HOT-DIP ZN-ALLOY-PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME
This hot-dip Zn-alloy-plated steel sheet comprises: a steel sheet; and a hot-dip Zn-alloy-plated layer arranged on a surface of the steel sheet. The entire surface of the hot-dip Zn-alloy-plated layer satisfies the following formula (1): S[Zn(OH)2]/(S[Zn(OH)2]+S[Zn])×100≦40. In formula (1): S[Zn] is the area exhibited by a peak having a center at approximately 1022 eV ascribable to metallic Zn in an intensity profile in XPS analysis of the surface of the hot-dip Zn-alloy-plated layer; and S[Zn(OH)2] is the area exhibited by a peak having a center at approximately 1023 eV ascribable to Zn(OH)2 in an intensity profile in XPS analysis of the surface of the hot-dip Zn-alloy-plated layer.
The present invention relates to a hot-dip Zn alloy-plated steel sheet excellent in blackening resistance and a method of producing the same.
BACKGROUND ARTAs a plated steel sheet excellent in corrosion resistance, a hot-dip Zn alloy-plated steel sheet having a base steel sheet with a surface coated with a hot-dip Zn alloy plating layer including Al and Mg is known. The composition of the plating layer of a hot-dip Zn alloy-plated steel sheet includes, for example, 4.0 to 15.0% by mass of Al, 1.0 to 4.0% by mass of Mg, 0.002 to 0.1% by mass of Ti, 0.001 to 0.045% by mass of B, and the balance of Zn and unavoidable impurities. The hot-dip Zn alloy-plated steel sheet includes a plating layer of mixed metal structure of [primary crystal Al] and [single phase Zn] in a matrix of [Al/Zn/Zn2Mg ternary eutectic structure], having sufficient corrosion resistance and surface appearance as an industrial product.
The hot-dip Zn alloy-plated steel sheet described above can be continuously produced by the following steps. First, a base steel sheet (steel strip) is passed through a furnace, dipped in a hot-dip Zn alloy plating bath, and then passed through, for example, a gas wiping apparatus, such that the amount of the molten metal adhered to the surface of the base steel sheet is adjusted to a specified amount. Subsequently, the steel strip with the specified amount of molten metal adhered thereto is passed through an air jet cooler and a mist cooling zone, so that the molten metal is cooled to form a hot-dip Zn alloy plating layer. Further, the steel strip with the hot-dip Zn alloy plating layer is passed through a water quenching zone, so as to come in contact with cooling water. A hot-dip Zn alloy-plated steel sheet is thus obtained.
The hot-dip Zn alloy-plated steel sheet thus produced, however, allows the surface of the plating layer to be blackened over time in some cases. Since the progress of blackening of a hot-dip Zn alloy-plated steel sheet spoils the appearance with a dark gray color without metallic luster, a method for suppressing the blackening has been needed.
As a method for preventing the blackening, adjusting the temperature of the surface of a plating layer in the water quenching zone has been proposed (e.g. refer to PTL 1). In the invention described in PTL 1, the temperature of the surface of a plating layer is adjusted at lower than 105° C. when to be contacted with cooling water in the water quenching zone so that blackening of the surface of a plating layer is prevented. Alternatively, instead of the temperature control of the surface of a plating layer at lower than 105° C., readily oxidizable elements (rare earth elements, Y, Zr or Si) are added into a plating bath and the temperature of the surface of a plating layer is adjusted at 105 to 300° C. so that blackening of the surface of the plating layer is prevented.
CITATION LIST Patent Literature PTL 1
- Japanese Patent Application Laid-Open No. 2002-226958
In the invention described in PTL 1, since the surface of a plating layer is required to be cooled to a specified temperature before passed through a water quenching zone, the production of hot-dip Zn alloy-plated steel sheets is restricted in some cases. For example, the feed rate of a plated steel sheet having a large thickness is required to be slow so that the plated steel sheet is cooled to a specified temperature, resulting in reduced productivity. In addition, in the case of adding a readily oxidizable element into a plating bath, the readily oxidizable element tends to form a dross. Consequently, complicated concentration control of the readily oxidizable element is required, resulting in a complicated production process, which has been a problem.
An object of the present invention is to provide a hot-dip Zn alloy-plated steel sheet excellent in blackening resistance which can be produced without reduction in productivity and without complicated control of the components of a plating bath, and a method of producing the same.
Solution to ProblemThe present inventors have found that the problem can be solved by reducing the ratio of Zn(OH)2 at the surface of a plating layer, and accomplished the present invention through further study.
The present invention relates to the following hot-dip Zn alloy-plated steel sheet.
[1] A hot-dip Zn alloy-plated steel sheet comprising: a steel sheet; and a hot-dip Zn alloy plating layer disposed on a surface of the steel sheet, wherein the hot-dip Zn alloy plating layer satisfies, at the whole of a surface of the hot-dip Zn alloy plating layer, the following Equation 1:
wherein S[Zn] is a peak area derived from metal Zn and centered at approximately 1022 eV in an intensity profile of XPS analysis of the surface of the hot-dip Zn alloy plating layer; and S[Zn(OH)2] is a peak area derived from Zn(OH)2 and centered at approximately 1023 eV in the intensity profile of XPS analysis of the surface of the hot-dip Zn alloy plating layer.
[2] The hot-dip Zn alloy-plated steel sheet according to [1], wherein: the hot-dip Zn alloy plating layer comprises 1.0 to 22.0% by mass of Al, 0.1 to 10.0% by mass of Mg, and the balance of the hot-dip Zn alloy plating layer being Zn and unavoidable impurities.
[3] The hot-dip Zn alloy-plated steel sheet according to [2], wherein: the hot-dip Zn alloy plating layer further comprises at least one selected from the group consisting of 0.001 to 2.0% by mass of Si, 0.001 to 0.1% by mass of Ti, and 0.001 to 0.045% by mass of B.
The present invention also relates to the following method of producing a hot-dip Zn alloy-plated steel sheet.
[4] A method of producing a hot-dip Zn alloy-plated steel sheet comprising: dipping a base steel sheet in a hot-dip Zn alloy plating bath to form a hot-dip Zn alloy plating layer on a surface of the base steel sheet; and contacting an aqueous solution containing a water-soluble corrosion inhibitor with the surface of the hot-dip Zn alloy plating layer to cool the base steel sheet and the hot-dip Zn alloy plating layer having a raised temperature through formation of the hot-dip Zn alloy plating layer,
wherein a temperature of the surface of the hot-dip Zn alloy plating layer when the aqueous solution is to be contacted with the surface of the hot-dip Zn alloy plating layer is equal to or more than 100° C. and equal to or less than a solidifying point of the plating layer; and wherein the aqueous solution containing the water-soluble corrosion inhibitor satisfies the following Equation 2:
Z0 is a corrosion current density of the hot-dip Zn alloy-plated steel sheet measured in a 0.5 M NaCl aqueous solution not containing the water-soluble corrosion inhibitor, and Z1 is a corrosion current density of the hot-dip Zn alloy-plated steel sheet measured in the aqueous solution containing the water-soluble corrosion inhibitor, in which NaCl is further dissolved so that a final concentration of NaCl is 0.5 M.
Advantageous Effects of InventionAccording to the present invention, a hot-dip Zn alloy-plated steel sheet excellent in blackening resistance can be easily produced at high productivity.
The method of producing a hot-dip Zn alloy-plated steel sheet of the present invention (hereinafter, also referred to as “plated steel sheet”) includes: (1) a first step of forming a hot-dip Zn alloy plating layer (hereinafter, also referred to as “plating layer”) on the surface of a base steel sheet; and (2) a second step of contacting a specified aqueous solution with the surface of the plating layer to cool the base steel sheet and the plating layer at a raised temperature through formation of the plating layer.
One of the features of the production method of the present invention is that after formation of a hot-dip Zn alloy plating layer, a specified cooling aqueous solution is contacted with the surface of the plating layer so as to suppress blackening of the plating layer. Each of the steps is described as follows.
(1) First Step
In the first step, a base steel sheet is dipped in a hot-dip Zn alloy plating bath, so that a hot-dip Zn alloy plating layer is formed on the surface of the base steel sheet.
First, a base steel sheet is dipped in a hot-dip Zn alloy plating bath, and a specified amount of molten metal is allowed to adhere on the surface of the base steel sheet by gas wiping or the like.
The type of the base steel sheet is not particularly limited. For example, a steel sheet made of low-carbon steel, medium-carbon steel, high-carbon steel, alloy steel or the like may be used as the base steel sheet. When excellent press formability is required, a steel sheet for deep drawing made of low-carbon Ti-alloyed steel, low-carbon Nb-alloyed steel or the like is preferably used as the base steel sheet. Alternatively, a high-strength steel sheet containing P, Si, Mn and the like may be used.
The composition of a plating bath may be appropriately selected corresponding to the composition of a hot-dip Zn alloy plating layer to be formed. For example, the plating bath includes 1.0 to 22.0% by mass of Al, 0.1 to 10.0% by mass of Mg, and the balance of Zn and unavoidable impurities. The plating bath may further include at least one selected from the group consisting of 0.001 to 2.0% by mass of Si, 0.001 to 0.1% by mass of Ti, and 0.001 to 0.045% by mass of B. Examples of the hot-dip Zn alloy plating include a molten Zn-0.18% by mass of Al-0.09% by mass of Sb alloy plating, a molten Zn-0.18% by mass of Al-0.06% by mass of Sb alloy plating, a molten Zn-0.18% by mass Al alloy plating, a molten Zn-1% by mass of Al-1% by mass of Mg alloy plating, a molten Zn-1.5% by mass of Al-1.5% by mass of Mg alloy plating, a molten Zn-2.5% by mass of Al-3% by mass of Mg alloy plating, a molten Zn-2.5% by mass of Al-3% by mass of Mg-0.4% by mass of Si alloy plating, a molten Zn-3.5% by mass of Al-3% by mass of Mg alloy plating, a molten Zn-4% by mass of Al-0.75% by mass of Mg alloy plating, a molten Zn-6% by mass of Al-3% by mass of Mg-0.05% by mass of Ti-0.003% by mass of B alloy plating, a molten Zn-6% by mass of Al-3% by mass of Mg-0.02% by mass of Si-0.05% by mass of Ti-0.003% by mass of B alloy plating, a molten Zn-11% by mass of Al-3% by mass of Mg alloy plating, a molten Zn-11% by mass of Al-3% by mass of Mg-0.2% by mass of Si alloy plating, and a molten Zn-55% by mass of Al-1.6% by mass of Si alloy plating. Although blackening of a plating layer can be suppressed by addition of Si as described in PTL 1, blackening of a plating layer can be suppressed without addition of Si in the case of producing a plated steel sheet by the production method of the present invention.
The adhering amount of the hot-dip Zn alloy plating layer is not specifically limited. The adhering amount of the plating layer may be, for example, approximately 60 to 500 g/m2.
Subsequently, the molten metal adhered to the surface of a base steel sheet is cooled to a temperature equal to or more than 100° C. and equal to or less than the solidifying point of the plating layer so as to be solidified. A plated steel sheet is thus formed, having a plating layer with a composition approximately the same as the composition of the plating bath, on the surface of the base steel sheet.
(2) Second Step
In the second step, a specified cooling aqueous solution is contacted with the surface of the hot-dip Zn alloy plating layer, so that the base steel sheet and the plating layer at a raised temperature through formation of the hot-dip Zn alloy plating layer are cooled. From the viewpoint of productivity, the second step is performed preferably by water quenching (water cooling). In this case, the temperature of the surface of the hot-dip Zn alloy plating layer when the cooling aqueous solution is to be contacted with the surface of the hot-dip Zn alloy plating layer is equal to or more than 100° C. and approximately equal to or less than the solidifying point of the plating layer.
The cooling aqueous solution is formed of an aqueous solution containing a water-soluble corrosion inhibitor, satisfying the following equation 3. The following equation 3 indicates that the cooling aqueous solution has a reduction ratio of the corrosion current density of 20% or more.
wherein Z0 is the corrosion current density of a hot-dip Zn alloy-plated steel sheet, measured in a 0.5 M NaCl aqueous solution containing no water-soluble corrosion inhibitor; and Z1 is the corrosion current density of a hot-dip Zn alloy-plated steel sheet, measured in the aqueous solution (cooling aqueous solution) containing the water-soluble corrosion inhibitor, with further dissolved NaCl at a final concentration of 0.5 M.
Although NaCl is added to the cooling aqueous solution to have a final concentration of 0.5 M in the measurement of the corrosion current density in the cooling aqueous solution as described above, the hot-dip Zn alloy-plated steel sheet is cooled with the cooling aqueous solution as it is, without addition of NaCl to the cooling aqueous solution.
The corrosion current density values Z0 and Z1 for use in the equation 3 are obtained from a polarization curve by Tafel extrapolation method. The measurement of the polarization curve is performed using an electrochemical measurement system (HZ-3000, produced by Hokuto Denko Corp.). The corrosion current is calculated using software (data analysis software) attached to the electrochemical measurement system.
The method for preparing the aqueous solution (cooling aqueous solution) containing a water-soluble corrosion inhibitor is not specifically limited. For example, a water-soluble corrosion inhibitor capable of reducing the corrosion current density, and a dissolution promoter on an as needed basis, may be dissolved in water (solvent). The type of the water-soluble corrosion inhibitor is not specifically limited as long as capable of reducing the corrosion current density. Examples of the water-soluble corrosion inhibitor include a V compound, a Si compound, and a Cr compound. Preferable examples of the V compound include acetylacetone vanadyl, vanadium acetylacetonate, vanadium oxysulfate, vanadium pentoxide, and ammonium vanadate. Further, preferable examples of the Si compound include sodium silicate. Further, preferable examples of the Cr compound include ammonium chromate and potassium chromate. These water-soluble corrosion inhibitors may be used singly or in combination. The amount of the water-soluble corrosion inhibitor added is selected to satisfy the equation 3.
In the case of adding a dissolution promoter, the amount of the dissolution promoter added is not specifically limited. For example, 90 to 130 parts by mass of the dissolution promoter may be added to 100 parts by mass of the water-soluble corrosion inhibitor. With an excessively small amount of the dissolution promoter added, the water-soluble corrosion inhibitor cannot be sufficiently dissolved in some cases. On the other hand, with an excessively large amount of the dissolution promoter added, the effect is saturated, resulting in a cost disadvantage.
Examples of the dissolution promoter include 2-aminoethanol, tetraethylammonium hydroxide, ethylene diamine, 2,2′-iminodiethanol, and 1-amino-2-propanol.
The method for contacting the cooling aqueous solution with the surface of a hot-dip Zn alloy plating layer is not specifically limited. Examples of the method for contacting the cooling aqueous solution with the surface of a hot-dip Zn alloy plating layer include a spraying process and a dipping process.
As shown in
As shown in
According to the procedure described above, a hot-dip Zn alloy-plated steel sheet excellent in blackening resistance can be produced.
The reason is not clear why the production method of the present invention can suppress the temporal blackening at the surface of a plating layer of a hot-dip Zn alloy-plated steel sheet. In the following, a presumed mechanism of the occurrence of blackening of a hot-dip Zn alloy plating layer is described, and then a presumed mechanism of the suppression of blackening is described when a hot-dip Zn alloy-plated steel sheet is produced according to the production method of the present invention. The mechanism of the suppression of blackening, however, is not limited to the hypotheses.
(Mechanism of Occurrence of Blackening)
First, the process leading to the presumed mechanisms of the occurrence of blackening of the surface of a plating layer and the suppression of the blackening is described as follows. The present inventors produced a hot-dip Zn alloy-plated steel sheet by forming a hot-dip Zn alloy plating layer having a plating composition including 6% by mass of Al, 3% by mass of Mg, 0.024% by mass of Si, 0.05% by mass of Ti, 0.003% by mass of B, and the balance of Zn on the surface of a base steel sheet, and then temporarily forming a water film from cooling water (in-factory water having a pH of 7.6, at 20° C.) in a water quenching zone for a spraying process. The term “temporarily forming a water film” means a state allowing a water film in contact with the surface of a hot-dip Zn alloy-plated steel sheet to be visually observed for one second or more. On this occasion, the surface temperature of the hot-dip Zn alloy-plated steel sheet was estimated to be approximately 160° C. immediately before formation of the water film from the cooling water.
The produced hot-dip Zn alloy-plated steel sheet was stored in a room (at a room temperature of 20° C., with a relative humidity of 60%) for one week. After storage for one week, the surface of the hot-dip Zn alloy-plated steel sheet was visually observed. The blackening developed on the whole surface of the hot-dip Zn alloy-plated steel sheet and a dark part where blackening particularly proceeded compared with the periphery was observed.
Furthermore, for 30 regions randomly selected on the surface of a hot-dip Zn alloy-plated steel sheet immediately after production, the chemical binding states of Zn, Al and Mg were analyzed by XPS analysis (X-ray Photoelectoron Spectroscopy). Then, the analyzed hot-dip Zn alloy-plated steel sheet was stored in a room (at a room temperature of 20° C., with a relative humidity of 60%) for one week. After storage for one week, the surface of the hot-dip Zn alloy-plated steel sheet was visually observed. As a result, a dark part was observed in a part of the hot-dip Zn alloy-plated steel sheet. For the region where the dark part was formed and the region where no dark part was observed (normal part), the XPS analysis results of the hot-dip Zn alloy-plated steel sheet obtained immediately after production were compared.
As shown in
On the other hand, as shown in
As shown in
As shown in
From the results, it is presumed that the binding state of Zn has an effect on formation of the dark part, i.e., the rate of progress in blackening. Accordingly, it is presumed that the dark part is formed, or blackening is accelerated, due to increase in the presence ratio of Zn(OH)2.
Next, the present inventors produced a hot-dip Zn alloy-plated steel sheet by contacting in-factory water (cooling water) with the surface of the hot-dip Zn alloy plating layer by a mist cooling apparatus, without formation of a water film. The produced hot-dip Zn alloy-plated steel sheet was stored in a room (at a room temperature of 20° C., with a relative humidity of 60%) for one week. After storage for one week, the surface of the hot-dip Zn alloy-plated steel sheet was visually observed. The hot-dip Zn alloy-plated steel sheet had a uniform surface gloss, and no formation of a dark part was observed. The degree of gloss at the surface of the plating layer is approximately the same as in the normal part in the hot-dip Zn alloy-plated steel sheet produced through temporary formation of a water film.
The surface of the plating layer of the hot-dip Zn alloy-plated steel sheet immediately after production without formation of a water film was then analyzed by XPS analysis.
From the results, it is suggested that the formation of a water film in the cooling step has an effect on the formation of Zn(OH)2. In the case of no formation of a water film, Zn(OH)2 is not easily formed, and it is therefore presumed that the blackening is suppressed.
As described above, regarding blackening of the plating layer of a hot-dip Zn alloy-plated steel sheet, the present inventors found that: 1) Zn(OH)2 is formed on the surface of the plating layer through formation of a water film in the cooling step; and 2) blackening tends to occur in a region where Zn(OH)2 is formed in the surface of the plating layer. Accordingly, the present inventors presume that the mechanism of blackening of the plating layer to be as follows.
First, when a cooling water comes in contact with the surface of a plating layer at high temperature (e.g. 100° C. or higher), partial elution of Zn from the oxide film on the surface of the plating layer or from the Zn phase in the plating layer occurs.
Zn→Zn2++2e−
A part of oxygen dissolved in the cooling water is reduced to form OH−.
1/2O2+H2O+2e−→2OH−
Zn2+ eluted into cooling water bonds with OH− in the cooling water to form Zn(OH)2 on the surface of the plating layer.
Zn2+-2OH−→Zn(OH)2
As time passes, a part of Zn(OH)2 on the surface of the plating layer forms ZnO through a dehydration reaction.
Zn(OH)2→ZnO+H2O
Subsequently, oxygen is taken from a part of ZnO by Al and Mg in the plating layer, so that ZnO1-X is produced. ZnO1-X forms a color center, visually exhibiting a black color.
(Mechanism for Suppressing Blackening)
Subsequently, the present inventors produced a hot-dip Zn alloy-plated steel sheet by using an aqueous solution of a V compound (reduction ratio of the corrosion current density: 20% or more) instead of in-factory water so as to temporarily form a water film on the surface of the plating layer in the water quenching zone for a spraying process. On this occasion, the surface temperature of the hot-dip Zn alloy-plated steel sheet immediately before contact with the cooling aqueous solution was estimated to be approximately 160° C.
The produced hot-dip Zn alloy-plated steel sheet was stored in a room (at a room temperature of 20° C., with a relative humidity of 60%) for one week. After storage for one week, the surface of the hot-dip Zn alloy-plated steel sheet was visually observed. The hot-dip Zn alloy-plated steel sheet had a practically uniform surface gloss, and no formation of a dark part was observed. The hot-dip Zn alloy-plated steel sheet had higher surface gloss in comparison with the normal part in the hot-dip Zn alloy-plated steel sheet produced through temporary formation of a water film using in-factory water.
Subsequently, the surface of the plating layer of the hot-dip alloy plated steel sheet immediately after production through temporary formation of a water film using the cooling aqueous solution was analyzed by XPS analysis.
In the case of using an aqueous solution having a reduction ratio of the corrosion current density of 20% or more as cooling water, the progress rate of the series of reactions involved in the formation of Zn(OH)2 is reduced. It is presumed that the formation of Zn(OH)2 is thereby suppressed, resulting in suppressed blackening of the plating layer.
(Hot-Dip Zn Alloy-Plated Steel Sheet of the Present Invention)
In the hot-dip Zn alloy-plated steel sheet produced by the production method of the present invention (hot-dip Zn alloy-plated steel sheet of the present invention), the amount of Zn(OH)2 at the surface of the hot-dip Zn alloy plating layer is small. Accordingly, the hot-dip Zn alloy plating layer satisfies, at the entire surface, the following equation 4.
wherein S[Zn] is a peak area derived from metal Zn and centered at approximately 1022 eV in an intensity profile of XPS analysis of the surface of the hot-dip Zn alloy plating layer; and S[Zn(OH)2] is a peak area derived from Zn(OH)2 and centered at approximately 1023 eV in the intensity profile of XPS analysis of the surface of the hot-dip Zn alloy plating layer.
The equation 4 indicates that the ratio of the peak area derived from Zn(OH)2 and centered at approximately 1023 eV (hereinafter referred to as “Zn(OH)2 ratio”) is 40% or less relative to the total of the peak area derived from metal Zn and centered at approximately 1022 eV, and peak area derived from Zn(OH)2 and centered at approximately 1023 eV in the intensity profile measured in the XPS analysis.
The XPS analysis of the surface of the plating layer of a hot-dip Zn alloy-plated steel sheet is performed using an XPS analyzer (AXIS Nova, produced by Kratos Group PLC.). The peak area derived from metal Zn and centered at approximately 1022 eV, and the peak area derived from Zn(OH)2 and centered at approximately 1023 eV are calculated using software (Vision 2) attached to the XPS analyzer.
The position of the peak derived from metal Zn is precisely at 1021.6 eV, and the position of the peak derived from Zn(OH)2 is precisely at 1023.3 eV. These values may change in some cases due to characteristics of XPS analysis, contamination of a sample, and charging of a sample. Those skilled in the art, however, are capable of distinguishing the peak derived from metal Zn from the peak derived from Zn(OH)2.
(Production Line)
The method of producing the hot-dip Zn alloy-plated steel sheet of the present invention described above may be performed, for example, in the following production line.
As shown in
The steel strip S fed from a feeding reel not shown in drawing through a predetermined step is heated in furnace 310. The heated steel strip S is dipped in plating bath 320, so that molten metal adheres to both sides of the steel strip S. An excess amount of molten metal is then removed with a wiping apparatus having wiping nozzle 330, allowing a specified amount of molten metal to adhere to the surface of the steel strip S.
The steel strip S with a specified amount of molten metal adhered thereto is cooled to the solidifying point of the molten metal or lower by air jet cooler 340 or in mist cooling zone 350. Air jet cooler 340 is a facility for cooling the steel strip S by spraying a gas. Mist cooling zone 350 is a facility for cooling the steel strip S by spraying atomized fluid (e.g. cooling water) and a gas. The molten metal is thereby solidified, so that a hot-dip Zn alloy plating layer is formed on the surface of the steel strip S. When the steel strip s is cooled in mist cooling zone 350, no water film is formed on the surface of the plating layer. The temperature after cooling is not specifically limited, and may be, for example, 100 to 250° C.
The hot-dip Zn alloy-plated steel sheet cooled to a specified temperature is further cooled in water quenching zone 360. Water quench zone 360 is a facility for cooling the steel strip S through contact with a large amount of cooling water in comparison with mist cooling zone 350, supplying an amount of water to form a temporary water film on the surface of the plating layer. For example, water quenching zone 360 includes headers having 10 flat spray nozzles disposed at intervals of 150 mm in the width direction of the steel strip S, which are disposed in 7 rows in the feeding direction of the base steel sheet S. In water quenching zone 360, an aqueous solution containing a water-soluble corrosion inhibitor (a reduction ratio of the corrosion current density of 20% or more) is used as cooling aqueous solution. The steel strip S is cooled in water quenching zone 360, with the cooling aqueous solution in an amount to temporarily form a water film on the surface of the plating layer being supplied. For example, the cooling aqueous solution has a water temperature of approximately 20° C., a water pressure of approximately 2.5 kgf/cm2, and a water quantity of approximately 150 m3/h. The phrase “a water film is temporarily formed” means a state allowing a water film in contact with a hot-dip Zn alloy-plated steel sheet to be visually observed for approximately one seconds or more.
The water-cooled hot-dip Zn alloy-plated steel sheet is rolled for thermal refining by skin pass mill 370, corrected to flat by tension leveler 380, and then wound onto tension reel 390.
When a chemical conversion coating is further formed on the surface of a plating layer, a specified chemical conversion treatment liquid is applied to the surface of the hot-dip Zn alloy-plated steel sheet corrected by tension leveler 380, with roll coater 400. The hot-dip Zn alloy-plated steel sheet through the chemical conversion treatment is dried and cooled in drying zone 410 and air cooling zone 420, and then wound onto tension reel 390.
As described above, the hot-dip Zn alloy-plated steel sheet of the present invention has excellent blackening resistance and can be easily produced at high productivity. The method of producing a hot-dip Zn alloy-plated steel sheet of the present invention allows a hot-dip Zn alloy-plated steel sheet having excellent blackening resistance to be easily produced at high productivity, only by contacting a specified cooling aqueous solution with the surface of a hot-dip Zn alloy plating layer.
The present invention is described in detail with reference to Examples as follows. The present invention is, however, not limited to the Examples.
EXAMPLES Experiment 1In Experiment 1, the blackening resistance of the hot-dip Zn alloy plating layer of a hot-dip Zn alloy-plated steel sheet cooled by using a cooling water containing a water-soluble corrosion inhibitor was examined
1. Production of Hot-Dip Zn Alloy-Plated Steel Sheet
Using production line 300 shown in
In production of a hot-dip Zn alloy-plated steel sheet, the cooling conditions in air jet cooler 340 were changed, such that the temperature of the steel sheet (the surface of plating layer) is adjusted at 80° C., 150° C., or 300° C. immediately before passing through water quenching zone 360. In water quenching zone 360, any one of the aqueous solutions described in Table 2 and Table 3 was used as cooling aqueous solution. Each of the cooling aqueous solutions was prepared by dissolving a water-soluble corrosion inhibitor described in Table 2 or Table 3 and a dissolution promoter on an as needed basis dissolved in water with a pH of 7.6, at a specified ratio, and then adjusting the water temperature to 20° C. A cooling aqueous solution No. 42 is a water with a pH of 7.6 containing no water-soluble corrosion inhibitor and no dissolution promoter. The spray apparatus in water quenching zone 360 for use includes headers having 10 flat spray nozzles disposed at intervals of 150 mm in the width direction, which are disposed in 7 rows in the feeding direction of the base steel sheet S. Each of the cooling aqueous solutions supplied from water quenching zone 360 was under conditions with a water pressure of 2.5 kgf/cm2 and a water quantity of 150 m3/h.
The reduction ratio of corrosion current density of each of the cooling aqueous solutions is also described in Table 2 and Table 3. The reduction ratio of corrosion current density is the value calculated from the equation 3 (refer to
2. Evaluation of Hot-Dip Zn Alloy-Plated Steel Sheet
(1) Measurement of Ratio of Zn(OH)2 on Surface of Plating Layer
The ratio of Zn(OH)2 on the surface of plating layer was measured for each of the hot-dip Zn alloy-plated steel sheets, using an XPS analyzer (AXIS Nova, produced by Kratos Group PLC.). The ratio of Zn(OH)2 was calculated using software (Vision 2) attached to the XPS analyzer.
(2) Treatment for Accelerating Deterioration of Gloss
A test piece was cut out from each of the produced hot-dip Zn alloy-plated steel sheets. Each of the test pieces was placed in a thermo-hygrostat (LHU-113, produced by Espec Corp.), and subjected to a treatment for accelerating deterioration of the gloss at a temperature 60° C., with a relative humidity of 90%, for 40 hours.
(3) Measurement of Degree of Blackening
The brightness (L* value) at the surface of the plating layer for each of the hot-dip Zn alloy-plated steel sheets was measured before and after the treatment for accelerating deterioration of the gloss. The brightness (L* value) at the surface of the plating layer was measured using a spectroscopic color difference meter (TC-1800, produced by Tokyo Denshoku Co., Ltd), by spectral reflectance measurement in accordance with JIS K 5600. The measurement conditions are as follows:
Optical condition: d/8° method (double beam optical system)
Field of view: 2-degree field of view
Measurement method: reflectometry
Standard illuminant: C
Color system: CIELAB
Measurement wavelength: 380 to 780 nm
Measurement wavelength interval: 5 nm
Spectroscope: 1200/mm diffraction grating
Lighting: halogen lamp (voltage: 12 V, power: 50 W, rating life: 2000 hours)
Measurement area: 7.25 mm diameter
Detection element: photomultiplier tube (R928 produced by Hamamatsu Photonics K.K.)
Reflectance: 0 to 150%
Measurement temperature: 23° C.
Standard plate: white
For each of the plated steel sheets, the evaluation was ranked as “A” for a difference in L* values (ΔL*) between before and after the treatment for accelerating deterioration of the gloss of less than 0.5, “B” for a difference of 0.5 or more and less than 3, and “C” for a difference of 3 or more. It can be determined that a plated steel sheet evaluated as “A” has blackening resistance.
(4) Evaluation Results
For each of the plated steel sheets, the relations among the type of the cooling aqueous solution for use, the temperature of the steel sheet (the surface of the plating layer) immediately before cooling in water quenching zone 360, the ratio of Zn(OH)2, and the evaluation results of the degree of blackening are described in Table 4 to Table 7.
As shown in Table 4 to Table 7, in the case of cooling using an aqueous solution with a reduction ratio of corrosion current density of 20% or more, a ratio of Zn(OH)2 at the surface of a plating layer became 40% or less and blackening resistance was excellent. In contrast, in the case of cooling using an aqueous solution with a reduction ratio of corrosion current density of less than 20%, a ratio of Zn(OH)2 at the surface of a plating layer became more than 40% and suppression of blackening was insufficient.
From the results, it is found that cooling using an aqueous solution with a reduction ratio of corrosion current density of 20% or more allows the surface of a plating layer to have a ratio of Zn(OH)2 of 40% or less, and a plated steel sheet with a plating layer having a ratio of Zn(OH)2 of 40% or less at the surface of the plating layer is excellent in blackening resistance.
Experiment 2In Experiment 2, a plating layer was formed on a base steel sheet using each of the plating bath compositions (Nos. 1 to 14) and conditions described in Table 1, so that 14 types of hot-dip Zn alloy-plated steel sheets having different plating layer compositions were produced. In production of the hot-dip Zn alloy-plated steel sheets, each of 42 types of cooling aqueous solutions described in Table 2 and Table 3 was used for cooling in water quenching zone 360. Furthermore, each of the test pieces was subjected to a chemical conversion treatment under the following chemical conversion treatment conditions A to C. Subsequently, the test piece was subjected to the treatment for accelerating deterioration of the gloss in the same manner as in Experiment 1, for the measurement of blackening resistance.
In chemical conversion treatment conditions A, ZINCHROME 3387N (chrome concentration: 10 g/L, produced by Nihon Parkerizing Co., Ltd.) was used as chemical conversion treatment liquid. The chemical conversion treatment liquid was applied to have an amount of chromium adhering of 10 mg/m2 by a spray ringer roll method.
In chemical conversion treatment conditions B, an aqueous solution containing 50 g/L of magnesium phosphate, 10 g/L of potassium fluorotitanate, and 3 g/L of an organic acid was used as chemical conversion treatment liquid. The chemical conversion treatment liquid was applied to have an amount of metal components adhering of 50 mg/m2 by a roll coat method.
In chemical conversion treatment conditions C, an aqueous solution containing 20 g/L of a urethane resin, 3 g/L of ammonium dihydrogen phosphate, and 1 g/L of vanadium pentoxide was used as chemical conversion treatment liquid. The chemical conversion treatment liquid was applied to have a dried film thickness of 2 μm by a roll coat method.
For each of the plated steel sheets, the relations among the type of the cooling aqueous solution for use, the temperature of the steel sheet (the surface of the plating layer) immediately before cooling in water quenching zone 360, the ratio of Zn(OH)2, and the evaluation results of the degree of blackening are described in Table 8 to Table 11. Since the accurate measurement of the ratio of Zn(OH)2 after the chemical conversion treatment is difficult, the ratio of Zn(OH)2 is the same as the measurement value in the case of without chemical conversion treatment (the same as the values in Table 4 to Table 7).
As shown in Table 8 to Table 11, in the case of cooling using an aqueous solution with a reduction ratio of corrosion current density of 20% or more, excellent blackening resistance was obtained even with the chemical conversion treatment. In contrast, in the case of cooling using an aqueous solution with a reduction ratio of corrosion current density of less than 20%, the suppression of blackening was insufficient even with the chemical conversion treatment.
From the results, it is found that cooling using an aqueous solution with a reduction ratio of corrosion current density of 20% or more can sufficiently suppress blackening regardless of the type of chemical conversion treatment.
This application claims priority based on Japanese patent Application No. 2013-250143, filed on Dec. 3, 2013, the entire contents of which including the specification and the drawings are incorporated herein by reference.
INDUSTRIAL APPLICABILITYThe hot-dip Zn alloy-plated steel sheet obtained by the production method of the present invention is excellent in blackening resistance, and useful as plated steel sheet for use in, for example, roof materials and exterior materials for buildings, home appliances, and automobiles.
REFERENCE SIGNS LIST
- 100, 200 Cooling apparatus
- 110 Spray nozzle
- 120, 230 Squeeze roll
- 130 Housing
- 210 Dip tank
- 220 Dip roller
- 300 Production line
- 310 Furnace
- 320 Plating bath
- 330 Wiping nozzle
- 340 Air jet cooler
- 350 Mist cooling zone
- 360 Water quenching zone
- 370 Skin pass mill
- 380 Tension leveler
- 390 Tension reel
- 400 Roll coater
- 410 Drying zone
- 420 Air cooling zone
- S: Steel strip
Claims
1. A hot-dip Zn alloy-plated steel sheet comprising: S [ Zn ( OH ) 2 ] S [ Zn ( OH ) 2 ] + S [ Zn ] × 100 ≤ 40 ( Equation 1 )
- a steel sheet; and
- a hot-dip Zn alloy plating layer disposed on a surface of the steel sheet,
- wherein the hot-dip Zn alloy plating layer satisfies, at a whole of a surface of the hot-dip Zn alloy plating layer, following Equation 1:
- S[Zn] is a peak area derived from metal Zn and centered at approximately 1022 eV in an intensity profile of XPS analysis of the surface of the hot-dip Zn alloy plating layer; and S[Zn(OH)2] is a peak area derived from Zn(OH)2 and centered at approximately 1023 eV in the intensity profile of XPS analysis of the surface of the hot-dip Zn alloy plating layer.
2. The hot-dip Zn alloy-plated steel sheet according to claim 1, wherein:
- the hot-dip Zn alloy plating layer comprises 1.0 to 22.0% by mass of Al, 0.1 to 10.0% by mass of Mg, and the balance of the hot-dip Zn alloy plating layer being Zn and unavoidable impurities.
3. The hot-dip Zn alloy-plated steel sheet according to claim 2, wherein:
- the hot-dip Zn alloy plating layer further comprises at least one selected from the group consisting of 0.001 to 2.0% by mass of Si, 0.001 to 0.1% by mass of Ti, and 0.001 to 0.045% by mass of B.
4. A method of producing a hot-dip Zn alloy-plated steel sheet comprising: Z 0 - Z 1 Z 0 × 100 ≥ 20 ( Equation 2 )
- dipping a base steel sheet in a hot-dip Zn alloy plating bath to form a hot-dip Zn alloy plating layer on a surface of the base steel sheet; and
- contacting an aqueous solution containing a water-soluble corrosion inhibitor with a surface of the hot-dip Zn alloy plating layer to cool the base steel sheet and the hot-dip Zn alloy plating layer having a raised temperature through formation of the hot-dip Zn alloy plating layer,
- wherein a temperature of the surface of the hot-dip Zn alloy plating layer when the aqueous solution is to be contacted with the surface of the hot-dip Zn alloy plating layer is equal to or more than 100° C. and equal to or less than a solidifying point of the plating layer; and
- wherein the aqueous solution containing the water-soluble corrosion inhibitor satisfies following Equation 2:
- Z0 is a corrosion current density of the hot-dip Zn alloy-plated steel sheet measured in a 0.5 M NaCl aqueous solution not containing the water-soluble corrosion inhibitor, and Z1 is a corrosion current density of the hot-dip Zn alloy-plated steel sheet measured in the aqueous solution containing the water-soluble corrosion inhibitor, in which NaCl is further dissolved so that a final concentration of NaCl is 0.5 M.
Type: Application
Filed: Nov 13, 2014
Publication Date: Sep 29, 2016
Inventors: Atsuo SHIMIZU (Osaka), Masanori MATSUNO (Osaka), Masaya YAMAMOTO (Osaka), Hirofumi TAKETSU (Osaka)
Application Number: 15/037,489