discussed above, an analog sensor, such as a Hall effect sensor, for example, can be utilized to detect a condition of a surgical instrument. In various instances, a Hall effect sensor can produce a linear analog output which can include a positive polarity and a negative polarity and, in certain instances, produce a wide range of analog output values. Such a wide range of values may not always be useful, or may not correspond to events which are actually possible for the surgical instrument. For instance, a Hall effect sensor can be utilized to track the orientation of the anvil of an end effector which, owing to certain physical constraints to the motion of the anvil, may only move through a small range of motion, such as about 30 degrees, for example. Although the Hall effect sensor could detect motion of the anvil outside this range of motion, as a practical matter, the Hall effect sensor will not need to and, as a result, a portion of the output range of the Hall effect sensor may not be utilized. The processor may be programmed to only recognize a range of output from the Hall effect sensor which corresponds to a possible range of motion of the anvil and, to the extent that the processor receives data from the Hall effect sensor which is outside of this range of output, whether above the range or below the range, the processor can ignore such data, generate a fault condition, modify the operation of the surgical instrument, and/or notify the user of the surgical instrument, for example. In such instances, the processor may recognize a valid range of data from the sensor and any data received from the sensor which is outside of this range may be deemed invalid by the processor. The valid range of data may be defined by a first reference value, or threshold, and a second reference value, or threshold. The valid range of data may include data having a positive polarity and a negative polarity. Alternatively, the valid range of data may only comprise data from the positive polarity or data from the negative polarity.
The first reference value and the second reference value, further to the above, can comprise fixed values. In certain circumstances, the first reference value and/or the second reference value can be calibrated. The first reference value and/or the second reference value can be calibrated when the surgical instrument is initially manufactured and/or subsequently re-manufactured. For instance, a trigger, such as the closure trigger, for example, can be moved through its entire range of motion during a calibration procedure and a Hall effect sensor, for example, positioned within the surgical instrument handle can detect the motion of the closure trigger, or at least the motion of a magnetic element, such as a permanent magnet, for example, positioned on the closure trigger. When the closure trigger is in its unclamped position, the reading taken by the Hall effect sensor can be stored as a first set point which corresponds with the unclamped position of the closure trigger. Similarly, when the closure trigger is in its fully clamped position, the reading taken by the Hall effect sensor can be stored as a second set point which corresponds with the fully clamped position of the closure trigger. Thereafter, the first set point can define the first reference value and the second set point can define the second reference value. Positions of the closure trigger between its unclamped position and its fully clamped position can correspond to the range of data between the first reference value and the second reference value. As outlined above, the processor can produce a digital output value in response to the data received from the analog sensor. In at least one instance, the processor can assign an ‘off’ value to its digital output when the data received from the analog sensor is at or above the first reference value. Alternatively, the processor can assign an ‘off’ value to its digital output when the data received from the analog sensor is above, at, or within about 20% of the range preceding first reference value, for example. Data from the analog sensor which is between the first reference value and about 20% of the range below the first reference value can correspond with a position of the closure trigger which is suitably close to is unclamped position. In at least one instance, the processor can assign an ‘on’ value to its digital output when the data received from the analog sensor is below the first reference value. Alternatively, the processor can assign an ‘on’ value to its digital output when the data received from the analog sensor is at, below, or within about 40% of the range above the second reference value can correspond with a position of the closure trigger when it has been pulled about ¾ through its range of motion, for example. The same or similar attributes could be applied to a firing trigger of the surgical instrument, for example.
Further to the above, a sensor can be calibrated in view of a reference value. For instance, if a reference value of +2V, for example, is associated with an unclamped position of the closure trigger and the processor detects a sensor output value which is different than +2V when the closure trigger is in its unclamped position, the processor can recalibrate the sensor, or the gain of the sensor, such that the sensor output matches, or at least substantially matches, the reference value. The processor may utilize an independent method of confirming that the closure trigger is in its unclamped position. In at least one such instance, the surgical instrument can include a second sensor in signal communication with the processor which can independently verify that the closure trigger is in its unclamped position. The second sensor could also comprise an analog sensor, such as a Hall effect sensor, for example. The second sensor could comprise a proximity sensor, a resistance based sensor, and/or any other suitable sensor, for example. The same or similar attributes could be applied to a firing trigger of the surgical instrument, for example.
As discussed above, referring to
Further to the above, the path of the magnet 802 relative to the first sensor 803 can be determined when the magnet 802 moves along a first path segment when the closure trigger 32 is moved between its unclamped position and its clamped position and a second path segment when the firing trigger 130 is moved between its unfired position and its fired position. The range of outputs that the first sensor 803 will produce while tracking the magnet 802 as it moves along its first path segment can define a first valid range of data while the range of outputs that the first sensor 803 will produce while tracking the magnet 802 as it moves along its second path segment can define a second valid range of data. The first valid range of data may or may not be contiguous with the second valid range of data. In either event, the path of the magnet 802 relative to the second sensor 804 can also be determined when the magnet 802 moves along its first path segment and its second path segment. The range of outputs that the second sensor 804 will produce while tracking the magnet 802 as it moves along its first path segment can define a first valid range of data while the range of outputs that the second sensor 804 will produce while tracking the magnet 802 as it moves along its second path segment can define a second valid range of data. When the first sensor 803 and/or the second sensor 804 receives data outside of its respective first valid range of data and second valid range of data, the processor may assume that an error has occurred, modify the operation of the surgical instrument, and/or notify the operator of the surgical instrument. In certain instances, the processor can be configured to utilize data from the first sensor 803 and the second sensor 804 to determine whether the surgical instrument has been positioned within a strong external magnetic field which can affect the operation of the surgical instrument. For instance, the magnet 802 may move along a path such that the first sensor 803 and the second sensor 804 do not produce the same output at the same time and, in the event that first sensor 803 and the second sensor 804 produce the same output at the same time, the processor can determine that a fault condition exists, for example.
The entire disclosures of:
U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;
U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;
U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;
U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;
U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;
U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;
U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;
U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES;
U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;
U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443
U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411;
U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Patent Application Publication No. 2010/0089970;
U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009;
U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Patent Application Publication No. 2012/0074198;
U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Patent Application Publication No. 2011/0226837;
U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Patent Application Publication No. 2012/0298719;
U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012;
U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013;
U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013;
U.S. Patent Application Pub. No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and
U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, are hereby incorporated by reference herein.
In accordance with various embodiments, the surgical instruments described herein may comprise one or more processors (e.g., microprocessor, microcontroller) coupled to various sensors. In addition, to the processor(s), a storage (having operating logic) and communication interface, are coupled to each other.
The processor may be configured to execute the operating logic. The processor may be any one of a number of single or multi-core processors known in the art. The storage may comprise volatile and non-volatile storage media configured to store persistent and temporal (working) copy of the operating logic.
In various embodiments, the operating logic may be configured to process the collected biometric associated with motion data of the user, as described above. In various embodiments, the operating logic may be configured to perform the initial processing, and transmit the data to the computer hosting the application to determine and generate instructions. For these embodiments, the operating logic may be further configured to receive information from and provide feedback to a hosting computer. In alternate embodiments, the operating logic may be configured to assume a larger role in receiving information and determining the feedback. In either case, whether determined on its own or responsive to instructions from a hosting computer, the operating logic may be further configured to control and provide feedback to the user.
In various embodiments, the operating logic may be implemented in instructions supported by the instruction set architecture (ISA) of the processor, or in higher level languages and compiled into the supported ISA. The operating logic may comprise one or more logic units or modules. The operating logic may be implemented in an object oriented manner. The operating logic may be configured to be executed in a multi-tasking and/or multi-thread manner. In other embodiments, the operating logic may be implemented in hardware such as a gate array.
In various embodiments, the communication interface may be configured to facilitate communication between a peripheral device and the computing system. The communication may include transmission of the collected biometric data associated with position, posture, and/or movement data of the user's body part(s) to a hosting computer, and transmission of data associated with the tactile feedback from the host computer to the peripheral device. In various embodiments, the communication interface may be a wired or a wireless communication interface. An example of a wired communication interface may include, but is not limited to, a Universal Serial Bus (USB) interface. An example of a wireless communication interface may include, but is not limited to, a Bluetooth interface.
For various embodiments, the processor may be packaged together with the operating logic. In various embodiments, the processor may be packaged together with the operating logic to form a System in Package (SiP). In various embodiments, the processor may be integrated on the same die with the operating logic. In various embodiments, the processor may be packaged together with the operating logic to form a System on Chip (SoC).
Various embodiments may be described herein in the general context of computer executable instructions, such as software, program modules, and/or engines being executed by a processor. Generally, software, program modules, and/or engines include any software element arranged to perform particular operations or implement particular abstract data types. Software, program modules, and/or engines can include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. An implementation of the software, program modules, and/or engines components and techniques may be stored on and/or transmitted across some form of computer-readable media. In this regard, computer-readable media can be any available medium or media useable to store information and accessible by a computing device. Some embodiments also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network. In a distributed computing environment, software, program modules, and/or engines may be located in both local and remote computer storage media including memory storage devices. A memory such as a random access memory (RAM) or other dynamic storage device may be employed for storing information and instructions to be executed by the processor. The memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor.
Although some embodiments may be illustrated and described as comprising functional components, software, engines, and/or modules performing various operations, it can be appreciated that such components or modules may be implemented by one or more hardware components, software components, and/or combination thereof. The functional components, software, engines, and/or modules may be implemented, for example, by logic (e.g., instructions, data, and/or code) to be executed by a logic device (e.g., processor). Such logic may be stored internally or externally to a logic device on one or more types of computer-readable storage media. In other embodiments, the functional components such as software, engines, and/or modules may be implemented by hardware elements that may include processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth.
Examples of software, engines, and/or modules may include software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints.
One or more of the modules described herein may comprise one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. One or more of the modules described herein may comprise various executable modules such as software, programs, data, drivers, application program interfaces (APIs), and so forth. The firmware may be stored in a memory of the controller 2016 and/or the controller 2022 which may comprise a nonvolatile memory (NVM), such as in bit-masked read-only memory (ROM) or flash memory. In various implementations, storing the firmware in ROM may preserve flash memory. The nonvolatile memory (NVM) may comprise other types of memory including, for example, programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or battery backed random-access memory (RAM) such as dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), and/or synchronous DRAM (SDRAM).
In some cases, various embodiments may be implemented as an article of manufacture. The article of manufacture may include a computer readable storage medium arranged to store logic, instructions and/or data for performing various operations of one or more embodiments. In various embodiments, for example, the article of manufacture may comprise a magnetic disk, optical disk, flash memory or firmware containing computer program instructions suitable for execution by a general purpose processor or application specific processor. The embodiments, however, are not limited in this context.
The functions of the various functional elements, logical blocks, modules, and circuits elements described in connection with the embodiments disclosed herein may be implemented in the general context of computer executable instructions, such as software, control modules, logic, and/or logic modules executed by the processing unit. Generally, software, control modules, logic, and/or logic modules comprise any software element arranged to perform particular operations. Software, control modules, logic, and/or logic modules can comprise routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. An implementation of the software, control modules, logic, and/or logic modules and techniques may be stored on and/or transmitted across some form of computer-readable media. In this regard, computer-readable media can be any available medium or media useable to store information and accessible by a computing device. Some embodiments also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network. In a distributed computing environment, software, control modules, logic, and/or logic modules may be located in both local and remote computer storage media including memory storage devices.
Additionally, it is to be appreciated that the embodiments described herein illustrate example implementations, and that the functional elements, logical blocks, modules, and circuits elements may be implemented in various other ways which are consistent with the described embodiments. Furthermore, the operations performed by such functional elements, logical blocks, modules, and circuits elements may be combined and/or separated for a given implementation and may be performed by a greater number or fewer number of components or modules. As will be apparent to those of skill in the art upon reading the present disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
It is worthy to note that any reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is comprised in at least one embodiment. The appearances of the phrase “in one embodiment” or “in one aspect” in the specification are not necessarily all referring to the same embodiment.
Unless specifically stated otherwise, it may be appreciated that terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, such as a general purpose processor, a DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein that manipulates and/or transforms data represented as physical quantities (e.g., electronic) within registers and/or memories into other data similarly represented as physical quantities within the memories, registers or other such information storage, transmission or display devices.
It is worthy to note that some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not intended as synonyms for each other. For example, some embodiments may be described using the terms “connected” and/or “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. With respect to software elements, for example, the term “coupled” may refer to interfaces, message interfaces, application program interface (API), exchanging messages, and so forth.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
The disclosed embodiments have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery.
Embodiments of the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. Embodiments may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and when necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device also may be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely examples and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated also can be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated also can be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.
Some aspects may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
In some instances, one or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that when a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even when a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more embodiments were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.
Claims
1. A surgical instrument, comprising:
- a handle;
- a movable input;
- an analog sensor configured to detect the position of said movable input, wherein said analog sensor is configured to produce an analog signal comprising analog data; and
- a microcontroller comprising an input channel, wherein said analog sensor is in signal communication with said input channel, wherein said microcontroller is configured to compare said analog data to a reference value, and wherein said microcontroller is configured to produce a digital signal in response to said comparison.
2. The surgical instrument of claim 1, wherein said microcontroller is configured to sample said analog data, and wherein said microcontroller is configured to generate a digital bit for each sample of said analog data.
3. The surgical instrument of claim 2, wherein said microcontroller is configured to generate an on bit if a sample is above said reference value, and wherein said microcontroller is configured to generate an off bit if a sample is below said reference value.
4. The surgical instrument of claim 2, wherein said reference value comprises a first reference value, and wherein said microcontroller is configured to compare said analog data to a second reference value.
5. The surgical instrument of claim 4, wherein said microcontroller is configured to generate an on bit if a sample is between said first reference value and said second reference value, wherein said microcontroller is configured to generate an off bit if a sample is below said first reference value, and wherein said microcontroller can be configured to generate a fault condition if a sample is above said second reference value.
6. The surgical instrument of claim 4, wherein said microcontroller is configured to generate an on bit if a sample is between said first reference value and said second reference value, wherein said microcontroller is configured to generate an off bit if a sample is above said first reference value, and wherein said microcontroller can be configured to generate a fault condition if a sample is below said second reference value.
7. The surgical instrument of claim 1, wherein said microcontroller is configured to sample said analog data, wherein said microcontroller comprises an output channel, wherein said microcontroller is configured to communicate said digital signal to said output channel, wherein said reference value comprises a first reference value, wherein said microcontroller is configured to compare said analog data to a second reference value, wherein said microcontroller is configured to change said digital signal if a sample is below said first reference value or above said second reference value, and wherein said microcontroller is configured to not change said digital signal if a sample is between said first reference value and said second reference value.
8. The surgical instrument of claim 1, wherein said microcontroller is configured to sample said analog data, wherein said microcontroller comprises an output channel, wherein said microcontroller is configured to communicate said digital signal to said output channel, wherein said reference value comprises a first reference value, wherein said microcontroller is configured to compare said analog data to a second reference value, wherein said microcontroller is configured to supply an off bit to said output channel if a sample is less than said first reference value, wherein said microcontroller is configured to supply an on bit to said output channel if a sample is greater than said second reference value, and wherein said microcontroller is configured to not change said digital signal if a sample is between said first reference value and said second reference value.
9. The surgical instrument of claim 1, wherein said analog sensor comprises a Hall effect sensor, wherein said movable input comprises a magnetic element, and wherein the movement of said magnetic element is detectable by said Hall effect sensor.
10. The surgical instrument of claim 1, wherein said analog sensor is selected from the group consisting of a Hall effect sensor, a magnetoresistive sensor, and an optical sensor.
11. The surgical instrument of claim 1, further comprising a shaft assembly attachable to said handle, wherein said shaft assembly comprises a movable jaw, and wherein said movable input comprises a closure trigger configured to move said movable jaw.
12. The surgical instrument of claim 1, wherein said microcontroller is configured to adjust said reference value.
13. The surgical instrument of claim 1, wherein said surgical instrument further comprises a memory device, and wherein said reference value is stored in said memory device.
14. The surgical instrument of claim 1, wherein said microcontroller is operated by an algorithm, and wherein said reference value is stored in said algorithm.
15. The surgical instrument of claim 1, further comprising a staple cartridge.
16. A surgical instrument assembly, comprising:
- a movable portion;
- an analog sensor configured to detect the position of said movable portion, wherein said analog sensor is configured to produce an analog signal comprising analog data;
- a processor comprising an input channel, wherein said analog sensor is in signal communication with said input channel, wherein said processor is configured to compare said analog data to a reference value, and wherein said processor is configured to generate a digital signal in response to said comparison.
17. The surgical instrument assembly of claim 16, wherein said microcontroller is configured to sample said analog data, wherein said processor comprises an output channel, wherein said processor is configured to communicate said digital signal to said output channel, wherein said reference value comprises a first reference value, wherein said processor is configured to compare said analog data to a second reference value, wherein said processor is configured to change said digital signal if a sample is below said first reference value or above said second reference value, and wherein said processor is configured to not change said digital signal if a sample is between said first reference value and said second reference value.
18. A surgical instrument, comprising:
- a handle comprising a trigger, wherein the actuation of said trigger is configured to produce a surgical instrument function, and wherein said trigger comprises a magnetic element;
- an analog sensor configured to track the position of said magnetic element, wherein said analog sensor is configured to produce an analog signal comprising analog data;
- a controller, wherein said analog sensor is in signal communication with said controller, wherein said controller is configured to compare said analog data to a reference value, and wherein said controller is configured to produce a digital signal in response to said comparison.
19. The surgical instrument of claim 18, wherein said controller is configured to sample said analog data, wherein said controller comprises an output channel, wherein said controller is configured to communicate said digital signal to said output channel, wherein said reference value comprises a first reference value, wherein said controller is configured to compare said analog data to a second reference value, wherein said controller is configured to change said digital signal if a sample is below said first reference value or above said second reference value, and wherein said controller is configured to not change said digital signal if a sample is between said first reference value and said second reference value.
Type: Application
Filed: Mar 26, 2014
Publication Date: Oct 1, 2015
Applicant: Ethicon Endo-Surgery, Inc. (Cincinnati, OH)
Inventors: Richard L. Leimbach (Cincinnati, OH), Shane R. Adams (Lebanon, OH), Mark D. Overmyer (Cincinnati, OH), Brett E. Swensgard (West Chester, OH), Thomas W. Lytle, IV (Liberty Township, OH), Frederick E. Shelton, IV (Hillsboro, OH), Kevin L. Houser (Springboro, OH)
Application Number: 14/226,116