FLEXIBLE PRINTED CIRCUIT (FPC) BOARD
A flexible printed circuit (FPC) board having reinforcing pattern against bending is disclosed. The FPC board provides an RF interconnection extending from an RF electrode. Two ground electrodes are formed in respective sides of the RF electrode. The ground electrodes extend respective extended portions along the RF interconnection to protect the RF interconnection from breakage due to bending of the FPC board. The extended portion provides an end portion bent toward the RF interconnection to compensate for impedance mismatching of the RF interconnection.
1. Field of the Invention
The present invention relates to an arrangement of a flexible printed circuit (FPC) board.
2. Background Arts
An FPC board has been often used to connect an electrical or optical module with a printed circuit board. Recent modules may operate at a speed reaching or sometimes exceeding 10 Gbps and an FPC board is inevitable to carry such high speed signals thereon. In order to transmit a high speed signal as keeping quality thereof, a transmission line often takes an arrangement of the micro-strip line and/or the co-planar line. When the FPC board arranges the micro-strip line and/or the co-planar line, a line or an interconnection on the FPC board often becomes slim enough. Such a line is easily broken due to a bend of an FPC board.
SUMMARY OF THE INVENTIONAn aspect of the present invention relates to an FPC board that is to be soldered to a rigid circuit board. The FPC board comprises a top electrode provided in the top surface of one end of the FPC board; and a back electrode provided in the back surface of the one end of the FPC board. The top electrode is electrically connected to the back electrode through a via hole. The back electrode is to be soldered to a pad provided in the rigid circuit board. A feature of the FPC board is that at least one of the top electrode and the back electrode extends an interconnection, while, another of the top electrode and the back electrode extends an extended portion that is terminated in the one end of the FPC board.
Another FPC board of the present application includes a top RF electrode, a back RF electrode, a top ground electrode, and a back ground electrode. The top RF electrode and the top ground electrode are provided in one end of a top surface of the FPC board. The back RF electrode and the back ground electrode are provided in the one end of a back surface of the FPC board and soldered to the rigid circuit board. The top ground electrode is provided next to the top RF electrode and the back ground electrode is provided next to the back RF electrode. The top RF electrode is electrically connected to the back RF electrode through a via hole, while, the top ground electrode is electrically connected to the back ground electrode through a via hole. The back ground electrode extends a ground pattern as forming a gap to the back RF electrode. A feature of the FPC board is that the top RF electrode extends an RF interconnection; while, the top ground electrode extends an extended portion terminated in the one end of the FPC board.
Still another FPC board of the present application includes top RF electrodes and top ground electrodes both provided in one end of the top surface of the FPC board, and back RF electrodes and back ground electrodes both provided in the one end of a back surface of the FPC board. The top RF electrodes are electrically connected to the back RF electrodes through via holes, and the top ground electrodes are electrically connected to the back ground electrodes through via holes. The top RF electrodes and the top ground electrodes are arranged alternately, and the back RF electrodes and the back ground electrodes are arranged alternately. The back RF electrodes and the back ground electrodes are to be soldered to the rigid circuit board. The back ground electrodes are electrically connected through a ground pattern with gaps against the back RF electrodes. A feature of the FPC board is that the top RF electrodes extend RF interconnections, while, the top ground electrodes each has an extended portion with a width substantially equal to widths of the top ground electrodes and terminated in the one end of the FPC board.
The foregoing and other purposes, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
Next, some embodiments according to the present invention will be described as referring to drawings. In the explanation of the drawings, numerals or symbols same with or similar to each other will refer to elements same with or similar to each other without duplicating explanations.
First EmbodimentThe FPC board 1 provides the top and bottom surfaces, 2c and 2d, respectively, and two ends, 2a and 2b. The FPC board 1 further provides, in the end portion A, a plurality of electrodes (top electrodes), 3a to 3g, interconnections 4 extending from respective outer most electrodes, 3a and 3g, and an RF (Radio Frequency) interconnection 5 connected to the center electrode 3d, which will be called as the RF electrode. Moreover, the FPC board 1 in the back surface 2d thereof also provides electrodes (back electrodes), 3a to 3g, interconnections 6 extending from the electrodes 3b and 3f, and a ground (GND) pattern 7 connected to the electrodes 3c and 3e. The other end portion opposite to the end portion A also provides seven (7) electrodes corresponding to the electrodes, 3a to 3g, in the end portion A. The electrodes, 3a to 3g, in the top surface 2c are electrically connected to electrodes, 3a to 3g, in the back surface 2d through respective via holes 3v.
The FPC board 1 of the present embodiment shows a line symmetry with respect to an axis Ax passing from a center of the first edge 2a to the second edge 2b. The first and second edges, 2a and 2b, each extends straight and intersects the axis Ax in a right angle. The FPC board 1, as illustrated in
The electrodes, 3a to 3g, which are made of metals, provide via holes 3v electrically connecting portions in the top surface 2c to other portions in the back surface 2d. The electrodes, 3a to 3g, in the back surface 2d thereof are to be soldered to respective pads provided in the rigid circuit board 10.
Referring to
The interconnection 4 extend, in the top surface 2c of the FPC board 1, from the ends C1 of the electrodes, 3a and 3g, and run in parallel with edges of the joining portion 2e. The RF interconnection 5 extends straight in the top surface 2c from the end C2 of the electrode 3d along the center axis Ax. Because portions in the back surface 2d corresponding to the RF interconnection 5 provide the ground pattern, which emulates the micro-strip transmission line, the RF interconnection 5 inherently has characteristic transmission impedance capable of transmitting high frequency signals reaching and sometimes exceeding 10 Gbps between the optical subassemblies and the rigid circuit board 10. In order to show the characteristic transmission impedance, the RF interconnection 5 has a width narrower than a width of the interconnections, 4 and 6.
In the back surface 2d, the end of the electrode 3d forms a gap 2f to the ground pattern connected to the electrodes, 3c and 3e, in respective sides of the center electrode 3d. However, the RF interconnection 5 in the top surface 2c in the portion corresponding to the gap 2f has the width substantially same with that in the mid body. Accordingly, the RF interconnection 5, in particular, the portion corresponding to the gap shows the characteristic impedance slightly greater than that in the mid body. This impedance mismatching may degrade quality of high frequency signals carried on the RF interconnection 5.
The FPC board 1 further provides another interconnection 6 extending inward from the boundary C3 against the electrodes, 3b and 3f, in the back surface 2d. The interconnection 6 also runs substantially in parallel to the edges of the joining portion 2e and to the edge of the ground pattern in the mid body. The ground (GND) pattern 7, as described above, extend from the electrodes, 3c and 3e, in respective sides of the center electrode 3d and combined in the extended region A1 to occupy a large part of the back surface 2d of the mid body, in particular, the whole center portion of the back surface 2d corresponding to the RF interconnection 5 in the top surface 2c. The center pad 3d connected to the RF interconnection 5 and two electrodes, 3c and 3e, in respective sides of the center electrode 3d imitates the co-planar transmission line which may partly compensate the impedance mismatching caused in the RF interconnection 5 in the part of the gap 2f. The interconnections, 4 and 6, with widths wider than that of the RF interconnection 5 may carry DC signals or signals having low frequency components. Those signals are unconcerned with the transmission impedance.
The FPC board 1 of the present embodiment provides in the electrodes, 3c and 3e, respective extended portions, 3q and 3r, extending straight within the extended region A1 as keeping a width thereof from the edge 2a. Although the extended portion, 3q and 3r, are set in respective sides of the RF interconnection 5, the extended portions, 3q and 3r, do not affect the characteristic impedance of the RF connection 5. The characteristic impedance of the RF interconnection 5 may be primarily determined by the width thereof and the ground pattern 7 in the back surface 2d. The function of the extended portions, 3q and 3r, are to reinforce the FPC board 1 against the bending, that is, to protect the RF interconnection 5 from a breakage by the bending of the FPC board 1.
Referring to
The extended portions, 3q and 3r, which extend from the electrodes, 3c and 3e, to the joining portion 2e, that is, the ends P of the extended portions, 3q and 3r, exist within the joining portion 2e, as keeping the widened width thereof may effectively prevent the FPC board 1 from being bent along the boundary line L or bent in the extended region A1 without influencing the electrical characteristics of the RF interconnection 5.
The FPC board 1 of the present embodiment provides the extended portions only in the electrodes, 3c and 3e, which are electrically connected to the ground pattern 7. The FPC board 1 may provide other extended portions in the electrodes, 3b and 3f, in the top surface 2c, and in the electrodes, 3g and 3a, in the back surface 2d. The former electrodes, 3b and 3f, are electrically connected to the interconnections 6 in the back surface 2d, while, the latter electrodes, 3a and 3g, are connected to the other interconnections 4 in the top surface 2c. These interconnections, 4 and 6, carry DC signals and/or signals with lower frequency components; accordingly, the extended portions to be provided in those electrodes, 3a, 3b, 3f and 3g, may not influence the electrical performance of the FPC board 1. Those extended portions may effectively suppress the FPC board 1 from being bent along the boundary line L when the electrodes, 3a to 3g, in the back surface 2d thereof are soldered to the pads 10a on the rigid board.
Second EmbodimentSpecifically, the electrodes, 3c and 3e, put in respective sides of the RF electrode 3d have the end portions, 3j and 3k, extending from the edge 2a as maintaining the widths thereof and bent inward in the extended region A1. Accordingly, the end P of the end portions, 3j and 3k, come closer to the RF interconnection 5 in the joining portion 2e. As described, the RF interconnection 5 shows slight impedance mismatching at the portion corresponding to the gap 2f in the back surface 2d, which increases the characteristic impedance of the RF interconnection 5. The arrangement of the end portions, 3j and 3k, bent closer to the RF interconnection 5, which may decrease the characteristic impedance of the RF interconnection 5, may compensate for the impedance mismatching at the gap.
Other end portions, 3p and 3n, for the electrodes, 3a and 3g, in the top surface 2c, and portions, 3h and 3m, for the electrodes, 3b and 3f, in the top surface 2c do not affect the electrical characteristic of the FPC board 1A because those electrodes, 3a, 3b, 3f, and 3g, are connected to DC signals and/or signals with low frequency components. Those end portions, 3a, 3b, 3f, and 3g, extending as keeping respective widths may effectively contribute to protect the RF interconnection 5 from being broken by bending along the line L or in the extended region A1. Because those end portions, 3h to 3p, are bent inward in the extended region, a length intersected by the inner edge of the end portion A becomes longer, which further become effective against the bending of the FPC board 1A.
Third EmbodimentThe overlay 12 provided in the FPC board 11, which may be made of resin, covers almost all portions of the interconnection 4 and the RF interconnection 5. The edge 12a of the overlay 12 exits in the extended region A1, exactly, in a side of the electrode region A2 of the extended region A1, which means that the overlay 12 covers greater part of the extended region A1. The FPC board 11 of the embodiment further provides the extended portions, 3q and 3r, extending from the electrodes, 3c and 3e, in respective sides of the center electrode 3d and electrically connected to the ground pattern 7 in the back surface, whose ends P exist in the joining portion 2e crossing the extended region A1. Assuming that no extended portions are provided in the electrodes, 3c and 3e, nor other DC electrodes, 3b and 3f, and/or, DC electrodes, 3a and 3b, the FPC board 11 is easily bent along the edge 12a of the overlay 12 compared with a case that the FPC board 11 is bent along the boundary line L. The extended portions, 3q and 3r, may effectively protect the RF interconnection 5 from breakages by the bending of the FPC board 11 along the edge 12a of the overlay 12 and along the boundary line L.
Fourth EmbodimentThe RF interconnections 65 extend straight from the edge 2a and in parallel to the center axis AX. The outermost electrodes, 3a and 3g, are for DC signals and/or signals with low frequency components, which is same with those of the aforementioned embodiment, and connected to the interconnection 4. The electrodes, 3b and 3f, provided inside of the outermost ones, 3a and 3g, provide the extended portions, 63q and 63r, extending straight from the edge 2a and bent inward to form the bent end portions, 63h and 63m. That is the ends P of the end portions, 63h and 63m, come closer to respective RF interconnection 65 in the joining portion 2e and covered with the overlay 22. Similar to the former embodiments, the bent end portions, 63h and 63m, may compensate for the impedance mismatching of the RF interconnections 65 closer to the electrodes, 3c and 3e, where the ground pattern 7 in the back surface 2d forms the gap against the electrodes, 3c and 3e. Because of the existence of the extended portions, 63q and 63r, in the extended region A1, where the extended portions, 63q and 63r, are exposed from the overlay 22, may effectively protect the RF interconnections 65 from breakages due to the bending of the FPC board 51 along the boundary line L and/or the edge 22a of the overlay 22.
The other FPC board 61 whose plan view is shown in
Although the present invention has been fully described in conjunction with the preferred embodiment thereof with reference to the accompanying drawings, it is to be understood that various changes and modifications may be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims, unless they depart therefrom.
Claims
1. A flexible printed circuit (FPC) board soldered to a rigid circuit board, comprising:
- a top electrode provided in a top surface of one end of the FPC board; and
- a back electrode provided in a back surface of the one end of the FPC board, the back electrode being connected to the top electrode through a via hole and soldered to a pad provided in the rigid circuit board,
- wherein at least one of the top electrode and the back electrode extends an interconnection and another of the top electrode and the back electrode extends an extended portion terminated in the one end of the FPC board.
2. The FPC board of claim 1,
- wherein the extended portion has a width substantially same with a width of the another of the top electrode and the back electrode.
3. The FPC board of claim 1,
- wherein the one end includes an extended region and an electrode region, the electrode region including the top electrode and the back electrode, and
- wherein the extended portion of the another of the top electrode and the back electrode terminates in the extended region.
4. The FPC board of claim 3,
- further comprising an overlay for covering the extended portion in the extended region and exposing the electrode region.
5. The FPC board of claim 1,
- further comprising,
- another top electrode provided in the top surface of the one end of the FPC board, and
- another back electrode provided in the back surface of the one end of the FPC board, the another back electrode being connected to the another top electrode through a via hole and soldered to a pad provided in the rigid circuit board,
- wherein one of the another top electrode and the another back electrode provided extends another interconnection in one of the top surface and the back surface opposite to a surface where the interconnection is provided, and
- wherein another of the another top electrode and the another back electrode provided in the surface where the interconnection is provided extends another extended portion terminated in the one end of the FPC board.
6. A flexible printed circuit (FPC) board connected to a rigid circuit board, comprising:
- a top RF electrode provided in one end of a top surface of the FPC board and a back RF electrode provided in the one end of a back surface of the FPC board, the top RF electrode extending an RF interconnection and being electrically connected to the back RF electrode through a via hole, the back RF electrode being soldered to the rigid circuit board; and
- a top ground electrode provided in the one end of the top surface and a back ground electrode provided in the one end of the back surface electrically connected to the top ground electrode through a via hole, the top ground electrode being next to the top RF electrode and the back ground electrode being next to the back RF electrode, the back ground electrode being soldered to the rigid circuit board,
- wherein the back ground electrode extends a ground pattern as forming a gap to the back RF electrode, and the top ground electrode extends an extended portion terminated in the one end of the FPC board.
7. The FPC board of claim 6,
- wherein the extended portion has a width substantially equal to a width of the top ground electrode.
8. The FPC board of claim 6,
- wherein the one end of the FPC board includes an extended region and an electrode region, the electrode region including the top RF electrode, the back RF electrode, the top ground electrode, and the back ground electrode, and
- wherein the extended portion of the top ground electrode terminates in the extended region of the FPC board.
9. The FPC board of claim 8,
- further comprising an overlay for covering the extended portion of the top ground electrode and the RF interconnection in the extended region and exposing the electrode region.
10. The FPC board of claim 6,
- wherein the top ground electrode further includes an end portion extending from the extended portion and terminated in the one end of the FPC board, the end portion being bent toward the RF interconnection in a portion corresponding to the gap in the back surface.
11. The FPC board of claim 6,
- further comprising another top ground electrode and another back ground electrode electrically connected to the another top ground electrode through a via hole, the top ground electrode and the another top ground electrode sandwiching the top RF electrode, the back ground electrode and the another back ground electrode sandwiching the back RF ground,
- wherein the back ground electrode, the ground pattern, and the another back ground electrode surround the back RF electrode with a gap.
12. The FPC board of claim 10,
- wherein the another top ground electrode provides an extended portion terminated in the one end of the FPC board.
13. The FPC board of claim 12,
- wherein the another top ground electrode further provides an end portion extending from the extended portion of the another top ground electrode, and
- wherein the end portion of the another top ground electrode is bent toward the RF interconnection in a portion corresponding to the gap in the back surface.
14. A flexible printed circuit (FPC) board soldered to a rigid circuit board, comprising:
- a plurality of RF interconnections each connected to respective top RF electrodes provided in one end of a top surface of the FPC board, the top RF electrodes being electrically connected to respective back RF electrodes provided in the one end of a back surface of the FPC board through via holes;
- a plurality of top ground electrodes and a plurality of back ground electrodes each electrically connected to top ground electrodes corresponding thereto through respective via holes,
- wherein the top RF electrodes and the top ground electrodes are arranged alternately, and the back RF electrodes and the back ground electrodes are alternately arranged,
- wherein the back RF electrodes and the back ground electrodes are soldered to the rigid circuit board,
- wherein the back ground electrodes are electrically connected through a ground pattern with gaps against the respective back RF electrodes, and
- wherein the top ground electrodes each has an extended portion with a width substantially equal to widths of the top ground electrodes and terminated in the one end of the FPC board.
15. The FPC board of claim 14,
- wherein the top ground electrodes each includes an end portion extending from the extended portion, the end portion being bent toward the RF interconnection in a portion corresponding to the gap between the ground pattern and the back RF electrodes in the back surface of the FPC board.
16. The FPC board of claim 15,
- wherein the one end includes an electrode region and an extended region, the electrode region including the top RF electrodes, the top ground electrodes, the back RF electrodes, and the back ground electrodes, the extended region terminating the end portions of the top ground electrodes.
17. The FPC board of claim 16,
- further comprising an overlay for covering the RF interconnections and exposing the electrode region.
Type: Application
Filed: Aug 28, 2015
Publication Date: Mar 3, 2016
Inventor: Shinya IIZAKA (Yokohama-shi)
Application Number: 14/839,109