Patents by Inventor Atsuo Shimizu

Atsuo Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240044013
    Abstract: This surface-treated steel sheet includes: a steel sheet; a Zn-based plating layer formed on the steel sheet; and a coating formed on the Zn-based plating layer, in which a Si concentration, a P concentration, a F concentration, a V concentration, a Zr concentration, a Zn concentration, and an Al concentration of the coating are, by mass %, Si: 10.00% to 25.00%, P: 0.01% to 5.00%, F: 0.01% to 2.00%, V: 0.01% to 4.00%, Zr: 0.01% to 3.00%, Zn: 0% to 3.00%, and Al: 0% to 3.00%, in a narrow spectrum of 5i2p obtained by performing XP S analysis on a surface of the coating, a ratio of an integrated intensity of a peak having a local, maximum value, at 103.37±0.25 eV to an integrated intensity of a peak having a local maximum value at 102.26±0.25 eV is 0.04 or more and 0.25 or less.
    Type: Application
    Filed: January 6, 2022
    Publication date: February 8, 2024
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Atsuo SHIMIZU, Ikumi TOKUDA, Hiromasa SHOJI, Koji AKIOKA
  • Patent number: 10848471
    Abstract: A communication apparatus for use in a communication system including a call control apparatus and a key information distribution apparatus is provided.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: November 24, 2020
    Assignee: NTT Communications Corporation
    Inventors: Atsushi Okada, Atsuo Shimizu
  • Publication number: 20190281033
    Abstract: A communication apparatus for use in a communication system including a call control apparatus and a key information distribution apparatus is provided.
    Type: Application
    Filed: January 31, 2018
    Publication date: September 12, 2019
    Applicant: NTT Communications Corporation
    Inventors: Atsushi OKADA, Atsuo SHIMIZU
  • Patent number: 10202676
    Abstract: A hot-dip Zn alloy plating layer is formed on a surface of a base steel sheet by immersing the base steel sheet in a hot-dip Zn alloy plating bath containing Al and Mg. An aqueous solution containing a polyatomic ion including Si4+ and/or a polyatomic ion including Cr6+ is then contacted with a surface of the hot-dip Zn alloy plating layer. All of the aqueous solution coating the surface of the hot-dip Zn alloy plating layer is removed with a squeeze roller. The aqueous solution contains the polyatomic ion in a concentration of 0.01 g/L or more in terms of atom of Si and Cr. A surface temperature of the hot-dip Zn alloy plating layer when the aqueous solution is contacted with the surface of the hot-dip Zn alloy plating layer is 100° C. or above and equal to or less than a solidifying point of the plating layer.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: February 12, 2019
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Atsuo Shimizu, Masanori Matsuno, Masaya Yamamoto, Hirofumi Taketsu
  • Publication number: 20190040512
    Abstract: A method of producing a hot-dip Zn alloy-plated steel sheet comprising: dipping a base steel sheet in a hot-dip Zn alloy plating bath to form a hot-dip Zn alloy plating layer on a surface of the base steel sheet; and contacting an aqueous solution containing a vanadium compound with a surface of the hot-dip Zn alloy plating layer to cool the base steel sheet and the hot-dip Zn alloy plating layer having a raised temperature through formation of the hot-dip Zn alloy plating layer, and to form a composite oxide film on the surface of the hot-dip Zn alloy plating layer. A temperature of the hot-dip Zn alloy plating layer when the aqueous solution is to be contacted with the hot-dip Zn alloy plating layer is equal to or more than 100° C. and equal to or less than a solidifying point of the hot-dip Zn alloy plating layer.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 7, 2019
    Inventors: Atsuo SHIMIZU, Masanori MATSUNO, Masaya YAMAMOTO, Hirofumi TAKETSU
  • Patent number: 10167542
    Abstract: A hot-dip Zn alloy plating layer is formed on a surface of a base steel sheet by immersing the base steel sheet in a hot-dip Zn alloy plating bath containing Al and Mg. An aqueous solution containing one of or two or more of polyatomic ions selected from the group consisting of a polyatomic ion including V5+, a polyatomic ion including Si4+, and a polyatomic ion including Cr6+ is then contacted with a surface of the hot-dip Zn alloy plating layer. The aqueous solution contains the polyatomic ion in a concentration of 0.01 g/L or more in terms of one of or two or more of atoms selected from the group consisting of V, Si, and Cr.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: January 1, 2019
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Atsuo Shimizu, Masanori Matsuno, Masaya Yamamoto, Hirofumi Taketsu
  • Patent number: 10125414
    Abstract: A method of producing a hot-dip Zn alloy-plated steel sheet includes: dipping a base steel sheet in a hot-dip Zn alloy plating bath to form a hot-dip Zn alloy plating layer on a surface of the base steel sheet; and contacting an aqueous solution containing a water-soluble corrosion inhibitor with a surface of the hot-dip Zn alloy plating layer to cool the base steel sheet and the hot-dip Zn alloy plating layer having a raised temperature through formation of the hot-dip Zn alloy plating layer. A temperature of the surface of the hot-dip Zn alloy plating layer when the aqueous solution is to be contacted with the surface of the hot-dip Zn alloy plating layer is equal to or more than 100° C. and equal to or less than a solidifying point of the plating layer. The aqueous solution containing the water-soluble corrosion inhibitor satisfies the Equation [{(Z0?Z1)/Z0}100?20].
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: November 13, 2018
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Atsuo Shimizu, Masanori Matsuno, Masaya Yamamoto, Hirofumi Taketsu
  • Publication number: 20170260614
    Abstract: A method of producing a hot-dip Zn alloy-plated steel sheet includes: dipping a base steel sheet in a hot-dip Zn alloy plating bath to form a hot-dip Zn alloy plating layer on a surface of the base steel sheet; and contacting an aqueous solution containing a water-soluble corrosion inhibitor with a surface of the hot-dip Zn alloy plating layer to cool the base steel sheet and the hot-dip Zn alloy plating layer having a raised temperature through formation of the hot-dip Zn alloy plating layer. A temperature of the surface of the hot-dip Zn alloy plating layer when the aqueous solution is to be contacted with the surface of the hot-dip Zn alloy plating layer is equal to or more than 100° C. and equal to or less than a solidifying point of the plating layer. The aqueous solution containing the water-soluble corrosion inhibitor satisfies the Equation [{(Z0?Z1)/Z0}100?201.
    Type: Application
    Filed: May 26, 2017
    Publication date: September 14, 2017
    Inventors: Atsuo SHIMIZU, Masanori MATSUNO, Masaya YAMAMOTO, Hirofumi TAKETSU
  • Publication number: 20160305003
    Abstract: This hot-dip Zn-alloy-plated steel sheet comprises: a steel sheet; a hot-dip Zn-alloy-plated layer arranged on a surface of the steel sheet; and a complex oxide coating film arranged on a surface of the hot-dip Zn-alloy-plated layer. The complex oxide coating film includes vanadium and a constituent component of the hot-dip Zn-alloy-plated layer, and the entire surface of the coating film satisfies the following formula (1): S[Hydroxide]/(S[Hydroxide]+S[Oxide])×100?40. In formula (1): S[Oxide] is the area exhibited by a peak having a center at approximately 1022 eV ascribable to a Zn oxide in an intensity profile in XPS analysis of the surface of the complex oxide coating film; and S[Hydroxide] is the area exhibited by a peak having a center at approximately 1023 eV ascribable to a Zn hydroxide in an intensity profile in XPS analysis of the surface of the complex oxide coating film.
    Type: Application
    Filed: November 13, 2014
    Publication date: October 20, 2016
    Applicant: Nisshin Steel Co., Ltd.
    Inventors: Atsuo SHIMIZU, Masanori MATSUNO, Masaya YAMAMOTO, Hirofumi TAKETSU
  • Publication number: 20160281201
    Abstract: This hot-dip Zn-alloy-plated steel sheet comprises: a steel sheet; and a hot-dip Zn-alloy-plated layer arranged on a surface of the steel sheet. The entire surface of the hot-dip Zn-alloy-plated layer satisfies the following formula (1): S[Zn(OH)2]/(S[Zn(OH)2]+S[Zn])×100?40. In formula (1): S[Zn] is the area exhibited by a peak having a center at approximately 1022 eV ascribable to metallic Zn in an intensity profile in XPS analysis of the surface of the hot-dip Zn-alloy-plated layer; and S[Zn(OH)2] is the area exhibited by a peak having a center at approximately 1023 eV ascribable to Zn(OH)2 in an intensity profile in XPS analysis of the surface of the hot-dip Zn-alloy-plated layer.
    Type: Application
    Filed: November 13, 2014
    Publication date: September 29, 2016
    Inventors: Atsuo SHIMIZU, Masanori MATSUNO, Masaya YAMAMOTO, Hirofumi TAKETSU
  • Publication number: 20160237572
    Abstract: A chemically converted steel sheet having a chemically converted coating film is made by coating a Zn-based plated steel sheet with a chemical conversion treatment solution and drying the same. The chemically converted coating film is constituted by a first chemically converted layer including V, Mo, and P, and a second chemically converted layer provided on said layer and including a group 4A metal oxygen acid salt, and the ratio of pentavalent V to all the Vs in the chemically converted coating film is 0.7 or greater. The chemical conversion treatment solution includes specific proportions of V, Mo, an amine, the group 4A metal oxygen acid salt, and P, and substantially does not include hydrophilic resins, fluorine, or silicon.
    Type: Application
    Filed: November 14, 2014
    Publication date: August 18, 2016
    Inventors: Yoshiharu IWAMIZU, Atsuo SHIMIZU, Masanori MATSUNO, Masaya YAMAMOTO
  • Publication number: 20150292073
    Abstract: A hot-dip Zn alloy plating layer is formed on a surface of a base steel sheet by immersing the base steel sheet in a hot-dip Zn alloy plating bath containing Al and Mg. An aqueous solution containing a polyatomic ion including Si4+ and/or a polyatomic ion including Cr6+ is then contacted with a surface of the hot-dip Zn alloy plating layer. All of the aqueous solution coating the surface of the hot-dip Zn alloy plating layer is removed with a squeeze roller. The aqueous solution contains the polyatomic ion in a concentration of 0.01 g/L or more in terms of atom of Si and Cr. A surface temperature of the hot-dip Zn alloy plating layer when the aqueous solution is contacted with the surface of the hot-dip Zn alloy plating layer is 100° C. or above and equal to or less than a solidifying point of the plating layer.
    Type: Application
    Filed: June 24, 2015
    Publication date: October 15, 2015
    Inventors: Atsuo SHIMIZU, Masanori MATSUNO, Masaya YAMAMOTO, Hirofumi TAKETSU
  • Publication number: 20150259776
    Abstract: A hot-dip Zn alloy plating layer is formed on a surface of a base steel sheet by immersing the base steel sheet in a hot-dip Zn alloy plating bath containing Al and Mg. An aqueous solution containing one of or two or more of polyatomic ions selected from the group consisting of a polyatomic ion including V5+, a polyatomic ion including Si4+, and a polyatomic ion including Cr6+ is then contacted with a surface of the hot-dip Zn alloy plating layer. The aqueous solution contains the polyatomic ion in a concentration of 0.01 g/L or more in terms of one of or two or more of atoms selected from the group consisting of V, Si, and Cr.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 17, 2015
    Inventors: Atsuo Shimizu, Masanori Matsuno, Masaya Yamamoto, Hirofumi Taketsu
  • Patent number: 8778814
    Abstract: A method of manufacturing a semiconductor device includes the steps of: preparing an underlying structure having a silicon carbide layer covering a copper wiring, and growing silicon oxycarbide on the underlying structure by vapor deposition using, as source gas, tetramethylcyclotetrasiloxane, carbon dioxide gas and oxygen gas, a flow rate of said oxygen gas being at most 3% of a flow rate of the carbon dioxide gas. The surface of the silicon carbide layer of the underlying structure may be treated with a plasma of weak oxidizing gas which contains oxygen and has a molecular weight larger than that of O2 to bring the surface more hydrophilic. Film peel-off and cracks in the interlayer insulating layer decrease.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: July 15, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tamotsu Owada, Shun-ichi Furuyama, Hirofumi Watantani, Kengo Inoue, Atsuo Shimizu
  • Publication number: 20130330912
    Abstract: A method of manufacturing a semiconductor device includes the steps of: preparing an underlying structure having a silicon carbide layer covering a copper wiring, and growing silicon oxycarbide on the underlying structure by vapor deposition using, as source gas, tetramethylcyclotetrasiloxane, carbon dioxide gas and oxygen gas, a flow rate of said oxygen gas being at most 3% of a flow rate of the carbon dioxide gas. The surface of the silicon carbide layer of the underlying structure may be treated with a plasma of weak oxidizing gas which contains oxygen and has a molecular weight larger than that of O2 to bring the surface more hydrophilic. Film peel-off and cracks in the interlayer insulating layer decrease.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Tamotsu Owada, Shun-ichi Furuyama, Hirofumi Watatani, Kengo Inoue, Atsuo Shimizu
  • Patent number: 8413258
    Abstract: This object aims to propose an optical information recording medium configured to make copyright protection possible, an information recording method for an optical information recording medium and a recording device. An optical information recording medium is proposed to have a recording area available for recording data by laser light, wherein the recording area is provided with a user data area and a management area.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: April 2, 2013
    Assignee: Taiyo Yuden Co., Ltd.
    Inventor: Atsuo Shimizu
  • Patent number: 8349722
    Abstract: A method of manufacturing a semiconductor device includes the steps of: preparing an underlying structure having a silicon carbide layer covering a copper wiring, and growing silicon oxycarbide on the underlying structure by vapor deposition using, as source gas, tetramethylcyclotetrasiloxane, carbon dioxide gas and oxygen gas, a flow rate of said oxygen gas being at most 3% of a flow rate of the carbon dioxide gas. The surface of the silicon carbide layer of the underlying structure may be treated with a plasma of weak oxidizing gas which contains oxygen and has a molecular weight larger than that of O2 to bring the surface more hydrophilic. Film peel-off and cracks in the interlayer insulating layer decrease.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: January 8, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tamotsu Owada, Shun-ichi Fukuyama, Hirofumi Watatani, Kengo Inoue, Atsuo Shimizu
  • Publication number: 20120252227
    Abstract: A method of manufacturing a semiconductor device includes the steps of: preparing an underlying structure having a silicon carbide layer covering a copper wiring, and growing silicon oxycarbide on the underlying structure by vapor deposition using, as source gas, tetramethylcyclotetrasiloxane, carbon dioxide gas and oxygen gas, a flow rate of said oxygen gas being at most 3% of a flow rate of the carbon dioxide gas. The surface of the silicon carbide layer of the underlying structure may be treated with a plasma of weak oxidizing gas which contains oxygen and has a molecular weight larger than that of O2 to bring the surface more hydrophilic. Film peel-off and cracks in the interlayer insulating layer decrease.
    Type: Application
    Filed: June 11, 2012
    Publication date: October 4, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Tamotsu Owada, Shun-ichi Fukuyama, Hirofumi Watatani, Kengo Inoue, Atsuo Shimizu
  • Patent number: 8018822
    Abstract: An optical information recording medium includes an optical disk body including a light-transmitting substrate, a recording layer provided on a main surface of the light-transmitting substrate over a region in which pre-grooves are formed and a portion of a region in which dummy grooves are formed, and a reflecting layer provided over the recording layer and a region of the light-transmitting substrate in which the recording layer is not provided; and an ink receiving layer provided on the label surface side of the optical disc body. The dummy grooves provided in at least a portion of the region in which the dye material is not applied have a pitch larger than that of the pre-grooves, are shallower than that of the pre-grooves, or have half-width less than that of the pre-grooves.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: September 13, 2011
    Assignee: Taiyo Yuden Co., Ltd
    Inventors: Takeshi Otsu, Fumi Hara, Shinichi Kojo, Atsuo Shimizu, Motomitsu Hagiwara
  • Patent number: 7936661
    Abstract: Provided is an optical information recording medium that can be recorded with data with only a special recording apparatus and the recorded data can be read out with a general recording/reproducing apparatus. The optical information recording medium includes a disc-like light-transmissive substrate having a surface provided with a spiral groove WB having a wobble and a land LN between adjacent segments of the groove WB, a light-absorbing layer disposed on the surface of the light-transmissive substrate, and a light reflection layer disposed on the light-absorbing layer. The groove WB has a depth Ds of about 140 nm?Ds?155 nm, the light-absorbing layer has a recess with a depth Dd of about 95 nm?Dd?105 nm in the groove, and a push-pull signal before recording has a value of about 0.3 or less. The optical information recording medium may include an anti-illegal copy measure.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: May 3, 2011
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Atsuo Shimizu, Shinichi Kojo