CIRCULAR STAPLER WITH SELECTABLE MOTORIZED AND MANUAL CONTROL
An apparatus is operable to clamp, cut, and staple tissue. The apparatus includes a stapling head assembly, a shaft assembly coupled to the stapling head assembly, and an actuator handle assembly coupled to the shaft assembly. The stapling head assembly is operable to clamp tissue, cut tissue, and staple tissue in response to rotation imparted by a single rotary drive shaft extending through the shaft assembly. The actuator handle assembly includes a motor positioned within a motor housing, a rotation knob, and a selection assembly. The rotation knob is coupled to a proximal end of the motor housing. The rotation knob is configured to translate between a proximal position and a distal position. The selection assembly is operable to select between motorized operation of the apparatus or manual operation of the apparatus, based on the longitudinal position of the rotation knob.
In some settings, a surgeon may want to position a surgical instrument through an orifice of the patient and use the instrument to adjust, position, attach, and/or otherwise interact with tissue within the patient. For instance, in some surgical procedures, portions of the gastrointestinal tract may be cut and removed to eliminate undesirable tissue or for other reasons. Once the desired tissue is removed, the remaining portions may need to be recoupled together. One such tool for accomplishing these anastomotic procedures is a circular stapler that is inserted through a patient's orifice.
Examples of circular surgical staplers are described in U.S. Pat. No. 5,205,459, entitled “Surgical Anastomosis Stapling Instrument,” issued Apr. 27, 1993; U.S. Pat. No. 5,271,544, entitled “Surgical Anastomosis Stapling Instrument,” issued Dec. 21, 1993; U.S. Pat. No. 5,275,322, entitled “Surgical Anastomosis Stapling Instrument,” issued Jan. 4, 1994; U.S. Pat. No. 5,285,945, entitled “Surgical Anastomosis Stapling Instrument,” issued Feb. 15, 1994; U.S. Pat. No. 5,292,053, entitled “Surgical Anastomosis Stapling Instrument,” issued Mar. 8, 1994; U.S. Pat. No. 5,333,773, entitled “Surgical Anastomosis Stapling Instrument,” issued Aug. 2, 1994; U.S. Pat. No. 5,350,104, entitled “Surgical Anastomosis Stapling Instrument,” issued Sep. 27, 1994; and U.S. Pat. No. 5,533,661, entitled “Surgical Anastomosis Stapling Instrument,” issued Jul. 9, 1996. The disclosure of each of the above-cited U.S. Patents is incorporated by reference herein. Some such staplers are operable to clamp down on layers of tissue, cut through the clamped layers of tissue, and drive staples through the layers of tissue to substantially seal the severed layers of tissue together near the severed ends of the tissue layers, thereby joining two severed ends of an anatomical lumen.
Merely additional other exemplary surgical staplers are disclosed in U.S. Pat. No. 4,805,823, entitled “Pocket Configuration for Internal Organ Staplers,” issued Feb. 21, 1989; U.S. Pat. No. 5,415,334, entitled “Surgical Stapler and Staple Cartridge,” issued May 16, 1995; U.S. Pat. No. 5,465,895, entitled “Surgical Stapler Instrument,” issued Nov. 14, 1995; U.S. Pat. No. 5,597,107, entitled “Surgical Stapler Instrument,” issued Jan. 28, 1997; U.S. Pat. No. 5,632,432, entitled “Surgical Instrument,” issued May 27, 1997; U.S. Pat. No. 5,673,840, entitled “Surgical Instrument,” issued Oct. 7, 1997; U.S. Pat. No. 5,704,534, entitled “Articulation Assembly for Surgical Instruments,” issued Jan. 6, 1998; U.S. Pat. No. 5,814,055, entitled “Surgical Clamping Mechanism,” issued Sep. 29, 1998; U.S. Pat. No. 6,978,921, entitled “Surgical Stapling Instrument Incorporating an E-Beam Firing Mechanism,” issued Dec. 27, 2005; U.S. Pat. No. 7,000,818, entitled “Surgical Stapling Instrument Having Separate Distinct Closing and Firing Systems,” issued Feb. 21, 2006; U.S. Pat. No. 7,143,923, entitled “Surgical Stapling Instrument Having a Firing Lockout for an Unclosed Anvil,” issued Dec. 5, 2006; U.S. Pat. No. 7,303,108, entitled “Surgical Stapling Instrument Incorporating a Multi-Stroke Firing Mechanism with a Flexible Rack,” issued Dec. 4, 2007; U.S. Pat. No. 7,367,485, entitled “Surgical Stapling Instrument Incorporating a Multistroke Firing Mechanism Having a Rotary Transmission,” issued May 6, 2008; U.S. Pat. No. 7,380,695, entitled “Surgical Stapling Instrument Having a Single Lockout Mechanism for Prevention of Firing,” issued Jun. 3, 2008; U.S. Pat. No. 7,380,696, entitled “Articulating Surgical Stapling Instrument Incorporating a Two-Piece E-Beam Firing Mechanism,” issued Jun. 3, 2008; U.S. Pat. No. 7,404,508, entitled “Surgical Stapling and Cutting Device,” issued Jul. 29, 2008; U.S. Pat. No. 7,434,715, entitled “Surgical Stapling Instrument Having Multistroke Firing with Opening Lockout,” issued Oct. 14, 2008; and U.S. Pat. No. 7,721,930, entitled “Disposable Cartridge with Adhesive for Use with a Stapling Device,” issued May 25, 2010. The disclosure of each of the above-cited U.S. Patents is incorporated by reference herein. While the surgical staplers referred to above are described as being used in endoscopic procedures, it should be understood that such surgical staplers may also be used in open procedures and/or other non-endoscopic procedures.
While various kinds of surgical stapling instruments and associated components have been made and used, it is believed that no one prior to the inventor(s) has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim this technology, it is believed this technology will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the technology may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present technology, and together with the description serve to explain the principles of the technology; it being understood, however, that this technology is not limited to the precise arrangements shown.
DETAILED DESCRIPTIONThe following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
I. Overview of Exemplary Circular Stapling Surgical Instrument
In the present example, instrument (10) comprises a closure system and a firing system. The closure system comprises a trocar (38), a trocar actuator (39), and a rotating knob (98). An anvil (40) may be coupled to a distal end of trocar (38). Rotating knob (98) is operable to longitudinally translate trocar (38) relative to stapling head assembly (20), thereby translating anvil (40) when anvil (40) is coupled to trocar (38), to clamp tissue between anvil (40) and stapling head assembly (20). The firing system comprises a trigger (74), a trigger actuation assembly (84), a driver actuator (64), and a staple driver (24). Staple driver (24) includes a knife (36) configured to sever tissue when staple driver (24) is actuated longitudinally. In addition, staples (66) are positioned distal to a plurality of staple driving members (30) of staple driver (24) such that staple driver (24) also drives staples (66) distally when staple driver (24) is actuated longitudinally. Thus, when trigger (74) is actuated and trigger actuation assembly (84) actuates staple driver (24) via driver actuator (64), knife (36) and members (30) substantially simultaneously sever tissue (2) and drive staples (66) distally relative to stapling head assembly (20) into tissue. The components and functionalities of the closure system and firing system will now be described in greater detail.
A. Exemplary Anvil
As shown in
Anvil head (48) of the present example comprises a plurality of staple forming pockets (52) formed in a proximal face (50) of anvil head (48). Accordingly, when anvil (40) is in the closed position and staples (66) are driven out of stapling head assembly (20) into staple forming pockets (52), as shown in
With anvil (40) as a separate component, it should be understood that anvil (40) may be inserted and secured to a portion of tissue (2) prior to being coupled to stapling head assembly (20). By way of example only, anvil (40) may be inserted into and secured to a first tubular portion of tissue (2) while instrument (10) is inserted into and secured to a second tubular portion of tissue (2). For instance, the first tubular portion of tissue (2) may be sutured to or about a portion of anvil (40), and the second tubular portion of tissue (2) may be sutured to or about trocar (38).
As shown in
When anvil (40) is coupled to trocar (38), the distance between a proximal face of the anvil (40) and a distal face of stapling head assembly (20) defines a gap distance d. Trocar (38) of the present example is translatable longitudinally relative to stapling head assembly (20) via an adjusting knob (98) located at a proximal end of actuator handle assembly (70), as will be described in greater detail below. Accordingly, when anvil (40) is coupled to trocar (38), rotation of adjusting knob (98) enlarges or reduces gap distance d by actuating anvil (40) relative to stapling head assembly (20). For instance, as shown sequentially in
As noted above, gap distance d corresponds to the distance between anvil (40) and stapling head assembly (20). When instrument (10) is inserted into a patient, this gap distance d may not be easily viewable. Accordingly, a moveable indicator bar (110), shown in
Referring back to
Anvil (40) may be further constructed in accordance with at least some of the teachings of U.S. Pat. No. 5,205,459; U.S. Pat. No. 5,271,544; U.S. Pat. No. 5,275,322; U.S. Pat. No. 5,285,945; U.S. Pat. No. 5,292,053; U.S. Pat. No. 5,333,773; U.S. Pat. No. 5,350,104; U.S. Pat. No. 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
B. Exemplary Stapling Head Assembly
Stapling head assembly (20) of the present example is coupled to a distal end of shaft assembly (60) and comprises a tubular casing (22) housing a slidable staple driver (24) and a plurality of staples (66) contained within staple pockets (32). Staples (66) and staple pockets (32) are disposed in a circular array about tubular casing (22). In the present example, staples (66) and staple pockets (32) are disposed in a pair of concentric annular rows of staples (66) and staple pockets (32). Staple driver (24) is operable to actuate longitudinally within tubular casing (22) in response to rotation of trigger (74) of actuator handle assembly (70). As shown in
Staple driver (24) further includes a cylindrical knife (36) that is coaxial to trocar opening (26) and inset from staple pockets (32). In the present example, cylindrical knife (36) is disposed within central recess (28) to translate distally with staple driver (24). When anvil (40) is secured to trocar (38), as described above, anvil head (48) provides a surface against which cylindrical knife (36) cuts the material contained between anvil (40) and stapling head assembly (20). In some versions, anvil head (48) may include a recess (not shown) for cylindrical knife (36) to aid in cutting the material (e.g., by providing a cooperative shearing edge). In addition, or in the alternative, anvil head (48) may include one or more opposing cylindrical knives (not shown) offset from cylindrical knife (36) such that a scissor-type cutting action may be provided. Still other configurations will be apparent to one of ordinary skill in the art in view of the teachings herein. Stapling head assembly (20) is thus operable to both staple and cut tissue (2) substantially simultaneously in response to actuation by actuator handle assembly (70).
Of course stapling head assembly (20) may be further constructed in accordance with at least some of the teachings of U.S. Pat. No. 5,205,459; U.S. Pat. No. 5,271,544; U.S. Pat. No. 5,275,322; U.S. Pat. No. 5,285,945; U.S. Pat. No. 5,292,053; U.S. Pat. No. 5,333,773; U.S. Pat. No. 5,350,104; U.S. Pat. No. 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
As noted previously, staple driver (24) includes a trocar opening (26). Trocar opening (26) is configured to permit trocar (38) to longitudinally slide relative to stapling head assembly (20) and/or shaft assembly (60). As shown in
C. Exemplary Shaft Assembly
Stapling head assembly (20) and trocar (38) are positioned at a distal end of shaft assembly (60), as shown in
Shaft assembly (60) may be further constructed in accordance with at least some of the teachings of U.S. Pat. No. 5,205,459; U.S. Pat. No. 5,271,544; U.S. Pat. No. 5,275,322; U.S. Pat. No. 5,285,945; U.S. Pat. No. 5,292,053; U.S. Pat. No. 5,333,773; U.S. Pat. No. 5,350,104; U.S. Pat. No. 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
D. Exemplary Actuator Handle Assembly
Referring now to
As shown in
Trigger actuation assembly (84) may be further constructed in accordance with at least some of the teachings of U.S. Pat. No. 5,205,459; U.S. Pat. No. 5,271,544; U.S. Pat. No. 5,275,322; U.S. Pat. No. 5,285,945; U.S. Pat. No. 5,292,053; U.S. Pat. No. 5,333,773; U.S. Pat. No. 5,350,104; U.S. Pat. No. 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
Body (72) also houses a trocar actuation assembly (90) configured to actuate trocar (38) longitudinally in response to rotation of adjusting knob (98). As best shown in
Groove (96) of the present example comprises a plurality of different portions (96A, 96B, 96C) that have a varying pitch or number of grooves per axial distance. The present groove (96) is divided into a distal portion (96A), a middle portion (96B) and a proximal portion (96C). As shown in
Trocar actuation assembly (90) may be further constructed in accordance with at least some of the teachings of U.S. Pat. No. 5,205,459; U.S. Pat. No. 5,271,544; U.S. Pat. No. 5,275,322; U.S. Pat. No. 5,285,945; U.S. Pat. No. 5,292,053; U.S. Pat. No. 5,333,773; U.S. Pat. No. 5,350,104; U.S. Pat. No. 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
In the example shown in
As shown in
In the present example, a portion of lockout feature (82) abuts a surface (141) of indicator bracket (140) when indicator bracket (140) is in a longitudinal position that does not correspond to when the anvil gap is within a desired operating range (e.g., a green colored region or “green zone”). When the anvil gap is within a desired operating range (e.g., a green colored region or “green zone”), indicator bracket (140) narrows to provide a pair of gaps (145) on either side of an indicator arm (146) that permits lockout feature (82) to pivot, thereby releasing trigger (74). Accordingly, lockout feature (82) and indicator bracket (140) can substantially prevent a user from releasing and operating trigger (74) until anvil (40) is in a predetermined operating range. Of course it should be understood that lockout feature (82) may be omitted entirely in some versions.
This operating range may be visually communicated to the user via an indicator bar (110) of an indicator (104) shown against a scale (130), described briefly above. At the distal end of indicator bracket (140) is a distally projecting indicator arm (146) which terminates at a laterally projecting finger (148) for controlling the movement of indicator (104). Indicator arm (146) and finger (148), best shown in
Of course indicator bracket (140), indicator (104), and/or actuator handle assembly (70) may be further constructed in accordance with at least some of the teachings of U.S. Pat. No. 5,205,459; U.S. Pat. No. 5,271,544; U.S. Pat. No. 5,275,322; U.S. Pat. No. 5,285,945; U.S. Pat. No. 5,292,053; U.S. Pat. No. 5,333,773; U.S. Pat. No. 5,350,104; U.S. Pat. No. 5,533,661, the disclosures of which are incorporated by reference herein; and/or in accordance with other configurations as will be apparent to one of ordinary skill in the art in view of the teachings herein.
II. Exemplary Motorized Circular Stapling Surgical Instrument With Selectable Control
In some instances, it may be desirable to provide motorized control of instrument (10). It may further be desirable to enable a user to select between either motorized control or manual control of a motorized version of circular surgical stapling instrument (10). For example, instrument (10) may include an operational mode selection assembly that allows the user to disengage an automated, motorized rotary actuation system and provide manual actuation of that system. It may also be desirable to provide a switch assembly for changing the mode of a single rotary drive between a tissue clamping mode and a tissue cutting/stapling mode. In other words, such a switch assembly may enable a single rotary drive to either actuate anvil (40) clamping features or actuate knife (36) and staple driving features of instrument (10). The examples below include merely illustrative versions of instrument (10) where a single motor can be used to control both clamping and cutting/stapling of tissue via a single rotary drive; where the operator can select between motorized operation and manual operation; and a stapling head cartridge assembly that is responsive to the single rotary drive in motorized and manual operation.
A. Exemplary Operational Mode Selection Assembly
Stapling head assembly (220) differs from stapling head assembly (20) in that stapling head assembly (220) is operable to clamp tissue, sever tissue, and staple tissue all in response to a single rotary input communicated via shaft assembly (260). Accordingly, actuation inputs translated linearly through shaft assembly (260) are not required for stapling head assembly (220), though stapling head assembly (220) may comprise a translating clutch feature. By way of example only, at least part of stapling head assembly (220) may be configured in accordance with at least some of the teachings of U.S. Patent App. No. [ATTORNEY DOCKET NO. END7161USNP.0597922], entitled “Motor Driven Rotary Input Circular Stapler with Modular End Effector,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Other suitable configurations for stapling head assembly (220) will be apparent to those of ordinary skill in the art in view of the teachings herein.
Shaft assembly (260) is similar to shaft assembly (60) in that shaft assembly (260) couples handle assembly (270) with stapling head assembly (220). Shaft assembly (260) differs from shaft assembly (60) in that shaft assembly (260) comprises a single actuation feature, rotary driver actuator (264) shown in
Handle assembly (270) is shown in
As shown in
Another conductive metal band (282) is secured to handle housing (272). Each end of metal band (282) forms a respective spring contact (283, 285). Motor housing (274) translates proximally and/or distally relative to handle housing (272) to selectively couple and/or decouple spring contacts (283, 285) with annular contacts (284, 286). In particular, when motor housing (274) is in a distal position (
A proximal end of motor housing (274) is fixedly secured to rotation knob (298), as shown in
An operational mode selection assembly is positioned distal to motor housing (274) within handle housing (272). As shown in
Splines (275) of second gear (276) are positioned on a proximal end of shaft (273) and extend distally. Splines (275) correspond to teeth (277) of first gear (278), such that splines (275) are configured to fit within the recesses defined between teeth (277). A pair of annular flanges (258) are positioned at a distal end of shaft (273) and extend outwardly to engage an inwardly extending annular rib (253) of handle housing (272), thereby fixing the longitudinal position of second gear (276) within handle housing (272). While annular rib (253) fixes the longitudinal position of second gear (276) within handle housing (272), annular rib (253) nevertheless allows second gear (276) to rotate relative to handle housing (272). Other suitable engagement features to longitudinally fix second gear (276) will be apparent to one with ordinary skill in the art based on the teachings herein.
First gear (278) is positioned around second gear (276), as shown in
Referring back to
When firing ring (252) is in a distal position, protrusions of coupling member (268) are positioned within slot (265) of handle housing (272). When coupling member (268) is positioned within slot (265), coupling member (268) couples driver actuator (264) with features in stapling head assembly (220) operable to adjust the gap distance d between anvil (240) and stapling head assembly (220). For instance, if coupling member (268) is rotated clockwise within slot (265), the gap distance d is decreased to close anvil (240) relative to stapling head assembly (220). If coupling member (268) is rotated counterclockwise within slot (265), the gap distance d is increased to open anvil (240) relative to stapling head assembly (220). A resilient member (269) is positioned proximal to coupling member (268) to bias coupling member (268) distally (
As shown in
It should be understood that firing ring (252) and coupling member (268) act as a clutch control to shift driver actuator (264) from an anvil clamping mode (when coupling member (268) is in the distal position) to a cutting/stapling mode (when coupling member (268) is in the proximal position). An example of a stapling head assembly (220) responsive to such changes in driver actuator (264) positioning is disclosed in U.S. Patent App. No. [ATTORNEY DOCKET NO. END7161USNP.0597922], entitled “Motor Driven Rotary Input Circular Stapler with Modular End Effector,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Other suitable forms that stapling head assembly (220) may take will be apparent to those of ordinary skill in the art in view of the teachings herein. Outer tubular member (262) is coupled to actuator handle assembly (270). Outer tubular member (262) is similar to outer tubular member (62) to provide a mechanical ground between stapling head assembly (220) and handle assembly (270).
1. Motorized Operation
As shown in
2. Selection of Operation Mode
As shown in
3. Manual Operation
4. Control Assembly
Based on the sensed signal, control module (224) is operable to actuate instrument (210) and/or feedback feature (226). For example, control module (224) may actuate feedback feature (226) to indicate the selected operational mode of instrument (210). In some versions, feedback feature (226) may have a first LED corresponding to the motorized operational mode and a second LED corresponding to the manual operational mode. Sensor (222) may detect the proximal and/or distal position of rotation knob (298) and/or motor housing (274) and provide the information to control module (224). Control module (224) may then illuminate the first LED if sensor (222) detects the proximal position to indicate the motorized operational mode is selected. Control module (224) may illuminate the second LED if sensor (222) detects the distal position to indicate the manual operational mode is selected. Alternatively, feedback feature (226) may have only one LED which is either illuminated or not to indicate the operational mode, or feedback feature (226) may have a speaker to provide a sound when the operational mode is changed.
In some versions, control module (224) may actuate feedback feature (226) to indicate the selected mode of stapling assembly (220). Feedback feature (226) may have a first LED corresponding to the tissue clamping mode and a second LED corresponding to the firing mode. Sensor (222) may detect the proximal and/or distal position of firing ring (252), coupling member (268) and/or driver actuator (264) and provide the information to control module (224). Control module (224) may then illuminate the first LED if sensor (222) detects the distal position to indicate the tissue clamping mode is selected. Control module (224) may illuminate the second LED if sensor (222) detects the proximal position to indicate the firing mode is selected. Alternatively, feedback feature (226) may have only one LED which is either illuminated or not to indicate stapling head assembly (220) mode, or feedback feature (226) may have a speaker to provide a sound when stapling head assembly (220) mode is changed.
In addition or in the alternative, control module (224) may actuate feedback feature (226) to indicate the gap distance d between anvil (240) and stapling head assembly (220). Sensor (222) may detect the number of rotations of driver actuator (264). Control module (224) may then determine the gap distance d based on the sensed signal and actuate feedback feature (226). Feedback feature (226) may comprise a plurality of LEDs that individually illuminate to indicate the gap distance d. As gap distance d increases, LEDs may illuminate to correspond to the gap distance d. As gap distance d decreases, LEDs may turn off to correspond to the gap distance d. As another merely illustrative example, feedback feature (226) may comprise an LED display screen that provides a real-time indication of the gap distance d. Feedback feature (226) may also have a speaker that emits a sound that changes in either pitch or volume to indicate the corresponding gap distance d. Alternatively, one LED may be used to indicate when a particular gap distance d has been reached, or a sound may be provided when the particular gap distance d has been reached.
In versions where feedback feature (226) includes the capability of providing haptic feedback to the operator, it should be understood that various conventional components may be incorporated into handle assembly (270) to provide such haptic feedback. It should also be understood that haptic feedback may be provided through motor (280). By way of example only, feedback feature (226) may be configured to provide a sine wave signal to motor (280) to essentially rotate drive shaft (287) slightly clockwise and then immediately rotating it slightly counterclockwise the exact same amount. The net result would be zero rotational displacement of drive shaft (287). When this sequence is repeated (e.g., in a rapid succession), the movement of drive shaft (287) may cause handle assembly (270) to vibrate or otherwise shake enough for the operator to feel it through the hand that grasps handle assembly (270). With the zero net movement of drive shaft (287) through this feedback algorithm, the haptic feedback may result in no net actuation of anything in head assembly (220), regardless of whether driver actuator (264) is in the distal position or the proximal position. Such haptic feedback may be provided to indicate the end of a stapling stroke, to indicate a lockout condition, and/or to indicate some other condition. Various other suitable ways in which audio, visual, and/or haptic feedback may be provided will be apparent to those of ordinary skill in the art in view of the teachings herein.
In some versions, control module (224) may actuate instrument (210). Sensor (222) may be configured to detect when knife (36) and staples (66) have been fired. Control module (224) may thus automatically reverse motor (280) once knife (36) and staples (66) have been fired. Control module (224) may also actuate feedback feature (226) to indicate to a user that instrument (210) has been fired. Other suitable ways in which sensors (222), control module (224), and feedback feature (226) may be used will be apparent to those of ordinary skill in the art in view of the teachings herein. It should also be understood that such features may be simply omitted if desired.
B. Exemplary Switch Assembly
As described above, surgical stapling instrument (10, 210) has two sub-systems, a closure sub-system (to clamp tissue between anvil (40, 240) and stapling head assembly (20, 220)) and a firing sub-system (to drive knife (36) and staples (66) distally toward anvil (40, 240)), in order to create an anastomosis. It may be desirable to power both sub-systems with a single rotary motor to eliminate the cost and packaging of an additional motor and transmission.
A pivoting swing arm (391) is wrapped around transmission shaft (392) such that transmission shaft (392) may freely rotate relative to swing arm (391), as shown in
As shown in
Solenoid (390) may be button activated or be otherwise manually activated. Alternatively, switching assembly (371) may incorporate logic such that solenoid (390) is activated automatically. For instance, a user may actuate drive assembly (371) by inputting a user input (310) into a control module (312), as shown in
III. Miscellaneous
It should be understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The above-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
At least some of the teachings herein may be readily combined with one or more teachings of U.S. Pat. No. 7,794,475, entitled “Surgical Staples Having Compressible or Crushable Members for Securing Tissue Therein and Stapling Instruments for Deploying the Same,” issued Sep. 14, 2010, the disclosure of which is incorporated by reference herein. Various suitable ways in which such teachings may be combined will be apparent to those of ordinary skill in the art.
Similarly, at least some of the teachings herein may be readily combined with one or more teachings of U.S. patent application Ser. No. 13/693,430, entitled “Trans-Oral Circular Anvil Introduction System with Dilation Feature,” filed Dec. 4, 2012, the disclosure of which is incorporated by reference herein. Various suitable ways in which such teachings may be combined will be apparent to those of ordinary skill in the art.
Similarly, at least some of the teachings herein may be readily combined with one or more teachings of U.S. patent application Ser. No. 13/688,951, entitled “Surgical Staple with Integral Pledget for Tip Deflection,” filed Nov. 29, 2012, the disclosure of which is incorporated by reference herein. Various suitable ways in which such teachings may be combined will be apparent to those of ordinary skill in the art.
Similarly, at least some of the teachings herein may be readily combined with one or more teachings of U.S. patent application Ser. No. 13/706,827, entitled “Surgical Stapler with Varying Staple Widths Along Different Circumferences,” filed Dec. 6, 2012, the disclosure of which is incorporated by reference herein. Various suitable ways in which such teachings may be combined will be apparent to those of ordinary skill in the art.
Similarly, at least some of the teachings herein may be readily combined with one or more teachings of U.S. patent application Ser. No. 13/688,992, entitled “Pivoting Anvil for Surgical Circular Stapler,” filed Nov. 29, 2012, the disclosure of which is incorporated by reference herein. Various suitable ways in which such teachings may be combined will be apparent to those of ordinary skill in the art.
Similarly, at least some of the teachings herein may be readily combined with one or more teachings of U.S. patent application Ser. No. 13/693,455, entitled “Circular Anvil Introduction System with Alignment Feature,” filed Dec. 4, 2012, the disclosure of which is incorporated by reference herein. Various suitable ways in which such teachings may be combined will be apparent to those of ordinary skill in the art.
Similarly, at least some of the teachings herein may be readily combined with one or more teachings of U.S. Patent App. No. U.S. Patent App. No. [ATTORNEY DOCKET NO. END7160USNP.0597930], entitled “Circular Stapler with Selectable Motorized and Manual Control, Including a Control Ring,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Various suitable ways in which such teachings may be combined will be apparent to those of ordinary skill in the art.
Similarly, at least some of the teachings herein may be readily combined with one or more teachings of U.S. Patent App. No. U.S. Patent App. No. [ATTORNEY DOCKET NO. END7161USNP.0597922], entitled “Motor Driven Rotary Input Circular Stapler with Modular End Effector,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Various suitable ways in which such teachings may be combined will be apparent to those of ordinary skill in the art.
Similarly, at least some of the teachings herein may be readily combined with one or more teachings of U.S. Patent App. No. [ATTORNEY DOCKET NO. END7163USNP.0597933], entitled “Motor Driven Rotary Input Circular Stapler with Lockable Flexible Shaft,” filed on even date herewith, the disclosure of which is incorporated by reference herein. Various suitable ways in which such teachings may be combined will be apparent to those of ordinary skill in the art.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Versions of the devices described above may have application in conventional medical treatments and procedures conducted by a medical professional, as well as application in robotic-assisted medical treatments and procedures. By way of example only, various teachings herein may be readily incorporated into a robotic surgical system such as the DAVINCI™ system by Intuitive Surgical, Inc., of Sunnyvale, Calif. Similarly, those of ordinary skill in the art will recognize that various teachings herein may be readily combined with various teachings of U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool with Ultrasound Cauterizing and Cutting Instrument,” published Aug. 31, 2004, the disclosure of which is incorporated by reference herein.
Versions described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, versions described herein may be sterilized before and/or after a procedure. In one sterilization technique, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
Claims
1. An apparatus for stapling tissue, the apparatus comprising:
- (a) a stapling head assembly;
- (b) a shaft assembly coupled to the stapling head assembly; and
- (c) a handle assembly coupled to the shaft assembly, wherein the handle assembly comprises: (i) a motor positioned within a motor housing, (ii) a motor housing positioner coupled to a proximal end of the motor housing, wherein the motor housing positioner is configured to translate between a proximal position and a distal position, and (iii) a selection assembly, wherein the selection assembly is operable to select between a motorized operation of the stapling head assembly or a manual operation of the stapling head assembly based on the position of the motor housing positioner.
2. The apparatus of claim 1, wherein the motor housing positioner comprises a rotation knob.
3. The apparatus of claim 2, wherein the rotation knob comprises splines extending distally, wherein the handle assembly comprises a housing, wherein the housing comprises teeth corresponding with the splines, wherein the splines are configured to engage the teeth during motorized operation such that the rotation knob is prevented from rotating.
4. The apparatus of claim 1, wherein the selection assembly is configured to select the motorized operation when the motor housing positioner is in the distal position, wherein the selection assembly is configured to select the manual operation when the motor housing positioned is in the proximal position.
5. The apparatus of claim 1, wherein the handle assembly further comprises a battery.
6. The apparatus of claim 5, wherein the battery is operable to supply power to the motor during motorized operation.
7. The apparatus of claim 6 further comprising spring contacts, wherein the spring contacts are operable to supply power from the battery to the motor based on the position of the motor housing positioner.
8. The apparatus of claim 1, wherein the selection assembly comprises a first gear and a second gear, wherein the first gear is coupled to the motor housing, wherein the second gear comprises splines.
9. The apparatus of claim 8, wherein the first gear is configured to engage the splines of the second gear during manual operation.
10. The apparatus of claim 8, wherein the first gear is configured to be decoupled from the splines of the second gear during motorized operation.
11. The apparatus of claim 1, wherein the shaft assembly comprises a driver actuator, wherein the driver actuator is operable to actuate the stapling head assembly.
12. The apparatus of claim 11, wherein the motor is operable to actuate the driver actuator during motorized operation.
13. The apparatus of claim 11, wherein the motor housing positioner is operable to actuate the driver actuator during manual operation.
14. The apparatus of claim 11, wherein the handle assembly comprises a firing ring, wherein the firing is operable to translate the driver actuator.
15. The apparatus of claim 14, wherein the handle assembly comprises slots, wherein the handle assembly comprises a coupling member extending through the slots to couple with the firing ring, wherein the coupling member is configured to translate through the slots to lock the longitudinal position of the firing ring.
16. An apparatus for stapling tissue, the apparatus comprising:
- (a) a closure assembly operable to clamp tissue between an anvil and a stapling head assembly;
- (b) a firing assembly operable to drive a knife and at least one staple through tissue from the stapling head assembly toward the anvil; and
- (c) a drive assembly, wherein the drive assembly comprises: (i) a motor, (ii) a pivoting member coupled to the motor, (iii) a firing rod, wherein the firing rod is operable to actuate the firing system, and (iv) a closure rod, wherein the closure rod is operable to actuate the closure system; wherein the pivoting member is configured selectively switch between engaging either the firing rod or the closure rod such that the motor is operable to actuate the firing rod when the pivoting member is engaged with the firing rod and the motor is operable to actuate the closure rod when the pivoting member is engaged with the closure rod.
17. The apparatus of claim 16, wherein the drive assembly comprises a solenoid, wherein the solenoid is operable to pivot the pivoting member between engaging the firing rod and the closure rod.
18. An apparatus for stapling tissue, the apparatus comprising:
- (a) a stapling head assembly;
- (b) a shaft assembly coupled to the stapling head assembly; and
- (c) a handle assembly coupled to the shaft assembly, wherein the handle assembly comprises: (i) a motor, wherein the motor is operable to actuate the stapling head assembly in a motorized operational mode, (ii) a rotation knob, wherein the rotation knob is configured to translate between a first position and a second position, wherein the rotation knob is operable to actuate the stapling head assembly in a manual operational mode, and (iii) a selection assembly, wherein the selection assembly is operable to provide the motorized operational mode when the rotation knob is in the first position, wherein the selection assembly is operable to provide the manual operational mode when the rotation knob is in the second position.
19. The apparatus of claim 18, wherein the first position of the rotation knob is a distal position, wherein the second position of the rotation knob is a proximal position.
20. The apparatus of claim 18, wherein the stapling head assembly is coupleable to an anvil, wherein the stapling head assembly is operable to clamp tissue between the anvil and the stapling head assembly, wherein the stapling head assembly comprises a knife and a plurality of staples aligned in a circular configuration, wherein the stapling head assembly is operable to drive the knife and the staples through tissue from the stapling head assembly toward the anvil.
Type: Application
Filed: Sep 19, 2016
Publication Date: Jan 5, 2017
Inventors: Jeffrey S. Swayze (West Chester, OH), Chester O. Baxter, III (Loveland, OH), Frederick E. Shelton, IV (Hillsboro, OH)
Application Number: 15/268,684