SYSTEMS AND METHODS FOR PRODUCING HYDROGEN GAS
Systems and methods for thermally decomposing hydrocarbon feedstock may comprise a hydrocarbon feedstock, a non-oxidizing carrier gas, one or more heat exchangers, and a reaction chamber. The carrier gas may be used to transfer heat to the hydrocarbon feedstock. The heat exchanger(s) may be configured to heat the carrier gas. And the reaction chamber may be configured to receive hydrocarbon feedstock and heated carrier gas. Inside the reaction chamber, the hydrocarbon feedstock and the heated carrier gas may mix with one another causing the thermal decomposition reaction. The thermal decomposition reaction occurs in a substantially oxidant-free environment thereby eliminating or greatly reducing the production of carbon oxide byproducts. Hydrogen gas may be separated from a gaseous product stream that is thereafter collected from the reaction chamber. A portion of the gaseous product stream may be thermally coupled to the carrier gas and may thereafter be recycled through the system.
Latest Patents:
If an Application Data Sheet (ADS) has been filed on the filing date of this application, it is incorporated by reference herein. Any applications claimed on the ADS for priority under 35 U.S.C. §§119, 120, 121, or 365(c), and any and all parent, grandparent, great-grandparent, etc. applications of such applications, are also incorporated by reference, including any priority claims made in those applications and any material incorporated by reference, to the extent such subject matter is not inconsistent herewith.
CROSS-REFERENCE TO RELATED APPLICATIONSThe present application claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Priority Applications”), if any, listed below (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC §119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Priority Application(s)).
PRIORITY APPLICATIONSThis present application is a continuation of U.S. patent application Ser. No. 13/691,552, filed Nov. 30, 2012, for SYSTEMS AND METHODS FOR PRODUCING HYDROGEN GAS, which is incorporated by reference in its entirety.
If the listings of applications provided above are inconsistent with the listings provided via an ADS, it is the intent of the Applicant to claim priority to each application that appears in the Domestic Benefit/National Stage Information section of the ADS and to each application that appears in the Priority Applications section of this application.
All subject matter of the Priority Applications and of any and all applications related to the Priority Applications by priority claims (directly or indirectly), including any priority claims made and subject matter incorporated by reference therein as of the filing date of the instant application, is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.
TECHNICAL FIELDThe present disclosure relates generally to systems and methods for producing hydrogen gas. More particularly, the present disclosure relates to systems and methods for producing hydrogen gas from the thermal decomposition of hydrocarbons.
SUMMARYThe various embodiments disclosed herein relate to the production of hydrogen gas. The disclosure provides for both systems and methods for producing hydrogen gas from the thermal decomposition of hydrocarbons. In the embodiments disclosed herein, the thermal decomposition reaction occurs in a substantially oxidant-free environment thereby eliminating or greatly reducing the production of carbon oxide byproducts.
An exemplary system may comprise hydrocarbon feedstock, a supply of non-oxidative carrier gas, one or more heat exchangers, and a reaction chamber. The hydrocarbon feedstock is the source of hydrogen gas to be produced. The carrier gas may be used to transfer heat to the hydrocarbon feedstock. The one or more heat exchangers may be configured to heat the carrier gas. And the reaction chamber may be configured to receive a volume of hydrocarbon feedstock and a volume of heated carrier gas.
Inside the reaction chamber, the hydrocarbon feedstock and the heated carrier gas may directly mix with one another. Mixing the hydrocarbon feedstock with the heated carrier gas may result in heat being transferred from the heated carrier gas to the hydrocarbon feedstock. When a sufficient amount of heat has been transferred to the hydrocarbon feedstock, the hydrocarbon feedstock may thermally decompose to a product that includes hydrogen gas and carbon substances.
A gaseous product stream may thereafter be collected and removed from the reaction chamber. The gaseous product stream may comprise hydrogen gas and carrier gas. The gaseous product stream also may be relatively hot. The heat within the gaseous product stream may be further utilized by the system. For example, the gaseous product stream may be thermally coupled to a volume of carrier gas that is to be used in subsequent thermal decomposition reactions. Hydrogen gas may be separated from the gaseous product stream, and at least a portion of the gaseous product stream may be recycled through the system.
Further disclosed herein are various systems and methods for heating the non-oxidative carrier gas. The carrier gas may be heated either directly or indirectly. When heating the carrier gas indirectly, one or more heat exchangers may be configured to transfer heat from one or more heat sources to the carrier gas. The one or more heat sources may generate heat. Exemplary heat sources include combustion heating systems, electrical heating systems, radiative heating systems, and plasma heating systems. The heat sources may further be either catalytic or non-catalytic.
Also disclosed herein are various systems and methods for delivering the carrier gas to the reaction chamber. For example, the carrier gas may be delivered into the reaction chamber using either a high speed injection system or method or a low speed injection system or method. The high speed injection system or method may comprise one or more discrete injectors, and each discrete injector may have a nozzle. The low speed injection system or method may comprise a reaction chamber having one or more porous walls. The reaction chamber may further be configured such that the carrier gas may permeate through the one or more porous walls and into the reaction chamber.
In certain embodiments disclosed herein, the hydrocarbon feedstock may be heated without the use of a carrier gas. For example, the hydrocarbon feedstock may be heated by contacting a hot surface. The hot surface may be a wall of the reaction chamber. In other embodiments, the hot surface may be a surface of the thermal matrix of a regenerative heat exchanger. In yet other embodiments, the hot surface may be a surface of a heat exchanger.
Further disclosed herein are systems and methods for disrupting the buildup of carbon substances on one or more selected surfaces. The one or more selected surfaces may be surfaces that are within the reaction chamber. In some embodiments, ultrasonic agitation may be used to disrupt the buildup of the carbon substances. The ultrasonic agitation may be generated from a variety of sources including mechanical, electrical, piezoelectric, and/or magnetostrictive generators. One or more parameters of the ultrasonic agitation may be varied as needed or desired.
These and other aspects of the present disclosure will be discussed in greater detail hereinafter.
The embodiments disclosed herein will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. These drawings depict only typical embodiments, which will be described with additional specificity and detail through use of the accompanying drawings in which:
The various embodiments disclosed herein relate to the production of hydrogen gas. As set forth in more detail below, the disclosure provides embodiments for both systems and methods for producing hydrogen gas from the thermal decomposition of hydrocarbons. For example, a system may comprise hydrocarbon feedstock, a supply of non-oxidative carrier gas, one or more heat exchangers, and a reaction chamber. The hydrocarbon feedstock is the source of hydrogen gas to be produced. The carrier gas may be used to transfer heat to the hydrocarbon feedstock. The one or more heat exchangers may be configured to heat the carrier gas. And the reaction chamber may be configured to receive a volume of hydrocarbon feedstock and a volume of heated carrier gas. Additionally, the reaction chamber may provide an environment for the thermal decomposition reaction to occur.
It is contemplated that the system may be configured such that a volume of hydrocarbon feedstock and a volume of carrier gas may each be individually delivered to the reaction chamber. Before entering the reaction chamber, the carrier gas may pass through the one or more heat exchangers. The one or more heat exchangers may be coupled to one or more heat sources. By being coupled to one or more heat sources and the carrier gas, the one or more heat exchangers may be configured to draw heat from the one or more heat sources and transfer the heat to the carrier gas. The carrier gas may therefore be substantially hot when it is delivered into the reaction chamber.
Inside the reaction chamber, the hydrocarbon feedstock and the heated carrier gas may rapidly mix or otherwise blend with one another. Mixing the hydrocarbon feedstock with the heated carrier gas in this manner may result in heat being transferred from the carrier gas to the hydrocarbon feedstock. A potential advantage of transferring heat to the hydrocarbon feedstock in this fashion is a reduction of carbon buildup on the walls of the reaction chamber, as may occur if heat transfer is based upon thermal conduction from such walls. Once a sufficient amount of heat has been transferred to the hydrocarbon feedstock, the hydrocarbon feedstock may thermally decompose to a product that comprises hydrogen gas and carbon substances.
A gaseous product stream may thereafter be collected and removed from the reaction chamber. The gaseous product stream may comprise hydrogen gas and carrier gas. In certain embodiments, the gaseous product stream may be relatively hot. The heat within the gaseous product stream may be further utilized by the system. For example, the gaseous product stream may be thermally coupled to a volume of carrier gas that is to be used in subsequent thermal decomposition reactions, thereby reducing the net energy required to produce a given amount of hydrogen gas. In some embodiments, thermally coupling the gaseous product stream to the carrier gas comprises use of a heat exchanger. Hydrogen gas may be separated from the gaseous product stream either before or after thermally coupling the gaseous product stream to the carrier gas. At least a portion of the gaseous product stream may further be recycled through the system.
Further disclosed herein are various systems and methods for heating the carrier gas. The carrier gas may be heated either directly or indirectly. When heating the carrier gas indirectly, one or more heat exchangers may be configured to transfer heat from one or more heat sources to the carrier gas. The one or more heat sources may generate heat. Exemplary heat sources include combustion heating systems, electrical heating systems, radiative heating systems, and plasma heating systems. The heat source(s) may further be either catalytic or non-catalytic.
Also disclosed herein are various systems and methods for delivering the carrier gas to the reaction chamber. For example, the carrier gas may be delivered into the reaction chamber using either a high speed injection system or method or a low speed injection system or method. The high speed injection system or method may comprise one or more discrete injectors. Each discrete injector may have a nozzle. The low speed injection system or method may comprise a reaction chamber having one or more porous walls. The reaction chamber may further be configured such that the carrier gas may permeate through the one or more porous walls and into the reaction chamber.
In certain embodiments disclosed herein, the hydrocarbon feedstock may be heated without the use of a carrier gas. For example, the hydrocarbon feedstock may be heated by contacting a hot surface. The hot surface may be a surface of a fluid or a solid. The hot surface may be a wall of the reaction chamber. In other embodiments, the hot surface may be a surface of the thermal matrix of a regenerative heat exchanger. In yet other embodiments, the hot surface may be a surface of a heat exchanger.
Further disclosed herein are systems and methods for disrupting the buildup of carbon substances on one or more selected surfaces. The one or more selected surfaces may be surfaces that are within the reaction chamber. In some embodiments, ultrasonic agitation may be used to disrupt the buildup of the carbon substances. The ultrasonic agitation may be generated from a variety of sources including mechanical, electrical, piezoelectric, and/or magnetostrictive generators. One or more parameters of the ultrasonic agitation may be varied as needed or desired.
The embodiments of the disclosure will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. The components of the disclosed embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Furthermore, the features, structures, and operations associated with one embodiment may be applicable to or combined with the features, structures, or operations described in conjunction with another embodiment. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of this disclosure.
Thus, the following detailed description of the embodiments of the systems and methods of the disclosure is not intended to limit the scope of the disclosure, as claimed, but is merely representative of possible embodiments. In addition, the steps of a method do not necessarily need to be executed in any specific order, or even sequentially, nor do the steps need to be executed only once.
The hydrocarbon feedstock 102 is the originating source of the hydrogen gas 120 that may be produced in accordance with the present disclosure. In some embodiments, the hydrocarbon feedstock 102 comprises gaseous hydrocarbons such as natural gas. However, the hydrocarbon feedstock 102 may include any variety of hydrocarbons. For example, in an embodiment, the hydrocarbon feedstock 102 comprises saturated hydrocarbons. In another embodiment, the hydrocarbon feedstock 102 comprises unsaturated hydrocarbons. In another embodiment, the hydrocarbon feedstock 102 comprises aromatic hydrocarbons. In yet another embodiment, the hydrocarbon feedstock 102 comprises two or more of the following: saturated hydrocarbons, unsaturated hydrocarbons, and aromatic hydrocarbons.
In certain embodiments, the hydrocarbon feedstock 102 comprises one or more light hydrocarbons having the general formula CnHm, wherein n is 1, 2, 3 or 4, and m is independently selected from 2, 4, 6, 8 or 10. For example, in an embodiment, the hydrocarbon feedstock 102 comprises CH4. In another embodiment, the hydrocarbon feedstock 102 comprises C2H2. In another embodiment, the hydrocarbon feedstock 102 comprises C2H4. In another embodiment, the hydrocarbon feedstock 102 comprises C2H6. In another embodiment, the hydrocarbon feedstock 102 comprises C3H8. In another embodiment, the hydrocarbon feedstock 102 comprises C4H10. In another embodiment, the hydrocarbon feedstock 102 comprises one of more of the following: CH4, C2H2, C2H4, C2H6, C3H8, and C4H10. In yet another embodiment, the hydrocarbon feedstock 102 comprises a mixture of two or more of the following: CH4, C2H2, C2H4, C2H6, C3H8, and C4H10. The hydrocarbon feedstock 102, however, need not be limited to only light hydrocarbons. Rather, the hydrocarbon feedstock 102 may comprise one or more hydrocarbons that are not light hydrocarbons.
To increase the hydrogen gas yield of the system 100 (i.e., the amount of hydrogen gas produced per volume of hydrocarbon feedstock 102), it may be desirous that the hydrocarbon feedstock 102 comprise one or more hydrocarbons that have a relatively high hydrogen to carbon content. For example, it may be desirous that the hydrocarbon feedstock 102 comprise hydrocarbons that have a hydrogen to carbon ratio of at least 2:1, 3:1, or 4:1. However, it is not a requirement for the hydrocarbon feedstock 102 to comprise one or more hydrocarbons that have a relatively high hydrogen to carbon content.
The hydrocarbon feedstock 102 may be filtered or otherwise purified prior to being introduced into the system 100. As can be appreciated, thermal decomposition of hydrocarbon feedstock 102 that is substantially pure may have a higher hydrogen gas yield as compared to hydrocarbon feedstock 102 that contains a high amount of impurities. Accordingly, in certain embodiments, the hydrocarbon feedstock 102 is substantially free of impurities. In some embodiments, the hydrocarbon feedstock 102 is substantially free of non-hydrocarbons. In some embodiments, the hydrocarbon feedstock 102 is substantially free of oxidative compounds. Alternatively, the hydrocarbon feedstock 102 need not be substantially pure and may contain minor amounts of impurities. Additionally, the hydrocarbon feedstock 102 may comprise a mixture of one or more hydrocarbons and one or more non-hydrocarbons.
The non-oxidative carrier gas 104 may be used to transfer heat or thermal energy to the hydrocarbon feedstock 102. By using a non-oxidative carrier gas 104 to heat the hydrocarbon feedstock 102, the thermal decomposition reaction may occur in a substantially oxidant-free environment thereby eliminating or greatly reducing the production of carbon oxide byproducts. A wide variety of non-oxidative gases may be used as the carrier gas 104. For example, it is contemplated that any non-oxidative gas that does not easily undergo chemical reactions when being subjected to heat can be used as the carrier gas 104.
The carrier gas 104 may comprise one or more inert gases. The inert gases may be, for example, noble gases. In an embodiment, the carrier gas comprises hydrogen, i.e., hydrogen may serve both as the carrier gas as well as a product of the hydrocarbon decomposition. In another embodiment, the carrier gas comprises nitrogen. In another embodiment, the carrier gas comprises argon. In another embodiment, the carrier gas comprises helium. In yet another embodiment, the carrier gas comprises a mixture of two or more of the following: hydrogen, nitrogen, argon, and helium.
The carrier gas 104 may be substantially free of impurities. Alternatively, the carrier gas 104 need not be substantially pure and may contain minor amounts of impurities and/or additional compounds. Notwithstanding, it is desirous that the carrier gas 104 be substantially free of oxidative compounds. Accordingly, in some embodiments, the carrier gas 104 is substantially free of oxidative compounds.
Other ways of heating or transferring thermal energy to the hydrocarbon feedstock 102 in a non-oxidative manner are also contemplated. In certain embodiments, for example, the hydrocarbon feedstock 102 may be heated without the use of a carrier gas 104. For example, the hydrocarbon feedstock 102 may be heated by contacting a hot surface. The hot surface may be a surface of a fluid, such as a liquid. Alternatively, the hot surface may be a surface of a solid. In some embodiments, the hot surface may be one or more walls of the reaction chamber 106. In other embodiments, the hot surface may be a surface of the thermal matrix of a regenerative heat exchanger. In yet other embodiments, the hot surface may be one or more surfaces of a heat exchanger. The heat exchanger may be coupled to one or more heat sources. Exemplary heat exchangers and heat sources that may be used in accordance with the present disclosure are further discussed below. In still other embodiments, the hydrocarbon feedstock 102 may be heated by one or more heat sources directly, without the use of a heat exchanger. In still other embodiments, the hydrocarbon feedstock 102 may be preheated prior to delivery into the reaction chamber 106.
With continued reference to
Various types of heat exchangers are known in the art for heating gases, any of which may be used in accordance with the present invention. For example, in some embodiments, the system 100 may comprise a cyclical flow regenerative heat exchanger commonly known as a regenerator. In other embodiments, the system 100 may comprise a countercurrent heat exchanger (e.g., recuperator). In some embodiments, the system may comprise a continuous flow heat exchanger. In yet other embodiments, the system may comprise two or more different types of heat exchangers (e.g., one regenerative heat exchanger and one countercurrent heat exchanger).
Each heat exchanger may comprise one or more heat exchanger fluids. In some embodiments, the heat exchanger fluids may be gaseous; in other embodiments, the heat exchanger fluids may be liquid. The heat exchanger fluid may be enclosed within the heat exchanger. The heat exchanger fluid may therefore circulate within the heat exchanger. In other embodiments, the heat exchanger fluid may not be enclosed within the heat exchanger; rather, the heat exchanger fluid may flow in and out of the heat exchanger. It is contemplated that the heat exchanger fluid may circulate in a closed-loop manner. By circulating in a closed-loop manner, the heat exchanger fluid may be retained and recycled. Further, energy loss may be minimized when circulating the heat exchanger fluid in a closed-loop manner.
As shown in
Any variety of heat sources 118 may be used. For example, the heat source 118 may comprise an electrical heating system, a radiative heating system (including thermal and/or optical radiation systems), a combustion heating system, or a plasma heating system. The heat source 118 may further be either catalytic or non-catalytic. It is contemplated that the thermal energy or heat generated by the heat source 118 may be transferred to the first heat exchanger 108. The first heat exchanger 108 may then transfer heat to the first volume of carrier gas 104. In other embodiments, the heat source 118 may transfer heat directly to the first volume of carrier gas 104, or directly to the first volume of hydrocarbon feedstock 102, without the use of a heat exchanger 108.
As previously discussed, an exemplary heat source 118 may comprise a combustion heating system. The combustion heating system may generate heat or energy from the combustion of one or more combustible gases. The one or more combustible gases may comprise a portion of the hydrocarbon feedstock 102, as is illustrated in
In some embodiments, the one or more combustible gases comprise hydrogen gas. The hydrogen gas may be at a temperature that is greater than ambient temperature. In some embodiments, the hydrogen gas used by the combustion system may be derived from the first gaseous product stream 116. Accordingly, a portion of the hydrogen gas 120 produced by the system 100 may be delivered to the heat source 118 and used by the combustion system to generate heat. In some embodiments, the one or more combustible gases comprise hydrogen gas and a second combustible gas that is other than hydrogen gas. For example, the second combustible gas may comprise air. In another embodiment, the second combustible gas may comprise oxygen.
With continued reference to
The one or more discrete injectors may be coupled or otherwise connected to the reaction chamber 106 at one or more injection sites. The one or more discrete injectors may further be configured and aligned such that injection of, or passing, the first volume of carrier gas 104 through the one or more discrete injectors may aid in keeping the byproducts of the thermal decomposition reaction (e.g., carbon substances) from depositing on and blocking the one or more injection sites.
In other embodiments, the first volume of carrier gas 104 may be delivered into the reaction chamber 106 through the use of a low speed injection system or method. Exemplary low speed injection systems or methods comprise a reaction chamber 106 comprising one or more porous walls. The first volume of carrier gas 104 may permeate or otherwise be passed into the reaction chamber 106 through the one or more porous walls. The rate at which the first volume of carrier gas 104 permeates or is otherwise passed through the one or more porous walls of the reaction chamber 106 may be varied by controlling and adjusting the pressure differential between the inside and the outside of the reaction chamber 106. The higher the pressure differential (i.e., higher pressure on the outside of the reaction chamber than on the inside of the reaction chamber), the faster the first volume of carrier gas 104 may permeate through the one or more porous walls.
It is contemplated that the high speed and low speed injection systems or methods disclosed herein may be used to deliver the first volume of carrier gas 104 into the reaction chamber 106 either continuously or in batches. For example, the injection systems or methods may continuously and constantly deliver the first volume and subsequent volumes carrier gas 104 into the reaction chamber 106. Alternatively, the injection systems or methods disclosed herein may be used to deliver only batches or certain volumes (e.g., a first volume, a second volume, etc.) of the carrier gas 104 into the reaction chamber 106 at specified time intervals.
It is further contemplated that substantially all of the first volume of carrier gas 104 that has been heated by the one or more heat exchangers 108, 110 may be delivered into the reaction chamber 106 by either the high speed or low speed injection system or method. Alternatively, in other embodiments, only a portion of the first volume of carrier gas 104 may be delivered to the reaction chamber 106 by either the high speed or low speed injection system or method.
The reaction chamber 106 may be configured to receive the first volume of heated carrier gas 104 and the first volume of hydrocarbon feedstock 102. The reaction chamber 106 may be made of any suitable material that is able to withstand the extreme temperatures necessary to thermally decompose the hydrocarbon feedstock 102. The size and shape of the reaction chamber 106 may be varied. For example, the reaction chamber 106 may be substantially cylindrical. The reaction chamber 106 also may be mounted horizontally or vertically. Inside the reaction chamber 106, the first volume of carrier gas 104 and the first volume of hydrocarbon feedstock 102 may directly mix or otherwise blend with one another. Mixing the first volume of hydrocarbon feedstock 102 with the first volume of carrier gas 104 in this manner may result in heat being transferred from the first volume of carrier gas 104 to the first volume of hydrocarbon feedstock 102. Once the first volume of hydrocarbon feedstock 102 is sufficiently heated, the first volume of hydrocarbon feedstock 102 may thermally decompose into a product comprising hydrogen gas and carbon substances. In some embodiments, the decomposition product further comprises hydrocarbons. These hydrocarbons may be residual hydrocarbons originating from the hydrocarbon feedstock 104 and may include unreacted hydrocarbons and/or partially decomposed hydrocarbons.
As shown in
In certain embodiments, at least a portion of the carbon substances 114 may be used as a catalyst in the decomposition of hydrocarbon feedstock 102. For example, in some embodiments, once carbon substances 114 are produced from the thermal decomposition of a portion of the first volume of hydrocarbon feedstock 102, at least a portion of the carbon substances may act as a catalyst in the decomposition of the remaining portion of the first volume of hydrocarbon feedstock 102 within the reaction chamber. In other embodiments, at least a portion of the carbon substances 114 may act as a catalyst in the decomposition of subsequent volumes (e.g., a second or third volume) of hydrocarbon feedstock 102 that may be delivered to the reaction chamber for subsequent decomposition reactions. In yet other embodiments, at least a portion of the carbon substances 114 that have been collected and removed from the reaction chamber 106 may be delivered back into the reaction chamber 106 and used as a catalyst in the subsequent decomposition of subsequent volumes (e.g., a second or third volume) of hydrocarbon feedstock 102, as illustrated in
Carbon substances may be deposited on various surfaces of the reaction chamber 106. As set forth in more detail below, in some embodiments, ultrasonic agitation may be used to disrupt a buildup of the carbon substances on one or more selected surfaces within the reaction chamber 106. For example, ultrasonic agitation may be used to disrupt the buildup of carbon substances on the surfaces of the reaction chamber or on the one or more discrete injectors or nozzles that may be used in delivering the carrier gas 104 into the reaction chamber 106.
With continued reference to
The first gaseous product stream 116 may further comprise gasborne carbon substances. For example, carbon substances produced from the decomposition reaction may be suspended in the gaseous product stream 116. In other embodiments, the first gaseous product stream 116 may be substantially free from gasborne carbon substances. In yet other embodiments, as discussed below, the first gaseous product stream 116 may be filtered to remove gasborne carbon substances.
It is contemplated that the first gaseous product stream 116 may be relatively hot. Accordingly, the first gaseous product stream 116 may be at a temperature that is above ambient temperature. It may be desirous to recapture energy from the hot first gaseous product stream 116 and further use it within the system 100. This may be accomplished in several ways. For example, heat from at least a portion of the first gaseous product stream 116 may be thermally coupled to a second volume of carrier gas 104 that is to be used in subsequent decomposition reactions.
Thermal coupling heat from a portion of the first gaseous product stream 116 to the second volume of carrier gas 104 may be accomplished in a variety of ways. In the illustrated embodiment of
In the illustrated embodiment of
It is contemplated that the first gaseous product stream 116 may be filtered or otherwise separated into one or more components either before or after it is thermally coupled to the second volume of carrier gas 104. The separation system 112 may comprise any known systems or methods for separating and/or filtering gases. For example, in some embodiments, the separation system comprises a series of filters. The filters may be, for example, filter bags. It is further contemplated that one or more filtration systems and/or separation systems 112 may be used. As shown in
For example in some embodiments (such as the embodiment shown in
As set forth above, in some embodiments, the separation system 112 may be configured such that at least a portion of hydrogen gas 120 is removed from the first gaseous product stream 116. The portion of hydrogen gas 120 may be stored, sold, or further used in the system 100. For example, as shown in
In another embodiment, the separation system 112 may be configured such that at least a portion of the first volume of carrier gas 104 is removed from the first gaseous product stream 116. The first volume of carrier gas 104 may thereafter be recycled through the system 100 as desired.
With continued reference to
In another embodiment, a portion of the first gaseous product stream 116 may be delivered to another heat exchanger, e.g., a third heat exchanger. The third heat exchanger may be any of the types of heat exchangers previously discussed and may be configured such that it shares one or more common components with the first heat exchanger 108. Further, a heat source may be configured to transfer thermal energy to the third heat exchanger prior to heating the portion of the first gaseous product stream 116 with the third heat exchanger. The heat source may be any the above mentioned heat sources, such as a combustion heating system.
Although not required, it is contemplated that when recycling a portion of the first gaseous product stream 116 back through the system 100, it may be desirous to filter the first gaseous product stream 116 to remove any and all hydrocarbons and/or carbon substances either before reheating the portion of the gaseous product stream 116, or before completion of the reheating. Doing so will help prevent decomposition of hydrocarbons inside the first heat exchanger 108 (or any other heat exchanger configured to heat the first gaseous product stream 116) or on any other undesirable areas within the system 100.
As further shown in
As previously discussed, at least a portion of the first volume of carrier gas may be separated or otherwise removed from the first gaseous product stream 116 by the separation system 112. The portion of the first volume of carrier gas may then be recycled and reused in the system 100 in similar fashion to the portion of first gaseous product stream 116 previously discussed. For example, the portion of the first volume of carrier gas may be combined with the second volume of carrier gas 104 that is being delivered to the reaction chamber 106 for use in a subsequent decomposition reaction. For example, in an embodiment, the portion of the first volume of carrier gas may be combined with a second volume of carrier gas 104 prior to delivering the second volume of carrier gas 104 into the reaction chamber 106. In another embodiment, the portion of first volume of carrier gas may be combined with the second volume of carrier gas 104 prior to heating the second volume of carrier gas with the first heat exchanger 108. In yet another embodiment, the portion of first volume of carrier gas may be combined with the second volume of carrier gas 104 prior to completion of the heating of the second volume of carrier gas with first heat exchanger 108.
In certain embodiments, the portion of the first gaseous product stream, or the portion of first volume of carrier gas removed from the first gaseous product stream 116, may be compressed prior to being added or otherwise combined with the second volume of carrier gas 104. The portion of the first gaseous product stream, or the portion of first volume of carrier gas removed from the first gaseous product stream 116, may further be cooled prior to the compression. It is further contemplated that the heat removed during the cooling may be used to heat the second volume of carrier gas 104.
As can be appreciated, a second volume of hydrocarbon feedstock 102 may thereafter be delivered to the reaction chamber 106 and mixed with a portion of the first gaseous product stream 116. The second volume of hydrocarbon feedstock 102 may comprise the same composition as the first volume of hydrocarbon feedstock 102. Heat may be transferred from the portion of the first gaseous product stream 116 to the second volume of hydrocarbon feedstock 102 thereby thermally decomposing the second volume of hydrocarbon feedstock 102 into a product comprising hydrogen gas and carbon substances. A second gaseous product stream 116 comprising hydrogen gas 120 and carrier gas 104 may thereafter be collected and further cycled and recycled through the system 100 as discussed above with respect to the first gaseous product stream 116. In other embodiments, a portion of first carrier gas 104 removed from the first gaseous product stream 116, or a combined portion of the first gaseous product stream 116 and second volume of carrier gas 104, may be mixed with a second volume of hydrocarbon feedstock 102 thereby thermally decomposing the second volume of hydrocarbon feedstock 102 into a product comprising hydrogen gas and carbon substances. It is therefore contemplated that the systems and methods disclosed herein may be continuous and cyclical systems such that the carrier gas 104 and gaseous product streams 116 may be cycled and recycled through the system and used to transfer heat to additional volumes of hydrocarbon feedstock 102 within the reaction chamber 106.
As shown in
As shown in
As also shown in
By removing the hydrogen gas 220 from the portion of the first gaseous product stream 216, the portion of the first gaseous product stream 216 may be converted into a second smaller portion of the first gaseous product stream 216, which may consist primarily of remnants of the first volume of carrier gas 204. The second portion of the first gaseous product stream 216 may then be added to or otherwise combined with a second volume of carrier gas 204 and recycled through the system, or it may be discarded.
As shown in
In some embodiments, carbon substances 314 may be collected and removed from the system 300 as described above with respect to
The portion of the first gaseous product stream 316, which may consist primarily of remnants of the first volume of carrier gas 304, may thereafter be thermally coupled to the second volume of carrier gas 304 through use of the heat exchanger 308. As shown in
The heating system 432 may comprise a heat source that is configured to heat the first volume of carrier gas 404. Any variety of heat sources previously discussed may be used by the heating system 432. For example, in an embodiment, the heating system 432 comprises a combustion heating system. In another embodiment, the heating system 432 comprises an electrical heating system. In another embodiment, the heating system 432 comprises a radiative heating system. In yet another embodiment, the heating system 432 comprises a plasma heating system. The heating system 432 may be catalytic or non-catalytic.
It is contemplated that in some embodiments heat or thermal energy generated from the heating system 432, or the heat source within the heating system 432, may be directly transferred to the first volume of carrier gas 404; in other embodiments, the heat or thermal energy generated from the heating system 432, or the heat source within the heating system 432, may be indirectly transferred to the first volume of carrier gas 404. Exemplary methods of indirectly transferring heat or thermal energy include the use of a heat exchanger.
As shown in
After being thermally coupled to the second volume of carrier gas 404, the first gaseous product stream 416 may be delivered to a separation system 412 that may be configured to remove or otherwise separate hydrocarbons 424, carbon substances 426, and/or hydrogen gas 420 from the first gaseous product stream 416. A portion of the first gaseous product stream 416 may thereafter be combined with the second volume of carrier gas 404 and delivered to the heating system 432 for reheating and reuse in subsequent decomposition reactions.
As shown in
A portion of the first gaseous product stream 516 may thereafter be thermally coupled to a second volume of carrier gas 504 by the second heat exchanger 510. After thermally coupling heat to the second volume of carrier gas 504 through the second heat exchanger 510, the portion of the first gaseous product stream 516 may be delivered to a separation system 512 that may be configured to remove at least a portion, or all, of the hydrogen gas 520 from the portion of the first gaseous product stream 516. By partially, or completely, removing the hydrogen gas 520 from the portion of the first gaseous product stream 516, the portion of the first gaseous product stream 516 may be converted into a second smaller portion of the first gaseous product stream 516, which may consist primarily of remnants of the first volume of carrier gas 504.
The second portion of the first gaseous product stream 516 may thereafter be delivered to a third heat exchanger 511 that may be configured to heat the second portion of the first gaseous product stream 516. The third heat exchanger may be configured such that it shares one or more common components with the first and/or second heat exchanger 508, 510. As further shown in the illustrated embodiment, a heat source 518 may be coupled to third heat exchanger 511. The heat source 518 may provide heat or otherwise transfer thermal energy to the third heat exchanger 511 prior to heating the second portion of the first gaseous product stream 516 with the third heat exchanger 511. The heat source 518 may be any of the above-mentioned heat sources, such as a combustion heating system that generates heat from the combustion of one or more combustible gases. Further, as shown in
The second portion of the gaseous product stream 516 may thereafter be delivered to the reaction chamber 506 for use in subsequent decomposition reactions, or may be added to or otherwise combined with a second volume of carrier gas 504 that is to be used in subsequent decomposition reactions. For example, in the illustrated embodiment, the second portion of the gaseous product stream 516 is added to or otherwise combined with the second volume of carrier gas 504 prior to heating the second volume of carrier gas 504 with the first heat exchanger 508. Accordingly, the combined second portion of the first gaseous product stream 516 and the second volume of carrier gas 504 may be heated by the first heat exchanger 508 and thereafter delivered to the reaction chamber 506 for use in subsequent decomposition reactions.
As shown in
In some embodiments, a portion of the first gaseous product stream 616 may thereafter be delivered to a separation system 612. The separation system 612 may be configured to remove at least a portion, or all, of the hydrogen gas 620 from the portion of the first gaseous product stream 616. The portion of hydrogen gas 620 may be stored, sold, or used in the system 600. For example, a portion of the hydrogen gas 620 may be delivered to the heat source 618 and used in the generation of additional heat for the system 600. The hydrogen gas 620 may also be removed from the system 600 and used in other applications.
By partially, or completely, removing the hydrogen gas 620 from the portion of the first gaseous product stream 616, the portion of the first gaseous product stream 616 may be converted into a second smaller portion of the first gaseous product stream 616, which may consist primarily of remnants of the first volume of carrier gas 604 and optionally some or all of hydrocarbons 624. The second portion of the first gaseous product stream 616 may thereafter be delivered to a second heat exchanger 610 that may be configured to heat the second portion of the first gaseous product stream 616. The second heat exchanger may be configured such that it shares one or more common components with the first heat exchanger 608. The second portion of the gaseous product stream 616 may thereafter be delivered to the reaction chamber 606 for use in subsequent decomposition reactions. In other embodiments, the second portion of the first gaseous product stream 616 may be added to or otherwise combined with a second volume of carrier gas 604 prior to entry into the reaction chamber 606.
As further shown in the illustrated embodiment, a heat source 618 may be coupled to the second heat exchanger 610. The heat source 618 may provide heat or otherwise transfer thermal energy to the second heat exchanger 610 prior to heating the second portion of the first gaseous product stream 616 with the second heat exchanger 610. The heat source 618 may be any of the above-mentioned heat sources, such as a combustion heating system that generates heat from the combustion of one or more combustible gases. Further, as shown in
Provided herein also are systems and methods for preheating the hydrocarbon feedstock prior to delivering the hydrocarbon feedstock into the reaction chamber. For example, in some embodiments, at least a portion of the gaseous product stream may be delivered to a heat exchanger that is coupled to the hydrocarbon feedstock. The heat exchanger may be configured such that it removes heat from the gaseous product stream and transfers the heat to a volume of hydrocarbon feedstock that is being delivered to the reaction chamber for use in decomposition reactions. Notwithstanding, it is desirous that in these embodiments, only a limited amount of heat is transferred to the hydrocarbon feedstock such that transferring heat to the hydrocarbon feedstock does not cause the decomposition, or the substantial decomposition, of the hydrocarbon feedstock prior to delivering the hydrocarbon feedstock to the reaction chamber.
Also provided herein are systems and methods for preheating the one or more combustible gases that may be used in a combustion system to generate heat for the system or method. For example, in some embodiments, at least a portion of the gaseous product stream may be delivered to a heat exchanger that is coupled to a combustible gas. The heat exchanger may be configured to transfer heat from the portion of the gaseous product stream to the combustible gas. The combustible gas may thereafter be delivered to a second heat exchanger. A second combustible gas may also be delivered to the second heat exchanger, and the first and second combustible gases may combust with one another. The combustion of the first combustible gas and the second combustible gas may serve as a heat source for the second heat exchanger. The second heat exchanger may thereafter be used to heat the carrier gas prior to delivering the carrier gas to the reaction chamber. It is contemplated that the first and second combustible gases may comprise air, oxygen, hydrocarbon feedstock, or hydrogen gas, or mixtures thereof. It is further contemplated that the hydrogen gas may be derived from the first gaseous product stream and may be at a temperature that is greater than ambient temperature.
Further provided herein are systems and methods for disrupting the buildup of carbon substances on one or more selected surfaces. As previously mentioned, in some embodiments carbon substances may be deposited on various surfaces within the reaction chamber. This is a common problem associated with thermally decomposing hydrocarbons and often the cause of expensive and costly system shutdowns for the purpose of cleaning or otherwise removing the buildup of carbon substances. In certain embodiments disclosed herein, ultrasonic agitation may be used to disrupt the buildup of carbon substances on one or more selected surfaces.
In some embodiments, the source of the ultrasonic agitation may be a generator. The generator may be, for example, a mechanical generator, an electrical generator, a piezoelectric generator, or a magnetostrictive generator. It is contemplated that one or more parameters of the ultrasonic wave may be varied as needed or desired. Such parameters include the frequency, amplitude, duration and site of the ultrasonic agitation. For example, in some embodiments, the variable parameter may be a frequency of the ultrasonic agitation. Typical ultrasonic wave frequencies may be in the range of about 1 to about 800 kHz. In other embodiments, the variable parameter may be an amplitude of the ultrasonic agitation. In other embodiments, the variable parameter may be a duration of the ultrasonic agitation. In other embodiments, the variable parameter may be a site of the ultrasonic agitation.
In some embodiments, one or more parameters of the ultrasonic agitation may be varied based on the amount of carbon substances that are deposited on a selected surface. This may be influenced by reaction conditions such as temperature and rate of decomposition, etc. One or more parameters of the ultrasonic agitation may also be varied based on reaction conditions and the time the ultrasonic agitation is being applied. One or more parameters of the ultrasonic agitation may also be varied based on the deposition rate of the carbon substances on a selected surface, or based on the type of carbon substances deposited on a selected surface.
The ultrasonic wave generator may be coupled to the reaction chamber. The ultrasonic wave generator may be disposed substantially perpendicularly to the exterior of the reaction chamber. However, the ultrasonic wave generator may also be disposed in any other suitable orientation. The ultrasonic wave generator may further be protected by one or more fluids. The ultrasonic waves may therefore be transmitted through the one or more fluids as necessary.
It is further contemplated that ultrasonic agitation may be applied to a variety of selected surfaces. In some embodiments, the selected surfaces may be surfaces that are within the reaction chamber. For example, the reaction chamber may comprise one or more walls. Each wall may comprise an inner surface and an outer surface. The inner surface is directed toward the inside of the reaction chamber. In some embodiments, at least one selected surface to which ultrasonic agitation may be applied may be a wall or an inner surface of the reaction chamber. The reaction chamber may further comprise one or more windows. Each window may have an inner surface that is directed toward the inside of the reaction chamber. In some embodiments, at least one of the selected surfaces to which ultrasonic agitation may be applied may be the inner surface of a window.
The reaction chamber may further comprise additional components such as one or more inlet ports, one or more outlet ports, discrete injectors, nozzles, etc. that are coupled or otherwise attached thereto. The one or more inlet ports may be configured to allow the introduction of carrier gas and/or hydrocarbon feedstock into the reaction chamber; the one or more outlet ports may be configured to allow the gaseous product stream and/or carbon substances out of the reaction chamber; and the discrete injectors and nozzles may be configured to deliver the carrier gas into the reaction chamber. As can be appreciated, each of these components may comprise one or more surfaces that are directed toward the inside of the reaction chamber. It is contemplated that each of their surfaces directed toward the inside of the reaction chamber may be a selected surface to which ultrasonic agitation may be applied.
In some embodiments, at least one selected surface to which ultrasonic agitation may be applied may be an electrode; in some embodiments, at least one selected surface to which ultrasonic agitation may be applied may be the surface of a heat exchanger; and in some embodiments, at least one selected surface to which ultrasonic agitation may be applied may be a catalyst surface. It is therefore contemplated that virtually any surface that may be used in accordance with the thermal decomposition reaction may be a selected surface to which ultrasonic agitation may be applied.
Methods for producing hydrogen gas from the thermal decomposition of hydrocarbons are also provided herein. In particular, it is contemplated that any of the components, principles, and/or embodiments discussed above may be utilized by either a system of a method. For example, in an embodiment, a method for thermally decomposing hydrocarbon feedstock may comprise a step of heating a first volume of non-oxidizing carrier gas with a first heat exchanger. The method may further comprise a step of delivering a first volume of hydrocarbon feedstock into a reaction chamber. Still further, the method may comprise a step of delivering the first volume of carrier gas into the reaction chamber such that the first volume of carrier gas and the first volume of hydrocarbon feedstock mix within the reaction chamber and the first volume of carrier gas transfers heat to the first volume of hydrocarbon feedstock within the reaction chamber causing the decomposition of the first volume of hydrocarbon feedstock, and wherein the decomposition of the first volume of hydrocarbon feedstock results in a product comprising hydrogen gas and carbon substances. The method may comprise a step of collecting a first gaseous product stream from the reaction chamber, wherein the first gaseous product stream comprises hydrogen gas and carrier gas. The method may yet further comprise a step of thermally coupling heat from at least a portion of the first gaseous product stream into a second volume of carrier gas before delivering the second volume of carrier gas into the reaction chamber.
In another embodiment, a method for thermally decomposing hydrocarbon feedstock may comprise a step of heating a first volume of non-oxidizing carrier gas with a first heat exchanger. The method may further comprise a step of delivering a first volume of hydrocarbon feedstock into a reaction chamber. The method may further comprise a step of delivering the first volume of carrier gas into the reaction chamber such that the first volume of carrier gas and the first volume of hydrocarbon feedstock mix within the reaction chamber and the first volume of carrier gas transfers heat to the first volume of hydrocarbon feedstock within the reaction chamber causing the decomposition of the first volume of hydrocarbon feedstock, and wherein the decomposition of the first volume of hydrocarbon feedstock results in a product comprising hydrogen gas and carbon substances. The method may further comprise the step of collecting a first gaseous product stream, wherein the first gaseous product stream comprises hydrogen gas and carrier gas. The method may further comprise the step of delivering at least a portion of the first gaseous product stream to a second heat exchanger. Still further, the method may comprise a step of heating the portion of the first gaseous product stream using the second heat exchanger. The method may still further comprise a step of delivering a second volume of hydrocarbon feedstock into the reaction chamber. Still further, the method may comprise a step of delivering the portion of the first gaseous product stream into the reaction chamber such that the portion of the first gaseous product stream and the second volume of hydrocarbon feedstock mix within the reaction chamber and the portion of the first gaseous product stream transfers heat to the second volume of hydrocarbon feedstock within the reaction chamber causing the decomposition of the second volume of hydrocarbon feedstock, and wherein the decomposition of the second volume of hydrocarbon feedstock results in a product comprising hydrogen gas and carbon substances. The method may further comprise a step of collecting a second gaseous product stream, wherein the second gaseous product stream comprises hydrogen gas and carrier gas. In some embodiments, the method may further comprise a step of repeating the steps of delivering the portion of the first gaseous product stream to the second heat exchanger, heating the portion of the first gaseous product stream using the second heat exchanger, delivering a second volume of hydrocarbon feedstock into the reaction chamber, delivering the portion of the first gaseous product stream into the reaction chamber, and collecting a second gaseous product stream.
In another embodiment, a method for thermally decomposing hydrocarbon feedstock may comprise a step of heating a non-oxidative carrier gas. The method may further comprise a step of delivering a first volume of hydrocarbon feedstock into a reaction chamber. The method may further comprise a step of delivering the carrier gas into the reaction chamber using a high speed injection method such that the carrier gas and the first volume of hydrocarbon feedstock mix within the reaction chamber and the carrier gas transfers heat to the first volume of hydrocarbon feedstock within the reaction chamber causing the decomposition of the first volume of hydrocarbon feedstock, and wherein the decomposition of the first volume of hydrocarbon feedstock results in a product comprising hydrogen gas and carbon substances.
In another embodiment, a method for thermally decomposing hydrocarbon feedstock may comprise a step of delivering a volume of hydrocarbon feedstock into a reaction chamber. The method may further comprise a step of heating the volume of hydrocarbon feedstock in a non-oxidative manner within the reaction chamber, wherein heating the volume of hydrocarbon feedstock causes the decomposition of the volume of hydrocarbon feedstock, and wherein the decomposition of the volume of hydrocarbon feedstock results in a product comprising hydrogen gas and carbon substances. The method may further comprise a step of applying ultrasonic agitation to the reaction chamber to disrupt a buildup of carbon substances on one or more selected surfaces.
In another embodiment, a method for thermally decomposing hydrocarbon feedstock may comprise a step of heating a volume of non-oxidizing carrier gas with a first heat exchanger. The method may further comprise a step of delivering a volume of hydrocarbon feedstock into a reaction chamber. Still further, the method may comprise a step of delivering the volume of carrier gas into the reaction chamber such that the volume of carrier gas and the volume of hydrocarbon feedstock mix within the reaction chamber and the volume of carrier gas transfers heat to the volume of hydrocarbon feedstock within the reaction chamber causing the decomposition of the volume of hydrocarbon feedstock, and wherein the decomposition of the volume of hydrocarbon feedstock results in a product comprising hydrogen gas and carbon substances. The method may yet further comprise a step of collecting a first gaseous product stream, wherein the first gaseous product stream comprises hydrogen gas and carrier gas. The method may further comprise a step of applying ultrasonic agitation to the reaction chamber to disrupt a buildup of carbon substances on one or more selected surfaces.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the invention to its fullest extent. The claims and embodiments disclosed herein are to be construed as merely illustrative and exemplary, and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having ordinary skill in the art, with the aid of the present disclosure, that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure herein. In other words, various modifications and improvements of the embodiments specifically disclosed in the description above are within the scope of the appended claims. The scope of the invention is therefore defined by the following claims.
Claims
1. A method for thermally decomposing gaseous hydrocarbon feedstock, comprising:
- heating a non-oxidative carrier gas with a heat exchanger such that the carrier gas if mixed with a volume of gaseous hydrocarbon feedstock would cause at least partial decomposition of the volume of gaseous hydrocarbon feedstock;
- delivering a first volume of gaseous hydrocarbon feedstock into a reaction chamber; and
- delivering the carrier gas into the reaction chamber through one or more porous walls such that the carrier gas and the first volume of gaseous hydrocarbon feedstock mix within the reaction chamber and the carrier gas transfers heat to the first volume of gaseous hydrocarbon feedstock within the reaction chamber causing the decomposition of the first volume of gaseous hydrocarbon feedstock, wherein the decomposition reaction occurs in a substantially oxidant-free environment, and wherein the decomposition of the first volume of gaseous hydrocarbon feedstock results in a product comprising hydrogen gas and carbon substances
2. The method of claim 1, further comprising:
- collecting a first gaseous product stream, wherein the first gaseous product stream comprises hydrogen gas and carrier gas.
3. The method of claim 2, further comprising:
- heating at least a portion of the first gaseous product stream.
4. The method of claim 3, wherein the first gaseous product stream further comprises hydrocarbons, and wherein the hydrocarbons are removed from the first gaseous product stream before completion of the heating of the portion of the first gaseous product stream.
5. The method of claim 3, further comprising:
- delivering a second volume of gaseous hydrocarbon feedstock into the reaction chamber;
- delivering the portion of first gaseous product stream into the reaction chamber such that the portion of the first gaseous product stream and the second volume of gaseous hydrocarbon feedstock mix within the reaction chamber and the portion of the first gaseous product stream transfers heat to the second volume of gaseous hydrocarbon feedstock within the reaction chamber causing the decomposition of the second volume of gaseous hydrocarbon feedstock, and wherein the decomposition of the second volume of gaseous hydrocarbon feedstock results in a product comprising hydrogen gas and carbon substances; and
- collecting a second gaseous product stream, wherein the second gaseous product stream comprises hydrogen gas and carrier gas.
6. The method of claim 1, wherein the hydrocarbon feedstock comprises a compound with the formula CnHm, wherein n is 1, 2, 3 or 4, and m is independently selected from 2, 4, 6, 8 or 10.
7. The method of claim 6, wherein the hydrocarbon feedstock comprises one or more of the following: CH4, C2H2, C2H4, C2H6, C3H8, and C4H10.
8. The method of claim 1, wherein the hydrocarbon feedstock comprises natural gas.
9. The method of claim 1, wherein the carrier gas is continuously delivered into the reaction chamber through the one or more porous walls.
10. The method of claim 1, wherein substantially all of the heated carrier gas is delivered into the reaction chamber through the one or more porous walls.
11. The method of claim 1, wherein the carrier gas permeates through the one or more porous walls.
12. The method of claim 3, wherein heating the portion of the first gaseous product stream comprises:
- transferring thermal energy to the portion of the first gaseous product stream using the heat exchanger.
13. A system for thermally decomposing gaseous hydrocarbon feedstock, comprising:
- a non-oxidative carrier gas;
- a first volume of gaseous hydrocarbon feedstock;
- a heat exchanger configured to heat the carrier gas such that the carrier gas if mixed with a volume of gaseous hydrocarbon feedstock would cause at least partial decomposition of the volume of gaseous hydrocarbon feedstock; and
- a reaction chamber comprising one or more porous walls, wherein the reaction chamber is configured to receive each of the first volume of gaseous hydrocarbon feedstock and the carrier gas such that the carrier gas mixes with the first volume of gaseous hydrocarbon feedstock within the reaction chamber, the reaction chamber being configured to receive the carrier gas being delivered through the one or more porous walls, wherein the carrier gas transfers heat to the first volume of gaseous hydrocarbon feedstock within the reaction chamber thereby causing the decomposition of the first volume of gaseous hydrocarbon feedstock to a product comprising hydrogen gas and carbon substances, and wherein the decomposition reaction occurs in a substantially oxidant free environment.
14. The system of claim 13, further comprising a first gaseous product stream comprising hydrogen gas and carrier gas.
15. The system of claim 14, wherein at least a portion of the first gaseous product stream is delivered to the heat exchanger and heated by the heat exchanger.
16. The system of claim 15, wherein the first gaseous product stream further comprises hydrocarbons, and wherein the hydrocarbons are removed from the first gaseous product stream before completion of the heating of the portion of the first gaseous product stream.
17. The system of claim 15, wherein a second volume of gaseous hydrocarbon feedstock is delivered to the reaction chamber such that the second volume of gaseous hydrocarbon feedstock mixes with a portion of the first gaseous product stream that also is delivered to the reaction chamber and the portion of the first gaseous product stream transfers heat to the second volume of gaseous hydrocarbon feedstock within the reaction chamber causing the decomposition of the second volume of gaseous hydrocarbon feedstock, and wherein the decomposition of the second volume of gaseous hydrocarbon feedstock results in a product comprising hydrogen gas and carbon substances.
18. The system of claim 13, wherein the hydrocarbon feedstock comprises a compound with the formula CnHm, wherein n is 1, 2, 3 or 4, and m is independently selected from 2, 4, 6, 8 or 10.
19. The system of claim 18, wherein the hydrocarbon feedstock comprises one or more of the following: CH4, C2H2, C2H4, C2H6, C3H8, and C4H10.
20. The system of claim 18, wherein the hydrocarbon feedstock comprises a mixture of two or more of the following: CH4, C2H2, C2H4, C2H6, C3H8, and C4H10.
21. The system of claim 13, wherein the hydrocarbon feedstock comprises natural gas.
22. The system of claim 13, wherein the carrier gas is continuously delivered into the reaction chamber through the one or more porous walls.
23. The system of claim 13, wherein substantially all of the heated carrier gas is delivered into the reaction chamber through the one or more porous walls.
24. The system of claim 13, wherein the one or more porous walls are configured to allow the carrier gas to permeate into the reaction chamber.
Type: Application
Filed: Aug 3, 2016
Publication Date: Nov 24, 2016
Applicant:
Inventors: Roderick A. Hyde (Redmond, WA), Lowell L. Wood, JR. (Bellevue, WA)
Application Number: 15/227,826