Toy Convertible Between a Character and a High-Bounce Ball

A toy that is selectively convertible between a first configuration and a ball configuration. The toy assembly includes a body mass of resilient material having an external shape with a top surface and an opposite bottom surface. A head mass is provided that defines an internal cavity. The internal cavity is sized and shaped to receive and retain the body mass within said internal cavity with a friction fit. The internal cavity is accessible through both a top opening and a bottom opening in the head mass. The top surface of the body mass closes the top opening of the internal cavity when the body mass is fully inserted into the internal cavity. Likewise, the bottom surface of the body mass closes the bottom opening when the body mass is fully inserted into the internal cavity.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

In general, the present invention relates to toys and novelties that can be selectively transformed from one shape to another. More particularly, the present invention relates to toys that can be transfigured from a complex shape into a ball shape.

2. Prior Art Description

In the toy industry, there are many toys that can be converted from one shape to another. Such toys exist in all types of toys including plush toys, plastic assembled toys and molded toys.

Plush toys are toys that are made from sewn fabric, such as stuffed animals. Many stuffed animals exist that contain a seam that enables the plush toy to be turned inside out. Depending upon whether the toy is inside out or right side out, the toy takes on a different shape. Such prior art transformable plush toys are exemplified by U.S. Pat. No. 5,090,938 to Reynolds, entitled Toy Or Other Object Alterable Between Two Different Shapes.

Plush toys are soft and safe when thrown. As such, plush toys are typically made for infants and toddlers and provide little play value to older children.

Plastic assembled toys are typically manufactured for older children. There are many plastic assembled toys that can be selectively transfigured from one shape to another. For instance, there are many toys that convert between robots and vehicles. The transformation of the toy is typically accomplished by manually manipulating the features of the toy to extend and fold various features along a variety of interconnecting joints.

There are two major problems associated with plastic assembled toys. The first problem is that of manufacturing cost. A transformable toy may contain dozens of individually molded pieces. These pieces are then manually assembled into the final toy. As such, the costs involved in manufacturing such transformable toys are substantial. This often results in a low profit margin for the toy manufacturer.

A second problem associated with transformable plastic toys is that they are fragile. Due to the many parts and connecting joints of a transformable plastic toy, the toy can easily break if mishandled or dropped. This limits the market of such toys to older children, typically ages ten and older, who have both the dexterity and maturity to use such a toy without breaking the toy.

Some molded transformable toys have been invented that convert from a ball shape into secondary shapes. However, the plastic used in such toys is often too soft to bounce. Accordingly, even though the toy can be configured as a ball, the ball cannot be bounced, thrown, caught, or rolled forcefully without the toy reverting out of its ball shape.

A ball undergoes significant deformation as it is bounced, caught, rolled or otherwise brought into contact with an outside surface. As such, any transformable toy that can transform into a ball must be able to withstand significant deformation without damage and without dislodging any component piece. In the prior art, this has only been accomplished by making a toy mostly a ball and adding a few small elements to the ball shape. For example, in U.S. Pat. No. 7,306,504 to Saucier, entitled Transformable Ball, a two-piece molded plastic ball is shown that can be opened in half. Inside the ball is a hollow that holds come character features. Since the ball opens in half, it has only one hinge and one clasp. These features are made disproportionately large and strong so that the ball can be bounced without opening.

With such prior art toys, the toy is a ball that merely opens to expose features, it is not truly transformable between shapes. This limits the aesthetics and the play value of the toy. A need therefore exists for a toy assembly that is convertible between a character and a ball, wherein the character has extremities that extend outwardly from the exterior of the toy. Yet, the toy assembly is capable of bouncing and otherwise undergoing significant deformations while in its ball shape. This need is met by the present invention as described and claimed below.

SUMMARY OF THE INVENTION

The present invention is a toy that is selectively convertible between a first configuration and a ball configuration. The first configuration is that of a character such as a humanoid figure or an animal figure.

The toy assembly includes a body mass of resilient material having an external shape with a top surface and an opposite bottom surface. A head mass is provided that defines an internal cavity. The internal cavity is sized and shaped to receive and retain the body mass within said internal cavity with a friction fit. The internal cavity is accessible through both a top opening and a bottom opening in the head mass. The top surface of the body mass closes the top opening of the internal cavity when the body mass is fully inserted into the internal cavity. Likewise, the bottom surface of the body mass closes the bottom opening when the body mass is fully inserted into the internal cavity.

Once the body mass is fully inserted into the internal cavity of the head mass, the toy assembly has a ball configuration and can be bounced and otherwise significantly impacted without the body mass becoming dislodged and without damage to the toy.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, reference is made to the following description of exemplary embodiments thereof, considered in conjunction with the accompanying drawings, in which:

FIG. 1 is a perspective view of an exemplary embodiment of a toy assembly in its retracted configuration;

FIG. 2 is a perspective view of the exemplary embodiment of the toy assembly in its extended configuration;

FIG. 3 is an exploded view of the exemplary embodiment of the toy assembly shown in FIG. 1;

FIG. 4 is a cross-sectional view of the configuration shown in FIG. 1 in a retracted configuration;

FIG. 5 is a fragmented perspective view of a section of the toy assembly in the retracted configuration;

FIG. 6 is a cross-sectional view of the configuration shown in FIG. 1 in an extended configuration; and

FIG. 7 is an exploded perspective view of an alternate embodiment of the toy assembly.

DETAILED DESCRIPTION OF THE DRAWINGS

Although the present invention toy can be embodied in many ways, the embodiment illustrated shows the toy being transformable between a humanoid configuration and a ball configuration. This embodiment is selected in order to set forth the best mode contemplated for the invention. The illustrated embodiment, however, is merely exemplary and should not be considered a limitation when interpreting the scope of the appended claims. It should be understood that the present invention can convert between a ball configuration and many other complex configurations, such as animal configurations and the like.

Referring to FIG. 1 and FIG. 2, a toy assembly 10 is shown in its two configurations. In FIG. 1, the toy assembly 10 is in its retracted configuration 12 and presents a head mass 14 that is generally shaped as a ball. The head mass 14 may contain facial features 16 and/or graphics that identify the head mass 14 as a character's head. As will be explained, the toy assembly 10 in the retracted configuration 12 is both dense and highly resilient. As such, the toy assembly 10 is capable of being utilized as a high-bounce ball when in its retracted configuration 12. In FIG. 2, the toy assembly 10 is shown in its extended configuration 18. In its extended configuration 18, the toy assembly 10 is no longer primarily round. Rather, a body mass 20 is extended out of the head mass 14 to create a humanoid character.

Both the head mass 14 and the body mass 20 are molded from a highly resilient polymer. There are many polymers and natural rubber derivatives that can produce the resiliency needed for a high bouncing ball. Such materials are known in the manufacture of high-bounce balls. The use of such material enables the toy assembly 10 to bounce high when in its retracted configuration 12. Preferably, the polymer material used in the formation of the head mass 14 and the body mass 20 provide the toy assembly 10 with enough resiliency to have a drop-to-bounce ratio of at least 3:1 in its retracted configuration 12. That is, the toy assembly 10 will bounce to at least one-third the height from which it is dropped.

Although it is preferred that the head mass 14 be generally spherical in shape for bouncing, it should be understood that the head mass 14 may have a generally oblong ball shape, such as that of a football, or a generally polygon spheres, such as that of a soccer ball.

Referring to FIG. 3, FIG. 4 and FIG. 5 in conjunction with FIG. 1 and FIG. 2. it can be seen that the head mass 14 defines an internal cavity 22 that has the same shape as that of the body mass 14. The internal cavity 22 is accessible through a top opening 24 above the internal cavity 22 and a bottom opening 26 below the internal cavity 22. The body mass 20 has a top surface 28 and a bottom surface 30. The body mass 20 has a neck section 32 at its top, which upwardly terminates at the top surface 28. An upper torso section 34 is disposed under the neck section 32. Lastly, at the bottom of the body mass 20, is disposed a lower torso section 36. The lower torso section 36 downwardly terminates at the bottom surface 30.

The body mass 20 can be selectively positioned into the internal cavity 22 of the head mass 14 by manual force. The internal cavity 22 is generally the same size and shape as the body mass 20. Many dimensions of the internal cavity 22 are either the same size as the external dimensions of the body mass 20 or are slightly smaller by a few hundredths of an inch. As such, when the body mass 20 is pressed into the internal cavity 22, an interference fit occurs between the body mass 20 and the internal cavity 22. This causes both the body mass 20 and the head mass 14 to slightly deform in order to accommodate the other.

This creates a strong mechanical interconnection between the head mass 14 and the body mass 20. The interconnection is strong enough to withstand bounce deformations. Accordingly, when the body mass 20 is within the head mass 14, the body mass 20 remains set in place even when the overall toy assembly 10 is violently bounced.

In a high bounce ball made of an elastomeric polymer, the resiliency of the ball is directly proportional to its mass-to-volume ratio. That is, solid balls are more resilient and bounce higher than hollow balls when thrown against a hard surface at the same speed. In the retracted configuration 12, when the body mass 20 is positioned within the internal cavity 22 of the head mass 14, the overall toy assembly 10 has a mass-to-volume ratio of at least eighty percent. That is, less than 20 percent of the resulting toy assembly 10 is hollow. The toy assembly 10, therefore, has a high mass-to-volume ratio that enables the toy assembly 10 to bounce well.

The internal cavity 22 in the head mass 14 is not just the negative mold of the body mass 20. Rather, the internal cavity 22 has tapered surfaces 38 to facilitate the insertion and removal of the body mass 20 into and from the internal cavity 22. Furthermore, the internal cavity 22 is surrounded by a series of radial slots 40. The radial slots 40 segment the walls of the internal cavity 22. This enables the walls of the internal cavity 22 to resiliently yield as the body mass 20 is inserted into, and removed from, the internal cavity 22 of the head mass 14.

As is illustrated in FIG. 4, when the toy assembly 10 is in its retracted configuration 12, the body mass 20 is fully inserted into the head mass 14. The top surface 28 of the body mass 20 completely fills the top opening 24 of the internal cavity. Likewise, the bottom surface 30 of the body mass 20 completely fills the bottom opening 26 of the internal cavity 22. Furthermore, both the top surface 28 and the bottom surface 30 of the body mass 20 have contoured shapes that match the external curvature of the head mass 14. The bottom surface 30 also has a flat area 42 to facilitate standing upon a flat surface. The result is a nearly complete ball when the toy assembly 10 is in its retracted configuration 12. The toy assembly 10, in this ball shape, can be bounced, rolled, thrown and otherwise used as a high-bounce ball.

Referring to FIG. 6, the toy assembly 10 is shown in its extended configuration 18. In this extended configuration 18, the body mass 20 is displaced out of the internal cavity 22 through the bottom opening 26 in the head mass 14. The displacement of the body mass 20 is stopped only when the neck section 32 of the body mass 20 is in the internal cavity 22. The neck section 32 of the body mass 20 engages the internal cavity 22 with an interference fit. The interference fit is sufficient enough to support the weight of the head mass 14. Consequently, the body mass 20 can be extended from the head mass 14. The entire toy assembly 10 can then be stood upright, by placing the bottom surface 30 of the body mass 20 upon a flat surface. The overall toy assembly 10 then has the appearance of a standing character with both a head and body.

Referring now to FIG. 7, an alternate embodiment of the present invention toy assembly 50 is shown. The toy assembly 50 has the exact same head mass 14 and body mass 20 as has been previously described. The same reference numbers are therefore used to describe the same elements. The difference between the toy assembly 50 of FIG. 7 and the previous embodiment is the addition of a pull loop 52. A slot 54 extends through the body mass 20 at the bottom of the neck section 32. The pull loop 52 passes through the slot 54 and around the top of the neck section 32.

The pull loop 52 provides a structure to help pull the body mass 20 into the internal cavity 22 of the head mass 14. Pulling on the body mass 20 with the loop 52 slightly elongates and thins the body mass 20. The body mass 20 therefore passes back into the internal cavity 22 more readily than if it were merely pushed.

It will be understood that the embodiments of the present invention that are illustrated and described are merely exemplary and that a person skilled in the art can make many variations to those embodiments. All such embodiments are intended to be included within the scope of the present invention as defined by the claims.

Claims

1. A toy assembly selectively convertible between a first configuration and a second configuration, said toy comprising:

a body mass of resilient material having an external shape with a top surface and an opposite bottom surface; and
a head mass that defines an internal cavity, said internal cavity being sized and shaped to receive and retain said body mass within said internal cavity with a friction fit, wherein said internal cavity is accessible through both a top opening and a bottom opening in said head mass, and wherein said top surface of said body mass closes said top opening of said internal cavity and said bottom surface of said body mass closes said bottom opening of said body mass when said body mass is fully inserted into said internal cavity.

2. The toy assembly according to claim 1, wherein said head mass is spherically shaped.

3. The toy assembly according to claim 2, further including facial features on said head mass that provide said head mass with the appearance of a character head.

4. The toy assembly according to claim 3, wherein said external shape of said body mass has the shape of a character body.

5. The toy assembly according to claim 1, wherein said toy assembly has a mass to volume ratio of at least eighty percent when said body mass is fully inserted into said internal cavity of said head mass.

6. The toy assembly according to claim 1, wherein said head mass and said body mass are fabricated from the same resilient material.

7. The toy assembly according to claim 1, further including slots in said body mass that radially extend from said internal cavity into said head mass, wherein said slots enable said internal cavity to better elastically deform to receive said body mass therein.

8. The toy assembly according to claim 2, wherein said head mass has a contoured exterior surface and said top surface of said body mass conforms to said contoured exterior surface so as to appear to be part of said contoured exterior surface when said body mass is fully inserted into said head mass.

9. The toy assembly according to claim 2, wherein said bottom surface of said body mass has a flat section for supporting said body mass on a flat surface.

10. The toy assembly according to claim 1, further including a strap that is affixed to said body mass.

11. The toy assembly according to claim 1, wherein said body mass has a neck section, an upper torso section and a lower torso section.

12. The toy assembly according to claim 11, wherein said neck section is sized to engage said internal cavity with a friction fit proximate said bottom opening of said internal cavity, therein enabling said body mass to be engaged with said internal cavity as said upper torso section and said lower torso section extend from said internal cavity.

13. A toy assembly comprising:

a generally spherical mass having an exterior surface, wherein said generally spherical body defines an internal cavity that is accessible through an opening in said generally spherical body, and wherein said generally spherical body is fabricated from a resilient polymer; and
a body-shaped mass pressed into said internal cavity, wherein said body-shaped mass is retained in said internal cavity with a friction fit, said body-shaped mass having a bottom surface that closes said opening in said generally spherical body along said exterior surface.

14. The toy assembly according to claim 13, wherein said body-shaped mass has a neck section that is sized to engage said internal cavity with a friction fit proximate said opening.

15. The toy assembly according to claim 14, wherein said generally spherical mass and said body-shaped mass are both molded from a resilient polymer that enables said toy assembly to bounce.

16. The toy assembly according to claim 15, wherein said toy assembly is capable of bouncing with a drop-bounce ratio of at least as great as 3:1.

17. The toy assembly according to claim 13, wherein said toy assembly has a mass-to-volume ratio of at least eighty percent when said body-shaped mass is fully inserted into said internal cavity of said generally spherical mass.

18. The toy assembly according to claim 13, further including slots in said generally spherical mass that radially extend from said internal cavity into said generally spherical mass, wherein said slots enable said internal cavity to better elastically deform to receive said body-shaped mass therein.

19. A toy assembly that is selectively convertible between a character configuration and a ball configuration, said toy assembly comprising:

a body mass of resilient material having a character body shape;
a head mass of resilient material having a character head shape, said head mass defining an internal cavity, said internal cavity being sized and shaped to receive and retain said body mass within said internal cavity with a friction fit, wherein said internal cavity is accessible through an opening in said head mass, and wherein said body mass can be selectively inserted into or extended from said internal cavity.

20. The toy assembly according to claim 19, wherein said toy assembly has a mass-to-volume ratio of at least eighty percent when said body mass is fully inserted into said internal cavity of said head mass.

Patent History
Publication number: 20160361661
Type: Application
Filed: Jun 11, 2015
Publication Date: Dec 15, 2016
Inventors: Simeon E. Tiefel (Gentry, AR), Keith Scheffler (Gentry, AR)
Application Number: 14/737,476
Classifications
International Classification: A63H 3/36 (20060101);