ENHANCED SYSTEM AND METHOD FOR PLANNING AND CONTROLLING FOR ROBOTIC DEVICES

A system for planning and controlling missions for robotic devices, comprising a mission control computer and a plurality of robotic devices, wherein the mission control computer operates mission control software comprising at least a plurality of software modules adapted to receive, process, and transmit programming instructions for robotic devices via a network, and methods for planning and controlling a mission for robotic devices.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of, and priority to, U.S. provisional patent application Ser. No. 61/972,201, titled “SYSTEM AND METHOD FOR PLANNING AND CONTROLLING MISSIONS BY ROBOTIC DEVICES”, filed on Mar. 28, 2014, the entire specification of which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Art

The invention relates generally to the field of robotics, and more particularly to the field of remote control and management of robotic devices.

2. Discussion of the State of the Art

In the field of robotics, it is a common practice to utilize manual control of robotic devices, both for professional as well as recreational uses (such as remote-controlled drones for geographic surveillance, patrolling secure areas, or filming recreational activities, for example). Often, robotic devices are fully manually-controlled and will not perform functions without direct input from a human user, and in instances where a degree of automation is utilized it is primarily for simplification of basic processes such as takeoff or landing of aerial robotic devices (generally for the purpose of aiding an inexperienced user in operation without risking damage to the device).

What is needed, is a way to provide parameters for semi-automated operation of more complex robotic functions, by defining “missions” that dictate tasks for execution, parameters for behavior, or areas for operation of a robotic device. Additionally, missions should be optionally interactive as needed, wherein a robotic device may actively receive and transmit information in a two-way communication with a mission control computer operated by a user, so that a mission may be updated, altered, or aborted as needed during execution.

SUMMARY OF THE INVENTION

Accordingly, the inventor has conceived, and reduced to practice, in a preferred embodiment of the invention, a system and method for planning and controlling missions for robotic devices.

According to a preferred embodiment of the invention, a system for planning and controlling missions for robotic devices, comprising a mission control computer comprising at least a plurality of programming instructions stored in a memory operated by a network-connected computing device and adapted to receive sensor information from a robotic device via a data communication network and to send mission instructions to a robotic device via a data communication network, the mission instructions comprising at least a plurality of programming instructions to be executed by a processor operated by the robotic device; and a plurality of robotic devices each comprising at least a set of programming instructions stored in a memory operated by a network-connected computing device and adapted to process sensor data and mission instructions, a plurality of hardware sensor devices adapted to produce sensor data based on observation of the environment around the robotic device, and a processor adapted to execute programming instructions, wherein the mission control computer operates at least a mission control software comprising at least a plurality of software modules each comprising a plurality of programming instructions stored in a memory and adapted to receive, process, and transmit programming instructions for robotic devices via a network, is disclosed.

According to a further embodiment of the invention, a method for planning missions for robotic devices, comprising the steps of loading, at a mission control computer, external data for a mission; defining a range for a robotic device to operate during a mission; defining mission parameters for a robotic device to follow; defining mission tasks for a robotic device to perform; and launching the mission, is disclosed.

According to a further embodiment of the invention, a method for controlling execution of a mission for robotic devices, comprising the steps of performing, on a robotic device, a self-test operation; receiving instructions for a mission; performing tasks according to the mission instructions; measuring results of the mission tasks; transmitting the results to a mission control computer; and ending the mission, is disclosed.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawings illustrate several embodiments of the invention and, together with the description, serve to explain the principles of the invention according to the embodiments. It will be appreciated by one skilled in the art that the particular embodiments illustrated in the drawings are merely exemplary, and are not to be considered as limiting of the scope of the invention or the claims herein in any way.

FIG. 1 is a block diagram illustrating an exemplary hardware architecture of a computing device used in an embodiment of the invention.

FIG. 2 is a block diagram illustrating an exemplary logical architecture for a client device, according to an embodiment of the invention.

FIG. 3 is a block diagram showing an exemplary architectural arrangement of clients, servers, and external services, according to an embodiment of the invention.

FIG. 4 is another block diagram illustrating an exemplary hardware architecture of a computing device used in various embodiments of the invention.

FIG. 5 shows an overview of a system for a remotely controlled moveable vehicle, according to an embodiment of the invention.

FIG. 6 shows an overview of an exemplary exploratory mission, according to an embodiment of the invention.

FIG. 7 shows an operational viewpoint of a mission, according to an embodiment of the invention.

FIG. 8 is an architectural diagram of an exemplary system, according to an embodiment of the invention.

FIG. 9 shows an exemplary process for preparation for a mission, according to an embodiment of the invention.

FIG. 10 shows an exemplary process of the functions of a vehicle processor to prepare and execute a mission as described in FIG. 8, according to an embodiment of the invention.

DETAILED DESCRIPTION

The inventor has conceived, and reduced to practice, in a preferred embodiment of the invention, a system and method for planning and controlling missions for robotic devices.

One or more different inventions may be described in the present application. Further, for one or more of the inventions described herein, numerous alternative embodiments may be described; it should be appreciated that these are presented for illustrative purposes only and are not limiting of the inventions contained herein or the claims presented herein in any way. One or more of the inventions may be widely applicable to numerous embodiments, as may be readily apparent from the disclosure. In general, embodiments are described in sufficient detail to enable those skilled in the art to practice one or more of the inventions, and it should be appreciated that other embodiments may be utilized and that structural, logical, software, electrical and other changes may be made without departing from the scope of the particular inventions. Accordingly, one skilled in the art will recognize that one or more of the inventions may be practiced with various modifications and alterations. Particular features of one or more of the inventions described herein may be described with reference to one or more particular embodiments or figures that form a part of the present disclosure, and in which are shown, by way of illustration, specific embodiments of one or more of the inventions. It should be appreciated, however, that such features are not limited to usage in the one or more particular embodiments or figures with reference to which they are described. The present disclosure is neither a literal description of all embodiments of one or more of the inventions nor a listing of features of one or more of the inventions that must be present in all embodiments.

Headings of sections provided in this patent application and the title of this patent application are for convenience only, and are not to be taken as limiting the disclosure in any way.

Devices that are in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices that are in communication with each other may communicate directly or indirectly through one or more communication means or intermediaries, logical or physical.

A description of an embodiment with several components in communication with each other does not imply that all such components are required. To the contrary, a variety of optional components may be described to illustrate a wide variety of possible embodiments of one or more of the inventions and in order to more fully illustrate one or more aspects of the inventions. Similarly, although process steps, method steps, algorithms or the like may be described in a sequential order, such processes, methods and algorithms may generally be configured to work in alternate orders, unless specifically stated to the contrary. In other words, any sequence or order of steps that may be described in this patent application does not, in and of itself, indicate a requirement that the steps be performed in that order. The steps of described processes may be performed in any order practical. Further, some steps may be performed simultaneously despite being described or implied as occurring non-simultaneously (e.g., because one step is described after the other step). Moreover, the illustration of a process by its depiction in a drawing does not imply that the illustrated process is exclusive of other variations and modifications thereto, does not imply that the illustrated process or any of its steps are necessary to one or more of the invention(s), and does not imply that the illustrated process is preferred. Also, steps are generally described once per embodiment, but this does not mean they must occur once, or that they may only occur once each time a process, method, or algorithm is carried out or executed. Some steps may be omitted in some embodiments or some occurrences, or some steps may be executed more than once in a given embodiment or occurrence.

When a single device or article is described herein, it will be readily apparent that more than one device or article may be used in place of a single device or article. Similarly, where more than one device or article is described herein, it will be readily apparent that a single device or article may be used in place of the more than one device or article.

The functionality or the features of a device may be alternatively embodied by one or more other devices that are not explicitly described as having such functionality or features. Thus, other embodiments of one or more of the inventions need not include the device itself.

Techniques and mechanisms described or referenced herein will sometimes be described in singular form for clarity. However, it should be appreciated that particular embodiments may include multiple iterations of a technique or multiple instantiations of a mechanism unless noted otherwise. Process descriptions or blocks in figures should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of embodiments of the present invention in which, for example, functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those having ordinary skill in the art.

Hardware Architecture

Generally, the techniques disclosed herein may be implemented on hardware or a combination of software and hardware. For example, they may be implemented in an operating system kernel, in a separate user process, in a library package bound into network applications, on a specially constructed machine, on an application-specific integrated circuit (ASIC), or on a network interface card.

Software/hardware hybrid implementations of at least some of the embodiments disclosed herein may be implemented on a programmable network-resident machine (which should be understood to include intermittently connected network-aware machines) selectively activated or reconfigured by a computer program stored in memory. Such network devices may have multiple network interfaces that may be configured or designed to utilize different types of network communication protocols. A general architecture for some of these machines may be described herein in order to illustrate one or more exemplary means by which a given unit of functionality may be implemented. According to specific embodiments, at least some of the features or functionalities of the various embodiments disclosed herein may be implemented on one or more general-purpose computers associated with one or more networks, such as for example an end-user computer system, a client computer, a network server or other server system, a mobile computing device (e.g., tablet computing device, mobile phone, smartphone, laptop, or other appropriate computing device), a consumer electronic device, a music player, or any other suitable electronic device, router, switch, or other suitable device, or any combination thereof. In at least some embodiments, at least some of the features or functionalities of the various embodiments disclosed herein may be implemented in one or more virtualized computing environments (e.g., network computing clouds, virtual machines hosted on one or more physical computing machines, or other appropriate virtual environments).

Referring now to FIG. 1, there is shown a block diagram depicting an exemplary computing device 100 suitable for implementing at least a portion of the features or functionalities disclosed herein. Computing device 100 may be, for example, any one of the computing machines listed in the previous paragraph, or indeed any other electronic device capable of executing software- or hardware-based instructions according to one or more programs stored in memory. Computing device 100 may be adapted to communicate with a plurality of other computing devices, such as clients or servers, over communications networks such as a wide area network a metropolitan area network, a local area network, a wireless network, the Internet, or any other network, using known protocols for such communication, whether wireless or wired.

In one embodiment, computing device 100 includes one or more central processing units (CPU) 102, one or more interfaces 110, and one or more busses 106 (such as a peripheral component interconnect (PCI) bus). When acting under the control of appropriate software or firmware, CPU 102 may be responsible for implementing specific functions associated with the functions of a specifically configured computing device or machine. For example, in at least one embodiment, a computing device 100 may be configured or designed to function as a server system utilizing CPU 102, local memory 101 and/or remote memory 120, and interface(s) 110. In at least one embodiment, CPU 102 may be caused to perform one or more of the different types of functions and/or operations under the control of software modules or components, which for example, may include an operating system and any appropriate applications software, drivers, and the like.

CPU 102 may include one or more processors 103 such as, for example, a processor from one of the Intel, ARM, Qualcomm, and AMD families of microprocessors. In some embodiments, processors 103 may include specially designed hardware such as application-specific integrated circuits (ASICs), electrically erasable programmable read-only memories (EEPROMs), field-programmable gate arrays (FPGAs), and so forth, for controlling operations of computing device 100. In a specific embodiment, a local memory 101 (such as non-volatile random access memory (RAM) and/or read-only memory (ROM), including for example one or more levels of cached memory) may also form part of CPU 102. However, there are many different ways in which memory may be coupled to system 100. Memory 101 may be used for a variety of purposes such as, for example, caching and/or storing data, programming instructions, and the like. It should be further appreciated that CPU 102 may be one of a variety of system-on-a-chip (SOC) type hardware that may include additional hardware such as memory or graphics processing chips, such as a Qualcomm SNAPDRAGON™ or Samsung EXYNOS™ CPU as are becoming increasingly common in the art, such as for use in mobile devices or integrated devices.

As used herein, the term “processor” is not limited merely to those integrated circuits referred to in the art as a processor, a mobile processor, or a microprocessor, but broadly refers to a microcontroller, a microcomputer, a programmable logic controller, an application-specific integrated circuit, and any other programmable circuit.

In one embodiment, interfaces 110 are provided as network interface cards (NICs). Generally, NICs control the sending and receiving of data packets over a computer network; other types of interfaces 110 may for example support other peripherals used with computing device 100. Among the interfaces that may be provided are Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, graphics interfaces, and the like. In addition, various types of interfaces may be provided such as, for example, universal serial bus (USB), Serial, Ethernet, FIREWIRE™, THUNDERBOLT™, PCI, parallel, radio frequency (RF), BLUETOOTH™, near-field communications (e.g., using near-field magnetics), 802.11 (WiFi), frame relay, TCP/IP, ISDN, fast Ethernet interfaces, Gigabit Ethernet interfaces, Serial ATA (SATA) or external SATA (ESATA) interfaces, high-definition multimedia interface (HDMI), digital visual interface (DVI), analog or digital audio interfaces, asynchronous transfer mode (ATM) interfaces, high-speed serial interface (HSSI) interfaces, Point of Sale (POS) interfaces, fiber data distributed interfaces (FDDIs), and the like. Generally, such interfaces 110 may include physical ports appropriate for communication with appropriate media. In some cases, they may also include an independent processor (such as a dedicated audio or video processor, as is common in the art for high-fidelity A/V hardware interfaces) and, in some instances, volatile and/or non-volatile memory (e.g., RAM).

Although the system shown in FIG. 1 illustrates one specific architecture for a computing device 100 for implementing one or more of the inventions described herein, it is by no means the only device architecture on which at least a portion of the features and techniques described herein may be implemented. For example, architectures having one or any number of processors 103 may be used, and such processors 103 may be present in a single device or distributed among any number of devices. In one embodiment, a single processor 103 handles communications as well as routing computations, while in other embodiments a separate dedicated communications processor may be provided. In various embodiments, different types of features or functionalities may be implemented in a system according to the invention that includes a client device (such as a tablet device or smartphone running client software) and server systems (such as a server system described in more detail below).

Regardless of network device configuration, the system of the present invention may employ one or more memories or memory modules (such as, for example, remote memory block 120 and local memory 101) configured to store data, program instructions for the general-purpose network operations, or other information relating to the functionality of the embodiments described herein (or any combinations of the above). Program instructions may control execution of or comprise an operating system and/or one or more applications, for example. Memory 120 or memories 101, 120 may also be configured to store data structures, configuration data, encryption data, historical system operations information, or any other specific or generic non-program information described herein.

Because such information and program instructions may be employed to implement one or more systems or methods described herein, at least some network device embodiments may include nontransitory machine-readable storage media, which, for example, may be configured or designed to store program instructions, state information, and the like for performing various operations described herein. Examples of such nontransitory machine-readable storage media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media such as optical disks, and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM), flash memory (as is common in mobile devices and integrated systems), solid state drives (SSD) and “hybrid SSD” storage drives that may combine physical components of solid state and hard disk drives in a single hardware device (as are becoming increasingly common in the art with regard to personal computers), memristor memory, random access memory (RAM), and the like. It should be appreciated that such storage means may be integral and non-removable (such as RAM hardware modules that may be soldered onto a motherboard or otherwise integrated into an electronic device), or they may be removable such as swappable flash memory modules (such as “thumb drives” or other removable media designed for rapidly exchanging physical storage devices), “hot-swappable” hard disk drives or solid state drives, removable optical storage discs, or other such removable media, and that such integral and removable storage media may be utilized interchangeably. Examples of program instructions include both object code, such as may be produced by a compiler, machine code, such as may be produced by an assembler or a linker, byte code, such as may be generated by for example a Java™ compiler and may be executed using a Java virtual machine or equivalent, or files containing higher level code that may be executed by the computer using an interpreter (for example, scripts written in Python, Perl, Ruby, Groovy, or any other scripting language).

In some embodiments, systems according to the present invention may be implemented on a standalone computing system. Referring now to FIG. 2, there is shown a block diagram depicting a typical exemplary architecture of one or more embodiments or components thereof on a standalone computing system. Computing device 200 includes processors 210 that may run software that carry out one or more functions or applications of embodiments of the invention, such as for example a client application 230. Processors 210 may carry out computing instructions under control of an operating system 220 such as, for example, a version of Microsoft's WINDOWS™ operating system, Apple's Mac OS/X or iOS operating systems, some variety of the Linux operating system, Google's ANDROID™ operating system, or the like. In many cases, one or more shared services 225 may be operable in system 200, and may be useful for providing common services to client applications 230. Services 225 may for example be WINDOWS™ services, user-space common services in a Linux environment, or any other type of common service architecture used with operating system 210. Input devices 270 may be of any type suitable for receiving user input, including for example a keyboard, touchscreen, microphone (for example, for voice input), mouse, touchpad, trackball, or any combination thereof. Output devices 260 may be of any type suitable for providing output to one or more users, whether remote or local to system 200, and may include for example one or more screens for visual output, speakers, printers, or any combination thereof. Memory 240 may be random-access memory having any structure and architecture known in the art, for use by processors 210, for example to run software. Storage devices 250 may be any magnetic, optical, mechanical, memristor, or electrical storage device for storage of data in digital form (such as those described above, referring to FIG. 1). Examples of storage devices 250 include flash memory, magnetic hard drive, CD-ROM, and/or the like.

In some embodiments, systems of the present invention may be implemented on a distributed computing network, such as one having any number of clients and/or servers. Referring now to FIG. 3, there is shown a block diagram depicting an exemplary architecture 300 for implementing at least a portion of a system according to an embodiment of the invention on a distributed computing network. According to the embodiment, any number of clients 330 may be provided. Each client 330 may run software for implementing client-side portions of the present invention; clients may comprise a system 200 such as that illustrated in FIG. 2. In addition, any number of servers 320 may be provided for handling requests received from one or more clients 330. Clients 330 and servers 320 may communicate with one another via one or more electronic networks 310, which may be in various embodiments any of the Internet, a wide area network, a mobile telephony network (such as CDMA or GSM cellular networks), a wireless network (such as WiFi, Wimax, LTE, and so forth), or a local area network (or indeed any network topology known in the art; the invention does not prefer any one network topology over any other). Networks 310 may be implemented using any known network protocols, including for example wired and/or wireless protocols.

In addition, in some embodiments, servers 320 may call external services 370 when needed to obtain additional information, or to refer to additional data concerning a particular call. Communications with external services 370 may take place, for example, via one or more networks 310. In various embodiments, external services 370 may comprise web-enabled services or functionality related to or installed on the hardware device itself. For example, in an embodiment where client applications 230 are implemented on a smartphone or other electronic device, client applications 230 may obtain information stored in a server system 320 in the cloud or on an external service 370 deployed on one or more of a particular enterprise's or user's premises.

In some embodiments of the invention, clients 330 or servers 320 (or both) may make use of one or more specialized services or appliances that may be deployed locally or remotely across one or more networks 310. For example, one or more databases 340 may be used or referred to by one or more embodiments of the invention. It should be understood by one having ordinary skill in the art that databases 340 may be arranged in a wide variety of architectures and using a wide variety of data access and manipulation means. For example, in various embodiments one or more databases 340 may comprise a relational database system using a structured query language (SQL), while others may comprise an alternative data storage technology such as those referred to in the art as “NoSQL” (for example, Hadoop Cassandra, Google BigTable, and so forth). In some embodiments, variant database architectures such as column-oriented databases, in-memory databases, clustered databases, distributed databases, or even flat file data repositories may be used according to the invention. It will be appreciated by one having ordinary skill in the art that any combination of known or future database technologies may be used as appropriate, unless a specific database technology or a specific arrangement of components is specified for a particular embodiment herein. Moreover, it should be appreciated that the term “database” as used herein may refer to a physical database machine, a cluster of machines acting as a single database system, or a logical database within an overall database management system. Unless a specific meaning is specified for a given use of the term “database”, it should be construed to mean any of these senses of the word, all of which are understood as a plain meaning of the term “database” by those having ordinary skill in the art.

Similarly, most embodiments of the invention may make use of one or more security systems 360 and configuration systems 350. Security and configuration management are common information technology (IT) and web functions, and some amount of each are generally associated with any IT or web systems. It should be understood by one having ordinary skill in the art that any configuration or security subsystems known in the art now or in the future may be used in conjunction with embodiments of the invention without limitation, unless a specific security 360 or configuration system 350 or approach is specifically required by the description of any specific embodiment.

FIG. 4 shows an exemplary overview of a computer system 400 as may be used in any of the various locations throughout the system. It is exemplary of any computer that may execute code to process data. Various modifications and changes may be made to computer system 400 without departing from the broader scope of the system and method disclosed herein. CPU 401 is connected to bus 402, to which bus is also connected memory 403, nonvolatile memory 404, display 407, I/O unit 408, and network interface card (NIC) 413. I/O unit 408 may, typically, be connected to keyboard 409, pointing device 410, hard disk 412, and real-time clock 411. NIC 413 connects to network 414, which may be the Internet or a local network, which local network may or may not have connections to the Internet. Also shown as part of system 400 is power supply unit 405 connected, in this example, to ac supply 406. Not shown are batteries that could be present, and many other devices and modifications that are well known but are not applicable to the specific novel functions of the current system and method disclosed herein. It should be appreciated that some or all components illustrated may be combined, such as in various integrated applications (for example, Qualcomm or Samsung SOC-based devices), or whenever it may be appropriate to combine multiple capabilities or functions into a single hardware device (for instance, in mobile devices such as smartphones, video game consoles, in-vehicle computer systems such as navigation or multimedia systems in automobiles, or other integrated hardware devices).

In various embodiments, functionality for implementing systems or methods of the present invention may be distributed among any number of client and/or server components. For example, various software modules may be implemented for performing various functions in connection with the present invention, and such modules may be variously implemented to run on server and/or client components.

Conceptual Architecture

FIG. 5 shows an overview of a system 500 for a remotely controlled moveable vehicle, according to an embodiment of the invention. Moveable vehicle 501 has a movement control unit 503. Devices 502a-n, which could be wheels or other things such as blades for helicopters, may be arrayed as, for example, a quadcopter, a hexcopter, with four, six, or eight wheels for land based rovers, with one, two, four, or eight turbines for water-based vehicles, or as any other of various arrays of traction systems. Moveable vehicle 501 may include a controller 504, a battery 505, an internal bus 506, additional sensors 509a-n, such as, for example, active sensors, e.g., LiDAR or passive sensors, such as cameras. Vehicle 501 also may have a radio communication unit 507 and GPS communication unit 508. Note that not every instance of moveable vehicle 501 necessarily has all the previously mentioned component devices. A base unit 530x may communicate with unit 507 to send data, commands, and other communications to controller 504. Not shown in great detail are all the controls for motion command, which can vary greatly, but which essentially enable to vehicle 501 to move in a predefined way, either by flying or by moving on the ground.

FIG. 6 shows an overview of an exemplary exploratory mission 600, according to an embodiment of the invention. Exemplary ground-based or flying vehicles 601 and 602 are exploring, in this case, a stylized bridge 610 with two arches. In the bridge are exemplary features as such as electrical connections 611 and buried wires 612. Mounted on vehicles 601 and 602 are sensors (such as previously discussed 509a-n) that can, for example, detect the shapes of outlets (with cameras) or measure electric fields (with electric field sensors or antennae) emitted from outlets or from invisible wiring. Also at the mission site are for example a few radio beacons 603a,b, and n. One land-based vehicle 601 rolling on wheels has sensor 601a trained on electrical outlet 611, while vehicle 602, an aerial copter of some type, has some of its sensors investigating the arch surface, as indicated by arrow 602a. The investigating devices could be as simple as a camera looking at the structure, or some other types of sensors, or a combination of such investigative devices. They may employ both low-altitude aerial and close range terrestrial photogrammetry, using a range of wavelengths, such as, for example, visible light, multispectral or extra-spectral. Creating a lot of pictures enables the system to stitch the surface images into a large image showing all details in very high resolution, as well as enabling to creation of 3-D wireframes of an object. In some cases the images may be in continuous, high-definition video, while in other cases the images may be one or more discrete high-definition photographs, or a combination of the two. Even if only a video is shot, applications for photo-stitching, such as, for example, Pix4D mapper, ArcGIS from ESRI, or 123D Catch from Autodesk can be used to create a 3-D image and/or a wireframe with texture mapping of the investigated object, showing texturing and other features in very high resolution.

FIG. 7 shows an operational viewpoint of a mission 700, according to an embodiment of the invention. Device 711x, in this example a quadcopter and rolling vehicle 710x are both equipped with wireless communication capabilities. Depending on the type or scope of the mission, only aerial, terrestrial or aquatic (not shown here) vehicles may be used on that mission, or as necessary, a combination of one or more vehicles in one or more of said categories of vehicles. One of the beacons 703 (sending a signal 704) is attached to a laptop computer 702, which is connected via Internet 701 to a server 720. Exemplary signal 704 is a radio signal in this example, but it may, depending on circumstances, be one or more of radio signals, optical, and/or acoustical signals. For example, if a high-voltage site needs to be investigated, infrared or ultraviolet beacons and/or communications may be preferred over radio signals, whereas in an underwater situation, sounds may be the preferred type of signal. Server 720 may be a physical server, or it may be a cloud-based service or a site-based service or any of various devices capable of performing a similar server function. The server has a storage unit 721 that may contain a large quantity of data for the mission; additionally, some mission data may be stored locally in storage unit 702a on computer 702. Also on storage unit 721 are programs and data sets 722a-n, which could include the operating system for server 720 as well as data for multiple customers and their missions. Some data relevant to the mission may be downloaded to local storage unit 702a and stored as data objects 702b a-x. In other cases, data may be downloaded directly from the cloud and sent via wireless beacon 703 and signal 704 to vehicles 710a-n and/or 711a-n (or other types not shown in this figure). Depending on the individual situation, any of the above-described approaches may be employed, as well as any combination thereof.

FIG. 8 is an architectural diagram of an exemplary system 800, according to an embodiment of the invention. Architectural layer 801 is the System Desktop, containing modules 802a-n, including Desktop Mission Planning, Data Products, Analytics & Tools, Data Storage & Management, Sensor & Rover Optimization, and I/O Data Tools. Within exemplary Internet cloud 810 could reside any and multiple types of computer-aided design (CAD) and/or building information management (BIM) systems. From the system desktop 801 mission software and data, as well as software updates, direct commands, etc. can go to vehicle client(s) 820 (only one shown here for clarity), with modules 821a-n, including CNC Instruction, Data Compression, Sensor Management, Memory, Data Confirmation, and I/O, Timing, LiDAR, Photogrammetry, and Video. Some of these modules 821a-n may be client-based, while others may be based on the System Desktop or on the control computer. The Desktop may reside physically on a local computer, or it may be a virtual desktop in the cloud, interfacing with the other software. From the Vehicle Client 820 programs and/or commands can be sent to the controllers 830a-n (typically more than one controller per vehicle, with often at least one controller per means of traction, as well as one or more additional controllers for sensors) that actually control such functions as Safety, Power Management, Flight Dynamics if flight is involved, Navigation, motors, wheels, GPS, sensors, and driving dynamics if it's a land-based vehicle.

FIG. 9 shows an exemplary process 900 for preparation for a mission, according to an embodiment of the invention. In this process typically parameters for each mission are defined, such as starting position, ending position, average distance from structure, average speed, pass separation, distance between passes for longer-range sensors, type of vehicle, maximum altitude, movement range and time, acceleration vectors, and braking vectors. In step 901 external data is loaded from, for example, a CAD or BIM system. In some cases, typically when no useable BIM or CAD data exists, photometric data, taken from snap shots of an object and used to create a rough 2-D or 3-D map of the object may be used as the primary data for the mission. The computer, as part of the mission planning, may generate an initial 3-D file to build an internal model of a structure and establish whether the vehicles can make clear movement passes around the solid parts of the structure. Additionally, the computer prompts the user to create obstruction zones as required for safety around such obstacles as power lines, cranes, construction superstructures, etc. (not shown for clarity in FIG. 6) The computer then processes a 3-D file to determine mission feasibility, based on the capabilities of various vehicles intended for that mission. Subsequently, the 3-D file is processed again, using corrected and smoothed input data to create a series of waypoints at the desired resolution (i.e., one per meter, 10 per meter, etc.), with each waypoint an absolute location (as best determined by available data). In addition, the file may contain a 3-D heading and speed vector structure and a relative timestamp. In step 902 a range is defined, and in step 903 a mission is defined, so that the system now has definitions such as at what range, using what types of scanning, etc. The output file should be as “vehicle agnostic” as possible, although it is understood that many mission parameters are required in advance. For example, it must be known in advance whether the mission will be airborne or ground-based. The exact specifications of the vehicle may not be known at the time the mission is created, so reasonable “real world” assumptions must be made while processing the mission path. For example, a battery provides nominally for 20 minutes of flight time for a specific UAV, but due to wear and tear, as well as the temperature on the day of the mission, actual useable battery capacity may be easily 20-30% less, and needs to be accounted for. Also, external things, like stronger than expected winds on the day of the mission may wear batteries down faster than expected etc. In step 904, based on the capabilities of the system devices, such as range, battery power, and other various circumstances, such as wings on a flying vehicle that increase power consumption, steep terrain that may require additional battery power on land-based vehicles, etc., the mission is then sectioned, that is, partitioned into sets of tasks that a single vehicle can perform safely, within the expected battery, spatial, and temporal range limits, and in step 905 the system checks to determine whether the mission can be launched. If the mission cannot be launched (no), the process ends at step 906. If the mission is ready to launch, then in step 907 the system sends the first section of a mission to the vehicle(s). In step 908 the system tracks the behavior of the vehicle(s) and in step 910 the system stores the tracking data in data repository 910. The process then loops back to step 905 and repeats until all mission sections are complete, at which point the process ends at step 906. In some cases, batteries may be changed or re-charged between each mission section. In other cases, different mission sections maybe allocated to different vehicles, for example, alternating at performing tasks and charging batteries, or in yet other cases a large number of vehicles may each perform one section in parallel with others, concurrently.

FIG. 10 shows an exemplary process 1000 of the functions of a vehicle processor to prepare and execute a mission as described in the discussion of layer 830a-n in FIG. 8, according to an embodiment of the invention. In step 1001 the system executes a vehicle self test, to determine that, for example, the vehicle has sufficient battery power, is in the correct location, has access to telemetry such as, for example, GPS or local beacons, or a combination of the two, and any other functions and materials required for the mission. In step 1002 the vehicle receives the mission and verifies that the vehicle state as determined by the self test is adequate to complete the mission. In step 1003 the system executes the program and measures the resulting data. In step 1004 the system sends data back to local storage and/or to storage in the cloud. The system also sends various control data to verify that the mission is proceeding as expected. In step 1005 the system checks to determine whether the mission is completed. If the mission is not completed (no), the process loops back to step 1003. In some cases, the system may receive additional mission instructions, while in other cases, the system may simply continue to execute existing instructions. If, in step 1005, the system determines that the mission is finished (yes), the system parks the vehicle safely, usually at a predetermined location, in step 1006; and in step 1007 the mission ends.

It is clear that many modifications and variations of the system and method disclosed herein may be made by one skilled in the art without departing from the spirit of the novel art of this disclosure.

In some cases, the system may be used for planning missions by semi-autonomous vehicles, with each vehicle connected to a computer that sets parameters for each mission, such as starting position, ending position, average distance from structure, average speed, pass separation, distance between passes for longer-range sensors, type of vehicle, maximum altitude, movement range and time, acceleration vectors, and braking vectors. For a mission, the computer draws from a data repository a file containing a rough layout and a file giving the vehicles' capabilities. The computer, as part of the mission planning, may generate an initial 3-D file to build an internal model of a structure and establish whether the vehicles can make clear movement passes around the solid parts of the structure. Additionally, the computer prompts the user to create obstruction zones as required for safety around such obstacles as power lines, cranes, construction superstructures, etc. The computer then processes the 3-D file to determine mission feasibility, based on the capabilities of vehicles. Subsequently, the 3-D file is processed again, using corrected and smoothed input data to create a series of waypoints at the desired resolution (i.e., one per meter, 10 per meter, etc.), with each waypoint an absolute location (as best determined by available data). In addition, the file may contain a 3-D heading and speed vector structure and a relative timestamp.

These modifications and variations do not depart from its broader spirit and scope, and the examples cited here are to be regarded in an illustrative rather than a restrictive sense.

Various embodiments of the present disclosure may be implemented in computer hardware, firmware, software, and/or combinations thereof. Methods of the present disclosure can be implemented via a computer program instructions stored on one or more non-transitory computer-readable storage devices for execution by a processor. Likewise, various processes (or portions thereof) of the present disclosure may be performed by a processor executing computer program instructions. Embodiments of the present disclosure may be implemented via one or more computer programs that are executable on a computer system including at least one processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device. Each computer program can be implemented in any suitable manner, including via a high-level procedural or object-oriented programming language and/or via assembly or machine language. Systems of the present disclosure may include, by way of example, both general and special purpose microprocessors which may retrieve instructions and data to and from various types of volatile and/or non-volatile memory. Computer systems operating in conjunction with the embodiments of the present disclosure may include one or more mass storage devices for storing data files, which may include: magnetic disks, such as internal hard disks and removable disks; magneto-optical disks; and optical disks. Storage devices suitable for tangibly embodying computer program instructions and data (also called the “non-transitory computer-readable storage media”) include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM disks. Any of the foregoing can be supplemented by, or incorporated in, ASICs (application-specific integrated circuits) and other forms of hardware.

Changes and modifications may be made to the disclosed embodiments without departing from the scope of the present disclosure. These and other changes or modifications are intended to be included within the scope of the present disclosure, as expressed in the following claims.

The above examples of the present invention are used only as illustrations and in no way limit the scope of the patent claims that are presented below.

The skilled person will be aware of a range of possible modifications of the various embodiments described above. Accordingly, the present invention is defined by the claims and their equivalents.

Claims

1. A system for planning and controlling missions for robotic devices, comprising:

a mission control computer comprising at least a first memory, a first processor and a first set of programming instructions stored in the first memory and operating on the first processor; and
a plurality of robotic devices each comprising at least a second memory, a second processor and a second set of programming instructions stored in the second memory and operating on the second processor, and each robotic device further comprising a plurality of hardware sensor devices adapted to produce sensor data based on observation of an environment around the respective robotic device;
wherein the mission control computer receives sensor information from a first robotic device via a data communication network and sends mission instructions to the first robotic device via the data communication network, the mission instructions determined by the first set of programmable instructions and comprising at least a third set of programming instructions to be executed by the second processor operating on the robotic device;
further wherein the mission control computer comprises, as a subset of the first set of programmable instructions, a mission control software comprising at least a plurality of software modules adapted to receive, process, and transmit programming instructions for robotic devices via a network.

2. The system of claim 1, further comprising a database that stores sensor data for future reference.

3. The system of claim 1, wherein the software modules comprise at least a desktop planning module that provides an interactive user interface that receives user input and transmits programming instructions for robotic devices based at least in part on at least a portion of the user input.

4. A method for planning missions for robotic devices, comprising the steps of:

loading, at a mission control computer comprising at least a first memory, a first processor and a first set of programming instructions stored in the first memory and operating on the first processor, external data for a mission;
defining a range for a robotic device comprising at least a second memory, a second processor and a second set of programming instructions stored in the second memory and operating on the second processor, to operate during a mission;
defining, using a mission control software that is a subset of the first set of programmable instructions and that comprises at least a plurality of software modules adapted to receive, process, and transmit programming instructions for robotic devices via a network mission parameters for the robotic device to follow;
defining, using the mission control software, mission tasks for a robotic device to perform; and
launching the mission.

5. The method of claim 4, further comprising the step of grouping mission tasks into sections for a robotic device to perform sets of tasks according to the assigned mission section.

6. The method of claim 4, wherein the external data comprises at least stored data relevant to a mission.

7. The method of claim 6, wherein the stored data comprises at least a plurality of CAD data.

8. The method of claim 6, wherein the stored data comprises at least a two-dimensional image.

9. A method for controlling execution of a mission for robotic devices, comprising the steps of:

performing, on a robotic device comprising at least a second memory, a second processor and a second set of programming instructions stored in the second memory and operating on the second processor, a self-test operation;
receiving instructions at the robotic device for a mission via a data communications network;
performing tasks according to the mission instructions;
measuring, using sensors resident on the robotic device, results of the mission tasks;
transmitting the resulting measurements to a mission control computer comprising at least a first memory, a first processor and a first set of programming instructions stored in the first memory and operating on the first processor; and
ending the mission.

10. The method of claim 9, further comprising the step of receiving additional mission instructions from a mission control computer.

11. The method of claim 10, wherein the additional mission instructions are based at least in part on the transmitted results.

Patent History
Publication number: 20150283706
Type: Application
Filed: Mar 30, 2015
Publication Date: Oct 8, 2015
Inventor: Adam Cohen (Oakland, CA)
Application Number: 14/673,756
Classifications
International Classification: B25J 13/00 (20060101); B25J 9/16 (20060101);